
2180 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 7, JULY 2023

ObjDedup: High-Throughput Object Storage Layer
for Backup Systems with Block-Level Deduplication
Andrzej Jackowski, Łukasz Ślusarczyk, Krzysztof Lichota, Michał Wełnicki, Rafał Wijata, Mateusz Kielar, Tadeusz

Kopeć, Cezary Dubnicki, and Konrad Iwanicki, Member, IEEE

Abstract—The immense popularity of object storage is also
affecting the market of backup. Not only have novel backup
solutions emerged that utilize cloud-based object storage as back-
ends, but also support for object storage interfaces is increasingly
expected from traditional dedicated backup appliances. This latter
trend especially concerns systems with data deduplication, as they
can offer compelling gains in storage capacity and throughput.
However, such systems have been designed for interfaces and
workloads that are markedly different from those encountered in
object storage. Notably, they expect data to be written in portions
that are orders of magnitude longer than those in the novel object-
storage-oriented backup applications.

In this light, we contribute twofold. First, contrasting the
properties of object storage interfaces with usage patterns from 686
commercial deployments of backup appliances, we identify specific
issues an implementation of such an interface has to address to
offer adequate performance in a backup system with block-level
deduplication. In particular, we show that a major challenge is
efficient metadata management. Second, we present distributed
data structures and algorithms to handle object metadata in
backup systems with block-level deduplication. Subsequently, we
implement them as an object storage layer for our HYDRAstor
backup system. In comparison to object storage without in-
line deduplication, our solution achieves 1.8–3.93x higher write
throughput. Compared to object storage on top of a state-of-the-
art file-based backup system, it processes 5.26–11.34x more object
put operations per time unit.

Index Terms—deduplication, object storage, backup storage,
secondary storage

I. INTRODUCTION

OBJECT storage, such as Amazon S3 [1] or Microsoft
Azure Blob Storage [2], has become a highly popular and

versatile storage abstraction. It organizes unstructured data as
objects that are grouped into buckets. Apart from the data them-
selves, each object normally comprises up to a few kilobytes
of metadata, including a key identifying it within its bucket.
These storage primitives can be accessed via an HTTP-based
interface following REST principles: reading objects/buckets is

Manuscript received 7 July 2022; revised 18 December 2022; accepted 12
February 2023. Recommended for acceptance by S. Pallickara. (Corresponding
author: Andrzej Jackowski.)

Andrzej Jackowski, Łukasz Ślusarczyk, Krzysztof Lichota, Michał
Wełnicki, Rafał Wijata, Mateusz Kielar, Tadeusz Kopeć, and Cezary
Dubnicki are with the LLC, 9LivesData, 02-796 Warsaw, Poland
(e-mail: jackowski@9livesdata.com; slusarczyk@9livesdata.com;
lichota@9livesdata.com; welnicki@9livesdata.com; wijata@9livesdata.com;
kielar@9livesdata.com; kopec@9livesdata.com; dubnicki@9livesdata.com).

Konrad Iwanicki is with the Faculty of Mathematics, Informatics,
and Mechanics, University of Warsaw, 00-927 Warsaw, Poland (e-mail:
iwanicki@mimuw.edu.pl).

Digital Object Identifier 10.1109/TPDS.2023.3250501

done with HTTP GETs, uploading with PUTs, deleting with
DELETEs, and so on.

The demand for such an abstraction is immense. In 2017,
it was estimated that over 30% of data center capacity was in
object stores [3]. In 2021, in turn, Amazon alone stored over 100
trillion objects in S3 [4]. Object storage interfaces are provided
by hyperscalers [5], [6], other public clouds [7], on-premise
enterprise storage systems [8], and open-source solutions [9]–
[11]. Likewise, they are utilized in diverse applications, includ-
ing video services [12], social media [13], and games [14], to
name just a few examples.

This success of object storage has also affected the market
of backup. There are many properties that make this storage
abstraction attractive for these applications. In particular, pro-
vided as a cloud service, object storage offers a convenient
way of dependably keeping backups off-site, as its interfaces
contain provisions for transferring large amounts of data via
wide-area networks. They also display design concerns over
security, including strong ransomware protection. Consequently,
novel backup solutions utilizing cloud-hosted object stores as
backends have appeared [15], [16]. Likewise, systems that in-
ternally back up their state (e.g., databases or analytic platforms
[17], [18]) have added support for object storage. Finally, lead-
ing backup applications—originally targeting dedicated backup
appliances as storage backends—have started integrating with
S3 and similar interfaces [19], [20].

In this light, there is a strong market incentive also to have
such dedicated backup appliances implement these interfaces.
In particular, appliances that can significantly add much value
as backends for object-storage-compatible backup applications
are those supporting data deduplication. Deduplication is a
technique that can reduce data as many as 10–30 times without
any information loss [21]. It is available in a range of storage
systems [22]–[24] but one of its main uses is backup. This is
because backups inherently contain data that are repeating over
time, thereby yielding high deduplication ratios [25]. Notably,
an appliance offering global block-level in-line deduplication
can reduce storage footprint data written independently by
different backup applications, even if backup applications in-
ternally implement their own form of deduplication. In combi-
nation with simplified regulatory compliance and higher control
over data stored by on-premise machines, these compelling
space savings and compatibility with cloud-based storage back-
ends are the primary motivation behind adding object storage
interfaces to backup appliances.

However, it is unclear how a backup appliance with dedupli-
cation should implement such an interface so as to offer ade-

JACKOWSKI et al.: OBJDEDUP: HIGH-THROUGHPUT OBJECT STORAGE LAYER FOR BACKUP SYSTEMS WITH BLOCK-LEVEL DEDUPLICATION 2181

quate performance. Normally, for external applications, backup
appliances provide dedicated data-transfer interfaces, such as
Common Internet File System (CIFS), Virtual Tape Library
(VTL), and others [26], which differ significantly from object
storage interfaces. Although objects and buckets resemble files
and directories from file systems, these primitives do differ.
Likewise, object storage is designed for different access patterns
than backup appliances. For instance, S3 recommends small
objects: if an object is to exceed 100 MB, it should be uploaded
in multiple parts for better throughput and recovery from
network issues [1]. Accordingly, backup applications for object
storage backends typically organize a backup into numerous
small objects (1–64 MB) [19], [27], [28]. In contrast, leading
backup applications for dedicated appliances use large files
(≥100 GBs) [29]. The bottom line is that backup appliances
with deduplication may not be prepared to handle the volumes
of metadata due to both the specific functionality and usage
patterns of object storage interfaces.

In this article, we thus investigate the problem of efficiently
implementing an object storage interface in state-of-the-art
backup appliances with global block-level in-line deduplication.
To this end, we take the following “pragmatic” approach.
Since the considered appliances are a mature, complex, and
highly optimized technology, we do not aim to redesign any
of their internal functionality but only to add new functionality.
Likewise, as a single appliance normally offers multiple backup
interfaces at once, and data written via any of those is globally
duplicated (i.e., also against data written via others), when
adding support for an object storage interface, we must preserve
this behavior.

Our approach is further reinforced by the fact that many
steps of data deduplication are independent of the particular
interface, and a backup appliance is itself often a distributed
storage system, ranging from a few to as many as thousands
of machines. Such a system implements a number of features
that work across all interfaces, such as ensuring the quality
of service, preventing premature exhaustion of storage space,
or controlling data resilience. Implementing these features as a
single block-level storage engine that is shared by all exported
interfaces is a common practice.

A consequence of this approach is that, similarly to the classic
backup interfaces, an object storage interface should be provided
as a layer over the block-level engine of a distributed storage
system with deduplication. On the one hand, this decreases the
number of design decisions required during our study, because
effective solutions for many problems are already available.
On the other hand, it poses novel problems because adapting
some techniques that are popular in object storage without
deduplication is not possible, and we needed to propose new
dedicated solutions to achieve satisfactory performance.

Given this approach, the major contributions of the article
are twofold. First, we present a preliminary study that aims
to identify particular issues an implementation of an object
storage interface for a backup appliance with global block-
level in-line deduplication has to address. Based on data from
686 real-world deployments of our backup system, we extract
statistical information characterizing their usage patterns. With
this information, we analyze commonly used object interfaces

to identify requirements, meeting which may be challenging in
a system with global block-level in-line deduplication. Second,
based on the study, we identify core algorithmic problems and
propose our solutions to these problems, that is, algorithms and
data structures, dubbed ObjDedup, which can be employed to
provide object storage functionality efficiently as a layer on top
of a block-level engine of a backup appliance. We also outline
our implementation of this design for HYDRAstor and evaluate
it experimentally. The evaluation indicates, among others, that
the presented solutions can outperform the state of the art
multiple times in terms of I/O operation throughput.

The rest of the article is organized as follows. Section II
provides the necessary background and surveys related work.
Section III contains our preliminary study based on real-world
deployment data. Section IV introduces the algorithmic core
of our solution. Sections V and VI discuss, respectively, the
implementation and an experimental evaluation of the solution.
Section VII concludes.

II. BACKGROUND AND RELATED WORK

Although deduplication has multiple applications [30], [31], it
is particularly appealing for backup and recovery, as consecutive
backups often share most of their data. Therefore, it is an
important feature in backup systems that utilize mainly HDDs
[32], [33]. In this section, we give a high-level outline of the
operation of such systems, emphasizing aspects that are the most
relevant to our work. A comprehensive overview of general
deduplication techniques can be found in an earlier survey [34]
and article [35].

A. Global Block-Level In-Line Deduplication

Our work focuses on a model referred to as global block-
level in-line deduplication, as it is the state of the art for backup
appliances. To clarify the reader’s intuition, the term “global”
captures the fact that data written via any interface and at any
time can be deduplicated against each other, thereby yielding
higher space savings than local deduplication among data writ-
ten via a single interface or in a particular backup session.
The term “in-line” means that deduplication is performed while
the data are to be written to the appliance (i.e., before they
are actually written to storage drives), which allows for much
higher write throughput of data with numerous duplicates in
comparison to off-line/background deduplication (e.g., via post-
processing, after the data have been written). Finally, “block-
level” denotes that the unit of deduplication is fixed- or variable-
length block, typically determined at runtime, rather than entire
file, directory, or backup stream, which again improves space
savings.

Systems employing global in-line block-level deduplication
for backup purposes operate roughly as follows. A backup ap-
plication assembles the data to be saved by the backup appliance
(e.g., files and directories) into a data stream. A deduplication
pipeline starts with chunking the stream into blocks, either
at fixed offsets or with more advanced algorithms [36]. The
resulting blocks typically range from 2 KB to 128 KB [37].
Subsequently, their existence on storage machines running the
backup appliance is checked. The decision whether a block is

2182 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 7, JULY 2023

already present in the system is typically made based on a so-
called fingerprint of the block (e.g., its SHA-256 hash). As the
aggregated size of all fingerprints can easily exceed terabytes,
efficient fingerprint indexing is necessary. Only when the block
is confirmed not to be stored, it is written onto the storage drives
of selected machines running the appliance.

Deduplication-related research focuses largely on improving
the efficiency of backup and recovery. Leveraging Bloom filters
[38], flash memory [39], [40], and reorganizing data to reduce
fragmentation [41]–[44] are all compeling methods of handling
blocks and their metadata. Our research addresses an orthogonal
problem: an effective implementation of object storage inter-
faces on top of a deduplication system that already has its block
maintenance optimized. In general, state-of-the-art backup ap-
pliances solve numerous problems (e.g., block caching, ensuring
the quality of service, balancing space utilization, or controlling
data redundancy). Therefore, their block maintenance (including
deduplication) is encapsulated into an engine that offers a block-
level interface, allowing for reading and writing blocks as well
as querying their presence. The higher layers, such as CIFS or
VTL, are implemented on top of this block-level engine, treating
it mainly as a black box, which is also the approach we follow
in ObjDedup.

Consequently, the exact solutions the block-level engine
employs to the aforementioned problems are largely abstracted
out and should be irrelevant for the higher layers, including
ObjDedup. However, the data must be eventually stored by the
backup appliance in 2KB–128KB blocks using a well-defined
data organization.

B. Deduplicated Data Organization

More specifically, the following data organization is com-
monly adopted in deduplication appliances and hence is also
assumed in the design of ObjDedup.

All blocks are immutable. If block contents were allowed
to change after a fingerprint computation, the contents of a
block could be lost forever if it was deduplicated against another
block that was modified later or, conversely, two blocks with
ultimately different contents could have the same fingerprint.
The fingerprint of a block is thus normally used as (an element
of) the unique address of the block.

