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Abstract

We present the border apolarity for cactus varieties to Veronese varieties. The

border apolarity technique was introduced in our earlier work for secant varieties

to any smooth toric projective varieties. These working notes are provided as a

temporary reference for other authors, while we are writting the details of the gen-
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1 Introduction

Let k be any algebraically closed base �eld. Fix a �nite dimensional vector space V over k,
and pick a �nite subscheme R ⊂ PV of length R. Assume in addition that R is in a linearly
nondegererate position, that is, its linear span 〈R〉 has maximal possible dimension:
min

{
r, dimSdV

}
. Let I(R) ⊂ S•V ∗ be its homogeneous ideal, and let h : Z → N

be the Hilbert function of I, h(d) := dim(S•V ∗/I(R))d.
For every non-negative integer r we de�ne an integer valued function hr : Z→ N:

hr(i) = min(r, dimSiV ∗).

Then it is well known that the function h as above satis�es the following conditions:

(i) h(1) = min {r, dimV } = hr(1),

(ii) h(d) ≤ hH(d+ 1),

(iii) if h(d) = h(d+ 1), then h(e) = r for all e ≥ d,

(iv) h(d+ 1) ≤ h(d)〈d〉,
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(v) h(d) ≤ hr(d) for all d.

Denote by SdV the space of divided power polynomials of degree d in dimV -variables
and coe�cients in k. Consider the Veronese embedding vd : PV → P(SdV ). ForW ⊂ SdV
a linear subspace of dimension i de�ne The cactus rank of W to be the minimal number
r = cr(W ) such that W ⊂ 〈vd(R)〉 for a subscheme R ⊂ PV of length r. The Grassmann
cactus variety is the following Zariski closure in the Grassmannian Gr(i, SdV ):

Kr,i (vd(PV )) :=
⋃
{W ∈ Gr(i, SdV ) | cr(W ) ≤ r}.

The border cactus rank bcr(W ) ofW is the minimal number r such thatW ∈ Kr,i (vd(PV )).
In this note we present the proof of the following characterisations of the border cactus

rank.

Theorem 1.1 (Weak Apolarity for Border Cactus Decompositions, or weak ABCD).
Suppose W ⊂ SdV . If bcr(W ) ≤ r then there exists a homogeneous ideal I ⊂ S•V ∗ with
Hilbert function h satisfying Properties (i)�(v), such that I ⊂ Ann(W ). Moreover if:

• char(k) 6= 2, 3 and r ≤ 8, or

• dimW = 1 and r ≤ 14 and either:

� char(k) = 0 or

� char(k) 6= 2, 3 and dimV ≤ 6,

then I can be chosen to have Hilbert function hr.

The above theorem is a consequence of stronger Theorem 1.3, which is an �if and
only if� statement. The argument is presented in Section 6. we phrase below. For this
purpose, we compare the multigraded Hilbert scheme Hilb(S•V ∗) and the usual Hilbert
scheme Hilb(PV ).

Proposition 1.2. For each irreducible component H ⊂ Hilb(PV ) there is a unique irre-
ducible component HH ⊂ Hilb(S•V ∗) such that:

• a general ideal I ∈ HH is saturated,

• the natural map sat : Hilb(S•V ∗)→ Hilb(PV ) taking a homogeneous ideal I ⊂ S•V ∗

to the subscheme of projective space de�ned by I restricts to a birational morphism
of reduced subschemes (HH)red → Hred.

The proof is in Section 5.
For each H as in the proposition, there is an integer valued function hH : Z → N

which is the Hilbert function of any I ∈ HH. Note that if H is a component of the
Hilbert scheme of points of length r, then hH satis�es the properties (i)�(v).

Theorem 1.3 (Apolarity for Border Cactus Decompositions, or ABCD). Suppose W ⊂
SdV . Then bcr(W ) ≤ r if and only if for some irreducible component H ⊂ Hilbr(PV ) of
the Hilbert scheme of points of length r there exists a homogeneous ideal I ⊂ S•V ∗ with
I ∈ HH and I ⊂ Ann(W ). Moreover, if dimW = 1, then H might be chosen to be a
component containing Gorenstein schemes.

The proof is in Section 6.
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2 Binomial coe�cients as a polynomial

Let d, n be two integers with n ≥ 0. We consider the usual binomial coe�cients
(
d
n

)
of

integer with the following standard convention:(
d

n

)
=

{
d!

n!(d−n)! if d ≥ n,

0 if d < n.

