Grupy holonomii i rozmaitości zespolone, seminarium monograficzne 2014/2015

Holonomy groups and complex manifolds, seminar 2014/2015

link to USOS

Organisers: Jarosław Buczyński, Jarosław Wiśniewski,

First meeting:

Wednesday, October 1st, 2014 at 10:30 at MIMUW, room 4060.

Regular meetings:

(From October 8th, 2014 until June 2015) Wednesdays at 12:15 at MIMUW, room 4060.

Plan seminarium:


Rozkład referatów:

Kiedy?Kto?O czym?
01.10.2014Jarek Buczyński programme discussion
08.10.2014Oskar Kędzierski Wstęp do grup holonomii
15.10.2014Adam Torenc Twierdzenie Bergera
22.10.2014Łukasz Sienkiewicz Geometria kählerowska i holonomia
29.10.2014Łukasz Sienkiewicz Hipoteza Calabiego
około 05.11.2014--?? Maciek Gałązka, Joachim Jelisiejew, Maks Grab Rozmaitości $K3$ --- trzy rozdziały

Stare informacje

Prerequisites:

Seminar for Math students and PhD students interested in differential geometry or algebraic geometry. The participants should know basics of differential geometry or participate in the classes of differential geometry in parallel. Knowledge of Algebraic Geometry is not required, but may help to understand the context. Familiarity with Algebra and Topology (covering spaces) is useful.

Content of the seminar:

The aim of the seminar is to familiarise participants with LeBrun-Salamon Conjceture. It can be formulated in two equivalent manners. The first formulation is in the language of Riemannian Geometry and it classifies quaternion-Kahler manifolds. The second formulation is in the language of Algebraic Geometry, and it classifies contact Fano manifolds.

The conjecture is approached by two distinct group of researchers, and the dictionary between the two approaches is deficient. Within this seminar we aim to train young researchers capable of working on the conjecture from both, algebro-geometric and differential, sides.

References: