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ON MANIFOLDS OF SMALL DEGREE

PALTIN IONESCU

ABSTRACT. Let X C P" be a complex connected projective, non-degenerate, linearly
normal manifold of degred < n. The main result of this paper is a classification of
such manifolds. As a by-product of the classification it follows that these manifolds are
either rational or Fano. In particular, they are simply connected (hence regular) and of
negative Kodaira dimension. Moreover, easy examples showl that is the best possible
bound for such properties to hold true. The proof of our theorem makes essential use of
the adjunction mapping and, in particular, the main result of [15] plays a crucial role in the
argument.

1. INTRODUCTION

Let X C P" be a complex connected projective manifold of dimensi@md degreed.
Assume moreover that is non-degenerate arbd< n. The results contained in this paper
have the following topological consequence:

(%) If X is as aboveX is simply connected.

The bound! < n is optimal for the validity of ¢). Indeed, there existdimensional elliptic
scrolls inP?", of degreer + 1 (see [14], 5.2); they havig = 2.

To the best of our knowledgex)was not even conjectured before. However, F.L. Zak
(unpublished) asked if such manifolds are regular (i.&, i 0).

We would like to mention two related topological ancestors:)f (The first one is (a
special case of) Barth—Larsen theorem (see [3] and, for a singular version, [8])

(B-L) If 2r > n + 1, thenm (X) = (0).

The second result is Fulton—-Gaffney—Lazarsfeld theorem about branched coveififigs of
(see[9, 8)):
Gl If X — P"is a normal finite covering of degree< r,
(F-G-L) thenm; (X) = (0).

Note that, ford < r, (x) follows either from (B-L) or from (F-G-L). We refer to [8] for a
very nice discussion of such topological aspects.
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To the best of our knowledge, no topological proofgfié known. We are able to deduce
it from the following geometric result:

If X is as above, then either:
(%) (1) by = 1 and X is a Fano manifold, or
(2) by > 2 and X is rational.
It is well-known that both rational and Fano manifolds are simply-
connected; see [17] for a far-reaching common generalization.x)SJollows from (xx).
The first case in#(x) may be seen as generic, as it includes all complete intersections of
dimension at least three. Assuming Hartshorne Conjecture for Fano manifolds, we may

describe all cases in (1) which are not complete intersections (Corollary 11). Moreover, we
shall prove:

Manifolds withd < n andbs > 2 may be classified completely.
There are6 infinite series (having arbitrarily large dimension
and degree) and4 “sporadic” examples. All turn

out to be rational.

(k)

The precise list is given in the statement of the main result, see the next section.

The proof of the main theorem will occupy Section 4. It relies on a very detailed study of
the adjunction mapping (see e.qg. [4], Chapters 9-11 for a complete treatment). Moreover,
the main result of [15] plays a key role in the proof. We note that, besides classical adjunc-
tion theory, some nontrivial facts coming from Mori theory are also used in [15]. Finally,
the classification of manifolds of smal-genus (cf. [6, 7, 13]) is also needed.

The present work is a slightly improved version of a paper with the same title that was
circulated as Preprint no. 17, IMAR, Bucharest, December 2000.

2. STATEMENT OF THE MAIN RESULT
Our main result is the following:

Theorem. Let X C P™ be a connected projective manifold ovér of dimension- and
degreed. Assume moreover thaf is non-degenerate and linearly normal.df< n, then
one of the following holds:
() X is Fano,b2(X) = 1;
(i) X is Fano and either:
(@2 < r <4,3<d<8, Xisaclassical del Pezzo manifold with(X) > 2 (cf.
Theorem B below)
(b)r =3,d =9, X is the Segre embeddingBf x F;, whereF; is the blowing-up of
P2 in a point, embedded iR* as a rational scroll of degre8;
(c) X is one of the following scrolls ové?:
Q)r=4,d=10, X ~ P(Tp2 ® Op2(1));
2)r=4,d=11, X ~P(Op2(1) ® Op2(1) & Op2(2));
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(38)r = 5,d = 10, X is the Segre embeddingBf x P3;
(i) » > 2,d > r, X is a scroll overP! (i.e. a linear section of the Segre embedding of

P! x P™);
(iv) r > 3 and there is a vector bundi€ over P!, of rankr 4 1 and of splitting type
e = (eo,...,er), such that, ifL denotes the tautological divisor dh€) and F' denotes a

fibre of the projectio?(€) — P!, X embeds ifP(€), L|x is the hyperplane section divisor
and either:
@n=d=2r—-1,e=(1,...,1,0,0), X € |2L + F|;
(byn=d=2r,e=(1,...,1,0), X € |2L|;
C©n=d=2r+1l,e=(1,...,1), X € 2L - F|;
dr>4n=2r+1,d=2r,e=(1,...,1), X € |2L — 2F|; equivalently,X is
the product of a line and a quadric of dimension- 1, in its Segre embedding;
@n=d=2r+2e=(1,...,1,2), X € |2L — 2F|.