Blocks are organized into directed acyclic graphs (DAGs).
Since a single block is typically too small to represent an entire
data collection, such as a file or a directory, there must be
means of grouping multiple related blocks. To this end, besides
actual data, a (regular) block can contain addresses of other
blocks, thereby referencing these blocks. A fingerprint, and
hence the address, of a block is thus computed over both the
data and addresses contained in the block. In effect, each data
collection can be represented by a (root) block that references
the regular blocks holding the data comprising the collection. If
the collection is large, this referencing can have multiple levels.
The root block also has an address and can thus be referenced
from other blocks, for instance, containing backup metadata. In
other words, globally, data collections are organized as logical
block trees. This organization is only logical because, as a
result of deduplication, a block can be referenced by many

other blocks (i.e., have multiple parents). Therefore, blocks form
DAGs (cf. Fig. 1), rather than trees.

Fig. 1: Data collections (e.g., files) are organized into a set of block DAGs. A
block can contain data (black) and/or references to other blocks (gray). Blocks
with multiple incoming arrows are deduplicated.

Since block data are immutable and since the address of
a block contains a fingerprint computed over both the data
and references constituting the block, the references must be
immutable as well. As a result, changing a reference in some
block deep in a DAG entails generating a new block with a
new address, replacing references in all its ancestors, so that
the change propagates up to the root blocks.

Blocks with no live references are eventually deleted to
reclaim storage space. Deleting blocks in a system with in-
line deduplication requires considerable additional effort
to prevent situations where new blocks reference data that
have been deleted. Typically, the system employs a multi-phase
algorithm that follows a garbage collection technique such as
mark-and-sweep or reference counting [45], [46].

C. Deduplication in Object Storage

Despite having a few flavors, object storage interfaces are
largely similar [47], [48]: an object storage interface is often
described as S3-compatible or Swift-compatible, names origi-
nating from Amazon S3 and OpenStack Object Storage (Swift),
respectively. In particular, MinIO [11], a popular open-source
object store with over 500 million docker pulls, describes its
interface as S3-compatible. RadosGW (Ceph Object Gateway)
[9], which is in turn an object layer for the widely-adopted Ceph
storage, supports both flavors. Finally, even OpenStack Object
Storage, the original implementation of the Swift interface, now
also incorporates middleware that emulates S3 [49]. Support
for either of the interfaces in a backup appliance can thus be
extended to other object storage interfaces. However, there has
been little work on how such support can be provided efficiently
in a backup appliance with deduplication.

To start with, Cloud Tier [50] moves data written to a backup
appliance (using an interface different than object storage) to
cloud-based object stores. Such object stores do not provide
deduplication, so the backup appliance deduplicates data before
transferring to the cloud. The solution is much different from
ObjDedup, which extends the backup appliance itself with the
object storage interface.

Several publications proposed adding deduplication to exist-
ing object storage systems, notably Swift and Ceph.

Post-process deduplication approaches, like Ceph’s dedu-
plication [23] or LOFS [51], are very different from ObjDedup,
which assumes in-line deduplication in the underlying block-
level engine. In-line deduplication, if exploited well, can in-
herently offer superior write throughput and space savings for
highly duplicated backup data [34].

JACKOWSKI et al.: OBJDEDUP: HIGH-THROUGHPUT OBJECT STORAGE LAYER FOR BACKUP SYSTEMS WITH BLOCK-LEVEL DEDUPLICATION 2183

In-line deduplication approaches proposed to date do not
examine the problem of efficiently managing metadata due to
supporting object storage interfaces. In particular, Wang et al.
[52] focus on classic files in Ceph and explicitly mention sup-
port for Ceph Object Gateway as future work. Similarly, Khan et
al. [53], [54] provide deduplication for Ceph’s internal objects,
which are different from object storage objects, supported in
Ceph Object Gateway. In other words, rather than tackling the
problems attacked by ObjDedup, that research explains how a
variant of the black-box part of ObjDedup (i.e., the block-level
engine) could be implemented in Ceph. Those ideas are further
improved by CROCUS [55], which schedules deduplication-
related operations onto CPUs and GPUs.

In contrast, the aforementioned Ceph Object Gateway re-
quires bucket indexes [56] that are frequently accessed and
modified. Therefore, they can incur a significant overhead if kept
in a store with in-line deduplication. Yet, we are not aware of
any relevant prior performance results for Ceph Object Gateway,
and generally, the published results are insufficient to predict
how the solutions would behave with large numbers of objects
or small files, as generated by backup applications for object
storage backends.

Finally, DedupeSwift [57] adds deduplication to Swift. In
DedupeSwift, objects are stored as binary files, and metadata are
stored in xattrs, so there is no dedicated metadata structure like
in ObjDedup. DedupeSwift’s throughput tops 10.54–25.51MB/s
even with SSDs for deduplication caches, which is insufficient
for a commercial backup appliance.

Concluding, we are not aware of any in-depth analysis of the
problems posed by a high-performance implementation of an
object storage interface for a state-of-the-art backup appliance
with global block-level in-line deduplication.

III. PRELIMINARY STUDY

To gain more insight into the problems, we have conducted
a study contrasting real-world usage patterns of backup appli-
ances featuring global block-level in-line deduplication with the
relevant properties of object storage interfaces.

A. Object Storage API Analysis

Certain features of object storage interfaces have become a
market standard, and understanding what backup applications
can expect is a part of our research. Because of space con-
straints, here we focus only on those features that are the most
vital for the considered applications.

When it comes to storage organization, a crucial property is
that apart from the data themselves, each object (and bucket)
has associated metadata. The metadata of an object contains a
key that uniquely identifies the object within its bucket, metain-
formation on the object’s data (e.g., length, MD5 digest), and
user-defined metadata. The total size of the metadata can vary
and—compared to the size of object data—can be significant.
For instance, in Amazon S3, a key is up to 1 KB, and user-
defined metadata are up to 2 KB [1].

Likewise, although the basic commands follow REST prin-
ciples, object storage interfaces are extensive. For example,
Amazon S3 currently has almost 100 commands, of which

some have no counterparts in POSIX file systems. In particular,
besides object management requests, such as PutObject, Dele-
teObject, ListObjects, there exist commands related to security
(e.g., encryption, ACLs, ownership control), multi-part uploads,
tiering, replication, and the like. Virtually all these commands
access object metadata.

Another feature with far-reaching consequences is the usage
of key prefixes. First, objects can be listed given a key prefix and
a delimiter. In effect, even though the bucket-object hierarchy
has just two levels, a deeper directory-like structure of a classic
file system is often recreated by organizing objects through their
key prefixes. For example, listing objects with delimiter “/” and
prefix “mydir/” is similar to calling “ls” in “mydir” of a file
system. There are, however, some differences from classic file
systems. A major one is that object listings are limited in size (in
Amazon S3, to 1000 objects), which entails multiple invocations
for prefixes with large numbers of objects. Second, prefixes are
utilized for guaranteeing and scaling performance. For instance,
Google Cloud Storage initially offers 1000–5000 requests per
prefix per second. If the actual number surges dramatically for
a prefix, some time may be needed for reorganization, during
which the performance is lower [58].

Moreover, as object storage interfaces originally assumed
wide-area networks, they promote moving large data in smaller
parts. For objects larger than 5MB, multi-part upload (MPU) is
recommended, with object transfer split into up to 10,000 parts.
MPU state needs to be tracked by the backend because the parts
can be provided in any order, and uploads are done in parallel
and reattempted if required.

Finally, when operating with object storage interfaces, mod-
ern backup applications do make use of their features, no-
tably wide-area-network- or security-oriented provisions. Even
though not every application utilizes all commands of an
interface, their deep understanding is necessary when devel-
oping support for object storage, especially since the market is
constantly evolving and the demand is changing. For instance,
in recent years, some backup applications started using object
locks as a protection mechanism aimed to prevent unintentional
data updates and deletes [59], [60]. Another example is that
some backup applications avoid MPUs (e.g., by uploading
backups in objects below 5 MB [27]), but others do utilize this
feature [61]. In either case, however, the typical object size in
such applications is between 1 MB and 64 MB [19], [27], [28].
In other words, even if the data fed to a backup application for
an object storage interface are the same as the data fed to a
backup application for traditional backup interfaces, in the first
case, the storage backend will receive data collections that are
several orders of magnitude smaller than in the second.

B. Backup Data Pattern Analysis

To contrast these observations on object storage interfaces
with the usage patterns of backup appliances with global block-
level in-line deduplication, we analyze real-world deployments
of such systems. Data is written to a backup appliance in various
patterns in backup jobs [40], and the jobs are run periodically
(e.g., once a day at a specific time) [62] based on backup life
cycles and policies. Even a single backup application can write

2184 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 7, JULY 2023

hundreds of jobs each week to back up diverse servers and
business applications [63]. Similarly, deletion of data from each
job is done based on a retention policy (e.g., after five days)
[64], but, as mentioned previously, garbage collection under
deduplication requires significant work and is thus executed
sparingly, at most a few times a week. Therefore, we examine
how a system behaves based on information collected over
a week, which we refer to as a sample. More specifically,
we analyze 13, 102 samples collected from 686 commercial
deployments of our backup appliances and present those results
that have had the most impact on the design of ObjDedup.
While this is yet to be confirmed empirically when the solutions
introduced in this article are massively adopted, we expect
that object storage interfaces would not alter the observed
patterns significantly, as the backup life cycles, policies, and
data themselves are largely independent of a backup interface.

For every sample, we calculate the ratio of the maximal
increase and decrease of capacity utilization (cf. Fig. 2). We
examine changes in both: raw capacity (i.e., data physically
stored after deduplication) and effective capacity (i.e., data
written by backup application, before being deduplicated). The
distribution of this value for all samples is plotted in Fig. 3.
A majority of samples have their ratios above 1.0, that is,
writes exceed deletes, which is expected given the continuous
worldwide data growth [65]. Typically, the ratio is in the range
0.66–1.5, so every week similar amounts of data are added
and deleted. Samples with no activity are virtually nonexistent,
which implies that backups are indeed done regularly.

20
20

-01
-21

20
20

-01
-22

20
20

-01
-23

20
20

-01
-24

20
20

-01
-25

20
20

-01
-26

20
20

-01
-27

20
20

-01
-28

0

20

40

60 Max capacity
decrease

Max capacity
increase

Sy
st

em
C

ap
ac

ity
[T

B
]

Fig. 2: The evolution of capacity utilization in a representative sample.

0-0
.33

0.3
3-0

.66
0.6

6-1 1-1
.5

1.5
-3 >

3

Only
W

rit
es

Only
Dele

tes

No ac
tiv

ity
0

0.1

0.2

0.3

Writes to deletes ratio

Fr
ac

tio
n

of
al

l
sa

m
pl

es Raw
Effective

Fig. 3: The ratio of weekly maximal increase and decrease of raw capacity
(after deduplication) and effective capacity (before deduplication).

The magnitude of changes to raw and effective capacity
utilization is shown in Fig. 4, separately for increases and
decreases. It can be observed that capacity utilization in a
system can change a lot in a week. The changes in effective
capacity have even higher magnitudes than in raw capacity.
Given that effective capacity can be larger by an order of
magnitude than raw capacity, this means that despite fairly

stable capacity utilization (per Fig. 3), the data turnover is
considerable: older backups are removed to store fresh ones.

0-1
%

1-5
%
5-1

0%

10
-20

%

20
-50

%

50
-10

0%

0.1

0.2

0.3

0.4

Max capacity increase

Fr
ac

tio
n

of
al

l
sa

m
pl

es

0-1
%

1-5
%
5-1

0%

10
-20

%

20
-50

%

50
-10

0%

0.1

0.2

0.3

0.4

Max capacity decrease

Raw
Effective

Fig. 4: Maximal positive and negative capacity utilization changes within a
week.

Finally, Fig. 5 depicts the distribution of maximal capacity
utilization in samples. It shows that although a fraction of
free space usually remains, in 16% of cases, the capacity
utilization exceeds 80%. Therefore, considering the possibility
of substantial (≥20%) utilization increases (Fig. 4), the system
indeed relies on efficient garbage collection.

0-0
.2

0.2
-0.

4

0.4
-0.

6

0.6
-0.

8

0.8
-1.

0
0

0.1

0.2

Fraction of total system capacity used

Fr
ac

tio
n

of
al

l
sa

m
pl

es

Fig. 5: The weekly maximal utilization of system capacity.

C. Main Lessons Learned

The following major lessons can be drawn from our study.
Backup appliances and object stores have dissimilar

characteristics. Backup appliances are optimized for write
throughput, which is crucial given that their overwhelmingly
dominant usage pattern is writing long data streams. In turn,
operating on individual data collections hardly ever takes place
as even recovery typically concerns entire snapshots and is
considered rather sporadic; the same applies to modifying
metadata of existing collections. In contrast, object storage
interfaces have been designed for flexibly organizing, efficiently
accessing, and remotely managing large numbers of data items,
so as to cover many use cases that may be encountered in the
plethora of possible cloud-oriented applications. To this end,
object storage features an extensive API, rich system- and user-
defined metadata enabling this API, and additional provisions
for wide-area communication, scalability, security, and the like.
It also requires respecting peculiar constraints regarding shaping
the organization of the data and access traffic.

