
27

Derrick: A Three-Layer Balancer for Self-Managed
Continuous Scalability

ANDRZEJ JACKOWSKI, LESZEK GRYZ, MICHAŁ WEŁNICKI, and CEZARY DUBNICKI,
9LivesData LLC, Poland

KONRAD IWANICKI, University of Warsaw, Poland

Data arrangement determines the capacity, resilience, and performance of a distributed storage system. A

scalable self-managed system must place its data efficiently not only during stable operation but also after

an expansion, planned downscaling, or device failures. In this article, we present Derrick, a data balancing

algorithm addressing these needs, which has been developed for HYDRAstor, a highly scalable commercial

storage system. Derrick makes its decisions quickly in case of failures but takes additional time to find a

nearly optimal data arrangement and a plan for reaching it when the device population changes. Compared

to balancing algorithms in two other state-of-the-art systems, Derrick provides better capacity utilization,

reduced data movement, and improved performance. Moreover, it can be easily adapted to meet custom

placement requirements.

CCS Concepts: • Computer systems organization → Secondary storage organization; • Information
systems → Distributed storage; Storage recovery strategies.

Additional Key Words and Phrases: data balancing, distributed storage, capacity utilization

ACM Reference Format:
Andrzej Jackowski, Leszek Gryz, Michał Wełnicki, Cezary Dubnicki, and Konrad Iwanicki. 2023. Derrick:

A Three-Layer Balancer for Self-Managed Continuous Scalability. ACM Trans. Storage 19, 3, Article 27

(June 2023), 34 pages. https://doi.org/10.1145/3594543

1 INTRODUCTION
The management of physical data placement across devices is a fundamental problem that virtually

any distributed system has to address. Especially distributed storage systems, which are normally

responsible for maintaining data for other tiers, have to deal with the many intricacies of this

problem. In particular, to decrease the risk of data loss and shorten failure handling, such systems

have to replicate or erasure-code data chunks and disperse them across different physical devices.

To optimize capacity utilization, they have to balance the amount of data between the devices while

also accounting for the underlying network characteristic so that the cost of keeping the redundant

chunks in sync is acceptable. When new devices are added, or existing ones fail, the systems have

to move or reconstruct data chunks, ideally in a way that minimally affects the performance of the

core functionality. These are just a few common examples of data placement requirements, and

many applications also have their own specific ones.

Authors’ addresses: A. Jackowski, L. Gryz, M. Wełnicki, and C. Dubnicki, 9LivesData, ul. Ekologiczna 1/19, 02-798 Warsaw,

Poland; emails: jackowski@9livesdata.com, gryz@9livesdata.com, welnicki@9livesdata.com, dubnicki@9livesdata.com;

K. Iwanicki, Wydział Matematyki Informatyki i Mechaniki, Ul. Banacha 2, 02-097 Warsaw, Poland; email:

iwanicki@mimuw.edu.pl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1553-3077/2023/6-ART27 $15.00

https://doi.org/10.1145/3594543

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0002-4203-3973
HTTPS://ORCID.ORG/0009-0004-4433-0252
HTTPS://ORCID.ORG/0009-0006-0272-4258
HTTPS://ORCID.ORG/0009-0000-1844-9218
HTTPS://ORCID.ORG/0000-0002-5380-6337
https://doi.org/10.1145/3594543
https://doi.org/10.1145/3594543

27:2 A. Jackowski et al.

For these reasons, as we clarify in the next section, the problem of physical data placement in

storage systems has received considerable research attention. A lot of that attention was focused

on large-scale cloud-oriented storage systems, namely data-center-wide systems with thousands of

machines or global geo-distributed systems that can be up to orders of magnitude larger. In contrast,

relatively little work was dedicated to on-premise scale-out storage systems, such as HYDRAstor [12],

Ceph [41], and Swift [16]. On the one hand, given the data deluge in today’s digital societies, a

market for such solutions is thriving (IDC expects a 4.7% CAGR in External OEM Storage [22]).

On the other hand, however, managing data placement in such systems poses unique challenges,

which cannot be effectively addressed solely by adopting solutions developed for public clouds.

More specifically, these challenges stemmainly from the life cycle of on-premise scale-out storage

systems. Once deployed, such a system is controlled by the owning client. Consequently, it should

hardly require human intervention, instead being largely self-managed. Furthermore, to accom-

modate the ever-accumulating data, the systems are typically expanded, often repeatedly, which

has two key implications. First, an average system comprises multiple generations of hardware

that inevitably offer different performance characteristics and capacities. Nevertheless, despite this

heterogeneity, the system is expected to ensure high utilization of all available resources. Second,

it is not uncommon for a single system to grow even by orders of magnitude. Supporting tiny

configurations is thus as important as large ones to provide flexible scaling. For instance, Scality [18]

reduced the minimal system size to three nodes to solve the challenges of small and medium-sized

enterprises. Again, the performance overhead due to the growth must not be observable; on the

contrary, the performance scaling should be as close to linear as possible to justify the expansion

costs. In short, on-premise scale-out storage systems are expected to offer what we have dubbed

self-managed continuous scalability: a single system must be capable of autonomously maintaining

high resource utilization even when it is expanded by a few orders of magnitude with heterogeneous

hardware.

While self-managed continuous scalability may seem like a natural requirement, it is hard to

meet in practice. This observation is consistent with a common computer systems design principle,

referred to as the incommensurate scaling rule, which states that changing a parameter of a system

by a factor of ten usually requires a new design [35]. In the context of data placement, when

formalized, many issues are NP-hard problems [15, 19]. Consequently, algorithms for large-scale

deployments are inherently heuristics that rely on probabilistic or asymptotic properties (holding

only for sufficiently large systems) while at the same time emphasizing different aspects, notably

fault tolerance. In contrast, small-scale deployments sometimes make it possible to efficiently search

the entire solution space to find optimal placements. In other words, algorithms employed for

managing data placement do vary depending on the scale. Furthermore, as we elaborate shortly,

they are heavily affected by practical issues, notably conflicting requirements with respect to

placement, hardware heterogeneity, and traffic considerations, to name just a few. Controlling data

placement in systems that ensure self-managed continuous scalability thus indeed requires special

solutions.

The relevance of these issues is reinforced by a recent report by Gartner [32], which argues that

scalability and flexibility (e.g., handling device additions without disrupting other operations) with

simultaneous cost reductions are the current challenges in on-premise storage. New technologies,

such as EAMR HDDs [34], bring new possibilities, but keeping up with the newest hardware

requires significant software changes. According to Coughlin Associates [9], the vast majority

of capacity still is—and will be in the foreseeable future—shipped in HDDs. The problem is that

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:3

the performance of HDDs does not improve as fast as their capacity,
1
resulting in less than 10

IOPS/TB in modern drives. High performance and flexibility are very hard to achieve with such a

limited amount of IOPS, so attentive data placement across devices and thrifty data movements are

necessary when aiming at continuous self-managed scalability.

This article presents Derrick, an algorithm for managing data placement. We implemented

Derrick in our commercial backup and archival storage system, HYDRAstor, and verified it in

production. A key observation behind Derrick is that data arrangement has different requirements

and timing constraints depending on particular events that trigger its changes. Therefore, aiming

at self-managed continuous scalability precludes a one-size-fits-all approach. To better explain the

trade-offs and prioritizations due to conflicting needs, we analyze common requirements on data

placement in on-premise scale-out storage systems. The study is based on: empirical data and our

experience from thousands of HYDRAstor deployments worldwide, an examination of Ceph and

Swift (state-of-the-art open-source systems used in multi-petabyte-scale installations), and a survey

of other scale-out storage systems based on publicly available materials.

Instead of using a one-size-fits-all approach, the data arrangement in Derrick involves three

sub-algorithms called Central Balancing (CentrBal), Transition Guide (TrGuide), and Distributed

Balancing (DistrBal) to handle different cases. CentrBal computes a data arrangement for a perfectly

stable system, disregarding hardware failures. To make data migration smooth, TrGuide computes

a transition plan between two arrangements provided by CentrBal. Both CentrBal and TrGuide

are allowed to run calculations for minutes or even a few hours, as they activate only if the device

population changes, which is a time-consuming operation.
2
The situation is much different if a

hardware failure occurs and immediate action is necessary to prevent service disruption. In such a

case, DistrBal quickly finds a new placement for data from the failed devices. Despite the fact each

of Derrick’s three sub-algorithms has a different purpose, their structure is similar, as all of them

optimize data arrangement through a hill-climbing technique. However, the assurance that each

of the algorithms is able to find a solution in a given amount of time is not trivial. Therefore, we

present novel techniques that are used to reduce computational complexity while giving guarantees

that the outcome meets expectations.

As our experimental evaluation shows, Derrick achieves better results than the state of the art

in meeting key data arrangement requirements that are indisputably important in most storage

systems. Moreover, Derrick can be adapted to additionally meet very specific requirements of a

particular storage system, as such being potentially broadly applicable.

The rest of the article is organized as follows. Section 2 surveys related work. Section 3 analyzes

requirements on data arrangement in self-managed distributed storage and shows how they are

met in Derrick. Section 4 describes Derrick’s algorithms, and Section 5 presents further key details.

Section 6 evaluates Derrick’s implementation for HYDRAstor. Section 7 concludes.

2 DATA ARRANGEMENT PROBLEMS AND SOLUTIONS
Each distributed storage system, to a varying extent, adjusts its data arrangement methods to

meet its needs. Some systems, such as HDFS [36] and Haystack [2], store data based on decisions

of central metadata servers, which limits scalability, robustness, and performance. Therefore, in

large-scale applications, these systems are often replaced by decentralized solutions. For instance,

Tectonic is used in Facebook [33] to provide superior scalability and resource utilization. Since its

workloads may require low latency or be IOPS-intensive, Tectonic arranges data dynamically to

1
Multi-actuator HDDs can improve performance a lot, but the technology is fresh, so their pricing and availability in the

next years are unclear.

2
Device addition requires unpacking, connecting cables, moving data, etc.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:4 A. Jackowski et al.

meet the specific performance requirements. Similarly, other large-scale systems, like Windows

Azure Storage [3] and Spanner [8], dynamically place and move data to improve resilience and

performance.

A more static approach is taken by systems that make placement decisions based on hashes of

the data. For many types of workloads, including storing content-addressable blocks in HYDRAstor,

such methods are extremely efficient. Consequently, in our work, we focus on this kind of data

arrangement.

Some of such systems, notably OpenStack Swift with its Rings [16] and Apache Cassandra [29],

are based on consistent hashing [28], a technique that limits the number of data moves when the

number of hash buckets (e.g., storage devices) changes. There are many publications improving

consistent hashing. In particular, elastic consistent hashing [43] aims to reduce power consumption.