Remarks. 1. Except for case (i), all manifolds appearing in the theorem are rational.
2. All cases listed actually occur.
3. Manifolds from case (iv) (b) up to (iv) (e) in the theorem are also Fano.

3. CONVENTIONS AND PREREQUISITES

We follow the customary notation in algebraic geometry (see e.g. [12]). We denote by
X C P¢ acomplex projective connected manifold. We debe its degree and its di-
mension;s = n — r is the codimension oK in P". The irregularity ofX is by definition
q := h'(X,0x) and H will denote a hyperplane section & c P". We write (Y') for
the linear span o C P™. The sectional genus df, denotedy, is the genus of the curve
XNH N---NH_1,whereH,,..., H,_; are generic hyperplanes. The adjunction
formula reads:

29 2= (K+ (r—1)H) -H,

whereK is a canonical divisor foX .
The A-genus ofX is by definition

A=d+r—h'(X,0x(H))

and is a non-negative integer.

X is said to be a&croll over the manifold” if X ~ P(&) for some vector bundl€ onY’,
such thatOx (H) is the tautological line bundle d&(£). We use Grothendieck’s notation
for P(&).

X is said to be aguadric fibrationover the smooth curv€’' if there is a morphism
m: X — C such that the fibres of are quadrics with respect to the embedding induced by
Ox(H). It turns out that singular fibres af are ordinary cones (see [13]). In the sequel,
we denote by)" a quadric of dimension.
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The adjunction mapping oX, denoted below by, is the rational map oX associated
with the linear systemk + (r — 1)H|. See e.g. [4], Chapters 9—11 for a complete study of
its properties.

We recall two results on the classification of manifolds of smatjenus. The first one
is classical (see e.g. [13], Proposition 2.3).

Theorem A. The following are equivalent:
() A=0;
(i) g = 0;
(iii) X is eitherP”, H € |Opr(1)|, or a quadricQ™ C P"1, or P2, H € |Op2(2)|, or a
scroll overP*.

The next result is due to del Pezzorif= 2, to Fano and Iskovskikh for = 3 and to
Fujita in general (see also [13], Proposition 2.4 for some other characterizations).

Theorem B. (Fujita, [6], [7]) Assume that > 2. The following are equivalent:

) A=1;

(i) X is either a classical del Pezzo surface (anticanonical embedding of étherP!
or P2 blown-up at at most six points) or ,if> 3, one of the following:

(a) a cubic hypersurface;

(b) a complete intersection of tyge, 2);

(c) a linear section of the Ricker embedding of the Grassmannian of lineBin

(d) the Segre embedding Bf x P?;

(e) a hyperplane section of the manifold in (d) (thiPi&lp2));

(f) the Segre embedding Bf x P! x P!;

(g) the scroll overP?, P(Op2 (1) & Op2(2)) (this isPP? blown-up at a point);

(h) the Veronese embedding(P3).

Recall thatX is a Fano manifold if- K is ample. We see that the examples listed in
Theorem B (which were calledassical del Pezzo manifolds[13]) are all Fano manifolds.

4. PROOF OF THE THEOREM
We begin with the following simple fact.

Lemma 1. LetC' be a smooth projective curve of positive genus andlet Pic(C') with
deg(£) > 0. Then we hava®(L) < deg(L).

Proof. If L is special, we may apply Clifford theorem.4fis non-special, the result follows
from the Riemann—Roch theorem. O

Proposition 2. Let C be a smooth projective curve of positive genus and le¢ an ample
and spanned vector bundle 6h Then we havé’(€) < deg(€).