We also de�ne a polynomial
(
t+d
n

)
∈ Q[t] in the usual way:(

t+ d

n

)
:=

(t+ d)(t+ d− 1) · · · (t+ d− n+ 1)

n!
.

That is, if S = S•V ∗ = k[x0, . . . , xn] with the standard grading, then the value of the
Hilbert function of S(d) at i is

(
i+d+n

n

)
, while its Hilbert polynomial is

(
t+d+n

n

)
.

Lemma 2.1. The value of the polynomial
(
t+d
n

)
at t0 ∈ Z agrees with

(
t0+d
n

)
if and only

if t0 ≥ −d.

Proof. If t0 ≥ n− d, then the two de�nition clearly agree. If −d ≤ t0 < n− d, then one
of (t + d), (t + d − 1), . . . , (t + d − n + 1) vanishes at t0, hence again the two de�nitions
agree. Finally, if t0 < −d, then the polynomial does not vanish (we have already seen all
the n roots), thus it is di�erent than the integer binomial coe�ceint.

Lemma 2.2. Let M be a �nitely generated graded module over S and let D be an integer.
If the only summands in the terms of the minimal free resolution of M are of the form
S(d) for some d ≥ −D − n, then the value of Hilbert polynomial of M at t0 agrees with
the value of Hilbert function of M at t0 for all t0 ≥ D .

Proof. The value of Hilbert function of M is calculated by addding (with signs) the
Hilbert functions of S(d) appearing in the minimal free resolution, while its polynomial
is obtained in the same way from the Hilbert polynomials of S(d). Since the Hilbert
polynomial of S(d) is equal to

(
t+d+n

n

)
, and t0 ≥ D ≥ −d − n, the claim follows from

Lemma 2.1.

Lemma 2.3. Suppose M is a D-regular graded S module. Then the value of Hilbert
polynomial of M at t0 agrees with the value of Hilbert function of M at t0 for all t0 ≥ D.

Proof. By Eisenbud-Goto Theorem [BH93, Thm 4.3.1(a),(c)] M≥D has a linear minimal
free resolution. By Hilbert Syzygy Theorem [Eise95, Thm 1.13] the length of the minimal
free resolution is at most n+1, and by its linearity satisi�es the assumption of Lemma 2.2.
Therefore, the value of Hilbert polynomial of M at t0 agrees with the value of Hilbert
function of M at t0 for all t0 ≥ D, as claimed.

Now we work with homogeneous ideals I ⊂ S as the graded modules over S. Let P (I)
be the Hilbert polynomial of S/I. Gotzmann regularity theorem [Gree98, Thm 3.11]:

P (I)(t) =

(
t+ a1
a1

)
+

(
t+ a2 − 1

a2

)
+ · · ·+

(
t+ as − (s− 1)

as

)
, (2.4)

where a1 ≥ a2 ≥ · · · ≥ as ≥ 0. Moreover, if I is saturated, then I is s regular. Neverthe-
less, note that:
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(a) All saturated homogeneous ideals with Hilbert polynomial P (I) are s-regular.

(b) Some saturated homogeneous ideals with Hilbert polynomial P (I) could be D-
regular for D < s.

(c) Some non-saturated homogeneous ideals with Hilbert polynomial P (I) could be
D-regular only starting from some D > s.

Lemma 2.5. Suppose a homogeneous ideal I ⊂ S is D-regular and s, as are de�ned as
above. Then the growth of I from Id to Id+1 is minimal possible for all d ≥ max(D, s −
1− as), that is:

dim(S/I)d+1 = (dim(S/I)d)
〈d〉 .

Proof. Write the Hilbert polynomial P (I) of S/I in the binomial presentation as in (2.4).
If d ≥ s−1−as, then also d ≥ i−1−ai for all i. Therefore P (I)(d) =

(
d+a1
d

)
+
(
d+a2−1
d−1

)
+

· · ·+
(
d+as−(s−1)

d−s+1

)
by Lemma 2.1. Thus for all such d we have P (I)(d+ 1) = P (I)(d)〈d〉.

On the other hand, if d ≥ D, then we also have h(I)(d) = P (I)(d) by Lemma 2.2.
Since the ideal is generated in degrees at most D by Eisenbud-Goto Theorem [BH93,
Thm 4.3.1(a),(c)] the claim follows from Gotzmann persistence theorem.

