\mathbb{C}^* quotients of varieties with big torus action

Jarosław Wiśniewski

Jürgen's birthday conference Innsbruck October 2024 acknowledgments, relation to previous research

- Work in progress[†] with Marysia Donten-Bury, based on previous joined projects with Jarek Buczyński, Andrzej Weber, Mateusz Michałek, Leonid Monin, Gianluca Occhetta, Eleonora Romano, and Luis Solá Conde
- Kapranov, Sturmfels, Zhelevinsky, Quotients of toric varieties, Math. Ann. 1999
- Bäker, Hausen, Keicher, On Chow quotients of torus actions, Mich. Math. 2015
- Goresky, Kottwitz, MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Inv. Math. 1998

† so the talk will be abut ideas not results

torus in action, local linearization

- Let H = (ℂ*)^r denote an algebraic torus with M = ℤ^r the lattice of characters; we usually assume r ≥ 2
- Assume that H acts faithfully on a normal variety X, with dim X = n, we will usually assume that X is smooth and projective.
- We have decomposition of the set of fixed points into connected components

$$X^H = Q_1 \sqcup \cdots \sqcup Q_s$$

For p ∈ X^H the action of H on T_pX is linear and (by local linearization) up to étale cover can be identified with the action of H on X in a neighborhood of p.

torus in action, quotients

- Suppose that L is a line bundle over X (we usually assume L ample).
- Given a linearization µ : H × L → L we have a decomposition of space of sections into eigenspaces

$$\mathrm{H}^{0}(X,L) = \bigoplus_{u \in M} \mathrm{H}^{0}(X,L)_{u}$$

For a suitable u's we define GIT quotients

$$Y_u = \operatorname{Proj}\left(\bigoplus_{m \ge 0} \operatorname{H}^0(X, L^{\otimes m})_{mu}\right)$$

Chow/Hilbert quotient is defined by the closure of the set of general orbits of the action in Chow/Hilbert scheme. Normalized Chow quotient is universal for all GIT quotients.

GKM action

- We say that the action of H on X is k-GKM if the number of orbits of dimension ≤ k is finite. In particular 0-GKM is finite number of fixed points, 1-GKM is just GKM, n-GKM is toric (here we do not assume that X is smooth).
- We say that the action is weak GKM if all p ∈ X^H are isolated and the weights of the action of H on T_pH are -ν₁,..., -ν_n ∈ M and ν_i ≠ ν_j for i ≠ j. The compass C_p is the set of ν_i's.
- If the action is weak GKM then all eigenspaces of the action in T_pX are of dimension 1 and (via local linearization) give rise to *H*-orbits, the closures of which we will call eigencurves (note that they are smooth).
- The action is GKM if and only if it is weak GKM and no two ν_i's are proportional.

context: Atiyah-Bott localization theorem

Suppose that the action of *H* on *X* is weak GKM and $X^H = \{y_1, y_2, ..., y_k\}$. For each fixed point y_i we consider its compass $C_{y_i} = \{v_{i,j}, j = 1, ..., n\}$. For a line bundle *L* with a linearization μ by $\mu_i = \mu_L(y_i) \in M$ we denote the weight of the action of *H* on L_{y_i} .

Then the equivariant Euler characteristics

$$\chi^{H}(X,L) = \sum_{u \in M} \chi(X,L)_{u} t^{u}$$

can be computed in terms of μ_i 's and $\nu_{i,j}$'s

$$\chi^{H}(X,L) = \sum_{i=1}^{k} \frac{t^{\mu_{i}}}{\prod_{j} (1-t^{\nu_{i,j}})}$$

motivation: understanding a birational map

Given \mathbb{C}^* action on *X* with two GIT geometric quotients Y_1 and Y_2 we have a birational map $Y_1 \leftrightarrow \cdots \rightarrow Y_2$ and normalized Chow quotient \mathcal{Y} resolves this map

Example: inversion of (symmetric) matrices comes from a \mathbb{C}^* quotients of (Lagrangian) Grassmanians and is resolved by complete collineations (quadrics) being Chow quotient of this action.

Problem Suppose X is GKM, describe GKM-like structure of \mathcal{Y} .

visualisation: a grid

A grid of GKM action of *H* on (*X*, *L*) is the set of $\mu_i = \mu_L(y_i)$ as points in *M* (as affine lattice), together with $\nu_{i,j}$'s as vectors (in the tangent lattice *M*) attached to μ_i 's.