Proof. We proceed by induction ofn:= rank(€). Whene = 1, we may apply Lemma 1.
Assume nowe > 2. As € is ample and spanned, it follows thiet(£) > e. So, forp € C,



ON MANIFOLDS OF SMALL DEGREE 5

we may find a non-zero sectiere H°(C, £(—p)) which induces an exact sequence:
0—L—&—E& —0,

whereL € Pic(C), deg(L) :=1 > 0, and&’ is ample, spanned and of rank- 1. Indeed,
LY is the image of" : £Y — O¢(—p); asC is a smooth curve, this (non-trivial) sheaf of
ideals is invertible. We have

deg(€) — 1 = deg(£) = h°(&') = hO(€) — (L)
by the induction hypothesis and the cohomology sequence of the above exact sequence.
Applying once again Lemma 1 we gétg(€) > h0(&). O

Corollary 3. Let X c P" be a scroll over a smooth curv@. Assume thafX is non-
degenerate of degree< n. ThenC ~ P!

Proof. Let X ~ P(&). If g(C) > 0, by Proposition 2 we get
n+1<h(X,0x(H)) =hC, &) < deg(€) = d,
a contradiction. O

Lemma4. Let X C P" be smooth connected non-degenerate of degeeel dimensiom,
with d < n. Assume moreover that < n + 1. Then we have:

g<r—1;and

(i) d >2g+1.

Proof. (i) Let s := n — r and letC c P**! be a curve section ok. If H. is special, by
Clifford theorem we get

d
5+2<h(C,00(Ho) < §+1< 27
giving r > s + 2. This is a contradiction. S is non-special and by Riemann—Roch we

get

+1,

s+2<h(C,0c(He))=d+1—-g<r+s+1—g,
henceg < r — 1.
(ii) We get by Riemann-Roch and (i):

dz2s+1+g=>2r+g=>2g+1.
O

Proposition 5. Let X C P" be smooth connected

non-degenerate and linearly normal with< n. Assume that the adjunction mapping
© = Y|k+(r—1)r| MakesX into a scroll over a smooth surfacg ThenS ~ P? and X is
one of the following:

1)r=4,d=10, X ~P(Tp2 ® Op2(1));

2)r=4,d=11, X ~P(Op2(1) @ Op2(1) ® Op2(2));

(@)r=5,d=10,X ~P(OZ'(1)), i.e. X is the Segre embeddingBf x .
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Proof. Let S’ be the smooth surfac® N H; N --- N H,_2, whereH; are generic hyper-
planes inP"™. We first remark that the geometric genusfis zero. This follows from
Lemma 4 (ii) and the adjunction formula féfs,. The standard exact sequences

0 —Ox(K+(r—2)H) — Ox(K+(r—1)H) — Og(Kg+ (r—2)Hyg) — 0

together with Lemma 1.1 from [13] show that, in our cae¥,.X, Ox (K + (r — 1)H)) =

g —q. So,we havep : X — S C P9~971. Let Hg be a generic hyperplane section of
S c P9=9-! and letY := p~!(Hg). Note thatY is a scroll of dimensiom — 1 over the
curve Hg; if we let dy be its degree, we gy = (K + (r—1)H) - H"~! = 2g — 2 by the
adjunction formula. Letn be the dimension of the projective space spannedf bigside
P™. By Barth theorem (see [2]), the Picard groug©fs cyclic whenevern < 2(r—1)—1.
AsY is ascroll, we must have: > 2(r — 1) — 1. We get, using Lemma 4 (i)

m>=2r—3=22(r—2)>2(g—1) =dy.

So, by Corollary 3, it follows thafig ~ P!. The two-dimensional case of Theorem A
shows thay; = 0 and one of the following holds:

1.5=P2,g=A=3;
2. S is a scroll ovefP!;
3. S is the Veronese embedding(P?), g = 6.

Recalling the definitiom\ = d +  — h(X, Ox (H)), we get
n+r>zd+r>2n+1+A,

givingr > A+ 1. Now, if we are in case 1, by Proposition 4.7 from [13], it follows that we
have the following possibilities fak:

r=4,d=9,10or 11,

r=5,d =10, X is the Segre embedding Bf x P3.
Assume that = 4, so X ~ P(&) for some very ample vector bundle of rank three over
P2, If ¢ is a line inP?, it follows that £|, has degree and is very ample. Saf|, ~
Op(1) @ Op(1) ® Op(2), i.€. £ is uniform. One may use the classification from [5]; we find
that the casd = 9 is not possible, while foid = 10 we get€ ~ Tp2 © Op2(1) (equivalently
X is a hyperplane section of the Segre embeddin§?k P?) and ford = 11 we get
E ~ Op2(1) @ Op2(1) @ Op2(2) (this is the blow-up of?* with center a line).

To finish the proof we only have to show that cases 2 and 3 cannot occur. We use the
notation from [12], Chapter V, Section 2. If we are in case 2, we have F., Hg =
Co + bF withb > e > 0.

We look at thg(r —1)-dimensional rational scrollg, = ¢~1(Cy) andY; = ¢~ 1(F). Put
d; = deg(Y;) fori = 0, 1; we getd; > r — 1. By Barth’s theorem ([2]), ifn; = dim(Y;),
we get as abover; > 2(r — 1) — 1; moreover, sincé\(Y;, Oy, (H)) = 0 (see Theorem A)
we deduce

di +1r—1="n%Y;, Oy,(H)) > m; +1>2(r—1),
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i.e.d; > r — 1. So, we find
29—2:deg(Y):do—|—bd1 >dy+ dp 22(7“—1),
contradicting part (i) of Lemma 4. Case 3 is ruled out by a similar argument. O

Next we need a general lemma concerning the geometry of quadric fibrations (see also
[14], 6.2).

Lemma 6. Assume that the adjunction mapping X — C C P™ makesX into a quadric
fibration over a smooth curv€. Thenm = g — ¢ — 1 andq coincides with the genus of
C. Moreover€ := p,Ox(H) is a spanned vector bundle of rankt+ 1 overC. Denote
by 7 : P(£) — C the projection and by the tautological divisor orP(£). ThenX is
embedded if?(€) in such away thal.|x = H and X € |2L + 7*B| for some divisoB
onC. Finally, if a := deg(€) andb := deg(B), the following formulae hold

a=1—g+2(¢g—1)+d and b=2(g—1)—4(¢—1)—d.
Proof. From Lemma 1.1 in [13] and the standard exact sequences
0— O)((K+ (7"—2)H) — Ox(K—i- (7“— 1)H> — OH(KH+ (T—Q)HH) —0

it follows thath®(X, Ox (K +(r—1)H)) = g—q. LetS C X be a surface section df, i.e.
S=XnNHN---NH,_3, whereH; are generic hyperplaneslit. By Lefschetz’s theorem
on hyperplane sectiong andS have the same irregularity. ASis a conic fibration over
C, it is birationally ruled, so we have = ¢(S) = ¢g(C). For anyc € C, let X, denote the
fibre of ¢ overc. Note thatX. is a quadric of dimension — 1, hence it is linearly normal
in its linear sparP”. In particular, for any: € C, we haveh’(X., Oy, (H)) = r + 1 and
H'(X.,0x.(H)) = 0. So€ is a vector bundle by Grauert's theorem; &gtbe its fibre at
the pointe. The canonical diagram

H°(C,&) = HY(X,0x(H))

ol e

6‘C ;) HO(XC7OX¢(H))

shows that is spanned by global sections, since the restriction map res is surjective for any
¢ € C. Consider also the canonical induced diagram

X c P¢)
2N o

C

and write X ~ 2L + n* B, for some divisorB on C. Let Ho be a hyperplane section of
C c P9—9~1, We find

¢ (He) =K+ (r—1)H = (Kpgy + X + (r = 1)L)|x = 9" (K¢ + det € + B).
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By taking degrees, we ggt— 1 = 2(q — 1) 4+ a + b. Moreover,a = (L"*!), sod =
(L" - X)) = 2a + b. The two formulae follow. O

Lemma 7. Let X C P™ be smooth connected non-degenerate With n. Assume that the
adjunction mappingy : X — C makesX into a quadric fibration over a smooth cur¢e
ThenC ~ P!,

Proof. Assume thaty = ¢(C) > 0. By Lemma 4 (ii),d > 2g + 1. So, by Lemma 6, we
haveb =2(g—1) —d—4(¢—1) <0.

We show first that is ample. As€ is spanned(p¢) (L) is spanned. So, it is not
ample, there is a curv® C P(&) such that(L - D) = 0. It follows that (X - D) =
(2L 4+ 7*B) - D = ab for somea > 0. Asb < 0, we deduce thatX - D) < 0,soD C X.
But L|x = H, so(D - L) > 0 which is a contradiction. S6 is ample.

Let now S C X be a surface section of. We have(Hs + Kg)? = 0, giving
d+2(Hgs - Kg) + (Kg)? = 0. The adjunction formula yieldéHs - Ks) = 2g — 2 — d.
As S is birationally ruled, it dominates a geometrically ruled model, SaySo, we have
(Ks)? < (Kg,)? = 8(1 —q), see e. g. [12], Chapter V, Corollary 2.11 for the last equality.
We deduce, using also Lemma 4 (i)

4g—1)>2d+8(g—1)>29+1+8(qg—1).

Sowegetlg < g+ 1.ByLemma6a=1—g+2(¢g—1)+ dandwe finds < d — 2q.
Now, sincef is ample and spanned, we may apply Proposition 2 to find

a=deg(&) > h(C,E) = h°(X,0x(H)) > n+1.
Putting things together, we get
n+l<a<d—2¢<n—2.
This is a contradiction, s@ = 0. O
We shall also need the proposition below which might have an interest in itself.

Proposition 8. Let X C P" be smooth connected
non-degenerate and linearly normal. Assume that the adjunction magpiny — C
makesX into a quadric fibration ovelC' ~ P'. Assume moreover, that> 2¢g + 2 and
r > g+ 1. Then, in the notation of Lemn@eand denoting by = (ey, .. ., e,.) the splitting
type of¢€ and byF a fibre of the projectio®(£) — P!, we have one of the following:
@r=s,d=2r,e=(1,...,1,0), X € |2L|;
b)yr=s—1,d=2r+1,e=(1,...,1),X € |2L — F|;
©r=s-1,d=2r,e=(1,...,1), X € |2L — 2F| or, equivalently X ~ P! x Q"~!
embedded Segre;
(dr=s-2,d=2r+2,e=(1,...,1,2), X € |2L — 2F|;
(e)r = 3, X ~ P! x F;, embedded Segre, whefg is embedded ifP* as a rational
scroll of degrees.
Moreover, all these cases do occur.
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Proof. We first remark thay > 2 (see [13]), so- > 3. Let (@ denote a fibre of. We have
(H —Q)-H! = d — 2. The standard exact sequence

0 — Ox(—Q) — Ox(H—-Q) — Og(H-Q) —0

and the fact that/ 1 (X, Ox (—Q)) = 0 allow one to prove by induction onthat| H — Q| is
base-point-free. Note that on a curve sectiotXgtthe degree of the restriction of — Q)|

is > 2g¢, so it is base-point-free. Moreovef{ — | is not composed with a pencil, since
r > 3. So, by Bertini theorem, there is a smooth memkée |H — Q|. We let

H,:H|X/7 K,:KX/,
r=dim(X')=r—1, @' = QK4 (r—1)H|»
d = deg(X') =d—2, g = g(H),

s =h(X",Ox/(H))—1—7".

One finds easily’ = g — 1, s’ = s — 1 andy’ can be identified withp| .. The statement
of the proposition is proved by induction an(note that we still have’ > 2¢’ + 2 and
r’ > ¢’ +1). Assume first thay > 3. Sincer > g + 1, forr = 4 we getg = 3 and we may
use the classification from Theorem 4.3 in [13]. Fge 4 we find inductively the following
possible values for the numerical invariants:

@r=sd=2r,g=r—1;
b)yr=s—-1,d=2r+1,9g=1r-1,
©r=s—1,d=2r,g=r—2;
dr=s—-2,d=2r+2,g=r—1.

It remains to analyze the cage= 2, where one may use the classification theorem 3.4
in [13]. This leads to only one new case, which is (e).

Next we investigate the structure &fin each case.

First we have thaf is non-special (since it is spanned by Lemma 6). So Riemann—Roch
theorem gives

r+s+1=hrE =a+r+1,

hencex = s. Now, in case (a), we remark thdf —2Q| = ), since(H—Q)"~!-(H-2Q) =
d—2r—2<0.ByLemma6p=0,s0X € |2L|.
The exact sequence

shows thath?(£(—2)) = 0; as€& is spanned and = r, the splitting type of€ must

be (1,...,1,0). The existence follows by the same type of argument as in the proof of
Proposition 3 from [16]. The other cases are similar and simpler. For instance, in case (b)
one gets as above(£(—2)) = 0,a = r+ 1 andb = —1. Soe = (1,...,1), £ is very
ample and the existence follows now easily. O
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Proposition 9. Let X C P" be smooth connected

non-degenerate and linearly normal, with< n. Assume that the adjunction mapping
makesX into a quadric fibration over a smooth cur¢@ ThenX is as in casdii) (b) or
case(iv) of the main theorem.