Dynamic and relatively large metadata of an object are
problematic under immutable deduplicated blocks. For an
object, the size of its metadata can be significant compared to
the relatively small size of the data themselves, as recommended
by object interfaces and respected by backup applications for
object stores. In backup appliances, this phenomenon is likely
to be aggravated since the data are normally repeating over

JACKOWSKI et al.: OBJDEDUP: HIGH-THROUGHPUT OBJECT STORAGE LAYER FOR BACKUP SYSTEMS WITH BLOCK-LEVEL DEDUPLICATION 2185

time, and hence are often deduplicated. Furthermore, their high
weekly replacement rate implies that many objects will be writ-
ten and deleted every week. Each such operation on an object
also requires at least one access to its metadata. In general, many
object operations solely affect the metadata, updating them in
some way. This is problematic given the block immutability in
backup appliances with global block-level in-line deduplication.
What is more, some object storage operations require tracking
their progress by the backend. Such an operation generates
metadata that are heavily accessed for a short time and are
deleted afterward but need to be kept persistently in the backend
to allow completing the operation even under transient failures.
A prominent example is the aforementioned multi-part upload
(MPU), which can produce thousands of metadata items for a
single object.

Efficiency of metadata management is a fundamental
problem on the scale of an entire backup appliance. This is
due to the assumptions object storage interfaces make regarding
the use of object key prefixes for collective operations, such as
object listing, and for performance scaling. In particular, the
listing feature implies that the metadata of all objects should
be somehow indexed or sorted for efficiency. The potential
solutions are further constrained by the fact that the delimiter
of subsequent prefix parts is provided on demand and can
thus be arbitrarily changed at runtime, even between requests.
Guaranteeing performance and scalability, in turn, requires
dynamically distributing the load on various objects between
machines, for instance, based on the indexes. This implies that
the algorithms for managing object metadata have to be able to
work in a distributed fashion and handle partial failures.

Object metadata management solutions must not impair
the performance of space reclamation. As revealed by our
study, the high weekly data replacement rate in backup ap-
pliances already entails extensive use of block deletion and
garbage collection. Supporting an object storage interface will
likely increase the pressure on these mechanisms. This is
because any update to metadata stored in immutable blocks
typically invalidates these blocks as blocks with the new version
of the metadata are written. Therefore, when addressing the
previous problems, any implications on space reclamation must
be carefully considered so that its efficiency is not impaired.
In particular, adding an object storage interface to a backup
appliance must not lead to situations in which blocks that
are no longer necessary are not garbage-collected as soon as
possible because of some dangling references, for instance, due
to metadata indexing.

IV. THE DESIGN OF OBJDEDUP

In this section, we translate the conclusions from our prelim-
inary study into algorithmic problems and present solutions to
these problems, which we dubbed collectively ObjDedup.

A. Problem Statement

As explained previously, a backup appliance with global
block-level in-line deduplication typically exports multiple well-
established interfaces, that are utilized by external backup
applications, possibly at the same time. Internally, in turn, it is

usually implemented as a distributed system that encapsulates
the core functionality of deduplicated write-optimized fault-
tolerant storage into a block-level engine, which is often a
product of many years of development and fine tuning. The
external interfaces are simply implemented as higher layers on
top of this shared engine. We thus assume the object storage
interface to be provided in the same manner. This assumption
imposes a few constraints on our solutions, the major ones
being:

1) The block-level engine must not be changed so as to avoid
affecting the operation of the other interfaces exported by
the appliance.

2) Likewise, extra hardware, such as additional machines or
custom storage devices, must not be required from the
appliance to support the new functionality.

3) The performance of the object storage interface, notably
write throughput, space utilization, and fault tolerance,
must be comparable to that of the classic interfaces.

Under these constraints, we consider the following overall
design of ObjDedup. Objects and buckets are organized as other
data collections (e.g., files and directories): into logical block
trees within the block storage, with the root block representing
a particular object or bucket and regular blocks holding the data
of the object/bucket (cf. Fig. 1). In effect, the existing, highly-
optimized pipeline can be utilized for writing object and bucket
data, which allows for ensuring the same performance of these
operations as for the other interfaces of the backup appliance.
Object/bucket metadata are also kept in regular blocks within
the block storage. Although an alternative design involving
dedicated hardware for the metadata, like SSDs or NVMs, could
improve the performance of operations on the metadata, it would
violate the previously formulated constraints. Moreover, storing
the metadata within the block storage is essential for fault
tolerance: if a machine responsible for a particular portion of the
metadata fails, other machines can take over, as the block engine
ensures that metadata are stored redundantly in the block storage
and are available to all machines comprising the appliance. In
contrast, what is different in the case of metadata compared to
data is that because of the way object storage uses key prefixes
in multiple operations and performance scaling, the metadata
must be indexed and/or sorted by object/bucket key prefixes.

The central algorithmic problem that has to be solved can
thus be formulated as follows:

How to efficiently organize object and bucket meta-
data by key prefixes and dynamically manage this
organization by multiple processes given shared dedu-
plicated write-optimized fault-tolerant immutable-
block storage?

Efficiency in this context has two facets.
First, the achievable throughput of the object storage interface

must be comparable to that of the classic interfaces of the
backup appliance, ensuring among others that while accesses
to metadata are write-optimized, the performance of reads is
not impaired. More specifically, as HDDs are assumed as the
main storage medium, achieving a high write throughput is
possible only if random disk I/Os are limited. Since blocks are
immutable, updating metadata structures requires both reading

2186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 7, JULY 2023

some already stored blocks and writing new ones. Whereas
block-level engine batches writes, random-read I/Os may easily
exhaust HDD capabilities. Therefore, our asymptotic complexity
goal for the number of reads necessary to update the metadata
of an object/bucket is O

(
log(n)

)
, where n is the total number

of objects and buckets in the store. We also want to ensure that
in the case of updating the metadata of u objects sharing the
same prefix, the complexity is O

(
logs(n) · us

)
, where s is the

expected number of object metadata entries per block.
Second, the storage space of the appliance must be used

efficiently as well. Not only does this mean that the storage over-
head on metadata should be limited, preferably to O

(
log(n)

)
,

but also, what is particularly important in a system with
deduplication, that deleted blocks containing references to other
blocks should be garbage-collectible without an unacceptably
long delay. To be more specific, at any time, the number of
blocks that store lifeless references should be smaller than a
constant M and the constant itself should be small enough to
ensure that in practice blocks can be updated within seconds or,
at most, minutes.

Last but not least, our formulation of the problem entails that
the management by multiple processes of the logical structure
holding metadata in the block storage must be resilient to
failures of these processes, so that the resulting solution can
be made as fault-tolerant as the underlying block storage itself.
This necessitates distributed algorithms.

B. Principal Ideas
To address the problem, we analyzed or experimented with

multiple potential solutions: from database-oriented or file-
system-oriented data structures and algorithms for write-once
or erase-before-write storage drives to various fault-tolerant
distributed indexes [66]–[70]. In short, the fact that the blocks
in the assumed underlying storage are immutable and orga-
nized into DAGs limits the applicability of techniques that
employ in-place updates, notably classic B-tree or many of
its modern variations [66]. In our settings, these techniques
would be inefficient because emulating each in-place update
would require rewriting not only the updated block but also
its every ancestor in the DAG. A particularly promising data
structure for immutable-block storage was LSM-tree [67], which
is widely adopted in distributed databases and offers an excellent
amortized cost of insertions. However, to this end, it requires
keeping deleted elements for indefinite periods, which is at
odds with the need for promptly garbage-collecting deleted data.
According to our preliminary study of backup deduplicating
systems, keeping just a single deleted block with references
can prevent reclaiming multi-gigabytes worth of storage space.
This can be very problematic, even if it happens just for few
days.

All in all, we were unable to find an existing solution that
would fit the assumed model of block storage with deduplication
while at the same time being able to maintain the massive
amounts of metadata required by object storage. Consequently,
we have devised new data structures and algorithms dedicated
for the considered scenarios.

More specifically, our solution involves two persistent data
structures dubbed ObjectMetadataLog (OML) and ObjectMeta-

dataTree (OMT). From the systems perspective, they are used
to store object metadata and live references to object data in a
write-optimized fashion: all metadata updates are first appended
to an OML and only asynchronously (in the background)
applied in batches to an OMT, which decreases write latency
and improves throughput while at the same time ensuring
efficient indexing by key prefixes. Both structures are kept in the
deduplicated write-optimized fault-tolerant shared immutable-
block storage, and their parts are also cached in memory. There
is one instance of OMT in the storage and as many instances of
OML as there are processes implementing the object storage
interface. For scalability, this number of processes can be
dynamically controlled to ensure, among others, appropriate
collective throughput and failure resilience. For presentation
purposes, however, let us assume for a while that there is only
one such process. We will drop this assumption shortly.

C. Object Metadata Log (OML)

The OML contains a sequence of yet unapplied metadata
updates ordered by their time of arrival (cf. Fig. 6). In particular,
it also keeps object removals because, for instance, combina-
tions PUT-then-DELETE and DELETE-then-PUT differ in their
outcome. A new operation modifying metadata is appended to
the sequence, and the client is notified as soon as the append
completes. To further improve the throughput of metadata
writes, a burst of operations can be batched into a single write
request to the block storage. Moreover, the sequence is kept
small enough so as to be stored not only in the block storage
but also in a memory buffer.

When the in-memory buffer is filled, it is swapped with a
new buffer, and the operations it contains are applied to the
OMT in the background. The application procedure has to be
sufficiently fast so that the memory available for the buffers
is not exceeded in the meantime. If that happened, processing
client commands via the object storage interface would have to
be paused, heavily impairing the overall write throughput. We
will address this issue shortly.

When the operations from an in-memory buffer are applied
to the OMT, the buffer is ready to be reused, and the OML
blocks corresponding to its contents are also deleted from
the block storage (i.e., marked for garbage collection). Apart
from potential memory constraints, this is another reason for
keeping OML in-memory buffers small: in the block storage,
the contents of such a buffer may include references to blocks
that may be suitable for garbage collection (e.g., root blocks
of deleted objects) and hence after an application to the OMT,
they should be deleted as quickly as possible to reclaim storage
space.

Fig. 6: Sample contents of an OML.

JACKOWSKI et al.: OBJDEDUP: HIGH-THROUGHPUT OBJECT STORAGE LAYER FOR BACKUP SYSTEMS WITH BLOCK-LEVEL DEDUPLICATION 2187

The reader may have noticed that the OML is never read
from the block storage during regular operation, as the in-
memory buffers are sufficient. However, keeping the OML also
in the block storage is necessary for fault tolerance. If a process
running the object storage interface fails (e.g., its host machine
crashes), it (or another process) can continue after recovery
without losing any updates to the metadata.

D. Object Metadata Tree (OMT)

The OMT complements the OML by organizing the object
metadata in the block storage to enable efficient access, notably
looking up and listing by key prefixes. Unlike the OML, the
OMT is meant to be very large, as it keeps most metadata of
the system—possibly for hundreds of millions of objects. The
OMT resembles a B+-tree and keeps a few types of metadata
utilized in object storage in its leaves. The most important ones
are metadata of individual objects, MPU parts, and buckets
(cf. Fig. 7). They are sorted by their type, key, and other
content. Apart from storing the metadata, OMT leaves also have
references to the roots of the logical block trees with actual
object data.

Fig. 7: An example of an OMT.

The blocks that store internal nodes of the tree have refer-
ences to the blocks with next-level nodes and separators. Each
tree node, except for the rightmost ones, has its size between
1
2S and S elements, where S is a configuration parameter. To
keep the tree balanced, all paths from the root node to the
leaves, apart from the rightmost one, have the same length.
OMT merges are the only operation that modifies the OMT and
they keep both aforementioned invariants. All OMT operations
are listed in Table I.

In contrast to the OML, the OMT is too large to fit in
memory. However, a subset of its nodes is cached to improve

TABLE I: List of OMT operations.

Description

OMT Merge Applies changes from an OML to the OMT
(described in Section IV-E)

OMT Distributed
Merge

Applies changes from an OML to the OMT
in a distributed manner and consists of two

phases: SubOMT Generation (Section IV-G1)
and OMT Combining (Section IV-G2).

OMT Lookup Searches for an object in the OMT from
its root node to a leaf (B-tree search).

OMT Prefetch A special lookup version optimized for
OMT merges (Section IV-F).

performance. In particular, as our preliminary study shows, the
list operations limit the number of returned objects, so caching
internal nodes can significantly accelerate consecutive listings.
The size of such a cache is meant to be small: asymptotically
proportional to the maximal size in the in-memory buffer of the
OML.