Aye et al. [1], in turn, describe how to better data balancing specifically in GlusterFS. Consistent

hashing can also be reduced to rendezvous hashing, which is a more generic algorithm suitable

for storage systems. For instance, IBM Cloud Object Storage System utilizes so-called weighted

rendezvous hashing [21].

Another state-of-the-art algorithm is CRUSH [42], employed in Ceph [41], which also distributes

data based on a hash-like function. CRUSH supports a multi-level hierarchy of heterogeneous

devices and introduces low computational overhead. Data movements in CRUSH have been re-

duced with the introduction of the straw2 [7] bucket type. Furthermore, since the arrangements

calculated by CRUSH may underutilize capacity, Ceph features an additional balancer plugin [4]

that alleviates this phenomenon. Another sample improvement of CRUSH is MapX [39], which

calculates intermediate data placements to decrease the tail latency during data movements.

Both Swift and Ceph are utilized in thousands of deployments and are actively developed, so

their algorithms are constantly improved to meet the needs of those systems. However, in the case

of our system, aimed at self-managed continuous scalability, CRUSH and consistent hashing do

not address some principal requirements, and their adequate modification seems very difficult, if

not impossible. For this reason, we have devised Derrick, an alternative approach that is easier to

extend to take into account additional constraints. Moreover, for common requirements of storage

systems, Derrick also outperforms the state of the art. The requirements are described in Section 3

along with a brief comparison of Derrick, CRUSH, and consistent hashing in real-world systems.

The main technique underlying Derrick is hill climbing. It has already been applied to problems

related to data balancing, for instance, allocating resources to tasks in a distributed system [10] or

allocating data in a system built of devices with varying reliability [11]. The novelty of Derrick,

however, comes not from the fact that it is based on hill climbing but rather from the way it

utilizes this technique. Especially, without the separation of the aforementioned sub-algorithms

and introduction of additional solutions, providing expected results in given time bounds would be

hard, if possible at all.

In general, there has been a considerable amount of research on optimizations of the same metrics

as in this article but using techniques other than finding a placement for erasure-coded or replicated

fragments. To start with, there are various erasure coding schemes aiming to improve system perfor-

mance [31], decrease repair degree [20], or minimize repair bandwidth [27]. Furthermore, there are

techniques for dynamic replica management, such as CDRM [40], including adjusting the number

of replicas to availability requirements. Another approach, adopted in HeART [26], is to leverage

the fact that disk reliability changes over time to decrease storage utilization. Pacemaker [25] and

Tiger [24] further improve this approach by reducing the transition overload, providing further

space savings, and bettering robustness.

Because of its design, and notably, the score dimensions introduced shortly, Derrick is prepared

to support many of those requirements at the same time. Therefore, by and large, it can be adjusted

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:5

to incorporate most of the aforementioned ideas. Moreover, integrating many of them into Derrick

entails no changes at all. For instance, the LRCs [20] require storing additional erasure coding

fragments, for which Derrick can find a proper placement out of the box. Likewise, Pacemaker [25]

is meant to keep data in subclusters with homogeneous failure models, and Derrick can find

placement within such subclusters as well. Methods requiring dynamic changes in data resilience

can also be integrated, either by changing the resilience without modifying the fragment number

(e.g., from 9+3 to 10+2 codes) or by modifying the score dimensions. In short, Derrick is truly

versatile.

3 REQUIREMENTS ON DATA BALANCING
A recurring theme in on-premise storage systems, including Ceph, Swift, and HYDRAstor, can be

summarized as follows. Every data piece (e.g., a file, an object, or a block) has its identifier (e.g.,

based on its pseudo-random hash). Since managing each such piece separately is infeasible, the

identifier is used to assign the piece to a logical collection named a group. In other words, groups

are a means of aggregating individual data pieces into manageable units.

Furthermore, for resilience, data are replicated or erasure-coded. Therefore, each group consists of

components (e.g., a group with 3 replicas has 3 components). We denote components as 𝐼𝑑𝑂 𝑓𝐺𝑟𝑜𝑢𝑝 :

𝐼𝑑𝐼𝑛𝐺𝑟𝑜𝑢𝑝 , so with 2 groups and 3 replicas per group, the components are: 0:0, 0:1, 0:2, 1:0, 1:1,

1:2. The notation would be the same for erasure codes with 3 parts in total per group (e.g., for 2+1

codes, with 2 data parts and 1 parity part).

The data arrangement problem is finding an assignment of components to devices that maximizes

metrics entailed by the requirements of the system. A basic sample data arrangement is presented

in Fig. 1. In the rest of this section, in turn, we analyze specific requirements on data arrangement

that are common in scalable real-world storage systems.

3.1 High Capacity Utilization
The most fundamental requirement on data arrangement is efficient utilization of the available

storage capacity. We assume that data are assigned to groups evenly, as the hashing function is fair,

so all components in the system have roughly similar sizes. In systems with deduplication, such as

HYDRAstor, data is kept in small blocks, so the component sizes are naturally balanced. However,

even systems that distribute entire files/objects, like Ceph, do not attempt to address the potential

imbalance due to varying file/object sizes [5].

For this reason, we consider capacity utilization as maximized if the ratio of the number of

components to the available device storage bytes is equal for all devices (cf. Fig. 1). If, in contrast,

one device has a higher components-to-bytes ratio, the capacity of devices with lower ratios is

wasted (cf. Fig. 2), because, per our assumption, all components are expected to have approximately

the same size.

Fig. 1. Data arrangement of two groups (0,1) with thee components each (0:0, 0:1, 0:2 and 1:0, 1:1, 1:2) on thee
same-capacity devices. Capacity utilization and resilience are optimal in such a configuration.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:6 A. Jackowski et al.

Fig. 2. Data arrangement of groups with 3 components each. With only 2 groups 25% of capacity is wasted.
With the number of groups increased to 4, the capacity is fully utilized.

Fig. 3. Data arrangement of 4 groups with 3 components each in a heterogeneous system. Each device has at
most 4 components but, system wise, more than 25% of the capacity is wasted because there are devices with
half of their capacity wasted.

When the number of components is increased, the capacity waste may be decreased (as in

Fig. 2), but this also burdens the system more. Therefore, for instance in Ceph, the recommended

number of groups per device is 100 [6], while in HYDRAstor, we keep the number even smaller to

increase data locality. If a system encompasses devices with different storage capacities (referred

to as a heterogeneous system), the effect of wasted capacity is amplified because the size of each

component constitutes a higher percentage of the capacity of a small device (see Fig. 3).

3.2 Resilience to Failures
Another crucial requirement on data arrangement is storing components resiliently, that is, in a

way that, thanks to replication or erasure coding, they can survive device failures. To reduce the

probability of data loss in case of a hardware failure, two components of the same group should be

kept on different devices. Since devices form a multi-level hierarchy (e.g., a server has many drives,

and a rack has many servers), this rule should be followed at the different levels of the hierarchy.

The highest attainable resilience depends on the particular replication/erasure-coding scheme and

the system size (see Fig. 4).

What is important, in heterogeneous systems, optimal capacity and optimal resilience may not

be achievable simultaneously (cf. Fig. 5). Therefore, a need arises to describe how resiliently the

data should be kept. In particular, in Ceph, crushmap rules specify how devices at each level of

the hierarchy are chosen. The rules are strictly followed, so crushmap may need an update if the

requirements on balancing change (e.g., when the system grows and the number of components

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:7

Fig. 4. The size of a system affects its resilience to failures. With 2+1 erasure codes, a system with 2 servers
and 2 drives per server can survive a drive failure but not a server failure. In contrast, a system with 3 servers
is also resilient to server failure.

Fig. 5. A heterogeneous system with four devices: Device 4 is five times larger than Devices 1–3. With 3+1
erasure codes, the arrangement resilient to a device failure wastes 50% of the capacity. In contrast, in the
arrangement with an optimal capacity utilization, Device 4 hosts 3 components from group 1, which precludes
recovery of this group upon a failure of this device.

of the same group per server can be reduced). In Swift, Rings have a configurable overload factor,

which specifies a fraction of additional components that can be accepted by each device to improve

system resilience. Unless the factor is high enough, Swift may not find the most resilient solution, so

a careful value selection is necessary, and capacity is underutilized anyway (details in Section 6.1.3).

To provide self-managed continuous scalability, Derrick always finds the most resilient solution

for the maximal capacity. However, it also allows an administrator to specify a minimal level of

resilience that overrules the decisions stemming from maximizing capacity utilization.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:8 A. Jackowski et al.

3.3 Balancing Distinguished Components
Data arrangement affects not only resilience and capacity but also the overall system performance.

In heterogeneous systems, the performance may be improved by placing more components on faster

devices (e.g., servers with SSDs or better CPUs), but storing too many components on one device

leads to underutilization of the capacity of other devices. Therefore, in some systems, there are

distinguished components (DistComps, in short) that have additional tasks assigned. In particular,

Ceph and Ursa [30] specify 1 distinguished primary per group, while in HYDRAstor there are 3.

Overloading any device with too many DistComps should be avoided; otherwise, a bottleneck may

arise. Network utilization also depends on data arrangement, as we will describe shortly afterwards.

3.4 Keeping Related Data in One Rack
With erasure codes, decoding multiple pieces is required to reconstruct failed data. Consequently,

placing whole groups within the same rack decreases the expensive inter-rack communication

during recovery. At the same time, keeping a group in one rack precludes resilience to rack failures,

which is provided by many systems, including Ceph, Swift, and clouds [20]. However, some studies

suggest that rack failures are less frequent than expected, and the overall system resilience is

higher if data is located nearby to improve reconstruction speed [44]. Therefore, HYDRAstor gives

this possibility as well. Ceph gives the option to specify a rule that keeps whole groups within

one rack, but its balancer plugin tends to move components between racks more than necessary.

Likewise, HDFS has a default policy to place two replicas in one rack and the third replica in

another, which gives some locality and also resilience to a failure of one rack. There are also special

erasure codes that trade capacity for decreased inter-rack traffic [17], but this conflicts with capacity

maximization.

3.5 Limiting Data Movements
The data arrangement algorithm needs not only to calculate a good result for a stable system

but also to react to changes that are often unexpected (e.g., hardware failures) or predictable

shortly in advance (e.g., additions and removals of devices). Modification of a data arrangement

requires moving data between devices, and hence it is desirable to minimize such movement as

much as possible. In scale-out systems that can significantly change their size (e.g., from one

to hundreds of devices), a change in the number of groups is necessary to maintain a similar

number of components per device regardless of the system size. Ceph and HYDRAstor scale the

number of groups automatically [6], while in Swift, functionality for altering the number of groups

without cluster downtime is under development [14]. When the number of groups changes, some

components should be moved (e.g., to improve capacity utilization as in Fig. 2). However, if the

algorithm computes a placement for new groups independently of their previous locations (e.g., as

in CRUSH), excessive amounts of data may be moved. A similar issue happens when other system

parameters change (e.g., the configuration of the resilience hierarchy).