Take
$$\mathbb{Q}^4 = \{x_1x_2 + x_3x_4 + x_5x_6 = 0\} \subset \mathbb{P}^5$$
 with $(\mathbb{C}^*)^3$ action $(t_1, t_2, t_3) \cdot (x_1, \dots, x_6) = (t_1x_1, t_1^{-1}x_2, \dots, t_3x_5, t_3^{-1}x_6)$

denotes both fixed points and sections

grids of homogeneous varieties

Given *G* simple with $P \subset G$ parabolic, the action of the Cartan torus *H* on *G*/*P* is GKM.

Take $\mathbb{Q}^5 = \{x_0^2 + x_1x_2 + x_3x_4 + x_5x_6 = 0\} \subset \mathbb{P}^6$ with $(\mathbb{C}^*)^3$ action

 $(t_1, t_2, t_3) \cdot (x_0, x_1, \dots, x_6) = (x_0, t_1x_1, t_1^{-1}x_2, \dots, t_3x_5, t_3^{-1}x_6)$

eigencurves, GKM graph

Instead of weights of eigenvectors (compasses) we can draw eigencurves, the result is GKM graph of \mathbb{Q}^5

The degree of an eigencurve with respect to *L* can be read from the grid via AMvsFM formula: if ν_{y_0} is a weight defining *C* then

$$\mu_L(\mathbf{y}_0) + deg_C L \cdot \nu_{\mathbf{y}_0} = \mu_L(\mathbf{y}_\infty)$$

grid of a vector bundle over \mathbb{P}^1 , downgrading

For $\mathbb{P}^1 \supset \mathbb{C}^*$ with (nonhomogeneous) coordinate *z* consider line bundle $\mathcal{O}(a)$ with local coordinates t_0, t_∞ satisfying relation

$$z^a \cdot t_0 = t_\infty$$

The rank 2 torus acting with weights (1, 0), (m, 1) on (z, t_0) acts with weights (-1, 0), (m + a, 1) on (z^{-1}, t_{∞})

The following grid of a rank 2 torus action (with L = O(3))

may present both $\mathcal{O}\oplus\mathcal{O}$ and $\mathcal{O}(-1)\oplus\mathcal{O}(1)$

example: normal to a line on \mathbb{Q}^4

note natural bijection between the vectors in compasses

strong GKM

A GKM action of *H* on *X* is strong GKM if for every fixed point $y \in X^H$ and every $\nu \in C_y$ the quotient $M_{\nu} = M/\mathbb{Z}\nu$ has no torsion and the quotient map $M \to M_{\nu}$ is injective on $C_y \subset M$.

Lemma Suppose that the action is strong GKM. Let *C* be an eigencurve with $C \cap X^H = \{p, p'\}$ and $-\nu, -\nu'$ respective weights whose eigenspaces are tangent to *C* in *p*, *p'*, respectively.

Then $\nu' = -\nu$ and the isotropy of a general point of *C* is the torus $H_{\nu} = Hom(M_{\nu}, \mathbb{C}^*)$.

Moreover, up to renumbering, the remaining elements of compasses $C_p = \{\nu, \nu_1, \dots, \nu_{n-1}\}$ and $C_{p'} = \{\nu', \nu'_1, \dots, \nu'_{n-1}\}$ satisfy $\nu'_i = \nu_i - a_i \nu$ where a_i come from the (*H* equivariant) splitting of the normal $N_{C/X} = \bigoplus_i \mathcal{O}(a_i)$.

changing local coordinates along an eigencurve

In the situation of the previous slide we define a matrix

$$A_C = \left(egin{array}{cccccc} -1 & -a_1 & \cdots & -a_{n-1} \ 0 & 1 & \cdots & 0 \ dots & & & dots \ 0 & 0 & \cdots & 1 \end{array}
ight)$$

Let $\widetilde{M} = \mathbb{Z}^n$ with basis $v_0, v_1, \ldots, v_{n-1}$ and the homomorphism $\widetilde{M} \to M$ sending $v_0 \mapsto \nu, v_1 \mapsto \nu_1, \cdots \vee v_n \mapsto \nu_n$. If for $i = 0, \ldots, n-1$ we set $v'_i = A_C \cdot v_i$ then $v'_0 \mapsto \nu'$ and $v'_i \mapsto \nu'_i$. That is A_C preserves grading[†] $\widetilde{M} \to M$; we call it a shift along *C*. Note: Let $\mathbb{C}[\widetilde{M}] = \mathbb{C}[t^u : u \in \widetilde{M}]$ be a ring of Laurent polynomials with grading in *M*. Then its subrings $\mathbb{C}[t^{v_i}]$ and $\mathbb{C}[t^{v'_i}]$ represent coordinate rings of *H* equivariant étale neighborhoods of *p*, *p'*.