3 Saturation is an open property

For a homogeneous ideal I ⊂ S•V ∗, let:

• Z(I) ⊂ P(V ) be the scheme de�ned by I,

• IZ(I) ⊂ OP(V ) be the ideal sheaf of Z(I),

• Isat be the saturation of I,

• hsat(I) be the Hilbert function of S•V ∗/Isat, so that

hsat(I)(d) =

(
n+ d

d

)
− dimH0(IZ(I)(d)),

• P (I) be the Hilbert polynomial of S•V ∗/I, so that P (I)(d) = hsat(I)(d) for large
values of d.

Lemma 3.1. A homogeneous ideal I ⊂ S•V ∗ is saturated if and only if dim Id =
dimH0(IZ(I)(d)) for all integers d.

Proof. Since H0(IZ(I)(d)) = (Isat)d and I ⊂ Isat we have

I = Isat ⇐⇒ ∀dId = H0(IZ(I)(d)) ⇐⇒ ∀d dim Id = dimH0(IZ(I)(d)).

Lemma 3.2. Let P be an integer valued polynomial. Then there exists a �nite number
D such that for all homogeneous ideals I ⊂ S•V ∗ with P (I) = P the ideal I is saturated
if and only if dim Id = dimH0(IZ(I)(d)) for all integers 0 ≤ d ≤ D.
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Proof. If there is no homogeneous ideal with Hilbert polynomial P , then there is nothing
to prove. Otherwise, let D be the Gotzmann's regularity of P , so that all saturated
homogeneous ideals with Hilbert polynomial P are D-regular [BH93, Thm 4.3.2]. If I is
saturated, then the claim follows from Lemma 3.1.

Conversely, suppose dim Id = dimH0(IZ(I)(d)) for all integers 0 ≤ d ≤ D. Then
(Isat)d = Id for all d ≤ D. Since Isat is D-regular, By [BH93, Thm 4.3.1(a), (c)] the
minimal generators of Isat only appear in degrees at most D. In particular, I has no
minimal generators in degree D. Also, by Lemma 2.5, the saturated ideal Isat has a
minimal growth for all d ≥ D. Thus, by induction starting from d = D, and Macaulay
growth theorem we show that dim Id = dim(Isat)d for all d ≥ D:

dim(S•V ∗/Isat)d+1 ≤ dim (S•V ∗/I)d+1 ≤ (dim(S•V ∗/I)d)
〈d〉

=
(
dim(S•V ∗/Isat)d

)〈d〉
= dim(S•V ∗/Isat)d+1.

This concludes the proof by Lemma 3.1.

Fix h : Z→ N, an integer valued function and a vector space V . Consider the multi-
graded Hilbert scheme Hilbh S

•V ∗ of homogeneous ideals in S•V ∗ with Hilbert function
h. The main result of this section is:

Proposition 3.3. The subset of Hilbh S
•V ∗ consisting of saturated ideals is Zariski open.

Proof. We �x an irreducible componentH ⊂ (Hilbh S
•V ∗)red (in particular, H is reduced

and connected). It is enough to prove that the set of saturated ideals in H is Zariski open
in H. If there is no saturated ideal in H, then the set is empty, in particular open. Thus
suppose I0 ∈ H is a saturated ideal, and let P be the Hilbert polynomial of Z(I0). Note
that P is the Hilbert polynomial of every ideal in H, as all ideals have the same Hilbert
function and the Hilbert polynomial is determined by the Hilbert function.

Let J ⊂ OH ⊗ S•V ∗ be the universal (homogeneous) ideal sheaf arising from the
de�nition of the multigraded Hilbert scheme. That is, for each I ∈ H, if mI ⊂ OH is the
maximal ideal of I, then the ideal I ⊂ S•V ∗ is equal to

J ⊗OH
OH/mI ⊂ OH/mI ⊗ S•V ∗ = S•V ∗.

Then J de�nes a subscheme R ⊂ H×PV , which is �at over H by [Hart77, Thm III.9.9].
Denote by IR ⊂ OH×PV = OH⊗OPV the ideal sheaf of R. For each I ∈ H we can recover
Isat from IR:

(Isat)d = H0(IR(d)⊗OH
(OH/mI))

for any integer d. But the dimension of the right hand side is upper semicontinuous in I
by [Hart77, Thm III.12.8]. That is, for each integer d, the subset Wd ⊂ H de�ned as:

Wd =
{
I ∈ H| dim(S•V ∗/Isat)d < h(d)

}
is Zariski closed.