3.6 Limiting Non-stable Components
Another requirement related to data movement is how many components are moved at the same

time (we refer to components during movement as non-stable). In Swift, only a single component

from a group is moved at a time because the system cannot read data from non-stable components.

HYDRAstor can read data from non-stable components, but it benefits from a limited number of

such components in duplicate elimination, caching, and read-write deletion [38]. Ceph provides

throttling, which also limits data moved at a time but does not limit movements per group. Keeping

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:9

Fig. 6. Keeping entire groups in racks increases the number of required component movements upon a change
to a system. In a system with 2 racks, 1 new server is added to the 5 existing ones. In effect, 2 components
have to be moved to balance the capacity, and a movement of an entire group is needed to keep entire groups
in racks. More specifically, Group 3 is moved. However, its two components cannot be stored on the new
server because of the resilience requirements. Therefore, component 5:1 is moved as well to create space on
Server 5. All in all, 3 components are moved instead of just 2.

Table 1. Summary of data arrangement algorithms in real-world use cases.

Derrick CRUSH in Ceph Swift Rings

Capacity utilization The Highest
High

(with Ceph’s balancer)
High

Resilience with

multi-level hierarchy

Optimal solution for given
constraints and capacity

Only given

constraints are met

Space oversubscription

needs to be configured

Balancing of

distinguished components
The Best Moderate None

Groups can be kept

within one rack
Yes

Yes, but Ceph’s balancer

spoils it
No

Data movement The Lowest Moderate Low

Limiting non-stable

components

Precise
(preserve resilience and capacity)

None

Simplified

("move one at a time")

Computation time

during failures
Seconds Seconds Seconds

Computation time when

adding or removing devices
Minutes or hours Seconds Seconds

groups within a single rack makes maintaining components stable more difficult because it enforces

the movements of entire groups (see Fig. 6).

3.7 Final Remarks
In Table 1, we summarize the discussed requirements and the way real-world implementations

of the aforementioned state-of-the-art data arrangement algorithms meet them. As visible in the

table, Derrick trades computation time when devices are added or removed for additional features

and better results. As mentioned earlier, device additions and removals are predictable and take

significant time anyway, so we find the trade-off profitable. In practice, the additional time spent

on computations does not affect the system at all (i.e., the system is fully operational during such

calculations), whereas better data placement provides considerable benefits.

4 DERRICK’S OVERVIEW
To meet all of the aforementioned requirements and provide self-managed continuous scalability,

Derrick arranges data using three sub-algorithms. As we describe in this section, CentrBal, and

TrGuide calculate placement for every component in the system, whereas DistrBal modifies their

results in case of failures.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:10 A. Jackowski et al.

First, data arrangement for a healthy state is calculated using CentrBal, which is allowed to

operate for minutes or even hours until a satisfactory solution is found. During this step, capacity

utilization, resilience, balancing of distinguished components, placement of data between racks,

and data movement is optimized. The calculation uses a small fraction of available resources (i.e.,

at most one core in a multi-server environment), and in practice has no negative impact on service

quality, as our system has implemented mechanisms for effective resource sharing during various

loads [37].

As the new data arrangement can differ a lot from the previous one, a mechanism is needed to

prevent having too many non-stable components. Therefore, TrGuide operates efficient component

movement between two CentrBal results that preserve the stability of components and other

requirements (including capacity utilization, resilience, and managing network traffic). In the event

of hardware failure, an immediate change is needed, and in such case, DistrBal can quickly override

CentrBal/TrGuide decisions.

The results of each algorithm are distributed through the system to enable routing messages to

proper nodes. As CentrBal and TrGuide compute placement for all components in the system, their

result can have a significant size (e.g., multiple megabytes if there are millions of components), but

the algorithms are executed occasionally. DistrBal modifies location only for components affected

by a failure, so its results are much smaller.

4.1 Hill Climbing in Derrick
All three subalgorithms search the space of possible arrangements, which is exponential in system

size. Therefore, a heuristic approach is taken to find a solution that meets many requirements

at once. To be more specific, Derrick uses the hill-climbing method, which is an optimization

technique that iteratively attempts to find a better solution by making incremental changes. To

achieve that, each subalgorithm calculates a multi-dimensional score function that describes how

much component arrangement fails to meet given requirements. In each iterative step, one or more

components are moved at a time, using an operation as we explain shortly. If moving components

decreases the score, the operation is applied and the procedure is repeated for a better arrangement.

As subalgorithms have different goals, their score functions differ. To be more specific, each score

function describes components placement as a collection of score dimensions (called ScoreDims).

ScoreDims are compared in lexicographic order, and each ScoreDim corresponds to a single re-

quirement on data placement. For instance, to describe capacity utilization, a ScoreDim can contain

sorted quotients of device size and a number of components assigned to it. In a situation from Fig. 1,

assuming each device has 1 TB, the set is {0.5, 0.5, 0.5} and if one component is moved, the set

changes to {0.33, 0.5, 1.0} (in which capacity utilization is worse, as the component size is reduced

from 0.5 TB to 0.33 TB).

Another example is a ScoreDim which describes resilience by counting components from the

same group on each device. Such ScoreDim contains a cartesian product of all groups and devices,

so in a situation from Fig. 1 it is {1, 1, 1, 1, 1, 1} (each device has one component from each of the

two groups), and if a component is moved, it is {2, 1, 1, 1, 1, 0} (one of the devices hosts 2 and one

of the devices host 0 components from one of the groups). The score function orders ScoreDims

by their priority, and if a more important ScoreDim has a higher value the score is worse, even if

lower priority ScoreDims improve. In other words, a more important requirement is never violated

to improve a less critical one.

To improve the score, components are moved between devices based on heuristics dubbed

operations. The very basic operation is to try the movement of each component to another device

and verify if any of such movements improve the score. Such an operation is not sufficient to

reach the optimal score. For instance, to reach optimal resilience without decreasing the capacity

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:11

Fig. 7. An example in which a single movement cannot fix the resilience without worsening the capacity. Two
simultaneous movements can lead to the optimal state without temporarily worsening the score.

utilization ScoreDim, movement of two components at a time may be necessary (Fig. 7). However,

trying all possible component movements is 𝑂 (𝑚𝑛) with𝑚 components and 𝑛 devices, whereas

trying all possible movements of two components at a time is 𝑂 (𝑚2𝑛2), and three is 𝑂 (𝑚3𝑛3). As
we explain in further sections, there are cases in which three or more components must be moved

at the same time to leave a local minimum. On the one hand, staying in a local minimum means that

one of the ScoreDims is not improved as much as possible (e.g., TrGuide can halt the transition).

On the other hand, checking all possible movements of three components at a time for a system

with𝑚 = 1000 and 𝑛 = 100 (which are smaller than the maximal configuration we aim to support)

requires checking more than 10
15
states which is unacceptable. Therefore, we introduce techniques

that reduce the set of tried movements (discussed in Section 5).

The general idea of subalgorithms is presented in Listing 1. The details of each subalgorithm are

encapsulated in specific requirements, score calculation, and improvement heuristics.

d e v i c e s − L i s t o f d e v i c e s w i th r e l e v a n t d e t a i l s
p r e v _ a r r − P r e v i o u s a r rangemen t o f componen t s
r e q s − L i s t o f o r d e r e d r e q u i r em e n t s
def d e r r i c k _ s u b a l g (d ev i c e s , p r ev_a r r , r e q s) :

s core , a r r = c a l c _ s c o r e (p rev_a r r , r e q s) , p r e v _ a r r

while True :

o l d _ s c o r e = s c o r e

for req in r e q s :

new_arr = improve (a r r , r eq)

new_score = c a l c _ s c o r e (new_arr , r e q s)

i f new_score < s c o r e :

s core , a r r = new_score , new_arr

break
i f o l d _ s c o r e == s c o r e :

return a r r

Listing 1. Pseudocode of Derrick subalgorithm

The last remark regarding hill climbing is that, in general, such optimization technique can

find a local minimum that is different from the global minimum [23]. In the case of a component

arrangement problem, it means that the arrangement will not meet all requirements, for instance,

resilience or capacity can be decreased, which is unacceptable. Therefore, we introduced techniques

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:12 A. Jackowski et al.

that guarantee that the result alwaysmatches the global minimum for themost important ScoreDims.

We explain these techniques in detail in Section 5.

4.2 Central Balancing
CentrBal computes component arrangement for a healthy system. Its input contains: a list of all

devices with their sizes, a current component arrangement for a healthy system (calculated earlier

or in a fresh system generated arbitrarily), and an ordered list of requirements. In this section, we

explain a simplified CentrBal, which ensures optimal capacity and resilience while minimizing

the number of transfers (advanced techniques are discussed in Section 5). Three ScoreDims are

necessary to meet the aforementioned requirements:

(1) Capacity: whether a device has too many components for its size.

(2) Resilience loss: counts components from each group per device.

(3) Movements count: counts components with changed placement.

With those ScoreDims, CentrBal tries to find an arrangement that first maximizes capacity, then

minimizes the number of components from the same group on one device. If any of the heuristics

find a data arrangement that is as good or better in terms of capacity and resilience but requires

fewer component movements, such an arrangement is chosen.

In heterogeneous systems, optimal resilience and capacity may not be possible at the same time

(Fig. 5), so an additional ScoreDim above Capacity is added: Accepted resilience loss, which counts

components from the same group per device, but only above a given threshold. For instance, if the

threshold is 2 the system capacity is optimized as long as no device hosts more than 2 components

from the same group. Moreover, the Resilience loss ScoreDim optimizes the resilience as much

as possible without capacity decrease, so if a solution with the optimal capacity and at most

1 component from the same group on each device exists, it will be found.

Distributed systems typically have a device hierarchy (drives, servers, racks, etc.), so both

resilience and capacity can have multiple ScoreDims which represent each device type. Drive

utilization is more important ScoreDim than the utilization of servers, as drive utilization directly

affects the system capacity. However, the arrangement of components on other levels of the

hierarchy can also provide benefits (e.g., better utilization of network links). The ordering of such

dimensions is important because, for instance, two utilization ScoreDims can be conflicting (an

example in Table 2).

Table 2. Utilization requirements (e.g., for drives and servers) can be conflicting

Server 1 Server 2

Drive 1 Drive 2 Drive 3 Drive 4

Size of drive [TB] 42.9 42.9 31.25 31.25

Total size of server [TB] 85.8 62.5

Case 1: A component is added to the Server 2

Drive components 19 18 14 14
Machine utilization ScoreDim 2.319 2.232

Drive utilization ScoreDim 2.258 2.383 2.232 2.232

Case 2: A component is added to the Server 1

Drive components 19 19 14 13

Machine utilization ScoreDim 2.258 2.315

Drive utilization ScoreDim 2.258 2.258 2.232 2.404

In the Case 1, the drive utilization is lower than in the Case 2 as

{2.383, 2.258, 2.232, 2.232} < {2.404, 2.258, 2.258, 2.232}, but for machine utilization

{2.319, 2.232} > {2.315, 2.258}.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:13

4.3 Transition Guide
TrGuide controls component movements from the current system state to the arrangement calcu-

lated by CentrBal. It ensures that system requirements are met, and network usage is balanced.

Its major challenge is to keep many components stable. Just like CentrBal, TrGuide computes the

score for the entire system. ScoreDims that describe the system resilience and capacity are the most

important. After that, there are ScoreDims that count how many components are moved: within

each group (it determines the number of non-stable components) and from each device (to balance

network usage).

TrGuide needs the motivation to move components to the location calculated by CentrBal.

Therefore, ComponentsNotOnTarget is a ScoreDim that counts components not located in their

final location. ComponentsNotOnTarget is less important than the ScoreDim counting components

moved within each group to prevent a situation in which all components are moved at once. It is

expected that after a portion of component movements TrGuide will stop because every possible

move will violate ScoreDims more important than ComponentsNotOnTarget. Later, when some

movements are completed (and the number of non-stable components is decreased), TrGuide will

move the next portion of components. Assuring TrGuide’s liveness without moving too many

components at a time is the difficult part (explained in Section 5.4).

4.4 Distributed Balancing
DistrBal overrides CentrBal and TrGuide decisions in case of hardware failures. Its goal is to

find a good temporary placement for components that lost their devices. Therefore, DistrBal

moves components from failed devices but does not move components hosted on their healthy

CentrBal/TrGuide targets. That is because the movement of healthy data costs resources (e.g., disk

IOPS, network traffic), which are needed to reconstruct missing data and handle the additional load.

The components return to the location calculated by CentrBal/TrGuide when the issue is solved, so

transient failures are handled efficiently.

Unlike the other two algorithms, DistrBal improves the placement only for a subset of components

and devices, and the responsibility for calculating the arrangement is distributed across many

instances of the algorithm. Each device has its own DistrBal instance that considers moving

components to other devices. Limiting the responsibility of a single DistrBal instance decreases

its complexity and facilitates the gathering of volatile information (e.g., a current utilization or a

failure state of devices). If a device fails, its components are moved by other DistrBal instances

that host components from the same groups. Since many DistrBal instances can make decisions

about the same component, synchronization is needed. For example, DistrBal instances that host

components from the same group can conduct voting to move only one component from their

group at a time. To prevent a situation in which many components are simultaneously moved to

one device, a locking mechanism is implemented (e.g., the device allows only one new component

at a time).

5 DERRICK’S DETAILS
As described in the previous section, Derrick subalgorithms are based on a simple idea to improve

score functions by moving components. However, the selection of proper ScoreDims and heuristics

is non-trivial. In this section, we describe details of important techniques used in Derrick for

HYDRAstor. Both theoretical lemmas, with their key ideas and practical observations, are presented

to explain that even very detailed requirements can be met to provide self-managed continuous

scalability. The methods are general and can be used in all subalgorithms, not only the subalgorithm

chosen as an example to clarify each technique.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:14 A. Jackowski et al.

We use the following names of operations that move components to explain techniques and

heuristics:

Relocation(𝑐, 𝑛) moves the component 𝑐 to the device 𝑛.

Swap(𝑐1, 𝑐2) swaps 𝑐1 and 𝑐2 between their devices.

Push(𝑐1, 𝑐2, 𝑛) moves 𝑐1 to the device of 𝑐2 and 𝑐2 to the device 𝑛.

Cycle3(𝑐1, 𝑐2, 𝑐3) moves 𝑐1 to the device of 𝑐2, 𝑐2 to the device of 𝑐3 and 𝑐3 to the device of 𝑐1.

5.1 Capacity and Resilience in CentrBal
First, we show how the computational complexity of Derrick can be limited when heuristics are

selected properly. Trying all possible relocations is not enough to find a data arrangement that has

the best capacity for a given resilience target because the only possible relocation that improves

the capacity may decrease resilience. Therefore, movement of more than one component at once

may be necessary (Fig. 8). In our system, the groups have equal sizes (typically 12, so erasure codes

like 9+3 and 10+2 are possible), and therefore we formalized a Lemma 1 that limits the number of

operations tried at once to improve resilience and capacity.

Lemma 1. If groups are equinumerous, then trying all relocations, swaps, and pushes is sufficient to
find an arrangement with optimal capacity within resilience restriction.

The key idea of the lemma is that if the system is not balanced, there must be a device 𝑛1 that

accepts a component 𝑐1 from a group 𝑔1 and a device 𝑛2 that has too many components. However,

due to resilience restriction, none of the components from 𝑛2 might be accepted on 𝑛1. As the

groups are equinumerous, there must be a third device 𝑛3 which accepts a component from 𝑛2 and

Fig. 8. Relocations are insufficient to balance capacity with a resilience restriction. Initially, the size of each
component is 10, because there are 2 components on Device 3. None of the possible single relocations increases
the score, as they either decrease the resilience or decrease usable capacity. After a single push, the size of
the component can be increased to 11.67 (limited by Device 4), so the capacity increases by 16.7%.

Fig. 9. If the groups have a different number of components, more than two simultaneous operations can be
required to balance capacity with a resilience restriction. Device 4 has enough free space to get additional
component, but cannot host any additional component fromDevice 1 or Device 2 without decreasing resilience.
Relocating component 2:0 to Device 4 without performing other operations does not improve the score, so it
is not done alone.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:15

has a component from the group 𝑔1. The formalized version of the lemma with formal proof is

presented in Appendix A. The situation is much different if groups can have different sizes (Fig. 9).

5.2 Multiple ScoreDims in CentrBal
CentrBal optimizes capacity and resilience but also tries to meet all other requirements of a specific

system. In our case, the device hierarchy consists of three levels – racks, physical servers, and logical

nodes (which host a fixed number of drives). Therefore, to meet all of the requirements described in

Section 3, our CentrBal score function consists of over 20 ScoreDims. The most important 12 of them

are explained in Table 3, but there are some other system-specific ScoreDims which, for example,

balance DistComps even further. However, the exact selection and order of ScoreDims depend on a

specific system design. In our case, we find optimization of system capacity very important for

storing backups, but we can think of a theoretical system in which optimization of DistComps (and

therefore throughput) would be more important than maximal utilization of disk space.

Having that many dimensions enables optimizing resources effectively. For instance, DistComps

are first optimized across logical nodes, as each logical node can handle a similar number of IOPS.

After that, DistComps are also optimized across physical servers. After ScoreDim #8 is optimized, a

possible situation is that one server hosts logical nodes with 7 DistComps each, and the other server

has 8 DistComps each. In the described situation CentrBal tries to move DistComps to further

optimize the utilization of resources shared between logical nodes, so each of the servers has 15

DistComps in total. However, having that many ScoreDims also has significant consequences.

First of all, the arrangement that optimizes all ScoreDims typically does not exist, and more im-

portant ScoreDims impact less important ScoreDims in a non-obvious way. For instance, ScoreDim

for keeping entire groups in racks can spoil the balance of DistComps (Fig. 10), which came as

somewhat of a surprise. Secondly, the calculation of the entire score function for all dimensions is

expensive, as each score requires its data structure of significant size (e.g., it keeps information per

device). Therefore, we implemented auxiliary data structures that are sufficient to verify how each

ScoreDim changes after a single operation. Only when the best operation is selected, the full score

is recalculated.

Finally, sometimes to improve a ScoreDim without spoiling another one, many operations need

to be done at once (Fig. 11), which increases the complexity. Therefore, a possible solution to reduce

Table 3. Major ScoreDims of CentrBal

Score Dimension Description
1 Accepted resilience loss Ensures target resiliency in heterogeneous systems

2 System capacity Optimizes system capacity

3 Resilience (logical node)

Decreases the number of components from

the same group on each logical node.

4 Resilience (physical server)

Decreases the number of components from

the same group on each server.

5 Num. components to the size of physical server

Balances components per physical server

for even consumption of server resources.

6 Num. components to the size of logical node

Balances components per physical server

for even consumption of logical node resources.

7 Keeping groups within a single rack Reduces the number of racks on which each group is spread.

8 DistComps distribution across logical nodes

Balances distribution of DistComps across different levels of

hierarchy to minimize unequal resource consumption.
9 DistComps distribution across physical servers

10 DistComps distribution across racks

11 DistComps from the same group (logical node) Decreases the number of DistComps from the same group on one logical node.

12 Number of transfers Decreases the number of transfers required to optimize all of the above.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:16 A. Jackowski et al.

Fig. 10. An example in which placing whole groups in racks spoils the balance of DistComps. Components
with IdInGroup=0 are distinguished. Rack 2 has servers with larger devices, so it receives more groups. As the
result, 6 DistComps need to be placed on 5 servers, so Server 6 has 2 DistComps.

Fig. 11. An example in which two simultaneous swaps are required to limit the number of DistComps of the
same group on one device. In that example, components with IdInGroup=0,1,2 are distinguished. Operations
that move fewer components would decrease resilience, capacity, or the number of DistComps per device.

the complexity, is to greedily select an operation when it improves the score, without checking if

there are any better options, but then an operation that also improves less important ScoreDims can

be missed. Therefore, in our implementation, we often try a few improvements and choose the best.

Another technique is to limit the components and devices that are considered for each heuristic.

For example, when the resilience is not optimal, the component movement can be initially limited

to components from devices that host most components from one group. Only when all heuristics

related to system resilience were tried, heuristics optimizing other ScoreDims are started.

5.3 DistrBal ScoreDims
DistrBal tries to find a placement for components from failed devices, which is as good as the

placement that would be computed by CentrBal. In fact, DistrBal score consists of very similar

ScoreDims as these of CentrBal (3). However, the time constraints for the computing time of both

algorithms are different. Therefore, the first difference is that the set of heuristics used by DistrBal

is limited to the least complicated ones. Moreover, the set of components that are even tried to be

moved is limited only to components from the failed devices.

As DistrBal communicates with other devices hosting components from a group, it has access to

additional information, like the very recent capacity utilization of each device. Therefore, if a device

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:17

currently has some additional capacity (because the system has some free space), a component

can be placed there. If the device becomes full before the failed device is restored, the recovered

component will be moved to a different location, which has free capacity but is worse in terms of

other ScoreDims.

5.4 Components Stability in TrGuide
The goal of TrGuide is to move all components to their target locations calculated by CentrBal

while keeping requirements on data arrangement. In our system, one of the requirements is to not

exceed 3 non-stable components within each group. Therefore, a transition plan is generated which

does not move more than 3 components from each group at a time. After the maximal possible

number of components is moved, TrGuide waits until any of the components is fully transferred

(and therefore stable again). The operation is repeated until all of the components reach their final

location provided by CentrBal.

The transition plan is prepared based on the following TrGuide_Score:

TrGuide_Score
(1) Nodes with too many components (exceeding the capacity)

(2) Groups with decreased resilience

(3) Groups with more than 3 non-stable components

(4) Components not in their target locations

TrGuide is capable of moving all components to their targets, without violating resilience and

capacity restrictions, while moving at most three components of one group at a time. Therefore, it

is guaranteed that the algorithm can progress without making more than 3 non-stable components

within each group. The fact that TrGuide can move forward by moving 3 components also limits

its computational complexity, as fewer component movements need to be tried at a time.

The key idea of why moving only three components at a time is sufficient is based on a con-

struction of a component arrangement in which 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 , 𝑠𝑤𝑎𝑝𝑠 , and 𝑐𝑦𝑐𝑙𝑒3 violate resilience

restrictions, as 𝑠𝑤𝑎𝑝𝑠 and 𝑐𝑦𝑐𝑙𝑒3 do not change the capacity. Such an arrangement must contain a

cycle longer than 3 but we found two ways of effectively breaking such a long cycle into smaller

one (Fig. 12). One of the methods requires keeping a reserve for one additional component on each

node, which decreases the system capacity. Therefore, we introduced another method that breaks

the long cycle into parts. Such breaking of the cycle is always possible (an example is presented in

Fig. 13), as we explained in formal proof of lemma 2 and lemma 3 in Appendix A.

5.5 Stability of DistComps in TrGuide
An extreme example of meeting requirements by Derrick is maximizing the system performance by

ensuring that at most one (out of three) DistComps is non-stable in each group. TrGuide is able to

ensure such requirements, however additional ScoreDimswere needed tomake TrGuide progressing.

That is because there is a difficult case in which two DistComps from the same group need to be

swapped. Such a swap cannot be done straightforwardly without making both components unstable.

Therefore, TrGuide needs to make three swap operations with non-distinguished components

(as presented in Fig. 14). To enforce such an operation, an additional Unwanted Distinguished
Components dimension was needed, that counts DistComps that are placed on the device that

according to CentrBal will host another DistComp from the same group. In this way, TrGuide

has the motivation to swap the DistComp with a non-distinguished component to improve that

ScoreDim. Additionally, Components not on the final target of components from its group ScoreDim,

that counts components that occupy place for a different component from the same group, enforces

that the swap is done with another component of the same group.

To sum up, the final score function looks as follows:

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:18 A. Jackowski et al.

TrGuide_Score_Extended
(1) Nodes with too many components (i.e., too much data)

(2) Groups with decreased resilience

(3) Groups with more than one non-stable distinguished component

(4) Groups with more than 3 non-stable components

(5) Components not on the final target of components from its group

(6) Unwanted Distinguished Components

(7) Distinguished Components not in their final target

(8) Components not in their target location

Fig. 12. Moving longer cycles at once can violate the stability of components. A possible solution is to keep an
additional reserve for one component on each device, but it decreases system capacity. Therefore, we break
longer cycles into smaller ones with a different technique.

Fig. 13. If a cycle of length 4 can be done without worsening resilience or capacity, then a swap or cycle3 can be
done. Otherwise, the Device 1 does not accept a component D:? from the Device 4 which is a contradiction.

5.6 Final Remarks
Derrick is very flexible and, as explained hitherto, it can meet diverse system requirements. Using

the techniques described in Sections IV and V, we were able to express every needed requirement

in adequate ScoreDims. Typically, an addition of a single straightforward ScoreDim is enough,

but in some cases, a more complex design needs to be used (as in our TrGuide). Similarly, the

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:19

Fig. 14. Additional operations are needed to swap two DistComps from the same group without making both
of them non-stable at the same time.

basic operations or their compositions are typically enough to implement heuristics that find data

arrangement meeting each requirement. We are well pleased with the overall performance of

Derrick, which we discuss in the next section.

6 EVALUATION
The evaluation is divided into three parts. First, Derrick is compared with the state-of-the-art

algorithms used in Ceph and Swift in terms of meeting the requirements from Section 3. Secondly,

we analyze the differences between DistrBal and CentrBal. Lastly, we measure the computation

time of our implementation.

6.1 Comparison with Ceph and Swift
To ensure self-managed continuous scalability, a system needs to meet many requirements on data

placement, so we compare data arrangements generated by Derrick, CRUSH in Ceph, and Swift

Rings. A series of experiments was conducted to show how the algorithms differ in optimizing

capacity and resilience, limiting the number of transfers required after changes in the system,

keeping groups within racks, and balancing DistComps.

In most experiments, we used average-sized, heterogeneous configurations, which are typical for

on-premise storage. They are additionally easy to understand. However, in the relevant cases, we

present the results from larger configurations to show how the algorithms behave during scaling.

Many experiments used a variable number of groups, as it often affects the results. The number of

components per group in the presented experiments is 12, which is the default value for both the

erasure-code scheme in Ceph documentation and for HYDRAstor, but we have not observed any

meaningful differences between experiments with 2-15 components per group. In our system, each

logical device internally manages its drives in a manner similar to RAID0, while the other systems

assign components per drive. Our approach improves capacity utilization when the number of

components does not equally divide the number of drives. However, we decided to ignore this

difference in the presented results to avoid favoring our system.

The first two experiments were conducted using actual multi-server installations and real data

being written. In these experiments, we carefully evaluated the three algorithms in terms of

integration with the entire system and its practical behaviour. In further experiments, we only

used tools that calculate the placement of the components offline, as it saved us from setting up a

new testbed for each experiment. The tools that can compute component placement are already

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:20 A. Jackowski et al.

S
m
a
ll
S
e
r
v
e
r
_
m
in

S
m
a
ll
S
e
r
v
e
r
_
m
a
x

L
a
r
g
e
S
e
r
v
e
r
_
m
in

L
a
r
g
e
S
e
r
v
e
r
_
m
a
x

0

5

10

15

C
o
m
p
o
n
e
n
t
s
p
e
r
d
e
v
i
c
e Initial component placement

Swift CRUSH_bal DistrBal

(a) Minimal and maximal number
of components at the beginning.

S
m
a
ll
S
e
r
v
e
r
_
m
in

S
m
a
ll
S
e
r
v
e
r
_
m
a
x

L
a
r
g
e
S
e
r
v
e
r
_
m
in

L
a
r
g
e
S
e
r
v
e
r
_
m
a
x

0

5

10

15

20

C
o
m
p
o
n
e
n
t
s
p
e
r
d
e
v
i
c
e

Component placement

after two failures

(b) Minimal and maximal number
of components after two failures.

In
it
ia
l
s
ta
te

A
ft
e
r
tw
o
fa
il
u
r
e
s

0

1

2

3

4

A
l
l
o
w
e
d
s
e
r
v
e
r
f
a
i
l
u
r
e
s Resilience of newly written data

(c) After two server failures, new
data is placed with resilience to
three server failures.

Fig. 15. Deployed system evaluation in a heterogeneous system with 16 servers.

provided with Ceph (osdmaptool) and Swift (swift-ring-builder), and we implemented a similar tool

for Derrick. All three tools share code with the production systems.

In all of the experiments involving Ceph, CRUSH was configured to use the straw2 bucket type,
which minimizes component movement. In relevant cases, the CRUSH result was further improved

by Ceph’s balancer (noted as CRUSH_bal). Swift required modification of the overload parameter in

some experiments (noted as SWIFT_overl).

6.1.1 Deployed Systems Evaluation. In the first experiment, we used fully deployed systems to

compare how each system is balanced initially and how failures are handled by each algorithm. We

built one of the smallest possible heterogeneous configurations capable of storing data resiliently

with 9+3 codes and up to three device failures. Therefore, the system consisted of 16 servers with

the following configuration. Each of the servers had two drives formatted to have equal sizes.

In 14 of the servers, the devices had 10 GB (denoted largeServer), and in 2 the devices had 5 GB

smallServer, as Ceph does not allow devices below 5 GB. The system hosted 384 groups. The servers

used Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz and Intel(R) Xeon(R) CPU E5-2430 @ 2.20GHz.

In the beginning, the systems had no data, and all of the servers were up and running. Therefore,

Derrick placed all components just as computed by CentrBal, as there was no need to make any

adjustments with DistrBal. Similarly, Ceph’s balancer and Swift Rings placed components for the

stable system. Already at this stage, the difference is considerable, as each algorithm placed a

different number of components on small servers (Fig. 15a). On devices of small servers (5 GB),

Derrick placed at most 6 components, Swift placed 7 and Ceph’s balancer placed 8. On devices of

large servers (10 GB), each algorithm allowed at most 13 components. Therefore, according to the

placement, the maximal component size for Swift is 5/7 𝐺𝐵, for Ceph’s balancer 5/8 𝐺𝐵, and for

Derrick 10/13 𝐺𝐵 (as 10/13 < 5/6). We elaborate on the utilization of capacity by Swift and Ceph

in Section 6.1.3, as differences occur in other cases as well.

6.1.2 Failure Handling in Deployed Systems. In the next step, we simulated a hardware failure of

two large servers, one after another. First, we killed processes responsible for handling storage

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:21

on one server. After a minute, we killed processes on the other server. The systems responded as

follows:

• Derrick started DistrBal computations to adjust the component placement. In both cases,

components ended up in locations optimal in terms of capacity (Fig. 15b) and resilience

(Fig. 15c). In wall-clock time, the computations took in total just below 3.5s, but during that

time the CPU consumption of the service which conducts the DistrBal computation (and

implements some other functionalities) was below 10% of a single core on each node.

• Swift does not remove failed devices from Rings automatically but uses pre-computed handoff

locations [13]. We experimented with the handoff locations but they do not balance load

perfectly and, as a result, writing data to the system using handoff locations resulted in

having some nodes without any free capacity, while other nodes had over 30% of free space.

Therefore, we assumed that Ring rebuilding can be handled automatically after a failure, and

included such an operation in our experiment. Rebuilding of the Ring after each failure took

2.2s but the component placement was not optimal in terms of capacity. Moreover, changing

the Ring twice causes problems. As Swift cannot read objects while they are moved, and

it does not implement any mechanism similar to our TrGuide, Swift requires waiting for

transfers and reconstructions to be finished before the next balancing can be started. In fact, it

is implemented by a timer which prevents changing the system balance until a given number

of hours. Therefore, safe handling of two consecutive failures which happen shortly after

each other is difficult.

• Ceph detects failed services promptly, but by default it waits for 10 minutes
3
before the

service is considered down and removed from the CRUSH map. When a service is removed

from the map, the computations takes milliseconds but typically the balancer needs to be

executed a few times before it reaches its final results. As the balancer is started from a

timer (which is by default 60 seconds), some time is required before it reaches its final state.

Nevertheless, in terms of capacity, the placement was the worst of the three, as 9 components

were placed on the small servers.

Finally, we started to write data. Data was written in small (512 KB) files / objects, to minimize the

impact of uneven distribution of objects to components. All systems were able to accept the amount

of data proportional to their component sizes, without any negative impact on data resilience (Fig.

15c) — it was possible to restore it even after three additional server failures.

This experiment leads to the following conclusions. First of all, despite the simple scenario,

each algorithm delivered different usable capacity and Derrick provided the best result of the

three. In a stable system, DistrBal bases on CentrBal results, and during a failure DistrBal moves

components from failed devices to optimal locations. However, this does not mean that CentrBal

can be entirely replaced with DistrBal, as we evaluate differences between CentrBal and DistrBal

further in Section 6.2.

Secondly, the model of handling failures in each system is different. Despite the fact that algo-

rithms used in Ceph and Swift are able to compute results within seconds, their default use-cases

rely on a manual intervention or are delayed by minutes.

Finally, all of the algorithms provided resilient component placement. However, as we will

describe shortly afterwards, it is not always the case.

6.1.3 Capacity Utilization and Resilience. Using the aforementioned tools, we verified capacity

utilization and system resilience in a configuration that contained 17 servers: 14 with 1 TB drives, 2

with 6 TB drives, and 1 with 8 TB drives. In such a configuration, with 12 components per group,

3
The value is configurable with mon_osd_down_out_interval setting.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:22 A. Jackowski et al.

192 384 768 1536 3072

0.6

0.8

1

Number of components

C
a
p
a
c
i
t
y
u
t
i
l
i
z
a
t
i
o
n

14xN4 + 2xN6 + 1xN8

SWIFT SWIFT_overl CRUSH CRUSH_bal CentrBal

192 384 768 1536 3072

0

50

100

Number of components

G
r
o
u
p
s
w
i
t
h

l
o
w
e
r
r
e
s
i
l
i
e
n
c
e

14xN4 + 2xN6 + 1xN8

(a) Capacity utilization and resilience violation in a heterogenous system with 17 nodes total.

192 384 768 1536 3072

0.85

0.9

0.95

1

Number of components

C
a
p
a
c
i
t
y
u
t
i
l
i
z
a
t
i
o
n

4xN12 + 1xN20 + 1x35

(b) Capacity utilization in a heterogeneous system
with 6 nodes.

192 384 768 1536 3072

0.85

0.9

0.95

1

Number of components

4xN12 + 1xN20 + 1x35

With a reserve for components

(c) Lowered capacity utilization with an additional
reserve for one component on each device.

Fig. 16

two components of the same group are never on the same server and almost all available disk space

is consumed (<0.0005 of space was not available because the 4 TB drive was not exactly 2x smaller

than 8 TB drive).

Nevertheless, data arrangements calculated by each algorithm differed significantly (Fig. 16a).

First of all, only CentrBal and Swift Rings optimally utilized the capacity. CRUSH was 1%-40% off,

depending on the total number of groups and whether Ceph’s balancer was used. For instance, with

256 groups, one of the 4 TB nodes received 150 components, which is 22 over the optimal result.

Therefore, the component size (and so the capacity of the whole system) was decreased by 15%.

Swift Rings did failed to provide optimal resiliency, placing two components from the same group

on one server. In heterogeneous systems, Swift allows changing the overload factor, which is a float

value 𝑥 that determines whether up 𝑥 to additional device capacity can be used to improve system

resilience. Although it was theoretically possible to find a perfect arrangement without overloading

any node, Swift required a change of the overload factor to 0.0002 to find an arrangement that

provided optimal resilience, but it decreased the capacity by 1%-11%.

Underutilization of the capacity contradicts with the market demand for cost reduction in scalable

storage. Moreover, Swift Rings requires additional attention to make sure that the data is kept

resiliently. To clarify, we present the results of another experiment (Fig. 16b), which uses a system

with 4x1.2 TB servers, 1x2.0 TB server, and 1x3.5 TB server (an analogue of Example 1 from Fig.

8 for 12 components per group). In that experiment, our goal was to keep at most 4 components

per group on each server, which is more than in the most resilient solution (2 components per

group), but allows much better capacity. For 192 groups, the optimal solution in terms of capacity

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:23

12 14 16 18 20 22 24 26 28

100

200

300

400

Number of servers

N
u
m
b
e
r
o
f
t
r
a
n
s
f
e
r
s

Server additions

in a homogeneous system

Swift CRUSH CRUSH_bal CentrBal_min CentrBal_full

(a) Number of transfers required
when adding one server to a homoge-
neous system with a single rack and
256 groups.

75 90 105 120 135 150

600

800

1,000

1,200

1,400

Number of servers

N
u
m
b
e
r
o
f
t
r
a
n
s
f
e
r
s

Rack additions

in a homogeneous system

(b) Number of transfers required
when adding racks (15 servers) in
a heterogeneous system with 512
groups.

75 90 105 120 135 150

0

0.2

0.4

0.6

0.8

1

Number of servers

F
r
a
c
t
i
o
n
o
f
a
l
l
g
r
o
u
p
s

Groups entirely

in a single rack

(c) CRUSH_bal keeps fewer
groups entirely in one rack in
comparison to CentrBal_full.

Fig. 17

32 64 128

0

0.5

1

·105

Number of nodes

T
r
a
n
s
f
e
r
s
r
e
q
u
i
r
e
d

Transfers after split

Swift CRUSH CentrBal_full

(a) Transfers after a split (first from
1024 to 2048 groups, last from 4096
to 8192).

128 256 512

0

2

4

·103

Number of groups

3×N4+1×N6

(b) Transfers when started favoring
capacity instead of resilience.

128 256 512

0

2

4

6

·103

Number of groups

6×N6→12×N6

(c) Transfers when changing
server resilience during expan-
sion.

Fig. 18. Number of transfers in different systems.

allows at most 4 components per group, but Swift may not find such an arrangement unless the

overload is increased to a proper value (e.g., 0.01 overload was too small). When the overload was

set to the smallest value that guaranteed the expected resilience, 2.6%-4.1% of the capacity was

wasted compared to CentrBal with the same resilience. The aforementioned experiments show that

CRUSH exactly follows the resilience requirements, but it achieves the lowest capacity utilization.

Swift Rings does not find a resilient arrangement unless the overload value is set higher than it is

really necessary. CentralBal results had an optimal capacity for the given resilience requirements

in every experiment. The differences in capacity utilization are 1%-40%.

The reason for the capacity utilization differences is as follows. CRUSH depends on probability

distribution, so its results are the worst due to variance. Therefore, Ceph’s balancer improves the

CRUSH results, but both the balancer and algorithms of Swift Rings are implemented in a way that

allows one or two components off the perfect result, mostly to speed up the calculations. Therefore,

capacity loss depends on how many components are on each device: from a fraction of a percent if

there are hundreds of components per device, to even tens of percents if there are few. Especially, if

the difference between the largest and smallest devices is high, the capacity loss on each misplaced

component increases (Fig 3). When a 20 TB disk hosts 100 components, 0.5 TB hosts only 3 and

misplacing two components makes a big difference.

In the end, to confirm a need for TrGuide that does not require an additional reserve of one

component per device (as described in Section 5.4) we verified how such reserve affects the capacity.

As presented in Fig. 16c, the reserve decreases the system capacity by up to 4%.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:24 A. Jackowski et al.

6.1.4 Transfers Required During Transition. In the next group of experiments, we verified how

many components need to be transferred when a data arrangement changes. Limiting the transfers

is important because component movement consumes resources, especially network and disks as

data needs to be read, sent, and written. In the presented results we checked how many components

need to be transferred, which can be converted to the amount of data that needs to be moved by

multiplying the number of transferred components by the total system capacity, then dividing by

the total number of components in the system. For instance, if a 100 TB system has 3072 components

(256 groups), performing 400 transfers requires reading, sending, and writing of 13 TB.

We compared CRUSH, CRUSH_bal, and Swift Rings with two versions of CentrBal to show how

additional requirements affect the number of transfers: CentrBal_full optimizes all requirements,

including DistComps and in-rack placement, and CentrBal_min only optimizes resilience, capacity,

and the number of transfers (as in Section 4.2).

The simplest experiment adds servers one by one to a homogeneous system that starts with 12

servers (where there is exactly one component of each group on each of the servers). The system had

a single rack and 256 groups. Swift Rings and CentrBal_min required the same number of transfers,

and CentrBal_full required on average 2.3% additional movements to optimize the placement of

DistComps (Fig. 17a). CRUSH required on average 25% more transfers, and as in the previous

experiments, the capacity was underutilized, so CRUSH_bal required even more. Therefore, in the

basic experiment, CRUSH required many more transfers than necessary.

In a multi-rack heterogeneous system, the results were more diverse. We verified the number of

transfers needed during the addition of entire racks (15 servers) of randomly selected servers with

4/6/8 TB drives and 512 groups (Fig. 17b). Swift Rings and CentrBal_min required almost identical

numbers of transfers. As Swift Rings finds only an approximate solution, on average its result had

1.9% lower capacity and a manual
4
improvement to maximize the capacity required on average

3.5% more transfers. Furthermore, in Swift Rings and CentrBal_min there is no option to keep

components from one group in the same rack. Such a requirement can be described in CRUSH,

but the balancer plugin spoils it. With CentrBal_full the distribution of groups across racks can be

imperfect as well because there are more important requirements such as capacity, but CRUSH_bal

gave 27%-45% worse results (Fig. 17c). In terms of data movement, CRUSH_bal needed on average

18% more transfers than CentrBal_min and CentrBal_full required 30% more to improve a lot of

placement of groups within racks.

Finally, we compared data movement in three scenarios in which not only the number of servers

changes. If the number of groups is doubled in a homogeneous system with 32 nodes Swift Rings

and CentrBal_min require no changes, CentrBal_full moves a handful of components to optimize

DistComps, but CRUSHmoves half of the data (Fig. 18a). Similarly, when changing whether capacity

or resilience is more important in a system with 3x 4 TB and 1x 6 TB servers, Swift Rings requires

36% more transfers than CentrBal_full, and CRUSH moves far more components (Fig. 18b). When a

requirement for server-level resilience is changed, because the size of a homogeneous system is

doubled, Swift Rings requires 13%-30% more transfers than CentrBal_full, and CRUSH requires

86%-89% more (Fig. 18c).

To sum up, CentrBal_min not only ensures superior capacity utilization and resilience but

also requires the lowest number of transfers. The main reason for the differences in the number

of transfers is that CentrBal can spend additional time seeking solutions that provide the same

results with the reduced number of data movements. CentrBal always uses previous component

4
In that experiment, Swift Rings could not find optimal placement even when the force option was set. In other experiments,

we observed that sometimes using the force flag helps to find optimal result, but it also dramatically increase the number of

transfers, as it moves many components unnecessarily.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:25

placement as a starting point, and with each moved component it tries to improve as many metrics

as possible. For comparison, in other algorithms, a change of requirements such as desired resilience,

means practically balancing data from scratch. This is why even CentrBal_full, which additionally

optimizes other metrics, moves less data than others.

6.1.5 Distinguished Components Placement. Balancing of DistComps is important to evenly utilize

system resources, which leads to improved performance. In our system, the first three components

of each group are distinguished, and in Ceph the first component is distinguished, so we evaluated

balancing of 1 or 3 DistComps (Fig. 19). In both CRUSH and CRUSH_bal, some nodes have up to

15%-40% more DistComps than necessary because neither of the algorithms tries to balance the

distinguished components more than based on the probabilistic distribution. Swift does not use

DistComps, so Swift Rings can even put all components with indexes 0 or 0,1,2 on the same node

(such a node gets several times more DistComps than others). CentrBal_full finds a perfect or almost

perfect distribution of DistComps in every case, which allows the highest resource utilization.

256 1024 4096

0

5

10

Number of groups

M
a
x
D
i
s
t
C
o
m
p
s

1 DistComp

256 1024 4096

1

2

3

4

Number of groups

M
a
x
D
i
s
t
C
o
m
p
s

3 DistComps

Swift CRUSH CentrBal_full

Fig. 19. Maximal number of DistComps per server, normalized to the value in optimal components arrange-
ment.

6.2 Distributed Balancing Evaluation
In a stable system (without recent failures or changes in the number of devices), DistrBal simply

uses the results already computed by CentrBal. In case of failures, DistrBal quickly adjusts the

results provided by CentrBal. Therefore, we evaluate DistrBal by comparing its results with results

computed by CentralBal in longer calculations.We randomly chose 25 heterogeneous configurations.

In each configuration, we removed 1, 2, or 3 logical nodes in two ways. First, we killed the chosen

nodes, so DistrBal moves the components from the removed nodes. Then, we completely removed

these nodes from the system, so CentrBal could calculate its data arrangement. In 84% of cases,

CentrBal found a better arrangement in terms of requirements on data arrangement, and in the

remaining 16% the arrangement was equivalent to DistrBal result. As DistrBal does not try to move

as many components as CentrBal it cannot find every improvement. Therefore, there were frequent

differences on less important ScoreDims e.g. in 56% of cases the maximal number of DistComps

per server was higher (not plotted).

The data arrangement calculated by CentrBal is superior to the one provided byDistrBal. However,

the fact that DistrBal does not perform more complex operations is also its advantage, as it only

computes a temporary state during failures. More complex operations require additional data

movement, therefore higher resource consumption, but there are already fewer resources due to

missing devices and data reconstructions.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:26 A. Jackowski et al.

6.3 Performance Evaluation
6.3.1 CentrBal and TrGuide Performance. The performance was evaluated on a server with Intel

Xeon E5640 Westmere 2.66GHz and 20GB of RAM (experiments needed even less memory). Fig. 20a

presents the computation time of CentrBal when the size of a one server system (starting with 8

groups) is increased one server at a time. Initially, the computations take around 1 second, but as

the number of groups is doubled each time the system size doubles, the final computation (with 256

groups total) took over 2 minutes. Fig. 20b shows the execution time of CentrBal_full during rack

additions (15 servers) in a heterogeneous system (randomly selected servers with 4/6/8 TB drives)

and 512 groups. The computation time does not increase with the number of servers because with

more servers, fewer components require movement. Another experiment shows how the execution

time depends on the number of groups (Fig. 20c). In all experiments, CentrBal_full finishes within

5 hours.

TrGuide typically moves most components using relocations, so the computations take less than

a few minutes. The very worst case (TrGuide_worst in Fig. 20b and 20c) is a theoretical situation

in which there are a lot of components to move because the system size was increased a lot, and

immediately the system was filled to the brim. In such a case, TrGuide must exceed the limit of

not-stable components to avoid hitting out of space, and more computations are needed to find an

optimal plan in terms of resilience and non-stable components.

Our implementations of CentrBal and TrGuide were tuned to find a solution within hours using

a single core, and the goal was achieved. Moreover, both algorithms work much quicker in smaller

systems, where there are typically fewer CPU resources. Therefore, in every conducted experiment,

the execution of all three algorithms consumed far below 1% of daily CPU resources available in

the system.

6.3.2 Speed-Up Considerations. We find the computation time of Derrick good enough, but the

execution time can be further reduced by orders of magnitude. First of all, we expect that our

implementation of Derrick still has room for optimizations. Secondly, the number of heuristics

used to improve less significant ScoreDims can be reduced. As we will describe shortly afterwards,

1 3 5 7 9 11 13 15

10
−1

10
0

10
1

10
2

Number of servers

T
i
m
e
(
s
e
c
o
n
d
s
)

Addition of one server

CentrBal_full TrGuide TrGuide_worst

(a) Computation time after ad-
dition one node in small hetero-
geneous configuration. Number of
groups scales with the system from
8 to 256.

30 60 90 120 150

10
2

10
3

10
4

Number of servers

T
i
m
e
(
s
e
c
o
n
d
s
)

Addition of one rack

(b) Computation time after addi-
tion of a rack (15 servers) with 512
groups.

4 16 64 256 1024

10
−3

10
0

10
3

Number of groups

T
i
m
e
(
s
e
c
o
n
d
s
)

Splits in a heterogenous system

(c) Computation time of splits in
a heterogeneous system with 150
servers.

Fig. 20. Computation time of different configurations.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:27

2
14

2
16

2
18

10
−2

10
1

10
4

Number of groups

T
i
m
e
(
s
e
c
o
n
d
s
)

A random arrangement

2
14

2
16

2
18

10
0

10
2

10
4

Number of groups

T
i
m
e
(
s
e
c
o
n
d
s
)

Addition of one rack

1000 servers 5000 servers 10000 server

Fig. 21. Computation time of CentrBal_min.

2
14

2
16

2
18

0

0.5

1

·10−6

Number of groups

T
i
m
e
(
s
e
c
o
n
d
s
)

Query time in component map

Fig. 22. Query time in Derrick’s result.

our evaluation of CentrBal_min confirms that finding a solution that only uses basic heuristics can

be very quick. Finally, in large systems, the computation can be parallelised. In a larger system,

two racks typically do not share any groups. Therefore, a system can be divided into smaller parts

which are balanced separately and then merged into one system.

To evaluate the parallelisation idea, we randomly selected 10 heterogeneous configurations with

4 racks in total and executed CentrBal_full as follows. First, we divided the system into two parts

(2 racks each). Secondly, we calculated component arrangement using CentrBal_full for each part.

Finally, we executed CentrBal_full for the system with 4 racks, starting with the arrangement

computed for the system parts. Such a method reduced computation time on average by 31%. For

instance, in one of the experiments computation of arrangement for one part took 61s, and merging

the results took 73s. Computing the arrangement for the entire system at once took 199s. Therefore,

the total amount of work was similar, but the wall-clock time is reduced.

6.3.3 CentrBal_min Performance. We evaluated CentrBal_min, to verify the performance with the

limited number of requirements. CentrBal_min can promptly compute its result even in a massive

system with thousands of servers and 3M components (Fig. 21). Computation after the addition of

15 machines took only 26 minutes, and in a theoretical scenario when the initial arrangement is

random the computing took under 10 hours.

6.3.4 Query Time in Derrick’s Results. In the end, we also evaluated what is the overhead of finding

a component location using a result generated by Derrick (Fig. 22). As components are represented

by two numbers, a hash map representation of Derrick’s result is very efficient. Our evaluation

showed that even with millions of components and thousands of servers, performing a million

queries using a single core does not even take half a second.

7 CONCLUSIONS
We examined challenges in providing self-managed continuous scalability in heterogeneous dis-

tributed storage systems. As a solution, we presented Derrick, which is a novel algorithm for

finding data arrangements that meet multiple requirements. We implemented Derrick in HYDRAs-

tor and evaluated it against existing state-of-the-art solutions in Ceph and Swift. Application of the

described techniques in production also confirmed their effectiveness. Our approach guarantees

maximal resilience, higher capacity utilization, and less data movement. For specific requirements,

such as balancing distinguished components or keeping groups within racks, Derrick achieves

respectively 15%–40% and 27%–45% better results. Moreover, to ensure flexible scalability, the

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:28 A. Jackowski et al.

changes in data arrangement are introduced gradually, without superfluous disruption of system

operations.

Derrick finds satisfactory solutions in systems from a few to thousands of devices within the

given time. The general idea can be adapted to systems with a different set of requirements.

APPENDIX
A FORMALIZATION
The appendix contains the formalization of proofs using mathematical notation. First, we formalize

the problem of finding a specific component arrangement. Then, we formulate lemma 1, lemma 2,
and lemma 3 using the notation and prove them.

