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acknowledgments, earlier works

I This talk is in relation to joined projects with Mateusz
Michałek, Leonid Monin, Gianluca Occhetta, Eleonora
Romano, and Luis Solá Conde

I Variation of GIT for C∗ action produce birational
modifications: Thaddeus, Reid (1990’s) and others

I Algebraic cobordism yields (weak) factorization of
birational maps: Włodarczyk, Morelli (2000).

I Context: Mori Dream Spaces and Cox Rings; Hu, Keel,
Cox, Hausen and others (2000+).



fundamental example: classical Cremona

Take classical Cremona transformation:

P2 3 [z0, z1, z2] −→ [z1z2, z0z2, z0z1] = [z−1
0 , z−1

1 , z−1
2 ] ∈ P2

Take product P1 × P1 × P1 with non-homogeneous coordinates
(z0, z1, z2) and C∗ action, with t ∈ C∗:

t · (z0, z1, z2) −→ (tz0, tz1, tz2)

If zi 6= 0,∞ for i = 0,1,2 then

limt→0 t(z0, z1, z2) = (0,0,0) limt→∞ t(z0, z1, z2) = (∞,∞,∞)
∂t(z0,z1,z2)

∂t |t=0 = (z0, z1, z2)
∂t(z0,z1,z2)

∂t |t=∞ = (z−1
0 , z−1

1 , z−1
2 )

So we have a description of Cremona in terms of C∗ action:

tangent to general orbit at 0 −→ tangent to general orbit at∞



orbits of action, sections

•
(0,0,0)

•(∞,0,0) • • (0,0,∞)

•(∞,∞,0) • • (0,∞,∞)

•
(∞,∞,∞)

source

sink



change of notation

•
∅

•{0} •
{1}

• {2}

•{0,1} •
{0,2}

• {1,2}

•
{0,1,2}

source

sink



the same for higher Cremona
Take hypercube with vertices labeled by subsets of {0, . . . ,n}.
The diagonal action of C∗ on (P1)×(n+1) determines partial
order of fixed points wich agrees with inclusion.
Section: division into two subsets which agrees with the order.

semi-section

semi-section

semi-section

section

section

∅

{0} {1} {2} {3}

{0,1} {0,2} {0,3} {2,3}{1,3}{1,2}

{0,1,2}{0,1,3}{0,2,3}{1,2,3}

{0,1,2,3}



schematic picture of semi-sections

•
{0}

•
{1}

•
{0,1,2}

•
{0,1,3}

•
{0,2,3}

•
{1,2,3}

•
{2}

•
{3}



a section, truncated tetrahedron

•
{0}

•
{1}

•
{0,1,2}

•
{0,1,3}

•
{0,2,3}

•
{1,2,3}

•
{2}

•
{3}



overview: GIT, choice of orbits

We choose an ample line
bundle on (P1)×(n+1) and
change linarization of C∗
action. This way we
choose nontrivial orbits
which we parametrize by
the quotient. Remember
that each nontrivial orbit
starts and ends at the
fixed point, generic orbit
starts at source, ends in
sink.

source

fixed points

fixed points

fixed points

sink



variation of Mumford’s GIT, sections

ABB approach:
in case of C∗ action
quotients come from
sections (geometric
quotients) and
semi-sections (good
quotients) of the set of
fixed points.

source

quotient = P3

blow-up

P3 blown up in 4 points

flop

P3 blown up in 4 points

blow-down

quotient = P3

sink



C∗ action, linearization, fixed points
Set-up (X ,L) smooth projective variety and an ample line
bundle with C∗ action C∗ × X 3 (t , x)→ t · x ∈ X and
linearization

C∗ × L L

C∗ × X X

µ

The linearization yields decomposition into weight spaces

H0(X ,L) =
⊕
u∈Z

H0(X ,L)u

H0(X ,L)u the weight space associated to u ∈ Hom(C∗,C∗) = Z.

For a fixed point component F ⊂ XC∗ define critical value

µ(F ) ∈ Aut(Ly ) = Hom(C∗,C∗) = Z where y ∈ F

Number of µ(F )’s will be called criticality of the action.



quotients: GIT and BB
GIT: fix u ∈ Q and consider

Au =
⊕

mu∈Z
H0(X ,mL)mu

If u is well chosen we have rational quotient map

X Yu = Proj(Au)
πu

BB: we have partial order on the set of fixed components

F1 ≺ F2 ⇐⇒ ∃x ∈ X : lim
t→∞

t · x ∈ F1, lim
t→0

t · x ∈ F2

The order agrees with the one induced by the linearization µ

• • • • •sink source



unstable locus
To each component F ⊂ XC∗ we define associated BB cells

B±(F ) = {x ∈ X : lim
t±1→0

t · x ∈ F}

Given u ∈ Q the quotient map

X Yu = Proj(Au)
πu

is regular on complement of the set( ⋃
µ(F )<u

B+(F )