To complete the proof we use Lemma 3.2, by which the set of saturated ideals in H
is the complement of the union of Wd for all �nitely many values of d. In particular, this
set is open.
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4 Generic Hilbert functions

Consider the ordinary Hilbert scheme Hilb(PV ). For each irreducible component H ⊂
Hilb(PV ) de�ne a function hH : Z→ N by

hH(d) := max

{(
d+ n

n

)
− dim I(R)d | R ∈ H

}
.

We call hH the generic Hilbert function of H.

Lemma 4.1. The subset of H de�ned as:

U gen
H := {R ∈ H | ∀d∈Z dim (S•V ∗/I(R))d = hH(d)}

is Zariski open and dense.

Proof. If dimH = 0, then the claim is clear.
Otherwise, we mimic the proof of Proposition 3.3. Denote by R ⊂ H × PV the

universal subscheme, and by IR ⊂ OH×PV = OH ⊗OPV the ideal sheaf of R. Note IR is
�at over H, so also the twist IR(d) is �at for all integers d. For R ∈ H, let mR ⊂ OH be
the maximal ideal sheaf of R.

The semicontinuity theorem [Hart77, Thm III.12.8] implies that

dimH0 (IR(d)⊗OH (OH/mR)) = dim I(R)d

is upper semicontinuous in R. Therefore, for each integer d, the subset Wd ⊂ H de�ned
as:

Wd = {R ∈ H| dim(S•V ∗/I(R))d < hH(d)}
is Zariski closed. Moreover, Wd 6= H by the de�nition of hH.

Finally, by Lemma 2.5 there is an integer D, such that the union of Wd is equal to⋃D
d=0WD, thus it is also Zariski closed and not equal toH, since dimH > 0. By de�nition,

U gen
H is the complement of the union of all Wd, thus it is open and dense, as claimed.

Lemma 4.2. Suppose i1 : R ↪→ PV is an embedding of a �nite scheme of length r. Then
there is an embedding i2 : R ↪→ PV such that dim(V ∗/I(i2(R))1) = min {r, dimV }.

Proof. First there is always a concisely independent embedding i3 : R ↪→ Pr−1 with
I(i3(R))1 = 0 [BBKT15, pp 702�703]. This is obtained by the embedding R = SpecA
into PA, or equivalently, by the trivial line bundle OR, which is very ample. If dimV ≥ r,
then i2 is a composition of i3 with a linear embedding Pr−1 ⊂ PV .

Suppose dimV < r. Let K2 (i2(R)) ⊂ Pr−1 be the second cactus variety of R, that is
the �nite union of the (projective) Zariski tangent spaces of R at each point and the secant
lines connecting the any two points of support of R. Note that dimK2 (i3(R)) ≤ dimPV :
indeed, since i1 is an embedding of R into PV , each tangent space must be at most dimPV
dimensional. Also each secant line is one dimensional, and there are any secant lines only
if there are at least two distinct points of support, which is possible only if dimPV ≥ 1.

Pick a linear projection Pr−1 99K PV . By standard arguments, such as in [Hart77,
Prop. IV.3.4], if the center of the projection does not intersect K2 (i3(R)), then the com-
position of i3 and the projection is still an embedding. Moreover, in such a case the linear
span of this new embedding is PV . Clearly, by the dimension count, we can pick the
linear projection satisfying the above property.
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Lemma 4.3. Suppose i1 and i2 are two embeddings of the same �nite scheme R ↪→ PV .
Then i1(R) and i2(R) are in the same component of the Hilbert scheme Hilbr(PV ), where
r = lengthR

Proof. Pick a basis {α0, . . . , αn} of V ∗ = H0(OPV (1)). Pulling the basis back to R using
i1 and i2, we obtain two collections, {i∗1α0, . . . , i

∗
1αn} and {i∗2α0, . . . , i

∗
2αn}, of sections

of the trivial line bundle OR ' i∗1OPV (1) '' i∗2OPV (1). Consider the P1-parametrised
family of maps R→ PV determined by

{s · i∗1α0 + t · i∗2α0, . . . , s · i∗1αn + t · i∗2αn} ,

where s, t are coordinated on P1. Generically, this is an embedding, and thus we obtain
a �at family of subschemes of PV paramerised by an open dense subset of P1. This
family demonstrates that i1 and i2 are in the same component of the Hilbert scheme, as
claimed.

