C [∗] quotients of varieties with big torus action

Jarosław Wisniewski ´

Jürgen's birthday conference Innsbruck October 2024

acknowledgments, relation to previous research

- \triangleright Work in progress[†] with Marysia Donten-Bury, based on previous joined projects with Jarek Buczyński, Andrzej Weber, Mateusz Michałek, Leonid Monin, Gianluca Occhetta, Eleonora Romano, and Luis Sola Conde ´
- \blacktriangleright Kapranov, Sturmfels, Zhelevinsky, Quotients of toric varieties, Math. Ann. 1999
- ▶ Bäker, Hausen, Keicher, On Chow quotients of torus actions, Mich. Math. 2015
- \triangleright Goresky, Kottwitz, MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Inv. Math. 1998

† so the talk will be abut ideas not results

torus in action, local linearization

- **•** Let $H = (\mathbb{C}^*)^r$ denote an algebraic torus with $M = \mathbb{Z}^r$ the lattice of characters; we usually assume $r > 2$
- \triangleright Assume that *H* acts faithfully on a normal variety *X*, with $\dim X = n$, we will usually assume that X is smooth and projective.
- \triangleright We have decomposition of the set of fixed points into connected components

$$
X^H = Q_1 \sqcup \cdots \sqcup Q_s
$$

► For $p \in X^H$ the action of *H* on T_pX is linear and (by local linearization) up to étale cover can be identified with the action of *H* on *X* in a neighborhood of *p*.

torus in action, quotients

- Suppose that L is a line bundle over X (we usually assume *L* ample).
- **I** Given a linearization $\mu : H \times L \rightarrow L$ we have a decomposition of space of sections into eigenspaces

$$
H^0(X,L)=\bigoplus_{u\in M}H^0(X,L)_u
$$

 \blacktriangleright For a suitable *u*'s we define GIT quotients

$$
Y_u = \text{Proj}\left(\bigoplus_{m\geq 0} H^0(X,L^{\otimes m})_{mu}\right)
$$

 \triangleright Chow/Hilbert quotient is defined by the closure of the set of general orbits of the action in Chow/Hilbert scheme. Normalized Chow quotient is universal for all GIT quotients.

GKM action

- \triangleright We say that the action of *H* on *X* is *k*-GKM if the number of orbits of dimension $\leq k$ is finite. In particular 0-GKM is finite number of fixed points, 1-GKM is just GKM, *n*-GKM is toric (here we do not assume that *X* is smooth).
- ► We say that the action is weak GKM if all $p \in X^H$ are isolated and the weights of the action of *H* on *TpH* are $-\nu_1,\ldots,-\nu_n\in M$ and $\nu_i\neq\nu_j$ for $i\neq j.$ The compass $\mathcal{C}_{\bm\rho}$ is the set of ν_i 's.
- \blacktriangleright If the action is weak GKM then all eigenspaces of the action in T_pX are of dimension 1 and (via local linearization) give rise to *H*-orbits, the closures of which we will call eigencurves (note that they are smooth).
- \triangleright The action is GKM if and only if it is weak GKM and no two ν_i 's are proportional.

context: Atiyah-Bott localization theorem

Suppose that the action of *H* on *X* is weak GKM and $X^H = \{y_1, y_2, \ldots, y_k\}$. For each fixed point y_i we consider its $\mathsf{compass}\ \mathcal{C}_{\mathsf{y}_i} = \{\nu_{i,j}, j=1,\ldots,n\}.$ For a line bundle L with a linearization μ by $\mu_i = \mu_i(\gamma_i) \in M$ we denote the weight of the action of *H* on *Lyⁱ* .

Then the equivariant Euler characteristics

$$
\chi^H(X,L)=\sum_{u\in M}\chi(X,L)_ut^u
$$

 $\,$ can be computed in terms of μ_i 's and $\nu_{i,j}$'s

$$
\chi^H(X,L) = \sum_{i=1}^k \frac{t^{\mu_i}}{\prod_j (1-t^{\nu_{i,j}})}.
$$

motivation: understanding a birational map

Given \mathbb{C}^* action on X with two GIT geometric quotients Y_1 and *Y*₂ we have a birational map $Y_1 \leftarrow -\rightarrow Y_2$ and normalized Chow quotient $\mathcal Y$ resolves this map

Example: inversion of (symmetric) matrices comes from a \mathbb{C}^* quotients of (Lagrangian) Grassmanians and is resolved by complete collineations (quadrics) being Chow quotient of this action.

Problem Suppose *X* is GKM, describe GKM-like structure of Y.

visualisation: a grid

A grid of GKM action of *H* on (X, L) is the set of $\mu_i = \mu_L(y_i)$ as points in *M* (as affine lattice), together with ν*i*,*^j* 's as vectors (in the tangent lattice *M*) attached to μ_i 's.

Take
$$
\mathbb{Q}^4 = \{x_1x_2 + x_3x_4 + x_5x_6 = 0\} \subset \mathbb{P}^5
$$
 with $(\mathbb{C}^*)^3$ action
 $(t_1, t_2, t_3) \cdot (x_1, \ldots, x_6) = (t_1x_1, t_1^{-1}x_2, \ldots, t_3x_5, t_3^{-1}x_6)$

• denotes both fixed points and sections

grids of homogeneous varieties

Given *G* simple with *P* ⊂ *G* parabolic, the action of the Cartan torus *H* on *G*/*P* is GKM.

Take $\mathbb{Q}^5 = \{x_0^2 + x_1x_2 + x_3x_4 + x_5x_6 = 0\} \subset \mathbb{P}^6$ with $(\mathbb{C}^*)^3$ action

 $(t_1, t_2, t_3) \cdot (x_0, x_1, \ldots, x_6) = (x_0, t_1x_1, t_1^{-1})$ $t_1^{i-1}x_2, \ldots, t_3x_5, t_3^{-1}$ $x_3^{(-1)}x_6$

eigencurves, GKM graph

Instead of weights of eigenvectors (compasses) we can draw eigencurves, the result is GKM graph of \mathbb{Q}^5

The degree of an eigencurve with respect to *L* can be read from the grid via AMvsFM formula: if ν_{y_0} is a weight defining C then

$$
\mu_L(\mathsf{y}_0) + \mathsf{deg}_C L \cdot \nu_{\mathsf{y}_0} = \mu_L(\mathsf{y}_{\infty})
$$

grid of a vector bundle over \mathbb{P}^1 , downgrading

For \mathbb{P}^1 ⊃ \mathbb{C}^* with (nonhomogeneous) coordinate *z* consider line bundle $O(a)$ with local coordinates t_0, t_∞ satisfying relation

$$
z^a\cdot t_0=t_\infty
$$

The rank 2 torus acting with weights $(1, 0)$, $(m, 1)$ on (z, t_0) acts with weights (−1, 0),(*m* + *a*, 1) on (*z* −1 , *t*∞)

The following grid of a rank 2 torus action (with $L = \mathcal{O}(3)$)

may present both $\mathcal{O} \oplus \mathcal{O}$ and $\mathcal{O}(-1) \oplus \mathcal{O}(1)$

example: normal to a line on \mathbb{Q}^4

note natural bijection between the vectors in compasses

strong GKM

A GKM action of *H* on *X* is strong GKM if for every fixed point $\mathsf{y} \in \mathsf{X}^{\mathsf{H}}$ and every $\nu \in \mathcal{C}_{\mathsf{y}}$ the quotient $\mathsf{M}_\nu = \mathsf{M}/\mathbb{Z} \nu$ has no torsion and the quotient map $M \to M_{\nu}$ is injective on $C_V \subset M$.

Lemma Suppose that the action is strong GKM. Let *C* be an eigencurve with $C \cap X^H = \{p, p'\}$ and $-\nu, -\nu'$ respective weights whose eigenspaces are tangent to C in $p, p',$ respectively.

Then $\nu'=-\nu$ and the isotropy of a general point of *C* is the torus $H_{\nu} = Hom(M_{\nu}, \mathbb{C}^*)$.