Proof. By Lemma 7,C ~ P!. We haved > 2g + 1 andg < r — 1 by Lemma 4. If

d > 2g + 2, we may apply Proposition 8, thus leading to cases (ii) (b) and (iv) (b) up to
(iv) (e) of the main theorem. So, assume ttiat 2¢ + 1. As in the proof of Proposition 8
we deduce thait = s. By Lemma 6 we gett = g, b = 1. It follows s = ¢ < r — 1. Barth
theorem ([2]) ensures that> r — 1, so we must have = » — 1. We obtain

g=r—1, d=2r—1, a=r—1.

As in the proof of Proposition 8, we hayH — 2Q| = (), soh®(£(—2)) = 0. It follows that
the splitting type o€ is (1,...,1,0,0), so we are in case (iv) (a) of the main theorem. The
existence follows from Proposition 3 in [16]. O

We are now ready for the proof of our theorem.
Assume first that < s + 1. We have

A=d+r—h"(XOx(H)<n+r—-n—1=r—1.

If A = 0, by Theorem A we get either case (iii) of the main theorem or some special
examples of case (i). Similarly A = 1, by Theorem B we get either case (ii) (a) or some
special examples of case (i). So, assulne= 2, hencer > 3, from now on. Ifr = 3, it
follows A = 2, s > 2 andy : X — P! is a quadric fibration by [13], Theorem 3.12 and
Corollary 3.3. Ifr = 4, we getA = 2 0or 3, s > 3, SOy is either a quadric fibration over

a rational curve or a scroll ové@? (see [13], Theorems 3.12, 4.8 and 4.2). Sidcg n, it
follows thatd < r+s < 2s+ 1. So, using the general properties of the adjunction mapping
(see e.g. [4], Chapters 9-11, in particular Theorem 11.2.4) and the above analysis 4or

it follows from Theorem | in [15] that one of the following holds:

(1) X is a scroll over a (smooth) curg;
(2) ¢ makesX into a scroll over a smooth surface;
(3) p» makesX into a quadric fibration over a smooth curve.

In case (1), from Corollary 3, we gét ~ P!, soA = 0. In case (2), by Proposition 5
we reach

case (ii) (c). If we are in case (3), by Proposition 9 we get case (ii) (b) or case (iv).
Assume now that > s + 2. By Barth theorem ([2]) it follows thalPic(X) ~ Z, generated
by the class 0O x (H). We show thafX is Fano, so we are in case (i) and the main theorem
is completely proved. As we hauic(X) ~ Z, to prove thatX is Fano it is enough to
see that the geometric genusXf denoted by,, is zero. Here we make use of a theorem
of Harris (see [10]), generalizing Castelnuovo’s bound for the genus of a curve to arbitrary
dimension, which states that
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- M +M
Pg = r+18 7“8’

whereM = [(d —1)/s]ande =d — 1 — Ms.
If s =1 we findp, = 0 by direct computation. I > 2 andr > 2we getr+s—1 < rs;
our hypothesigl < r + s givesd — 1 < rs, or M < r. Sop, = 0. O

Proposition 10. Let X C P" be a connected non-degenerate linearly normal manifold with
d < n. Assume moreover+ 2 < r < 2s andA > 2. Then one of the following holds:
(i) r =4,d =6, X is a complete intersection of typ2,3), or5 < r < 6,d =8, X is

a complete intersection of type, 2, 2);

(i) r=6,d =10, X = C(G)NQ° c P, whereG c P? is the Plicker embedding of
the Grassmannian of lines P, C(G) is the cone ove€ andQ? ¢ P! is a quadric;

(i) 7 < r € 10, d = 12, X is the spinorial varietyS'® c P!, or one of its linear
sections;

(iv) r = 8,d = 14, X c P is the Plicker embedding of the Grassmannian of lines
in 5.

Proof. As above X is Fano andPic(X) is generated by the class 6fx(H), so we may
write Ox (—K) = Ox (iH) for some: > 0. The adjunction formula yields

2g—2=(r—i—1)d.

We recall Castelnuovo’s bound< M (d — ((M + 1)/2)s — 1) whereM = [(d — 1)/s].
Sinced < r 4+ s < 3s, we find M < 2. Assumingr — ¢ — 1 > 2 we reach a contradiction;
soi > r — 2. BUtA > 2 givesg > 2, soi = r — 2, X is a Mukai manifold and the result
follows from [18]. O

Let us recall from [11] that Hartshorne Conjecture predicts that wherks, X must be
a complete intersection.

Corollary 11. Assume that Hartshorne Conjecture holds for Fano manifolds. Then, in case
(i) of the main theoremX is either a complete intersection or one of the varieties described
in TheoremA, TheorenB, or Proposition10.
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