† it does not mean that $v_i \mapsto v'_i$ descends to automorphism of M

digression: case of homogeneous varieties

• For a simple group $G \supset H$ take Cartan decomposition $\mathfrak{g} = \mathfrak{h} \oplus \left(\bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha} \right)$. For every root $\alpha \in R$ we have a copy of \mathfrak{sl}_2 namely $\mathfrak{s}_{\alpha} = \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$.

• Given parabolic $G \supset P \supset H$ consider X = G/P with induced H action. For $[P] \in X^H$ the tangent space can be identified $\mathfrak{g}/\mathfrak{p}$ with adjoint action of H. If $\mathfrak{g}_{\alpha} \not\subset \mathfrak{p}$ then \mathfrak{s}_{α} descends to an H invariant $\mathbb{P}^1_{\alpha} \subset G/H$. These are eigencurves through [P].

• Roots define *H*-compass at [*P*]. The reflection with respect to a root α defines transformation of the root system and, as an element of Weyl group N(T)/T acting by conjugation on G/P which moves [*P*] to [*P'*] which we will call a reflection as well.

• If the action of H on G/P is strong GKM then the shift along \mathbb{P}^1_{α} coincides with the differential of this morphism.

• This is not the case if the action is not strong GKM, e.g. $E_6(4)$.

\mathbb{C}^* quotients

Suppose we have a subgroup $\lambda : \mathbb{C}^* \hookrightarrow H$ with quotient H' and $M' = \ker \lambda^* \subset M$. We consider quotients of X wrt the action of λ .

Note: if *Y* denotes any (geometric) GIT quotient and \mathcal{Y} normalized Chow quotient then they admit induced *H'* action. Moreover if the action of *H* on *X* is *k*-GKM then the action of *H'* on *Y* and \mathcal{Y} is (*k* – 1)-GKM (but are usually singular).

Suppose that the action of *H* is GKM and *C* is an eigencurve which is the closure of an *H* orbit C° contained in the set of stable points of λ with fixed point $p \in C \cap X^{H}$.

Using local linearization of the action of *H* at *p* we identify a neighbourhood of *p* with $\mathbb{C}[x_1, x_2, ..., x_n]$ with variables x_i graded in *M*. We may assume $C = \{x_2 = \cdots = x_n = 0\}$.

GIT quotient

In the situation from the previous slide, the GIT quotient around $[C^{\circ}]$ is (up to local linearization) described by the ring of invariants

$$\mathbb{C}[x_1^{\pm 1}, x_2, \dots, x_n]^{\lambda} \subset \mathbb{C}[x_1^{\pm 1}, x_2, \dots, x_n]$$

with the grading in M'.

If \widetilde{M} denotes the lattice of characters of the big torus of \mathbb{C}^n with basis deg $x_i = v_i$ and grading map $\widetilde{M} \to M$ then the ring of invariants is

$$\mathbb{C}ig[\mathit{cone}(\pm v_1, v_2, \dots, v_n) \cap \widehat{M}ig]$$

where \widehat{M} is the kernel of composition $\widetilde{M} \longrightarrow M \xrightarrow{\lambda^*} \mathbb{Z}$. In particular, if $\lambda^*(v_1) = \pm 1$ (i.e. the action λ has no nontrivial isotropy) then the ring is

$$\mathbb{C}\left[\left\langle \mathbf{v}_{i}-\lambda^{*}(\mathbf{v}_{1})\lambda^{*}(\mathbf{v}_{i})\cdot\mathbf{v}_{1},\ i=2,\ldots,n\right\rangle\right]$$

an example: $(\mathbb{P}^1)^{\times 3}$ with diagonal action

Arrows are eigencurves, horizontal slices are geometric GIT's wrt projection to vertical line, red path is a point in the Chow quotient.

the hypercube

- (1) gens at 1st point of path $(e_1, e_2, e_3, ..., e_n)$, projection to section $(e_2 - e_1, e_3 - e_1, ..., e_n - e_1)$, invariants $\mathbb{C}[x_2x_1^{-1}, x_3x_1^{-1}, \cdots, x_nx_1^{-1}] \subset \mathbb{C}[x_1^{\pm 1}, \cdots, x_n^{\pm 1}]$
- (2) gens at 2nd point of path $(-e_1, e_2, e_3, \dots, e_n)$, projection to section $(e_2 - e_1, e_3 - e_2, \dots, e_n - e_2)$ invariants $\mathbb{C}[x_2x_1^{-1}, x_3x_2^{-1}, \dots, x_nx_2^{-1}] \subset \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$
- (3) gens at 2nd point of path $(-e_1, -e_2, e_3, ..., e_n)$, projection to section $(e_2 - e_1, e_3 - e_2, ..., e_n - e_3)$ invariants $\mathbb{C}[x_2x_1^{-1}, x_3x_2^{-1}, \cdots, x_nx_3^{-1}] \subset \mathbb{C}[x_1^{\pm 1}, \cdots, x_n^{\pm 1}]$

.

Note that the universal object containing all of the above is a monoid in M' generated by $e_i - e_j$ for i > j, or

$$\mathbb{C}[x_2x_1^{-1}, x_3x_2^{-1}, \cdots, x_nx_{n-1}^{-1}] \subset \mathbb{C}[x_1^{\pm 1}, \cdots, x_n^{\pm 1}]$$

normalized Chow quotient

Assume that the action is strong GKM. Suppose that $C = \bigcup_{i=1}^{m} C_i$ is a union of eigencurves, which is a closure of a general orbit of $\lambda : \mathbb{C}^* \hookrightarrow H$; each C_i is a closure of an orbit C_i° with source in p_{i-1} and sink in p_i .

We can use shifts along C_i's to identify (linearized) local coordinate rings at p₀,..., p_{m-1} with subrings of Laurent polynomial ring C[*M*]; say vⁱ₁,..., vⁱ_n ∈ *M* are generators of the coordinate ring at p_i.

Recall *M̃* → *M* → ^{λ*} Z and *M̃* = ker λ*. If *v*ⁱ₁ represents the generator along *C*_{i+1} then the semi-group Λ_i = cone(±*v*ⁱ₁,...,*v*ⁱ_n) ∩ *M̃* ⊂ *M̃* yields GIT quotients étale local coordinate ring C[Λ_i] at the orbit *C*^o_i.

normalized Chow quotient, cntd

- If ∧ = ∑_i ∧_i ⊂ M̂ then C[∧] ⊂ C[M̂] is étale local coordinate ring of normalized Chow quotient Y at [C].
- Morphisms of 𝒱 to a (geometric) GIT quotient containing the orbit C^o_i are locally described by inclusion ℂ[Λ_i] ⊂ ℂ[Λ].
- The induced grading ∧ ⊂ M̂ → M' determines the action of the quotients torus around [C], hence the compass if Y is smooth at [C].
- Y is usually not smooth at [C]; but if the action has no nontrivial isotropy and TX is nef (X is homogeneneous) then it is.

line bundles on the normalized Chow quotient

Given a line bundle $\mathcal{O}(d)$ with $d \ge 1$ on \mathbb{P}^1 with the standard \mathbb{C}^* action the space of sections splits into weight spaces

$$\mathsf{H}^{\mathsf{0}}(\mathbb{P}^{1},\mathcal{O}(\boldsymbol{d}))= \bigoplus_{i=0}^{r} \mathbb{C}_{\boldsymbol{d}_{0}+i}$$

with d_0 depending on the linearization and $\mu_{\mathcal{O}(d)}(\infty) = d_0$ and $\mu_{\mathcal{O}(d)}(0) = d_0 + d$.

Suppose that the degree of *L* on a general orbit of the action λ is *d*. Consider the incidence

$$X \xleftarrow{q} \mathcal{U} \xrightarrow{p} \mathcal{Y}$$

If *P* is flat then p_*q^*L is locally free of rank d + 1 and it splits into a sum of line bundles $p_*q^*L = \bigoplus_{i=0}^d L_{d_0+i}$

where d_0 , $d_0 + d$ is the weight of the action of λ on a fiber of *L* over the sink and the source, respectively.

multigrid

Let C_i be the closure of a 1-dimensional orbit of the action of the torus H with stabilizer $H'' \subset H$. Then the weights of the action of the quotient torus is a rank 1 sub-lattice of M. If the weights of the action of H on L over p_{i-1} and p_i are $u_{i-1}, u_i \in M$, respectively, then the action of H on $H^0(C_i, L)_{|C_i}$ are $u_{i-1}, u_{i-1} + \delta_i, \ldots, u_i$ where $\delta_i = (u_i - u_{i-1})/\deg_{C_i} L$.

If $C = \bigcup_{i=1}^{m} C_i$ is the sum eigencurves, then weights of the action on L_C can be computed by calculating values over C_i 's:

here you need to assume that components of the cycle are non-reduced, e.g. λ has non nontrivial isotropy

example of output, case of $C_4(4)^{\dagger}$

Chow quotient \mathcal{Y} of 4th weight action on $C_4(4)$ is smooth of dimension 9 and it has 66 fixed points of the rank 3 torus action. For example, a point associated to a chain of three orbits, 2 lines and a conic, is described by weights of the action on fibers of line bundles

and the weights of the action on the cotangent space

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -2 \\ -1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & -2 & 0 & 1 & 0 & 2 \\ 1 & -1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

† this is the case of complete quadric