Proposition 4.4. Suppose H ⊂ Hilbr(PV ) is an irreducible component of the Hilbert
scheme of �nite subschemes of length r. Then hH satisi�es the properties (i)�(v) of
page 1.

Proof. Items (ii), (iii), (iv), (v) follow from Lemma 4.1, since hH is a Hilbert function of
a saturated ideal of a �nite scheme of length r.

To see that (i) holds, take a general element R ∈ H. By the generality, H is the
unique component of Hilbr(PV ) containing R. By Lemma 4.2, we can reembed R into
PV in a linearly nondegererate way. By Lemma 4.3 both embeddings are in the same
component, that is H. It follows that hH(1) ≥ min {r, dimV }, then by (v) we must have
the equality.

Example 4.5. If H ⊂ Hilbr(PV ) is the smoothable component, then hH = hr.

Proof. Since the base �eld k is algebraically closed, it is in�nite, hence for each d there is
an embedding of a collection of r distinct points R, such that vd(R) is in linearly general
position.

Example 4.6. If r ≤ 8 and char(k) 6= 2, 3, then hH = hr for any component H ⊂
Hilbr(PV )

Proof. By [CEVV09], either H is the smoothable component, or it is the (1, 4, 3) compo-
nent. In the �rst case, the claim follows from Example 4.5.

In the latter case, we must have dimV ≥ 5, r = 8, and the natural embedding of any
(1, 4, 3)-scheme into a P4 shows hH(2) ≥ 8. We conclude applying Items (i), (ii), and (v)
of Proposition 4.4.

Example 4.7. Suppose char(k) 6= 2, 3. If dimV ≥ 7 and H ⊂ Hilb14(PV ) is the closure
of the (1661)-component in the Gorenstein locus (that is, the component that contains
all �nite Gorenstein schemes of length 14 with the local Hilbert function (1661)), then
hH = hr.
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Proof. If dimV = 7, thenH contains ProjS•V ∗/(Ihom), where Ihom is the homogenisation
of the ideal I ⊂ k[x1, . . . , x6] obtained as I = Ann(x31+ · · ·+x36+x1x2). Ihom is saturated,
and it is straightforward to verify (for instance on a computer algebra system), that
dim(Ihom)2 = 14, giving that hH(2) ≥ 28− 14 = 14.

If dimV > 7 we can also use the same embedding into some linearly embedded P6 ⊂
PV , to show that hH(2) ≥ 14 in general. Then Items (i), (ii), and (v) of Proposition 4.4
guarantee that hH = hr.

5 The ideal to scheme and linear span morphisms

The natural morphism sat : Hilb(S•V ∗)→ Hilb(PV ) is de�ned by sending a homogeneous
ideal I to Proj(S•V ∗/I). Strictly speaking, the universal ideal I ⊂ OHilb(S•V ∗) ⊗ S•V ∗
de�nes a subscheme R ⊂ Hilb(S•V ∗) × PV , which is �at over Hilb(S•V ∗) by [Hart77,
Prop. III.9.9] or [FGI+05, Lem. 5.5] or [Vaki17, Exercise 24.7.A(b)] (one needs to argue
for each Hilbert function separatedly).

Conversely, if H ⊂ Hilb(PV ) is any irreducible component, and U gen
H ⊂ H is the

open dense subset of H as in Proposition 4.4, then we obtain an inverse map U gen
H →

HilbhH(S
•V ∗). For the purpose of this note, it is enough to construct the map from

reduced part of U gen
H , and we will restrict to this case:

Lemma 5.1. Let H be the reduced subscheme of an irreducible component of Hilb(PV ),
U gen
H be its open subset of subschemes with ideal generic Hilbert function, R ⊂ U gen

H ×PV be
the universal subscheme, and IR ⊂ OUgen

H ×PV be the ideal sheaf of R. Denote by π : U gen
H ×

PV → U gen
H the projection. Then the sheaf of homogeneous ideals

⊕∞
i=0 π∗ (IR(d)) is

�at and determines a map ideal : U gen
H → HilbhH(S

•V ∗), such that sat ◦ ideal = idUgen
H

.
Moreover, ideal is an open immersion to the reduced subscheme of HilbhH(S

•V ∗).