)
∪
( ⋃
µ(F )>u

B−(F )

)

• • • • •

u

sink source

If u is not a critical value then the quotient is geometric.



variation of GIT

Changing linearization u 7→ u′ determines the change of the
geometry of the quotient

•
F

•
µ(F )u u′



equalized bordism type action

Assumptions:
I The action is equalized: no point has non-trivial finite

isotropy; equivalently ,weights of the action at fixed points
are in {−1,0,+1}

I The source and sink fixed point components are divisors
F0 and F∞.

I There is no other divisorial BB cell.

Observation: if u ∈ (µ(F∞), µ(F0)) is integral then we have
equality of subspaces of H0(X ,L):

H0(X ,L)u = H0(X ,L⊗O(−a0F0 − a∞F∞))

where a0 = µ(F0)− u and a∞ = u − µ(F∞).



Flipping extremal BB cells

•

F1

F0 F ′0

Flipping the first/last but one BB cell flips its intersection with
the source/sink and reduces the criticality of the action.



modifications of the C∗ variety

Let us take u∞,u0 ∈ Q such that µ(F∞) ≤ u∞ ≤ u0 ≤ µ(F0)
and set a∞ = u∞ − µ(F∞), a0 = µ(F0)− u0.
Then

H0(X ,L⊗O(−a1F∞ − a0F0)) =
⊕

u∈[u∞,u0]

H0(X ,L)u

Replacing L 7→ mL and u0,u∞ accordingly we get rational map

X Xu0,u∞
ϕu0,u∞

and the variety Xu0,u∞ admits C∗ action.



birational equivariant modification and GIT

GIT quotients
µ(F∞) µ(F0)u∞ u0

X

Xu0,u∞

Note that the top row birational modifications of X admit regular
maps to their GIT quotients.



normalized Chow/Hilbert/universal quotients
Given the action C∗ × X → X consider the maximal family of
invariant 1-cycles containing a general orbit as a general point,
by C we denote its normalization and U the universal family

U C

X

p

q

The morphism p is then flat and we have equivariant
decomposition of a vector bundle over C

p∗q∗(mL) =
⊕
u∈Z
Lu

m

with H0(C,Lu
m) = H0(X ,mL)u hence we have regular

morphisms to GIT quotients

C −→ Yu



the system of normalized Chow quotients
•

• •

• • •

• • • •

• • • • •

SQM’s

Chow’s

Each • represents normalized Chow quotient for respective
SQM of X . The bottom row are geometric GIT quotients.



resolving flips
The second from the bottom row of Chows resolves local flips
arising from variation of GIT

•

q

p



remarks, toric case

Note: (1) The construction of GIT quotients and equvariant
SQM’s above depend on the choice of L (up to its multiplicity)
while normalized Chow does not. (2) If you allow divisorial BB
cells (apart the source/sink) then you will have quotients which
are not SQM’s.
Toric example: diagonal C∗
action on (P1)×n with L =
O(1, . . . ,1) in toric terms rep-
resented by the projection of
n-cube with projection orthog-
onal to the diagonal: the
Chow quotient is a permuta-
hedron the vertices of which
are numbered by the se-
quences of edges in the cube.

permutahedron.png



case of toric varieties

permutahedron.png

truncated-tetrahedron-eps-converted-to.pdf



inversion of symmetric matrices

For V ' Cn we take the standard symplectic form on V ⊕ V ∗

and C∗ action of weights ±1 on V and V ∗, respectively. The
action lifts up to Lagrangian Grassmanian X = LG(n,V ⊕ V ∗)
with isolated source and sink, the blow-up to F0 ' F∞ ' S2(V )
yields a rational map coming from inversion of symmetric
matrices.

PicX ' Z is generated by Plücker line bundle L. The fixed point
components are Grassmanian varieties of V with restriction of
L ' O(2).



complete quadric

The Chow quotient of the action is obtained by blowing up in
P(S2V ) locus of symmetric matrices of rank 1, 2, . . . and a
generic point of each exceptional divisor is associated to locus
of union of two orbits stopping at a fixed point set component:

• • • • • • •

The divisors intersect transversally, their intersection
parametrizes cycles consisting of smalles orbits

• • • • • • •

A similar situation occurs for equalized C∗ action on
homogeneous (or convex) varieties.