E. Metadata Merge

Metadata merge is a background operation of applying to the
OMT all changes from the OML. Since blocks holding the tree
nodes are immutable, conceptually, the operation has to generate
a new tree. However, rewriting all OMT nodes each time an
in-memory buffer of the OML fills up would be an overkill. In
particular, it would entail rewriting the metadata of every object
and bucket in the system. Therefore, instead, the nodes from the
old tree are reused whenever possible. In contrast, the blocks
containing the overwritten nodes are eventually not reachable
from any live blocks, and can thus be garbage-collected.

More specifically, a merge traverses the OMT in a depth-
first search (DFS) manner. For each node, a decision is made if
either the whole subtree of the node can be reused in the new
version of the tree or some update exists in the OML that has to
be applied in the subtree. If such an update exists, the subtree
is traversed recursively down to locate the relevant leaf node.
If, after the update, leaf size is not in [12S, S], the node is split
into two or the node next to the right is read so as to combine
the two nodes into one or more nodes of valid sizes. In any
case, all internal nodes on the path from the rewritten leaf to
the root require rewriting as well, because the block addresses
of the nodes deeper in the tree have changed. For a rewritten
internal node with invalid size, splitting or combination is done
as for the leaf. If the size of the root node exceeds S, the node
is split, and a new root node above is added: the tree grows by
one level.

Special care is given to the MPU delete operation, whose
single entry in the OML affects up to 10,000 parts of the deleted
MPU in the OMT, and hence could potentially be costly. In such
a case, only the two leaves containing the start and the end of
the MPU range (and their OMT ancestors) need rewriting, while
the nodes in between become suitable for space reclamation.
This is because, after the OMT rewrite, their blocks are no
longer referenced, directly or indirectly, from any live blocks,
and hence will be garbage-collected eventually. In this way,
instead of up to 10,000 nodes, the MPU delete affects only a
number of nodes proportional to the height of the OMT.

F. Metadata Merge Prefetch

As mentioned previously, the pace at which the metadata
merge operation can be done is crucial for the entire system’s
performance. A metadata merge that iterated through the OMT
and issued a new read to the block storage each time a node
intersected with an entry from the OML would last far too long
and hence could lead to the aforementioned OML in-memory
buffer exhaustion. This, in turn, would require pausing user
operations, thereby severely deteriorating the overall backup
throughput.

2188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 7, JULY 2023

As a remedy, we thus propose a prefetch algorithm, referred
to as OMT Prefetch, that reads from the block storage at most
2h(b − m) + 3h · m = h(2b + m) OMT nodes, where h is
the OMT height, b is the length of the OML in-memory buffer
(in entries), and m is the number of MPU delete entries in the
buffer. The algorithm can be run in parallel for all entries of
the OML in-memory buffer, so at most h sequential steps (i.e.,
causally-dependent reads) are required to prefetch all nodes. In
other words, the work and span of the algorithm are respectively
h(2b+m) and h.

The prefetch distinguishes three types of OML operations:
metadata inserts/updates, object deletes, and MPU deletes. For
each type, a different set of nodes is prefetched. First, a metadata
insert or update can overfill a leaf node and may thus force
splitting it and possibly its ancestors. Splitting a node does
not require reading any other nodes, so for an insert/update
operation in the OML, only those nodes are prefetched whose
key ranges include the inserted/updated key. A metadata delete
can in turn lead to combining or combining-and-splitting a
leaf node, and possibly its ancestors, with the first succeeding
nodes at the same levels. Therefore, only the nodes whose key
ranges include the deleted key and their first right siblings are
prefetched.1 Finally, as explained previously, an MPU delete
can lead to removing multiple nodes and updating no more
than three nodes at each level. It is thus enough to prefetch the
nodes that intersect with the keys representing the start and the
end of the MPU parts, together with their ancestors, and the
first right siblings of the nodes on the MPU end path (all of the
nodes in between will be deleted).

G. Distributing Metadata Merge

The solution described hitherto assumes only a single process
operating on the OML and OMT. However, the number of such
processes must be scalable to handle more load and tolerate
failures. A straightforward approach would be to partition the
buckets among the multiple processes so each process would
operate on a disjoint set of buckets and objects they contain.
However, this may lead to overloading the processes responsible
for popular buckets.2

We propose a solution in which, rather than only buckets, also
individual objects are partitioned among the processes. Metadata
operations for a given object are directed to the corresponding
process. Each process appends updates to its objects and buckets
into its private OML. However, the OMT is shared by all
processes, which requires distributing the previously described
metadata merge operation. Such a distributed merge proceeds
in two phases (see Fig. 8). First, many disjoint OMTs, called
SubOMTs, are generated by individual processes. Second, all
these subtrees are combined into a single OMT, using a parallel
algorithm.

1With a small exception: the sibling of the leaf, which is not prefetched even
though it may be needed to create a new leaf of proper size. The reason is that
such a read can be done on demand later without affecting the critical path and
the tree iteration, and we wanted the algorithm never to read more leaves than
necessary.

2As a side note, in theory, rather than a bucket, a particular object could
be popular and receive excessive load. Our solution does not aim to address
this simply because, in practice, we have not observed this phenomenon to be
relevant to the backup use case.

Fig. 8: The phases of the distributed metadata merge.

1) SubOMT Generation Phase: To distribute work evenly,
the space of OMT keys is divided into ranges, and each range
is assigned to a different process. To achieve this, keys are
first partitioned among all processes (e.g., based on their strong
hashes), so that each OML is expected to have a similar
size. Before each merge, a single, dynamically chosen process
calculates boundaries for the ranges based on the contents of
its OML. Then, the ranges are broadcast to the other processes,
so that each process can generate its own SubOMT by merging
relevant entries from all OMLs with the subset of OMT nodes
that are within its assigned range. In this phase, each process
reads all OMLs, but this happens simultaneously and, per
previous explanations, the OMLs are small, and hence the block
storage caches can be effectively used.

2) OMT Combining Phase: After the first phase, each of
the resulting subtrees covers a disjoint contiguous key range.
In the second phase, the subtrees are combined into the new
global OMT with all keys. This process is not trivial because
the nodes on the rightmost path of each subtree can have their
sizes below 1

2S and the heights of the subtrees may vary.
For two subtrees, we present how to generate a valid OMT

by reading only the rightmost path of the first subtree and the
leftmost path of the second (also see Fig. 9). First, read the
rightmost path of the first subtree. According to the invariant,
all other nodes in the subtree have correct sizes. Likewise, read
the leftmost path of the second subtree. Starting from the leaf
node in the leftmost path of the second subtree, add each entry
from the node to the corresponding node from the rightmost path
of the first subtree. If the size of the node is exceeded, create a
new node and add a reference to it in a higher-level node; if the
size of that node is exceeded too, repeat the process. The key
observation is that if there are two nodes and at least one of them
(the one from the second tree) has a valid size then one or two
valid nodes can be created in a way that there are no leftovers.
Ultimately, the only nodes with their sizes less than 1

2S are:
the node that contains the entries from the root of the second
subtree, the nodes on the rightmost path of the second subtree
(it was spliced), and, if the first subtree was higher, the upper
nodes on the rightmost path of the first subtree. Altogether,
the combining reads only h1 + h2 nodes, where h1 and h2

are the subtree heights. The tree height is tiny, as discussed
shortly, and the appropriate paths in different SubOMTs can
be read in parallel from the block storage, so even for huge
numbers of keys, one process is sufficient to combine thousands
of SubOMTs quickly.

JACKOWSKI et al.: OBJDEDUP: HIGH-THROUGHPUT OBJECT STORAGE LAYER FOR BACKUP SYSTEMS WITH BLOCK-LEVEL DEDUPLICATION 2189

Fig. 9: Combining two SubObjectMetadataTrees with S = 4. Only the gray
nodes are read and written. The letters denote object keys.

3) Remarks on Object Key Space Partitions: The presented
solution spreads the load due to handling metadata between all
processes, for instance, based on hashes of keys. Such an ap-
proach is efficient for those object storage interface commands
that affect a single key (e.g., GET, PUT, DELETE), because
one process can handle a given command invocation entirely.
Interestingly, an MPU command invocation can also be handled
by one process because the number of parts in such a request
is limited (e.g., to 10,000). However, an object interface does
contain commands that read information about many keys at
once, like object listing. Efficient and consistent handling of
such collective operations requires special attention.

Since the OMT is global and maintains the order of keys,
retrieving metadata necessary, for example, for object listing
from the OMT requires just a handful of reads, and hence
they can be performed by one or multiple processes. Object
storage interfaces limit the size of an object listing (e.g., to
1000 objects) and, in general, of the output of similar collective
operations. In effect, many consecutive requests must be sent
to generate a longer output. Nevertheless, such long outputs
are also handled efficiently, as the block storage can cache
the blocks corresponding to the repeating node paths in the
OMT. The issue, however, is that the freshest metadata are
not stored in the OMT but in the OMLs. Therefore, during
a listing or a similar collective operation, the metadata from
the OMT must be updated with the metadata from the OMLs
of relevant processes. If the metadata are distributed by key
hashes, virtually every OML must be contacted, which entails
flooding all processes with requests.

To avoid flooding, we propose to dynamically partition keys
among processes. More specifically, the space of keys can be
divided into ranges that are dynamically calculated based on
the current load. If there are few or no requests, each process
can be responsible for a similar number of keys. It reports its
load to a distinguished process, so that if one process receives
more requests than it can handle, the ranges can be recalculated.
If necessary, multiple processes can handle the same range,
and in such a case, requests within that range can be further
distributed to selected processes based on the key hashes. With
this approach, collective operations read metadata handled by
multiple processes only when necessary, and only the relevant

subset of the OMLs is affected.
4) Failover Handling: In the case of a process failure,

another existing or new process can take over. This requires only
restoring in-memory data that are kept persistently in the block
storage: the in-memory buffer of the OML of the failed process
and the cache containing the OMT nodes with the operations
from the buffer applied. If the failover is handled by some
existing process instead of a new or recovered one, the process
also needs to take over the metadata merge responsibilities for
the failed process, so that an ongoing merge can be completed.
In effect, it has additional keys to handle during the merge.
This temporal imbalance is naturally corrected by a new key
partitioning, which will take into account the change and
distribute the work more evenly.

H. Final Remarks

The proposed solution can be used even in very large systems.
The height of the OMT is limited by h = dlogs(n)e, where
s is a branching degree (limited by constant S) and n is
the total number of objects and buckets. Even for a massive
20,000-machine backup appliance, with each machine having
12 high-end 14-TB HDDs, an average object size of 10 MB,
20:1 deduplication ratio, and 5:1 compression, there can be
n =∼ 3.36 ∗ 1013 objects. With S = 64, which is reasonable
to keep the OMT nodes small when keys are large (i.e., 1 KB),
the tree has at most 9 levels.

Further calculations confirm that keeping metadata in block
storage rather than, for instance, in memory or on dedicated
local SSDs of machines hosting the processes implementing the
object storage interface is not only a design decision but actually
a necessity in large systems. For example, in the previous
system, each machine needs to store metadata of 1.68 ∗ 109
objects, so with 1 KB keys, they take 1.7 TB. If the objects
are smaller (e.g., 1 MB) and have additional 2-KB user-defined
metadata, the required capacity per machine sums up to over
50 TB. Assuming a typical hardware architecture of backup
appliances, storing such a volume of metadata in RAM or
on SSDs is infeasible today. Even if there are flash drives in
such appliances (which is not always the case), their capacity
can already be used for other purposes. In other words, our
algorithmic assumption is reinforced by the limits of today’s
technology.

V. IMPLEMENTATION

We have implemented ObjDedup in the aforementioned HY-
DRAstor system [22]. At the time of writing this article, it was
part of the product, delivering the object storage interface in the
same way as the classic backup interfaces.

A. Overall Architecture

From a systems perspective, HYDRAstor consists of storage
nodes, which keep data on their drives, and a layer of access
nodes, which provide external access (cf. Fig. 10). The number
of storage and access nodes can vary depending on the capacity
and performance targets, and the system can scale from one
server to multi-rack installations.

2190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 7, JULY 2023

Fig. 10: High-level architecture of access and storage nodes. One or multiple
instances of driver processes communicate through a block interface with the
storage cluster.

Storage nodes maintain data by means of the block-level
engine. In particular, they manage the distribution of blocks
among storage media and memory caches, perform operations
on the blocks, handle hardware failures, coordinate garbage
collection, and the like. Storage nodes compose a storage cluster
that exports a coherent block-level interface to access nodes,
with operations like writing a block or querying if a block is
stored given (a hash of) its content.

Access nodes, in turn, provide higher-level interfaces, like
CIFS or, in our case, REST, on top of this block-level engine.
These interfaces are implemented as drivers. Internally, they use
common middleware that facilitates reusing functionality for ac-
cessing the block-level engine of the storage cluster. Especially
the deduplication pipeline, including chunking and fingerprint-
ing, is implemented in that middleware and coordinated by the
access nodes. Likewise, services for distributing computations,
including optimized message routing (conceptually similar to
MPI [71]) and locating nodes, are provided by that middleware.

Overall, this architecture matches what we assumed pre-
viously for our algorithms. In this view, our work concerns
the object driver, which implements the algorithms for OML
and OMT to provide an object storage interface on top of the
common driver middleware (cf. Fig. 10). Depending on the scale
of the system as well as client-specific performance and fault
tolerance requirements, instances of the object driver are hosted
by one or more access nodes.

Fig. 11: The architecture of the object driver.

B. Object Driver Architecture

The most outer layer of the object driver is HTTPServer,
which receives REST commands (see Fig. 11). They are then
processed by RequestHandler, which implements the logic of
handling both data and metadata of objects and buckets, which
ultimately end up in the storage cluster. For data-related op-
erations, RequestHandler essentially uses the aforementioned
common driver middleware, as data can be handled similarly
to the other interfaces. For metadata-related operations, it also
collaborates with ObjectMetadataLogHandler and InMemory-
ObjectMetadataStore. ObjectMetadataLogHandler maintains the
in-memory buffer of the OML corresponding to the instance
and is responsible for coordinating metadata merge operations.
InMemoryObjectMetadataStore manages the cache of the OMT
nodes with the updates from the in-memory buffer of the OML
applied.

Again, this architecture is coherent with our algorithmic as-
sumptions. HYDRAstor is write-optimized, and thus the object
driver must follow the same principle. Writing data is inherently
optimized by the storage cluster, and the control flow in the
driver does not add any extra steps. For handling metadata, in
turn, the object driver simply employs ObjDedup, which is also
write-optimized by design.

C. Additional Issues

To reduce the latency of selected read and write operations,
especially on small files or during more interactive sessions with
the backup appliance, HYDRAstor features priority requests.
They have a higher preference in queues, and their outcomes
are reflected in storage media faster. However, they must not
be abused because their performance gains would not be ob-
servable in such a case. Following this approach, our object
driver uses priority requests only for appends to the OML to
further improve the client-perceived latency of metadata write
operations. In contrast, all other requests to the storage cluster
are regular (non-priority) ones. This is possible thanks to the fact
that metadata merge is done in the background and utilizes OMT
Prefetch, which anticipates and parallelizes future reads, thereby
making metadata merge fast even without priority requests. In
the same way, OMT Prefetch improves the performance of
collective operations, like object listing by the key prefix.

Such efficiency is also important for space reclamation. As a
basis for garbage-collecting dead blocks, HYDRAstor utilizes
reference counting. The space reclamation process is done
in the background, in parallel to normal requests. Because
of deduplication, parallel requests can increase or decrease
block reference counts while seemingly dead blocks are be-
ing garbage-collected. The space reclamation algorithm must
remain correct in the face of such concurrency, which is not
trivial [45]. In particular, the algorithm operates in epochs and
imposes restrictions on driver-kept block addresses. Notably, in
epoch T , a driver must not keep addresses obtained before epoch
T − 1. From the perspective of the object driver, if the deletion
operation for an entity (e.g., an object, bucket, MPU) is not
applied from the OML to the OMT and deleted from the OML,
a reference to the entity is live and garbage collection does not
remove the entity. In practice, this means that the object driver

JACKOWSKI et al.: OBJDEDUP: HIGH-THROUGHPUT OBJECT STORAGE LAYER FOR BACKUP SYSTEMS WITH BLOCK-LEVEL DEDUPLICATION 2191

should be able to apply changes from the OML to the OMT
within a few minutes. This reinforces our previous claims about
the need for the efficiency of metadata merge in ObjDedup.

Another side issue is the use of a dynamically selected,
distinguished object driver instance in cases when multiple
such instances operate in parallel. Essentially, this problem
entails leader election. As HYDRAstor already implements
leader election and automatic failover, we were able to reuse
this functionality. In practice, however, any sensible at-most-
one leader election algorithm could be used instead [72].

Finally, object storage interfaces are sizeable and change
over time. One cannot simply ignore some of their func-
tionality because its use by backup applications evolves as
well. Therefore, while devising the algorithmic solutions was
already challenging, implementing them as the production-ready
object driver without altering the block-level engine was equally
demanding. In effect, however, as the requirements of ObjDedup
on this engine are minimal, it can likely be implemented in
other systems with interfaces allowing for writing immutable
blocks in tree-like structures, which is a common feature in
deduplication storage [34].

VI. EVALUATION

To evaluate our solutions, we have conducted numerous
experiments using the implementation of ObjDedup for HY-
DRAstor. We present the most important results in three
groups: Section VI-A, containing experiments that evaluate the
main performance goals of ObjDedup in a distributed setup,
Section VI-B, offering a comparison with the state of the
art, and Section VI-C, encompassing a detailed evaluation of
OMT performance in various scenarios, which aim to highlight
possible limitations and bottlenecks.

The presented experiments emphasize write-related work-
loads. This is because, first, they are the most critical for a
backup appliance and, second, other operations (e.g., object
deletes or MPUs) largely incur similar or lower overheads on
the performance of the system.

Most of the experiments were conducted on a testbed com-
posed of 12 servers, which, for the following reasons, was
sufficient to show how our solutions behave at scale. First,
the data was kept in a default 9+3 erasure-code scheme. In
effect, with 12 servers or more, each machine stored only
one fragment of erasure-coded data, and that would not have
changed if the system had grown further. Second, considering
the maximal raw capacity of one HYDRAstor server, which is
168 TB, the total capacity of a 12-server system was over 2 PB.
In other words, it was a fairly large installation considering
deduplication, especially given that, in contrast to HYDRAstor,
many popular backup appliances available on the market do not
scale more [32], [33]. Finally, the experiments put a consider-
able pressure on our infrastructure: altogether they took several
weeks. Therefore, even in the scaling tests, we had to limit the
maximal size of our testbed to 18 servers. Each of the servers
comprised 2x Intel Xeon CPUs E5-2620 v3 2.40GHz, E5-2660
v3 2.60GHz, or E5-2430 2.20GHz, 96 GB of RAM, and 12x
7200-RPM SATA HDDs of 2–6 TB each.

8 M
B

32
M

B

12
8 M

B

51
2 M

B
1 GB

1

2

3

File / Object size

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Non-dup. Dup. 100% Dup. 90% Reads

Fig. 12: ObjDedup throughput normal-
ized to results of the file system.

4.5
7 M

B

45
.7

M
B

45
7 M

B
0

0.5

1

Object size

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Fig. 13: Throughput of writing with
three different object sizes normalized
to throughput of writing with the one
(average) size.

A. Assessment of the Main Performance Goals

We start by assessing the main performance goals of
ObjDedup. To this end, we evaluate its backup throughput
(Section VI-A1), scalability (Section VI-A2), and overheads
(Section VI-A3).

1) Backup Throughput: We test ObjDedup with varying
object sizes and four different workloads: 100% non-duplicate
writes, 100% duplicate writes, 90%:10% duplicate:non-
duplicate writes, and reads. The first two workloads are extreme
scenarios but still possible in practice (e.g., writing an initial
backup without internal duplicates and writing the same backup
twice). The 90%:10% duplicates:non-duplicates is a workload
that yields a 10:1 deduplication ratio, which is lower than the
previously mentioned 20:1 ratio frequently achievable in the
real world. Nevertheless, we show the results for the 90%:10%
workload, because the results for the 95%:5% workload are
more similar to the 100% workload. Finally, the workload with
reads is for reference. Each experiment involves a 2.4-TB data
set, which is large enough to get reproducible results.

Figure 12 presents the throughput of ObjDedup normalized
to the results of the HYDRAstor file system driver in the
same configuration, which we use as a baseline. The object/file
sizes vary from 8 MB, which is rather small even for object
storage backup (we present results for yet smaller files in further
experiments), to 1 GB, as increasing object size has a marginal
impact on performance from some point. Both drivers achieve a
comparable write performance for larger object/file sizes (over
128 MB). Moreover, since ObjDedup reuses the deduplication
implementation (e.g., chunking, fingerprinting), it achieves the
same deduplication ratios. With smaller object/file sizes, there
are differences in write performance in favor of ObjDedup. The
read throughput is comparable for all object sizes; the only
noticeable difference is for 8 MB objects in favor of ObjDedup.

Since ObjDedup is expected to handle simultaneous streams
from multiple backup applications, the data in each of the
streams can come in differently-sized objects. Nevertheless,
as Fig. 13 shows, the throughput of writing data from three
simultaneous streams with different object sizes (2/8/32 MB,
20/80/320 MB, 200/800/3200 MB) does not diverge signifi-
cantly from the throughput of writing the same streams with
a single object size (4.57/45.7/457 MB). The object size was
selected as an average object size when three streams of equal

2192 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 7, JULY 2023

2 4 6 8 10 12 14 16 18
0
1
2
3
4
5

N
or

m
al

iz
ed

th
ro

ug
hp

ut
(5

12
M

B
ob

j.)
Non-duplicates Dups 90% Dups 100%

2 4 6 8 10 12 14 16 18
0
1
2
3
4
5

N
or

m
al

iz
ed

th
ro

ug
hp

ut
(8

M
B

ob
j.)

2 4 6 8 10 12 14 16 18
0
1
2
3
4
5

Number of servers

N
or

m
al

iz
ed

th
ro

ug
hp

ut
(5

12
K

B
ob

j.)

Fig. 14: Scalability of ObjDedup (normalized to results for 4 servers).

size were written with three different object sizes (e.g., when
three 1024 MB streams are written in 2/8/32 MB objects, the
average object size is 4.57 MB).

2) Scalability: To demonstrate the scalability of ObjDedup,
Fig. 14 depicts the throughput of writes in the three differ-
ent write workloads (100% non-duplicates, 100% duplicates,
90%:10% duplicates:non-duplicates) and with three different
object sizes (512 KB, 512 MB, and 8 MB). The first size
represents small objects, the second—to large ones, and the
third is a mean between 512 KB and 128 MB, which was the
level-off point in Fig. 12. The presented values are normalized
to the per-server throughput of 4-server HYDRAstor setup.

On average, 18 servers were 4.41 times faster than four. The
worst result (an average improvement of 4.18) was obtained
with the smallest objects (512 KB), which reinforces the claim
that efficiently handling small objects is not trivial. The smallest
possible distributed configuration (2 servers) is also included in
the plot, but the results are a bit skewed, as such configuration
uses far less network communication.

3) Overheads: We also measured and evaluated the over-
heads incurred by ObjDedup in terms of resource consumption
(memory, storage, CPU), response latency, and scaling.

Memory consumption: The major cost is buffering data
incoming through the HTTP server. The buffering is required to
ensure that all components of the system have enough work to
achieve a high level of parallelism. In our experiments, we use a
2-GB buffer per server, which is sufficiently large. The memory
overhead of other data structures is in turn significantly smaller
(e.g., metadata of 50k objects in an OML take less than 200 MB,
even with 3 KB of metadata per object). Overall, none of our
experiments consumed more than 3 GB of RAM per server.

Storage space consumption: Data chunks are referenced,
and these references can take up a considerable amount of
storage space. However, this happens with any interface, not
just ObjDedup. Similarly, objects contain their metadata (up to
3 KB per object), but any object storage system must keep these.
Therefore, the most important aspect is quantifying additional
overheads in OMT and OML.

For each object, besides its metadata, an OMT leaf keeps 20
bytes of our internal metadata. Second, there are internal OMT

blocks (storing object keys of up to 1 KB and separators), but
with a branching degree S = 64, there are on average 48x fewer
of them in the penultimate level of an OMT than leaves, and
far fewer on all other levels combined. Finally, an OML keeps
metadata of a limited number of objects (typically ∼50k), which
is negligible in comparison to the millions of objects kept in the
system. What is important, however, is that, during a merge,
each object in an OML can cause a rewrite of a whole OMT
leaf, and both versions of such a leaf need to be stored until
the merge is finished. Therefore, for S=64, an OML can store
as many as 3.2 M of object metadata copies. To sum up, with
a realistic workload for backup data (e.g., object data being
considerably larger than object keys) and multi-terabyte storage
servers, the storage capacity overheads incurred by ObjDedup
are far below 1% of the system capacity.

CPU consumption: If HTTPS is enabled, the majority of
CPU load is due to encryption and decryption, as providing
multi-gigabyte throughput with cryptographic algorithms can
require multiple cores. The CPU consumption of ObjDedup
itself, in turn, highly depends on the workload. Typically, it does
not exceed 3 cores per server, mostly handling HTTP requests
and managing the OMT.

Latency: In the expected write-dominant backup workloads,
the latency overhead is marginal and mostly comes from the
fact that at the end of writing an object, an OML entry must
be written in the block storage. However, there are two cases in
which ObjDedup increases the latency considerably. First, when
reading an object, multiple levels of the OMT are accessed,
unless at least some of them are cached. In effect, the time of
arrival of the first bytes of the data is proportional to the height
of the OMT. For instance, if the OMT has 5 levels and a block
read takes 100 ms because of the concurrent load, reading object
data will take 500 ms. Second, a metadata merge can cause
numerous additional I/Os per object if object keys are non-
sequential, which we study in microbenchmarks (Section VI-C).
In such cases, the storage cluster can become overwhelmed with
requests and have several times longer response times, which
ultimately increases the latency of all operations.

Scaling: As shown previously, the throughput of ObjDedup
scales nearly linearly (cf. Fig. 14), just as bare HYDRAstor.
However, this is true as long as metadata handling does not
become a bottleneck. We study such problematic scenarios in
the microbenchmarks (Section VI-C).

B. Comparison with Existing Solutions

In this section, we show how ObjDedup compares against
the state of the art. As mentioned previously, we are not aware
of any prior work that closely matches ours, and hence for
comparison, we select systems that are close to our solutions in
as many relevant aspects as possible. In Section VI-B1, we thus
compare ObjDedup to two state-of-the-art open-source object
stores. In Section VI-B2, in turn, we compare it to three file
systems with deduplication.

Furthermore, performing the comparison was still challenging
because of significant differences between ObjDedup and the
reference systems. To avoid bias in favor of our solutions, the
experiments evaluated ObjDedup in an unfavorable setup: in the

JACKOWSKI et al.: OBJDEDUP: HIGH-THROUGHPUT OBJECT STORAGE LAYER FOR BACKUP SYSTEMS WITH BLOCK-LEVEL DEDUPLICATION 2193

8 KB 64 KB 512 KB 4 MB 32 MB 256 MB 2 GB

101

102

103

Object size

M
B

/s

ObjDedup (non-dup.) ObjDedup (100% dup.)
MinIO RadosGW

Fig. 15: Write throughput (log. y-axis) with varying object sizes.

first one, ObjDedup was the only object store that performed
deduplication during non-duplicate writing, and in the second,
the configuration was far from what ObjDedup was designed
for.

1) Backup Throughput: In the first experiment, we used
COSBench [73] to compare ObjDedup with other object stores.
COSBench is a framework that enables performance testing of
object storage but does not support writing duplicates. There-
fore, we modified its code for that purpose. As the two reference
systems, we selected Ceph with RadosGW and MinIO, which
are state-of-the-art open-source object stores. We chose them
despite their lack of in-line deduplication, because we did not
find any alternative offering this feature that could be used in
the experiments or had comparable results published.

In the experiment, we used one of our servers (2x Intel
Xeon CPU E5-2620 v3 2.40GHz and 12x 4 TB SATA HDD).
We decided upon the single-server setting, as it significantly
simplified the setup and result analysis. Each of the three
systems used 9+3 erasure codes, which give a high failure
resilience with 12 disks and are broadly adopted (e.g., they
are proposed in Ceph’s documentation [74]). To store data
internally, we used XFS for MinIO and BlueStore for RadosGW,
which are recommended to achieve a high performance. The
object sizes in the presented experiments vary from 8 KB to 2
GB, as decreasing them even further did not affect the number
of operations per second and increasing them did not affect the
throughput.

For non-duplicates, ObjDedup achieves a similar throughput
as the others (Fig. 15). Despite the fact that deduplication
consumes additional resources when writing non-duplicates,
ObjDedup is either the fastest or the second fastest system.
With duplicates, in turn, it has a 1.8–3.83x higher throughput
than the others (up to 2790 MB/s), which is expected because
for duplicate writes in-line deduplication can overcome the
limits of HDDs. Finally, in COSBench read tests (not plotted),
the performance of ObjDedup is also comparable to MinIO
and RadosGW. With small objects, it exceeds 740 GET/s. Its
throughput with 32MB or larger objects is in turn close to 800
MB/s.

2) Files/Objects per Second: In the second experiment,
we compared ObjDedup with existing deduplication solutions.
Therefore, we selected three commercial file systems with in-
line deduplication. We do not disclose their vendors, as our goal
is to validate ObjDedup and not to compare the products.

Some of the file systems were designed for a mix of HDDs
and faster storage devices (e.g., for a write-back journal). There-

HDD
non-dup

HDD
dup

SSD
non-dup

SSD
dup

0

500

1,000

O
P/

s

FS1 FS1+MinIO FS2 FS2+MinIO
FS3 FS3+MinIO ObjDedup

Fig. 16: Number of operations (file copy / object put) per second.

fore, to find the common denominator and make it possible to
compare the solutions, we employed two testbeds: the first using
SATA 1 TB 7200 RPM HDDs and the second using NVMe
1 TB SSDs for all kinds of storage. Both configurations were
very different from what ObjDedup was tuned for, especially
the full-SSD one, but facilitate result reproduction. In both of
them, a single machine with Intel Core i7-7820X @ 3.60GHz
and 64 GB RAM was used, as some of the file systems do not
scale to more machines.

The presented experiments were conducted using MinIO’s
client, which can copy data to both file systems and object
stores. Nevertheless, experiments with other tools gave similar
results. We also conducted experiments with MinIO configured
as a layer on top of each file system to provide object storage
with in-line deduplication.

Initially, we intended to show results for objects and files of
various sizes, similarly to the previous experiments. However,
for objects below 100 MB, ObjDedup was typically one or two
orders of magnitude faster, so we decided to investigate the
phenomenon even further. Therefore, we limited the contents
and file names to 32 bytes, despite the fact that ObjDedup was
not designed to handle data in such small objects efficiently.
In that way, we were able to measure the upper bound for
operations (file creates or object PUTs) of each solution. The
same directory was copied twice, so in the second run, all data
were duplicates.

As shown in Fig. 16, ObjDedup can handle 4.6–8.35x more
operations than the fastest of the file systems. In general, file
systems with in-line deduplication are complex, so handling
that many files per second is challenging for them. In contrast,
ObjDedup applies updates to the OMT in batches, so they
are highly efficient. Additionally, MinIO’s client copies files
to a temporary location and renames them afterward to prevent
listings on inconsistent files, so two operations are needed per
file. Compared with MinIO on top of a file system solution
(FS+MinIO in Fig. 16), ObjDedup can handle 5.26–11.34x more
PUT/s, which is justified as an additional layer introduces new
overheads. To sum up, even with such a minimal object size,
none of the file systems reaches a request rate comparable to
ObjDedup.

C. Microbenchmarks

OMT is our novel data structure essential for high per-
formance. If a metadata merge takes too long, new requests
cannot be handled, and the system throughput is decreased.

2194 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 7, JULY 2023

For instance, if an OML stores up to 50k entries and a merge
takes 100 seconds, the system cannot handle more than 500
PUT/s. Therefore, we evaluate the metadata merge and the
distributed metadata merge in a series of experiments that show
their performance under various circumstances.

In Sections VI-C1, VI-C2, and VI-C3, we study how the
pattern of the workload affects the performance of a merge.
The experiments were on-purpose conducted in a rather small
configuration to emphasize the impact of the pattern and not
system scaling. More specifically, the configuration involved
two servers with 12x SATA 7200 RPM 6 TB HDDs each and
2x Intel Xeon CPU E5620 @ 2.40GHz or 2x Intel Xeon CPU
E5620 @ 2.40GHz. The first server hosted both an object driver
and a storage cluster node, and the second—just a storage node.
Our testbed thus consisted of more than one server but only one
object driver conducted merges.

For this reason, to analyze the distributed merge, in Sec-
tion VI-C4, we present how a merge scales from 1 to 16 servers
under two different workload patterns.

To discuss the experiments, let us explain the object key
patterns they utilized. In the rand pattern, all keys consisted of
generated UUIDs, so object metadata were uniformly distributed
across a large number of OMT leaves. In the seq pattern, objects
were written to 1000 different prefixes (50 characters of a
prefix followed by subsequent integer numbers), so consecutive
objects belonged to the same or neighboring leaves. Seq thus
approximated what we would expect from backup applications,
while rand modeled a theoretical worst case. In addition, in
some experiments—those with suffix -delay—block reads in the
storage cluster were delayed by 150 ms to simulate a system
overloaded with other tasks (e.g., due to drivers other than
ObjDedup). Finally, unless stated otherwise, up to 50k entries
were stored in an OML before a merge was initiated.

1) Prefetch Algorithms: First, we evaluate the impact of
our metadata merge prefetching (OMT Prefetch). Without any
prefetching, waiting for consecutive reads increases the merge
time to tens of minutes, even when an OMT contains less than
a million objects (Fig. 17). Therefore, prefetching is simply a
necessity.

However, with a naive approach, referred to as the AllInt
Prefetch, which simply prefetches all internal nodes, the number
of read nodes increases linearly with the total number of nodes,
even in the seq pattern (Fig. 18). In contrast, with the OMT
Prefetch, it stabilizes around 10 seconds.

Since merges without the OMT Prefetch are slow, all exper-
iments in the subsequent sections thus utilize it.

2 · 105 4 · 105 6 · 105

101

102

103

Number of objects in system

Ti
m

e
(s

)

NoPref OMTPref

Fig. 17: OMT merge with data writ-
ten in rand pattern.

5 · 106 1 · 107

101

Number of objects in system

Ti
m

e
(s

)

AllIntPref OMTPref

Fig. 18: OMT merge with data written
in seq-delay pattern.

0 5 · 106 1 · 107 1.5 · 107 2 · 107 2.5 · 107
0

20
40
60
80

Number of objects in system

M
er

ge
tim

e
(s

)

shortKey key1KB
key1KBmetadata2KB compressibleKey1KB

Fig. 19: Merge time depending on key and user-defined metadata size.

2) Key and Metadata Sizes: As described in Section III-A,
an object key can consume 1 KB. Each OMT node stores full
keys, so the key size affects the amount of information that
is written and read during a merge. Object metadata, which
consume additional kilobytes, are not kept in internal nodes
but can be stored in leaves to decrease the number of I/Os for
HEAD requests.

Long keys can increase the time of a merge up to 2x (cf.
Fig. 19) if a bottleneck on throughput of processed metadata
arises. Moreover, if each OMT leaf stores additional 2 KB
of uncompressible metadata, the time of a merge grows even
further (key1KBmetadata2KB in Fig. 19). In such a scenario,
keeping object metadata together with object data should be
considered. In practice, a block containing multiple keys can
be compressed when the keys are similar (typically, long keys
have a common prefix). If keys are large, but blocks holding
them compress well, there is hardly any impact on the merge
time (compressibleKey1KB in Fig. 19).

3) Number of Objects: As shown in Fig. 20, irrespective of
the total number of objects in the system, for the seq pattern,
a merge takes at most 10–11 seconds, even with an artificial
delay of 150 ms on the storage cluster emulating other load.
This is because under this pattern the locality is high, so most
of new objects are added in groups to new OMT leaves, and
also few of the internal OMT nodes require rewriting.

The results are much different with the rand pattern, as the
changes are distributed across the whole OMT. Therefore, the
top levels of the OMT are almost completely rewritten, and each
of the deeper levels requires up to 50K changes. In Fig. 20, the
plot for the rand pattern looks almost like a linear function
despite the fact that tree height is a logarithm of the objects
number. Two phenomena contribute to this behavior. First, the
number of internal nodes is small (about 10K for 25M objects),
so most of them are rewritten when 50K randomly distributed
objects are added. Second, the efficiency of caching in the
storage cluster diminishes, because the larger the tree is, the
less data locality.

To get more insight into how the bottleneck on reads from
the storage cluster affects metadata merge for the rand pattern,
we include results for two different types of erasure codes, that
is, apart from the default 9+3, also 3+9. In rand/9+3 and rand-
delay/9+3, each read of a block needs 9 disk accesses. With
such a volume of disk read I/Os, the merge time increases
quickly for over 40M objects when the cache efficiency drops.
In contrast, with 3+9 codes, each read needs 3 disk accesses, so
the disks were not overloaded, and a merge can finish almost
twice as fast. Note that there are techniques that allow for

JACKOWSKI et al.: OBJDEDUP: HIGH-THROUGHPUT OBJECT STORAGE LAYER FOR BACKUP SYSTEMS WITH BLOCK-LEVEL DEDUPLICATION 2195

reducing disk accesses, such as adopting erasure codes requiring
fewer I/Os during reads or simply caching a larger fraction of
internal OMT nodes.

4) Distributed Metadata Merge: The last microbenchmark
evaluates the distributed metadata merge in configurations of up
to 16 servers hosting object drivers. In such a distributed setup,
each object driver writes into its own OML, so the number
of entries processed by each merge can be increased without
changing the size of the OML per driver. In other words, an
increased number of servers increases the number of objects
processed per merge.

Figure 21 shows for the rand pattern how the time of a merge
changes when the number of objects driver instances and storage
nodes (one per driver instance) increases with the number of
entries per merge. Despite the driver coordination overhead due
to the distribution, 16 servers are able to merge 800k objects
faster than 8 servers merge 400k objects, 4 servers merge 200k
objects, or 1 server merges 50k (using a non-distributed merge).
This is because, with more objects in a single merge, the ratio of
changed internal OMT nodes to leaf nodes decreases. In other
words, the more changes to apply in a merge, the higher the
probability that two or more objects have a common leaf or
internal nodes. This characteristic enables handling the same
load more than twice as fast when the number of servers is
doubled.

On the other hand, the total number of objects in a system
with more servers could likely be larger as well. In such a
scenario, there is some loss resulting from the load distribution
overhead and the increased subtree heights. For instance, for
15M objects in the system with 8 servers, a merge takes
45.585 s, while for 60M objects and 16 servers, it takes 50.951 s.
Again, however, it is worth emphasizing that these results are
for the rand pattern, which entails a lot of reads dispersed across
virtually all parts of the OMT.

A backup job, in contrast, typically affects only a consistent
subset of the OMT (e.g., the keys have a common prefix).
Therefore, we also analyze the seq pattern, scaling the number
of prefixes for which data are written sequentially (1000 with
one server, but 16,000 with 16 servers). As can be seen in
Fig. 22, similarly to the previous seq experiments, the total
number of objects has a marginal impact on the time of a merge.
Moreover, as for the rand pattern, the merge time decreases with
the number of servers. These are highly desirable behaviors for
the considered backup applications.

0 1 · 107 2 · 107 3 · 107 4 · 107 5 · 107 6 · 107 7 · 107
0

20

40

60

Number of objects in system

M
er

ge
tim

e
(s

)

Seq Seq-delay Rand/9+3
Rand-delay/9+3 Rand/3+9 Rand-delay/3+9

Fig. 20: OMT merge with different key naming and EC schemes.

VII. CONCLUSIONS

To sum up, there is a growing market demand for object stor-
age interfaces in scale-out backup appliances with deduplica-
tion. Using empirical data from 686 real-world deployments of
such commercial systems, we showed that a key challenge when
aiming to provide support for such interfaces efficiently is the
management of object metadata resulting from a different data
organization and usage patterns of object storage. To address
this problem, we proposed ObjDedup, a suite of distributed data
structures and algorithms optimized to keep object metadata
in immutable globally deduplicated block storage. We imple-
mented ObjDedup as a layer on top of HYDRAstor and eval-
uated the implementation experimentally. The obtained results
indicate that the performance of our solutions is comparable to
that of the classic interfaces offered by HYDRAstor, despite
the more challenging usage patterns. Moreover, our solutions
can handle significantly more requests per second (5.26–11.34x)
than object storage implementations on top of file systems
provided by state-of-the-art deduplication solutions. Likewise,
compared to leading object stores without in-line deduplication,
it offers a much higher throughput when writing duplicate
data (1.8–3.93x), not to mention the compelling storage cost
reductions due to deduplication.

From a broader perspective, our preliminary study and eval-
uation of ObjDedup show that the trend in backup applications
dedicated to object storage to write data as relatively small
objects is problematic for traditional backup systems with
deduplication. While ObjDedup addresses these challenges in
a wide range of common configurations, we also demonstrated
corner cases that are particularly hard to handle, such as
extremely small objects, large keys that do not compress well,
or keys without locality. As a result, we believe our study
can guide backup applications in how to adjust object writing
patterns to maximize performance of deduplicating storage. The
presented solutions have also facilitated cloud-tiering for backup
appliances [75].

REFERENCES

[1] Amazon Web Services Inc., “Amazon simple storage service user
guide,” 2021. [Online]. Available: docs.aws.amazon.com/AmazonS3/
latest/userguide/s3-userguide.pdf

[2] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey, “Early
observations on the performance of windows azure,” in ACM HPDC, 2010.

[3] K. Lillaney, V. Tarasov, D. Pease, and R. Burns, “The case for dual-access
file systems over object storage,” in USENIX HotStorage, 2019.

0 2 · 107 4 · 107 6 · 107
0

50

100

Number of objects in system

M
er

ge
tim

e
(s

)

1 server (50k/merge) 4 servers (200k/merge)
8 servers (400k/merge) 16 servers (800k/merge)

Fig. 21: OMT distributed merge time
with random keys.

1 · 107 2 · 107
0

2

4

6

8

10

Number of objects in system

M
er

ge
tim

e
(s

)

Fig. 22: OMT distributed merge time
with seq keys.

docs.aws.amazon.com/AmazonS3/latest/userguide/s3-userguide.pdf
docs.aws.amazon.com/AmazonS3/latest/userguide/s3-userguide.pdf

2196 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 7, JULY 2023

[4] J. Barr, “Celebrate 15 years of amazon s3,” 2021. [Online].
Available: aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-is-
still-day-1-after-5475-days-100-trillion-objects/

[5] Microsoft, “Azure blob storage,” 2021. [Online]. Available: azure.
microsoft.com/en-us/services/storage/blobs/

[6] Alibaba, “Alibaba cloud object storage service,” 2021. [Online]. Available:
alibabacloud.com/product/oss

[7] Backblaze, “Backblaze b2,” 2021. [Online]. Available: backblaze.com/
b2/cloud-storage.html

[8] Scality, “Scality,” 2021. [Online]. Available: scality.com
[9] Ceph, “Ceph object gateway,” 2021. [Online]. Available: docs.ceph.com/

en/latest/radosgw/
[10] OpenStack, “Openstack object storage,” 2021. [Online]. Available:

wiki.openstack.org/wiki/Swift
[11] Minio, “Minio object storage,” 2021. [Online]. Available: min.io
[12] B. Alon, “Mezzfs,” 2021. [Online]. Avail-

able: netflixtechblog.com/mezzfs-mounting-object-storage-in-netflixs-
media-processing-platform-cda01c446ba

[13] Amazon Web Services Inc., “Pinterest on aws,” 2021. [Online]. Available:
aws.amazon.com/solutions/case-studies/innovators/pinterest/

[14] P. Matah, “Minecraft earth and azure cosmos db part 1,” 2021.
[Online]. Available: azure.microsoft.com/pl-pl/blog/minecraft-earth-and-
azure-cosmos-db-part-1-extending-minecraft-into-our-real-world/

[15] DELL EMC, “Storage s3 in backup,” 2021. [Online].
Available: dellemc.com/content/dam/uwaem/production-design-assets/pl-
pl/events/forum/2017/presentations/cloud lanscape4.pdf

[16] Bareos, “Bareos droplet storage backends,” 2021. [Online]. Available:
docs.bareos.org/TasksAndConcepts/StorageBackends.html

[17] CockroachLabs, “Cockroachdb backup,” 2021. [Online]. Available:
cockroachlabs.com/docs/dev/backup

[18] Teradata, “Teradata using amazon s3 storage as the backup target,” 2021.
[Online]. Available: docs.teradata.com/r/CCZ TZJngXILEsdDOzUoAw/
WOt0MU3umZEx7P7mcKH8Eg

[19] Veritas, “Veritas netbackup™ cloud administrator’s guide,” 2019. [Online].
Available: veritas.com/content/support/en US/doc/58500769-135186602-
0/v126619409-135186602

[20] Veeam, “Object storage repository,” 2021. [Online]. Available: helpcenter.
veeam.com/docs/backup/vsphere/object storage repository.html

[21] Dell EMC, “Optimized data protection with integrated deduplication,”
2021. [Online]. Available: dell.com/downloads/global/products/pvaul/en/
dell-emc-dd-series-brochure.pdf

[22] C. Dubnicki et al., “HYDRAstor: A scalable secondary storage.” in
USENIX FAST, 2009.

[23] M. Oh, S. Park, J. Yoon, S. Kim, K.-w. Lee, S. Weil, H. Y. Yeom, and
M. Jung, “Design of global data deduplication for a scale-out distributed
storage system,” in IEEE ICDCS, 2018.

[24] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck in the
data domain deduplication file system.” in Usenix Fast, 2008.

[25] D. T. Meyer and W. J. Bolosky, “A study of practical deduplication,” ACM
ToS, vol. 7, no. 4, pp. 1–20, 2012.

[26] Q. Corporation, “Why quantum dxi purpose-built appliance?” 2021.
[Online]. Available: cdn.allbound.com/iq-ab/2020/02/ST02281A-v01.pdf

[27] Minio, “High performance object storage for veeam backup and recovery,”
2020. [Online]. Available: blog.min.io/minio-high-performance-object-
storage-for-veeam-backup-and-recovery/

[28] Commvault, “Public cloud architecture guide for microsoft azure,” 2020.
[Online]. Available: documentation.commvault.com/commvault/v11/
others/pdf/public-cloud-architecture-guide-for-microsoft-azure11-19.pdf

[29] G. Wallace et al., “Characteristics of backup workloads in production
systems.” in USENIX FAST, 2012.

[30] J. Paulo and J. Pereira, “Efficient deduplication in a distributed primary
storage infrastructure,” ACM ToS, 2016.

[31] H. Wu et al., “Hpdedup: A hybrid prioritized data deduplication mecha-
nism for primary storage in the cloud,” arXiv:1702.08153, 2017.

[32] Quantum, “Dxi-series backup appliances,” 2021. [Online]. Available:
cdn.allbound.com/iq-ab/2021/04/DXi-DS00549A.pdf

[33] DELL EMC, “Data domain deduplication storage systems,” 2018.
[Online]. Available: delltechnologies.com/asset/en-us/products/data-
protection/technical-support/h11340-datadomain-ss.pdf

[34] J. Paulo and J. Pereira, “A survey and classification of storage deduplica-
tion systems,” ACM CSUR, 2014.

[35] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu, Y. Zhang,
and Y. Zhou, “A comprehensive study of the past, present, and future of
data deduplication,” Proceedings of the IEEE, vol. 104, no. 9, pp. 1681–
1710, 2016.

[36] B. Romański, Ł. Heldt, W. Kilian, K. Lichota, and C. Dubnicki, “Anchor-
driven subchunk deduplication,” in SYSTOR, 2011.

[37] Z. J. Sun, G. Kuenning, S. Mandal, P. Shilane, V. Tarasov, N. Xiao, and
E. Zadok, “Cluster and single-node analysis of long-term deduplication
patterns,” ACM Transactions on Storage (TOS), 2018.

[38] J. Wei, H. Jiang, K. Zhou, and D. Feng, “Mad2: A scalable high-
throughput exact deduplication approach for network backup services,”
in IEEE MSST, 2010.

[39] B. Debnath, S. Sengupta, and J. Li, “ChunkStash: Speeding up inline
storage deduplication using flash memory,” in USENIX ATC, 2010.

[40] Y. Allu, F. Douglis, M. Kamat, R. Prabhakar, P. Shilane, and R. Ugale,
“Can’t we all get along? redesigning protection storage for modern
workloads,” in USENIX ATC, 2018.

[41] M. Kaczmarczyk, M. Barczynski, W. Kilian, and C. Dubnicki, “Reducing
impact of data fragmentation caused by in-line deduplication,” in SYSTOR,
2012.

[42] M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore speed for
backup systems that use inline chunk-based deduplication,” in USENIX
FAST, 2013.

[43] Z. Cao, H. Wen, F. Wu, and D. H. Du, “Alacc: Accelerating restore
performance of data deduplication systems using adaptive look-ahead
window assisted chunk caching,” in USENIX FAST, 2018.

[44] Z. Cao, S. Liu, F. Wu, G. Wang, B. Li, and D. H. Du, “Sliding look-back
window assisted data chunk rewriting for improving deduplication restore
performance,” in USENIX FAST, 2019.

[45] P. Strzelczak et al., “Concurrent deletion in a distributed content-
addressable storage system with global deduplication,” in USENIX FAST,
2013.

[46] F. Douglis et al., “The logic of physical garbage collection in deduplicating
storage,” in USENIX FAST, 2017.

[47] OpenStack, “S3/swift rest api comparison matrix,” 2021. [Online].
Available: docs.openstack.org/swift/latest/s3 compat.html

[48] Google Cloud, “Migrating from amazon s3 to cloud storage,” 2021.
[Online]. Available: cloud.google.com/storage/docs/migrating

[49] OpenStack, “Configure object storage with the s3 api,” 2021.
[Online]. Available: docs.openstack.org/mitaka/config-reference/object-
storage/configure-s3.html

[50] A. Duggal et al., “Data domain cloud tier: Backup here, backup there,
deduplicated everywhere!” in USENIX ATC, 2019.

[51] G. Cheng, D. Guo, L. Luo, J. Xia, and S. Gu, “Lofs: A lightweight online
file storage strategy for effective data deduplication at network edge,”
IEEE TPDS, 2021.

[52] J. Wang et al., “Towards cluster-wide deduplication based on ceph,” in
IEEE NAS, 2019.

[53] A. Khan, C.-G. Lee, P. Hamandawana, S. Park, and Y. Kim, “A robust
fault-tolerant and scalable cluster-wide deduplication for shared-nothing
storage systems,” in IEEE MASCOTS, 2018.

[54] A. Khan, P. Hamandawana, and Y. Kim, “A content fingerprint-based
cluster-wide inline deduplication for shared-nothing storage systems,”
IEEE Access, vol. 8, pp. 209 163–209 180, 2020.

[55] P. Hamandawana et al., “Crocus: Enabling computing resource orches-
tration for inline cluster-wide deduplication on scalable storage systems,”
IEEE TPDS, 2020.

[56] Ceph, “Rados gateway data layout,” 2021. [Online]. Available:
docs.ceph.com/en/latest/radosgw/layout/

[57] J. Ma, G. Wang, and X. Liu, “Dedupeswift: object-oriented storage system
based on data deduplication,” in IEEE Trustcom/BigDataSE/ISPA, 2016.

[58] G. Cloud, “Request rate and access distribution guidelines,” 2021.
[Online]. Available: cloud.google.com/storage/docs/request-rate

[59] Arcserve, “Arcserve udp 8.0 is now available,” 2021. [Online]. Available:
support.arcserve.com/s/article/Arcserve-UDP-8-0-Is-Now-Available

[60] Nakivo, “Ransomware protection with nakivo backup & replication,”
2021. [Online]. Available: nakivo.com/ransomware-protection/

[61] M. Bose, “Data protection fundamentals: How to backup an amazon s3
bucket,” 2021. [Online]. Available: nakivo.com/blog/how-to-backup-an-
amazon-s3-bucket/

[62] Veeam, “Define job schedule,” 2022. [Online]. Available: helpcenter.
veeam.com/docs/backup/vsphere/backup job schedule vm.html

[63] G. Amvrosiadis and M. Bhadkamkar, “Getting back up: Understanding
how enterprise data backups fail,” in USENIX ATC, 2018.

[64] Veeam, “Short-term retention policy,” 2022. [Online]. Avail-
able: helpcenter.veeam.com/docs/backup/vsphere/backup copy simple
retention.html

[65] IDC, “Data creation and replication will grow at a faster rate than
installed storage capacity,” 2021. [Online]. Available: idc.com/getdoc.jsp?
containerId=prUS47560321

[66] G. Graefe and H. Kuno, “Modern b-tree techniques,” in IEEE ICDE, 2011.
[67] C. Luo and M. J. Carey, “Lsm-based storage techniques: a survey,” The

VLDB Journal, vol. 29, no. 1, pp. 393–418, 2020.

aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-100-trillion-objects/
aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-100-trillion-objects/
azure.microsoft.com/en-us/services/storage/blobs/
azure.microsoft.com/en-us/services/storage/blobs/
alibabacloud.com/product/oss
backblaze.com/b2/cloud-storage.html
backblaze.com/b2/cloud-storage.html
scality.com
docs.ceph.com/en/latest/radosgw/
docs.ceph.com/en/latest/radosgw/
wiki.openstack.org/wiki/Swift
min.io
netflixtechblog.com/mezzfs-mounting-object-storage-in-netflixs-media-processing-platform-cda01c446ba
netflixtechblog.com/mezzfs-mounting-object-storage-in-netflixs-media-processing-platform-cda01c446ba
aws.amazon.com/solutions/case-studies/innovators/pinterest/
azure.microsoft.com/pl-pl/blog/minecraft-earth-and-azure-cosmos-db-part-1-extending-minecraft-into-our-real-world/
azure.microsoft.com/pl-pl/blog/minecraft-earth-and-azure-cosmos-db-part-1-extending-minecraft-into-our-real-world/
dellemc.com/content/dam/uwaem/production-design-assets/pl-pl/events/forum/2017/presentations/cloud_lanscape4.pdf
dellemc.com/content/dam/uwaem/production-design-assets/pl-pl/events/forum/2017/presentations/cloud_lanscape4.pdf
docs.bareos.org/TasksAndConcepts/StorageBackends.html
cockroachlabs.com/docs/dev/backup
docs.teradata.com/r/CCZ_TZJngXILEsdDOzUoAw/WOt0MU3umZEx7P7mcKH8Eg
docs.teradata.com/r/CCZ_TZJngXILEsdDOzUoAw/WOt0MU3umZEx7P7mcKH8Eg
veritas.com/content/support/en_US/doc/58500769-135186602-0/v126619409-135186602
veritas.com/content/support/en_US/doc/58500769-135186602-0/v126619409-135186602
helpcenter.veeam.com/docs/backup/vsphere/object_storage_repository.html
helpcenter.veeam.com/docs/backup/vsphere/object_storage_repository.html
dell.com/downloads/global/products/pvaul/en/dell-emc-dd-series-brochure.pdf
dell.com/downloads/global/products/pvaul/en/dell-emc-dd-series-brochure.pdf
cdn.allbound.com/iq-ab/2020/02/ST02281A-v01.pdf
blog.min.io/minio-high-performance-object-storage-for-veeam-backup-and-recovery/
blog.min.io/minio-high-performance-object-storage-for-veeam-backup-and-recovery/
documentation.commvault.com/commvault/v11/others/pdf/public-cloud-architecture-guide-for-microsoft-azure11-19.pdf
documentation.commvault.com/commvault/v11/others/pdf/public-cloud-architecture-guide-for-microsoft-azure11-19.pdf
cdn.allbound.com/iq-ab/2021/04/DXi-DS00549A.pdf
delltechnologies.com/asset/en-us/products/data-protection/technical-support/h11340-datadomain-ss.pdf
delltechnologies.com/asset/en-us/products/data-protection/technical-support/h11340-datadomain-ss.pdf
docs.openstack.org/swift/latest/s3_compat.html
cloud.google.com/storage/docs/migrating
docs.openstack.org/mitaka/config-reference/object-storage/configure-s3.html
docs.openstack.org/mitaka/config-reference/object-storage/configure-s3.html
docs.ceph.com/en/latest/radosgw/layout/
cloud.google.com/storage/docs/request-rate
support.arcserve.com/s/article/Arcserve-UDP-8-0-Is-Now-Available
nakivo.com/ransomware-protection/
nakivo.com/blog/how-to-backup-an-amazon-s3-bucket/
nakivo.com/blog/how-to-backup-an-amazon-s3-bucket/
helpcenter.veeam.com/docs/backup/vsphere/backup_job_schedule_vm.html
helpcenter.veeam.com/docs/backup/vsphere/backup_job_schedule_vm.html
helpcenter.veeam.com/docs/backup/vsphere/backup_copy_simple_retention.html
helpcenter.veeam.com/docs/backup/vsphere/backup_copy_simple_retention.html
idc.com/getdoc.jsp?containerId=prUS47560321
idc.com/getdoc.jsp?containerId=prUS47560321

JACKOWSKI et al.: OBJDEDUP: HIGH-THROUGHPUT OBJECT STORAGE LAYER FOR BACKUP SYSTEMS WITH BLOCK-LEVEL DEDUPLICATION 2197

[68] M. Athanassoulis and S. Idreos, “Design tradeoffs of data access methods,”
in SIGMOD, 2016.

[69] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-memory
big data management and processing: A survey,” IEEE TKDE, 2015.

[70] H. Lim, D. G. Andersen, and M. Kaminsky, “Towards accurate and fast
evaluation of multi-stage log-structured designs,” in USENIX FAST, 2016.

[71] Q. Kang et al., “Improving mpi collective i/o for high volume non-
contiguous requests with intra-node aggregation,” IEEE TPDS, 2020.

[72] G. Singh, “Leader election in the presence of link failures,” IEEE TPDS,
1996.

[73] Q. Zheng, H. Chen, Y. Wang, J. Zhang, and J. Duan, “Cosbench: Cloud
object storage benchmark,” in ACM/SPEC ICME, 2013.

[74] Ceph, “Erasure coded placement groups.” [Online]. Available: docs.ceph.
com/en/mimic/dev/osd internals/erasure coding/

[75] I. Kotlarska, A. Jackowski, K. Lichota, M. Welnicki, C. Dubnicki, and
K. Iwanicki, “InftyDedup: Scalable and cost-effective cloud tiering with
deduplication,” in USENIX FAST, 2023.

Andrzej Jackowski is PhD student at the Faculty
of Mathematics, Informatics and Mechanics of the
University of Warsaw. He received BSc and MSc
degrees in computer science from the University of
Warsaw in 2015 and 2017. He teaches courses cov-
ering distributed systems, cloud computing and oper-
ating system internals. Currently, he leads an R&D
team developing HYDRAstor in 9livesdata. In 2016
he worked in the cloud computing field in Microsoft,
WA, Redmond.

Łukasz Ślusarczyk received his MSc degree in com-
puter science and in mathematics from the Faculty of
Mathematics, Informatics and Mechanics of the Uni-
versity of Warsaw in 2004 and in 2005 respectively.
He works in data storage industry as a technical team
leader. Till 2022 he was developing distributed space
reclamation algorithms, replication, and object storage
interface for HYDRAstor. Currently, he works upon
Persistent Memory in Intel.

Krzysztof Lichota received his MSc degree in com-
puter science and in mathematics from the Faculty of
Mathematics, Informatics and Mechanics of the Uni-
versity of Warsaw in 2002. He is the Senior Technical
Expert at 9livesdata in HYDRAstor backend. Prior
to that he worked on storage technologies for NEC
Laboratories America and StorageNetworks.

Michał Wełnicki received his MSc degree in com-
puter science and from the Faculty of Mathematics, In-
formatics and Mechanics of the University of Warsaw
in 2005. He is a Senior Technical Expert at 9livesdata
in HYDRAstor backend. Prior to that he worked on
storage technologies for NEC Laboratories America.

Rafał Wijata received his MSc degree in computer
science from the Faculty of Mathematics, Informatics
and Mechanics of the University of Warsaw in 2001.
He is the Senior Software Developer at 9livesdata
in HYDRAstor backend. His experience encompasses
engineering low-level persistence layers and file sys-
tems for distributed storage.

Mateusz Kielar received his MSc degree in computer
science from the Faculty of Mathematics, Informatics
and Mechanics of the University of Warsaw in 2011.
He is the Senior Software Developer developing object
storage interface and WAN replication for HYDRAs-
tor. His interests include object oriented programming
and distributed systems.

Tadeusz Kopeć Tadeusz Kopeć received his MSc
degree in computer science from the Faculty of Math-
ematics, Informatics and Mechanics of the University
of Warsaw in 1999. He is the Technical Leader of team
developing object storage interface for HYDRAstor.
Besides distributed storage and operating systems, his
interests include logic and theory of computations.

Cezary Dubnicki leads 9livesdata, a company spe-
cializing in advanced storage systems R&D. Prior to
founding 9livesdata, Cezary was a department head in
NEC Lboratories, Princeton, NJ and a researcher in
Princeton University. Cezary obtained his PhD in CS
from University of Rochester and MSc from the Uni-
versity of Warsaw. His research interests concentrate
in systems,including storage, networking, operating
systems and distributed systems.

Konrad Iwanicki is Associate Professor at the Faculty
of Mathematics, Informatics and Mechanics of the
University of Warsaw, where he leads the computer
systems research group. He obtained his PhD from
the VU Amsterdam. His research interests include
distributed systems and network protocols. Apart from
storage systems, recently he has been working mainly
on low-power wireless networking for dependable IoT
systems as well as exploring novel frontiers of cyber-
physical technologies.

docs.ceph.com/en/mimic/dev/osd_internals/erasure_coding/
docs.ceph.com/en/mimic/dev/osd_internals/erasure_coding/

	Introduction
	Background and Related Work
	Global Block-Level In-Line Deduplication
	Deduplicated Data Organization
	Deduplication in Object Storage

	Preliminary Study
	Object Storage API Analysis
	Backup Data Pattern Analysis
	Main Lessons Learned

	The Design of ObjDedup
	Problem Statement
	Principal Ideas
	Object Metadata Log (OML)
	Object Metadata Tree (OMT)
	Metadata Merge
	Metadata Merge Prefetch
	Distributing Metadata Merge
	SubOMT Generation Phase
	OMT Combining Phase
	Remarks on Object Key Space Partitions
	Failover Handling

	Final Remarks

	Implementation
	Overall Architecture
	Object Driver Architecture
	Additional Issues

	Evaluation
	Assessment of the Main Performance Goals
	Backup Throughput
	Scalability
	Overheads

	Comparison with Existing Solutions
	Backup Throughput
	Files/Objects per Second

	Microbenchmarks
	Prefetch Algorithms
	Key and Metadata Sizes
	Number of Objects
	Distributed Metadata Merge

	Conclusions
	References
	Biographies
	Andrzej Jackowski
	Łukasz Slusarczyk
	Krzysztof Lichota
	Michał Wełnicki
	Rafał Wijata
	Mateusz Kielar
	Tadeusz Kopec
	Cezary Dubnicki
	Konrad Iwanicki