Proof. For every d and for each point R ∈ U gen
H the dimension of the �bre π∗ (IR(d))R

(as a k(R)-vector space) is constant (independent of R) and equal to hH(d). Thus
by Nakayama's Lemmathe sheaf π∗ (IR(d)) is locally free, hence �at. Therefore also refref⊕∞

i=0 π∗ (IR(d)) is �at, and the universal property of HilbhH gives us the desired map
ideal : U gen

H → HilbhH(S
•V ∗).

On points, the map ideal takes a subscheme R to its (saturated) homogeneous ideal
I(R) ⊂ S•V ∗⊗ k(R), then the map sat takes I(R) to the scheme in PV de�ned by I(R),
that is R. That is, the composition sat ◦ ideal is the identity on points. Therefore, it is
the identity, since U gen

H is integral [Hart77, Lem. I.4.1].
Finally, ideal is an open immersion by Proposition 4.4 and the fact that every sub-

scheme of projective space is uniquely determined its saturated ideal.

Thus for each Hilbert polynomial P we have a bunch of distinguished components of
Hilb(S•V ∗).

De�nition 5.2. Fix an integer valued polynomial P .

• Suppose H ⊂ HilbP (PV ) is an irreducible component. De�ne the component of

Hilb(S•V ∗) corresponding to H to be HH := ideal(U gen
H ).

8



• De�ne the components of Hilb(S•V ∗) distiguished for P to be the set

{HH | H ⊂ HilbP (PV )} .

Proposition 5.3. The saturation map restricted to the union of distinguished components
is a birational map:

sat :
⋃
{HH | H ⊂ HilbP (PV )} → HilbP (PV )red.

Proof. Clear from the de�nition of HH and Lemma 5.1.

Proof of Proposition 1.2. The distinguished component HH de�ned above satis�es the
property of the �rst item in the proposition by the construction of the map ideal and
Lemma 5.1. The second item holds by Proposition 5.3.

The uniqueness follows from Proposition 3.3: suppose H′ is another component of the
multigraded Hilbert scheme satisfying the two itemised properties. Let U ′ ⊂ H′ be the
open subset of saturated ideals. Note that U ′ is not empty by the �rst item. Then, the
birationality from the second item implies that the general element of H is in sat(H′).
Thus the map ideal maps such general element to H′ and thus H′ = HH as claimed.

The linear span map is de�ned componentwise as:

lind : H 99K Gr(hH(d), S
dV )

R 7−→ 〈vd(R)〉 .

Proposition 5.4. The rational map lind : H 99K Gr(hH(d), SdV ) is resolved by the pre-
composition with the map sat restricted to HH.

Proof. The map sends a general R to I(R)(d)⊥. Thus it agrees generically with the map
I 7→ I(d)⊥, which is a regular map HH → Gr(hH(d), S

dV ). Thus this map is indeed a
resolution of lind by Proposition 5.3.

6 Cactus variety

check assumptions of the integers

The Grassmann-relative linear span of a component H ⊂ Hilbr(PV ), denoted by
Kr,i (vd(PV ),H), is de�ned similarly as in [BJ17, �5.6�5.7]. Explicitly, denote by S →
Gr(hH(d), S

dV ) the universal subbundle, and by Gr(i,S) the Grassmann bundle of i-
dimensional subspaces of �bres of S. Then de�ne G := lin∗d Gr(i,S), which is a vector
bundle over an open dense subset of H. Finally, de�ne Kr,i (vd(PV ),H) to be the closure
of the image of G under the projection G → Gr(i, SdV ), which is induced from the
projection Gr(i,S)→ Gr(i, SdV ).

The Grassmann cactus variety is the union of Kr,i (vd(PV ),H) over all components H
of Hilbr(PV ).

Proposition 6.1. Kr,i (vd(PV ),H) is equal to the image of

G := (lind ◦ sat)∗Gr(i,S)

under the projection G→ Gr(i, SdV ) induced from the projection Gr(i,S)→ Gr(i, SdV ).
In particular, no closure is needed in this de�nition.
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Proof. By Proposition 5.4, the map lind ◦ sat) is regular, and its image in the Grassman-
nian Gr(hH(d), S

dV ) is equal to the closure of the image of lind. Thus the closures of the
image of the two projections G→ Gr(i, SdV ) and G → Gr(i, SdV ) are equal.