Moreover, up to renumbering, the remaining elements of compasses $C_p = \{ \nu, \nu_1, \ldots, \nu_{n-1} \}$ and $C_{p'} = \{ \nu', \nu'_1, \ldots, \nu'_{n-1} \}$ satisfy $\nu'_i = \nu_i - a_i\nu$ where a_i come from the (H equivariant) splitting of the normal $N_{C/X} = \bigoplus_i \mathcal{O}(a_i).$

changing local coordinates along an eigencurve

In the situation of the previous slide we define a matrix

$$
A_C = \left(\begin{array}{cccc} -1 & -a_1 & \cdots & -a_{n-1} \\ 0 & 1 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 1 \end{array}\right)
$$

Let *^M*^e ⁼ ^Z *ⁿ* with basis *v*0, *v*1, . . . *vn*−¹ and the homomorphism $\tilde{M} \to M$ sending $v_0 \mapsto v$, $v_1 \mapsto v_1, \cdots v_n \mapsto v_n$. If for $i = 0, \ldots, n - 1$ we set $v'_i = A_{C}$ *v*_i then $v'_0 \mapsto v'$ and $v'_i \mapsto v'_i$. That is A_C preserves grading[†] $\widetilde{M} \to M$; we call it a shift along C. Note: Let $\mathbb{C}[\tilde{M}] = \mathbb{C}[t^u : u \in \tilde{M}]$ be a ring of Laurent polynomials with grading in M. Then its subrings $\mathbb{C}[t^{\nu_i}]$ and $\mathbb{C}[t^{\nu'_i}]$ represent coordinate rings of H equivariant étale neighborhoods of p, p'.

 \dagger it does not mean that $v_i \mapsto v'_i$ descends to automorphism of M

digression: case of homogeneous varieties

• For a simple group *G* ⊃ *H* take Cartan decomposition $\mathfrak{g}=\mathfrak{h}\oplus\Big(\bigoplus_{\alpha\in R}\mathfrak{g}_{\alpha}\Big).$ For every root $\alpha\in R$ we have a copy of sl₂ namely $s_{\alpha} = \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}].$

• Given parabolic *G* ⊃ *P* ⊃ *H* consider *X* = *G*/*P* with induced *H* action. For $[P] \in X^H$ the tangent space can be identified g/p with adjoint action of *H*. If $\mathfrak{g}_{\alpha} \not\subset \mathfrak{p}$ then \mathfrak{s}_{α} descends to an *H* invariant $\mathbb{P}^1_\alpha\subset G/H.$ These are eigencurves through $[P].$

• Roots define *H*-compass at [*P*]. The reflection with respect to a root α defines transformation of the root system and, as an element of Weyl group *N*(*T*)/*T* acting by conjugation on *G*/*P* which moves $[P]$ to $[P']$ which we will call a reflection as well.

• If the action of *H* on *G*/*P* is strong GKM then the shift along \mathbb{P}^1_α coincides with the differential of this morphism.

• This is not the case if the action is not strong GKM, e.g. $E_6(4)$.

C [∗] quotients

Suppose we have a subgroup $\lambda : \mathbb{C}^* \hookrightarrow H$ with quotient H' and $M' = \ker \lambda^* \subset M$. We consider quotients of X wrt the action of λ.

Note: if Y denotes any (geometric) GIT quotient and y normalized Chow quotient then they admit induced H' action. Moreover if the action of *H* on *X* is *k*-GKM then the action of *H* 0 on *Y* and *y* is $(k - 1)$ -GKM (but are usually singular).

Suppose that the action of *H* is GKM and *C* is an eigencurve which is the closure of an *H* orbit *C* ◦ contained in the set of stable points of λ with fixed point $p \in C \cap X^H.$

Using local linearization of the action of *H* at *p* we identify a neighbourhood of p with $\mathbb{C}[x_1, x_2, \ldots, x_n]$ with variables x_i graded in *M*. We may assume $C = \{x_2 = \cdots = x_n = 0\}$.

GIT quotient

In the situation from the previous slide, the GIT quotient around [C^o] is (up to local linearization) described by the ring of invariants

$$
\mathbb{C}[x_1^{\pm 1},x_2,\ldots,x_n]^{\lambda}\subset \mathbb{C}[x_1^{\pm 1},x_2,\ldots,x_n]
$$

with the grading in M'.

If \tilde{M} denotes the lattice of characters of the big torus of \mathbb{C}^n with basis deg $x_i = v_i$ and grading map $M \rightarrow M$ then the ring of invariants is

$$
\mathbb{C}\big[\textit{cone}(\pm \mathsf{v}_1, \mathsf{v}_2, \ldots, \mathsf{v}_n) \cap \widehat{M}\big]
$$

where \widehat{M} is the kernel of composition $\,\,\widetilde\,M\,\longrightarrow\, M\,\stackrel{\lambda^*}{\longrightarrow}\, {\mathbb Z}\,$. In particular, if $\lambda^*(\nu_1) = \pm 1$ (i.e. the action λ has no nontrivial isotropy) then the ring is

$$
\mathbb{C}\bigg[\big\langle v_i - \lambda^*(v_1)\lambda^*(v_i)\cdot v_1, i=2,\ldots,n\big\rangle\bigg]
$$

an example: $(\mathbb{P}^1)^{\times 3}$ with diagonal action

Arrows are eigencurves, horizontal slices are geometric GIT's wrt projection to vertical line, red path is a point in the Chow quotient.

the hypercube

- (1) gens at 1st point of path $(e_1, e_2, e_3, \ldots, e_n)$, projection to section $(e_2 - e_1, e_3 - e_1, \ldots, e_n - e_1)$, invariants $\mathbb{C}[x_2x_1^{-1}]$ x_1^{r-1} , $x_3x_1^{-1}$ $x_1^{r-1}, \cdots, x_n x_1^{r-1}$ $\binom{-1}{1} \subset \mathbb{C}[x_1^{\pm 1}]$ $[x_1^{\pm 1}, \cdots, x_n^{\pm 1}]$
- (2) gens at 2nd point of path (−*e*1, *e*2, *e*3, . . . , *en*), $\mathsf{projection}\ \mathsf{to}\ \mathsf{section}\ (\mathsf{e}_2-\mathsf{e}_1,\mathsf{e}_3-\mathsf{e}_2,\ldots,\mathsf{e}_n-\mathsf{e}_2)$ invariants $\mathbb{C}[x_2x_1^{-1}]$ $x_1^{(-1)}$, $x_3x_2^{-1}$ $x_2^{r-1}, \cdots, x_n x_2^{-1}$ $\binom{1}{2} \subset \mathbb{C}[x_1^{\pm 1}]$ $[x_1^{\pm 1}, \cdots, x_n^{\pm 1}]$
- (3) gens at 2nd point of path (−*e*1, −*e*2, *e*3, . . . , *en*), projection to section $(e_2 - e_1, e_3 - e_2, \ldots, e_n - e_3)$ invariants $\mathbb{C}[x_2x_1^{-1}]$ $x_1^{(-1)}$, $x_3x_2^{-1}$ $x_2^{r-1}, \cdots, x_n x_3^{-1}$ $\binom{1}{3}$ ⊂ $\mathbb{C}[x_1^{\pm 1}]$ $[x_1^{\pm 1}, \cdots, x_n^{\pm 1}]$ · · · · · · · · ·

Note that the universal object containing all of the above is a monoid in M' generated by $e_i - e_j$ for $i > j$, or

$$
\mathbb{C}[x_2x_1^{-1},x_3x_2^{-1},\cdots,x_nx_{n-1}^{-1}]\subset \mathbb{C}[x_1^{\pm 1},\cdots,x_n^{\pm 1}]
$$

normalized Chow quotient

Assume that the action is strong GKM. Suppose that $C = \bigcup_{i=1}^m C_i$ is a union of eigencurves, which is a closure of a general orbit of $\lambda: \mathbb{C}^* \hookrightarrow H$; each C_i is a closure of an orbit C_i° with source in *pi*−¹ and sink in *pⁱ* .

 \blacktriangleright We can use shifts along C_i 's to identify (linearized) local coordinate rings at *p*0, . . . , *pm*−¹ with subrings of Laurent polynomial ring ℂ[*M*]; say *v'*₁, . . . , *v'*_n ∈ *M* are generators of the coordinate ring at *pⁱ* .

Recall $\widetilde{M} \longrightarrow M \stackrel{\lambda^*}{\longrightarrow} \mathbb{Z}$ and $\widehat{M} = \ker \lambda^*$. If v_1^i represents the generator along C_{i+1} then the semi-group Λ _{*i*} = *cone*(±*v'*₁,..., *v'_n*)∩ *M* ⊂ *M* yields GIT quotients étale local coordinate ring $\mathbb{C}[\Lambda_i]$ at the orbit C_i° .

normalized Chow quotient, cntd

- **If** $\Lambda = \sum_i \Lambda_i \subset \widehat{M}$ then $\mathbb{C}[\Lambda] \subset \mathbb{C}[\widehat{M}]$ is étale local coordinate ring of normalized Chow quotient $\mathcal Y$ at $[C]$.
- \triangleright Morphisms of $\mathcal Y$ to a (geometric) GIT quotient containing the orbit C_i° are locally described by inclusion $\mathbb{C}[\Lambda_i]\subset \mathbb{C}[\Lambda].$
- **►** The induced grading $\Lambda \subset \widehat{M} \to M'$ determines the action of the quotients torus around $[C]$, hence the compass if $\mathcal Y$ is smooth at [*C*].
- \triangleright y is usually not smooth at $[C]$; but if the action has no nontrivial isotropy and *TX* is nef (*X* is homogeneneous) then it is.

line bundles on the normalized Chow quotient

Given a line bundle $\mathcal{O}(\boldsymbol{d})$ with $\boldsymbol{d} \geq 1$ on \mathbb{P}^1 with the standard \mathbb{C}^* action the space of sections splits into weight spaces *d*

$$
H^0(\mathbb{P}^1, \mathcal{O}(d)) = \bigoplus_{i=0} \mathbb{C}_{d_0+i}
$$

with d_0 depending on the linearization and $\mu_{\mathcal{O}(d)}(\infty)=d_0$ and $\mu_{\mathcal{O}(\boldsymbol{d})}(0)=\boldsymbol{d_0}+\boldsymbol{d}.$

Suppose that the degree of *L* on a general orbit of the action λ is *d*. Consider the incidence

$$
X \xleftarrow{q} U \xrightarrow{p} Y
$$

If *P* is flat then *p*∗*q* [∗]*L* is locally free of rank *d* + 1 and it splits into a sum of line bundles $p_*q^*L = \bigoplus L_{d_0 + R}$ *d*

where d_0 , $d_0 + d$ is the weight of the action of λ on a fiber of L over the sink and the source, respectively.

i=0

multigrid

Let *Cⁱ* be the closure of a 1-dimensional orbit of the action of the torus *H* with stabilizer $H'' \subset H$. Then the weights of the action of the quotient torus is a rank 1 sub-lattice of *M*. If the weights of the action of *H* on *L* over *pi*−¹ and *pⁱ* are *u*_{i−1}, *u*_i ∈ *M*, respectively, then the action of *H* on H⁰(C_{*i*}, L)_{|C} are $u_{i-1}, u_{i-1} + \delta_i, \ldots, u_i$ where $\delta_i = (u_i - u_{i-1})/\deg_{C_i} L$.

If $C = \bigcup_{i=1}^m C_i$ is the sum eigencurves, then weights of the action on L_C can be computed by calculating values over C_i 's:

here you need to assume that components of the cycle are non-reduced, e.g. λ has non nontrivial isotropy

example of output, case of $C_4(4)^\dagger$

Chow quotient Y of 4th weight action on $C_4(4)$ is smooth of dimension 9 and it has 66 fixed points of the rank 3 torus action. For example, a point associated to a chain of three orbits, 2 lines and a conic, is described by weights of the action on fibers of line bundles

$$
\begin{bmatrix} -1 & 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 0 & 1 \\ -1 & -1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 0 & 1 \end{bmatrix}
$$

and the weights of the action on the cotangent space

$$
\left[\begin{array}{cccccccc} 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -2 \\ -1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & -2 & 0 & 1 & 0 & 2 \\ 1 & -1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{array}\right]
$$

† this is the case of complete quadric