Speaker:

Sara Angela Filippini

Title:

Refined curve counting and wall-crossing

Abstract:

The tropical vertex group of Kontsevich and Soibelman is generated by formal symplectomorphisms of the 2-dimensional algebraic torus. It plays a role in many problems in algebraic geometry and mathematical physics. Based on the tropical vertex group, Gross, Pandharipande and Siebert introduced an interesting Gromov-Witten theory on weighted projective planes which admits a very special expansion in terms of tropical counts. I will describe a refinement or ``q-deformation'' of this expansion, motivated by wall-crossing ideas, using Block-Goettsche invariants. This leads naturally to the definition of a class of putative q-deformed curve counts. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined. Joint work with Jacopo Stoppa.




Last modified on: 04-Jan-15