Moreover G → Gr(i, SdV ) is a map of projective varieties, thus projective, hence
proper, and the image is closed.

Proof of Theorem 1.3. Let W ⊂ SdV .
First suppose bcr(W ) ≤ r, that is, W is in Kr,i (vd(PV ),H) for some irreducible

component H ⊂ Hilbr(PV ). If dimW = 1, then H can be chosen to contain Gorenstein
schemes by [BB14, Prop. 2.2(ii)] (over k = C) or [BJ17, Cor. 6.20] (over any k). By
Proposition 6.1 there exists an ideal I ∈ HH, such that W ⊂ I⊥d . Then I ⊂ Ann(W )
by standard apolarity arguments, concluding the proof of the �rst implication of the citationcitation

theorem, and also the �moreover� statement.
Now suppose there exists an irreducible component H ⊂ Hilbr(PV ), and an ideal

I ∈ HH such that I ⊂ Ann(W ). In particular, W ⊂ I⊥d and W is in the cactus variety as
claimed by Proposition 6.1.

Proof of Theorem 1.1. Suppose W ⊂ SdV has border cactus rank at most r. Then by
Theorem 1.3 there exists an ideal I ∈ HH for some irreducible componentH ⊂ Hilbr(PV ),
such that I ⊂ Ann(W ). By the construction of HH (Lemma 5.1) the Hilbert function of
I is equal to hH, which satis�es properties of (i)�(v) of page 1 by Proposition 4.4.

The cases of rank 8 follows from Example 4.6. To see the case of dimW = 1, by
Theorem 1.3,H above contains Gorenstein schemes. By [CJN15, Thm A], if char(k) 6= 2, 3
and dimV ≤ 6, then H is the component of smoothable schemes, hence hH = hr by
Example 4.5. If char(k) = 0 and dimV ≥ 7, then [CJN15, Thm B] implies that there
are two possible components H: the smoothable component (for which we again use
Example 4.5) and the (1661) component (for which we use Example 4.7).

References

[BB14] Weronika Buczy«ska and Jarosªaw Buczy«ski. Secant varieties to high degree
Veronese reembeddings, catalecticant matrices and smoothable Gorenstein
schemes. J. Algebraic Geom., 23:63�90, 2014.

[BBKT15] Weronika Buczy«ska, Jarosªaw Buczy«ski, Johannes Kleppe, and Zach Teitler.
Apolarity and direct sum decomposability of polynomials. Michigan Math. J.,
64(4):675�719, 2015.

[BH93] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings, volume 39 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1993.

[BJ17] Jarosªaw Buczy«ski and Joachim Jelisiejew. Finite schemes and secant vari-
eties over arbitrary characteristic. Di�erential Geom. Appl., 55:13�67, 2017.

[CEVV09] Dustin A. Cartwright, Daniel Erman, Mauricio Velasco, and Bianca Viray.
Hilbert schemes of 8 points. Algebra Number Theory, 3(7):763�795, 2009.

10



[CJN15] Gianfranco Casnati, Joachim Jelisiejew, and Roberto Notari. Irreducibility
of the Gorenstein loci of Hilbert schemes via ray families. Algebra Number
Theory, 9(7):1525�1570, 2015.

[Eise95] David Eisenbud. Commutative algebra, volume 150 ofGraduate Texts in Math-
ematics. Springer-Verlag, New York, 1995. With a view toward algebraic
geometry.

[FGI+05] Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin
Nitsure, and Angelo Vistoli. Fundamental algebraic geometry, volume 123
of Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, 2005. Grothendieck's FGA explained.

[Gree98] Mark L. Green. Generic initial ideals. In Six lectures on commutative algebra,
volume 166 of Progress in Mathematics, pages 119�186. Birkhäuser Verlag,
Basel, 1998.

[Hart77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977.
Graduate Texts in Mathematics, No. 52.

[Vaki17] Ravi Vakil. The rising sea: Foundations of algebraic geometry notes. a
book in preparation, November 18, 2017 version, http://math.stanford.
edu/~vakil/216blog, 2017.

11

http://math.stanford.edu/~vakil/216blog
http://math.stanford.edu/~vakil/216blog

	Introduction
	Binomial coefficients as a polynomial
	Saturation is an open property
	Generic Hilbert functions
	The ideal to scheme and linear span morphisms
	Cactus variety
	References