A.1 Problem Statement
The problem of finding a specific arrangement is selecting a particular 𝑎𝑖 ∈ 𝐴 for a given system

𝑠 =< 𝑁,𝐺,𝐶,𝐴,𝑔𝑟𝑜𝑢𝑝, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 >: 𝑆 (1)

where

𝑁 = {𝑛1, 𝑛2, ..., 𝑛𝑛} is a finite set of nodes. (2)

𝐺 = {𝑔1, 𝑔2, ..., 𝑔𝑛} is a finite set of groups. (3)

𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛} is a finite set of components. (4)

𝑔𝑟𝑜𝑢𝑝 : 𝐶 → 𝐺 is a function that maps each component to a group. (5)

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 : 𝑁 → N maps each node to its capacity. (6)

𝑎𝑥 : 𝐶 → 𝑁 maps each component to a node. We denote 𝑎𝑥 an arrangement. (7)

𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑛}is a finite set of all possible arrangements. (8)

A.2 Auxiliary Functions, Definitions and Corollaries
Function 1. Function components provides a subset of components for a given arrangement and

node:

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 : 𝐴 × 𝑁 → 2
𝐶
; (9)

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (𝑎𝑥 , 𝑛) = {𝑐 |𝑎𝑥 (𝑐) = 𝑛} (10)

Function 2. Function componentSize computes a quotient of node capacity and its components
number:

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑆𝑖𝑧𝑒 : 𝐴 × 𝑁 → N; (11)

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑆𝑖𝑧𝑒 (𝑎𝑥 , 𝑛) = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑛)/|𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (𝑎𝑥 , 𝑛) | (12)

Function 3. Function componentSize’ computes a quotient of node capacity and its components
number increased by 1, which is a componentSize after a node accepts an additional component:

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑆𝑖𝑧𝑒 ′ : 𝐴 × 𝑁 → N; (13)

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑆𝑖𝑧𝑒 ′(𝑎𝑥 , 𝑛) = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑛)/(|𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (𝑎𝑥 , 𝑛) | + 1) (14)

Function 4. Function systemCapacity computes the capacity available in the system:

𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 : 𝐴 → N; (15)

𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑎𝑥) = |𝐶 | ∗𝑚𝑖𝑛({𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑆𝑖𝑧𝑒 (𝑎𝑥 , 𝑛) |𝑛 ∈ 𝑁 }) (16)

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:29

Definition 1. 𝑎𝑥 is an arrangement with optimal capacity iff

𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑎𝑥) =𝑚𝑎𝑥 ({𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑎) |𝑎 ∈ 𝐴}) (17)

Function 5. Function conflicts returns the number of components for a given group on a node:

𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 : 𝐴 × 𝑁 ×𝐺 → N; (18)

𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥 , 𝑛, 𝑔) = |{𝑐 |𝑔𝑟𝑜𝑢𝑝 (𝑐) = 𝑔 ∧ 𝑐 ∈ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (𝑎𝑥 , 𝑛)}| (19)

Function 6. FunctionmaxConflicts returns the maximal number of conflicts in the system:

𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 : 𝐴 → N; (20)

𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥) =𝑚𝑎𝑥 ({𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥 , 𝑛, 𝑔) |𝑛 ∈ 𝑁,𝑔 ∈ 𝐺}) (21)

Definition 2. 𝑎𝑥 is an arrangement with an optimal resilience iff

𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥) =𝑚𝑖𝑛({𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎) |𝑎 ∈ 𝐴}) (22)

Definition 3. 𝑎𝑥 meets a resilience restriction of 𝑟 : N iff

𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥) <= 𝑟 (23)

Definition 4. 𝑎𝑥 has the optimal capacity within a resilience restriction of 𝑟 : N iff

𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥) <= 𝑟 and (24)

𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑎𝑥) =𝑚𝑎𝑥 ({𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑎) |𝑎 ∈ 𝐴 ∧𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎) <= 𝑟 }) (25)

Corollary 1. If 𝑎𝑥 meets a resilience restriction of 𝑟 : N then

∀𝑛 ∈ 𝑁 |𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (𝑎𝑥 , 𝑛) | <= 𝑟 ∗ |𝐺 | (26)

Function 7. Function groupSize returns the number of components which are in the group:

𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒 : 𝐺 → N; (27)

𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒 (𝑔) = |{𝑐 |𝑐 ∈ 𝐶 ∧ 𝑔𝑟𝑜𝑢𝑝 (𝑐) = 𝑔}| (28)

Definition 5. Groups are equinumerous iff

∃𝑛∈N∀𝑔∈𝐺 |𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒 (𝑔) | = 𝑛 (29)

Function 8. Function sumConflicts returns the sum of conflicts for one group in total:

𝑠𝑢𝑚𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 : 𝐴 ×𝐺 → N; (30)

𝑠𝑢𝑚𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥 , 𝑔) =
𝑛∑
𝑖=0

𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥 , 𝑛𝑖 , 𝑔) (31)

Corollary 2.

∀𝑎1, 𝑎2 ∈ 𝐴 ∀𝑔 ∈ 𝐺 𝑠𝑢𝑚𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎1, 𝑔) = 𝑠𝑢𝑚𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎2, 𝑔) = 𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒 (𝑔) (32)

A.3 Operations
Derrick solves the problem of finding arrangement by moving components between nodes. There-

fore, Derrick has a set of possible operations which move components between nodes. Each

operation is a partial function which is defined only if the components are indeed located on their

initial nodes. We specify the following operations:

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:30 A. Jackowski et al.

Operation 1. Relocation is an operation which moves a component from its initial location to a
different node:

𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 : 𝐶 × 𝑁 × 𝑁 ×𝐴 ↛ 𝐴; (33)

𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐𝑎, 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑛𝑛𝑒𝑤, 𝑎𝑥) = 𝑎𝑦 ⇔ 𝑎𝑦 (𝑐) =
{
𝑎𝑥 (𝑐) if 𝑐 ≠ 𝑐𝑎

𝑛𝑛𝑒𝑤 if 𝑐 = 𝑐𝑎
(34)

Operation 2. Push is an operation which moves a component from its initial location to a different
node, then takes a different component from that node and moves it somewhere else:

𝑝𝑢𝑠ℎ : 𝐶 ×𝐶 × 𝑁 × 𝑁 ×𝐴 ↛ 𝐴; (35)

𝑝𝑢𝑠ℎ(𝑐𝑎, 𝑐𝑏, 𝑛𝑎, 𝑛𝑏, 𝑛𝑐 , 𝑎𝑥) = 𝑎𝑦 ⇔ 𝑎𝑦 (𝑐) =

𝑛𝑏 if 𝑐 = 𝑐𝑎

𝑛𝑐 if 𝑐 = 𝑐𝑏

𝑎𝑥 (𝑐) if 𝑐 ≠ 𝑐𝑎 ∧ 𝑐 ≠ 𝑐𝑏

(36)

Definition 6. An arrangement 𝑎𝑥 can be reached from 𝑎𝑦 using operations 𝑜1, 𝑜2, ..., 𝑜𝑛 , if there
exists a composition of operations 𝜙 for which 𝜙 (𝑎𝑥) = 𝑎𝑦 .

A.4 Lemma 1
Lemma 1. Assume a system and 𝑟 ∈ N for which an arrangement meeting a resilience restriction of

𝑟 exists. If groups are equinumerous, for every arrangement 𝑎𝑥 there exists an arrangement 𝑎𝑦 with
optimal capacity within capacity restriction 𝑟 , which can be reached from 𝑎𝑥 using relocations and
pushes.

Proof: The proof consists of two steps. First, we show that there exists an arrangement 𝑎𝑟 which

meets a resilience restriction 𝑟 and can be reached from 𝑎𝑥 . Then, we show that 𝑎𝑦 can be reached

from 𝑎𝑟 using relocations and pushes.

If𝑎𝑥 meets a resilience restriction 𝑟 , then𝑎𝑥 = 𝑎𝑟 . Otherwise, at least one node𝑛𝑎 and one group𝑔𝑎
for which 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥 , 𝑛𝑎, 𝑔𝑎) > 𝑟 exist. Moreover, for at least one node 𝑛𝑏 , 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥 , 𝑛𝑏, 𝑔𝑎) <
𝑟 , otherwise 𝑠𝑢𝑚𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥 , 𝑔𝑎) > 𝑟 ∗ 𝑛 which contradicts the existence of an arrangement

meeting a resilience restriction 𝑟 . Therefore:

𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐𝑎, 𝑛𝑎, 𝑛𝑏, 𝑎𝑥) = 𝑎𝑖 (37)

𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑖 , 𝑛𝑏, 𝑔𝑎) <= 𝑟 (38)

𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥 , 𝑛𝑎, 𝑔𝑎) − 1 = 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑖 , 𝑛𝑎, 𝑔𝑎) (39)

Repeating (possibly more than once) such steps, for every node and group which does not meet the

resilience restriction 𝑟 , leads to 𝑎𝑟 .

If 𝑎𝑟 has the optimal capacity within resilience restriction 𝑟 , then 𝑎𝑟 = 𝑎𝑦 . Otherwise, at least

one node 𝑛𝑎 which lowers the system size exists (𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑆𝑖𝑧𝑒 (𝑎𝑟 , 𝑛𝑎) <
𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑎𝑦)

|𝐶 |).

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑛𝑎) is given but the usable component size can be increased by moving a component out

of 𝑛𝑎 .

As capacity of 𝑎𝑟 is not optimal within resilience restriction 𝑟 , there must also be a node 𝑛𝑏
satisfying the formulas:

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑆𝑖𝑧𝑒 ′(𝑎𝑟 , 𝑛𝑏) >=
𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑎𝑦)

|𝐶 | (40)

∃𝑔𝑏 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑟 , 𝑛𝑏, 𝑔𝑏) < 𝑟 (41)

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:31

The existence of 𝑛𝑏 can be explained as follows. As 𝑛𝑎 underutilizes the capacity, the other nodes

must be able to take at least one additional component. Therefore, at least one node can accept

additional component in terms of the capacity. Assume that for every node 𝑛𝑓 accepting the

additional component ∀𝑔𝑏 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑟 , 𝑛𝑓 , 𝑔𝑏) = 𝑟 . It means that each of the nodes hosts exactly

𝑟 ∗ |𝐺 | components, and none of these nodes can accept any component. It is a contradiction,

as it means no arrangement meeting the resilience restriction 𝑟 exists in which 𝑛𝑎 hosts fewer

components (as none of the other nodes can accept it).

Therefore, 𝑛𝑏 can take a component in terms of capacity and we want to move one of compo-

nents from 𝑛𝑎 . If any component 𝑐𝑎 on 𝑛𝑎 with 𝑔(𝑐𝑎) = 𝑔𝑎 ∧ 𝑔𝑎 = 𝑔𝑏 exists, then 𝑐𝑎 can be moved

to 𝑛𝑏 with the relocation. Otherwise, placing 𝑐𝑎 on 𝑛𝑏 breaks the resilience restriction 𝑟 . There-

fore, 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑟 , 𝑛𝑎, 𝑔𝑎) > 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑟 , 𝑛𝑎, 𝑔𝑏) = 0 (as there are no components from 𝑔𝑏), and

𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑟 , 𝑛𝑏, 𝑔𝑎) > 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑟 , 𝑛𝑏, 𝑔𝑏) (as 𝑛𝑏 accepts 𝑔𝑏 but not 𝑔𝑎). But the groups are equinu-

merous, so there must be at least one node 𝑛𝑐 for which 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑟 , 𝑛𝑐 , 𝑔𝑏) > 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑟 , 𝑛𝑐 , 𝑔𝑎)
(there are two nodes with more components from 𝑔𝑎 , we need to place components from 𝑔𝑏 some-

where). Therefore, 𝑛𝑐 hosts component 𝑐𝑏 with 𝑔𝑟𝑜𝑢𝑝 (𝑐𝑏) = 𝑔𝑏 , so 𝑝𝑢𝑠ℎ(𝑐𝑎, 𝑐𝑏, 𝑛𝑎, 𝑛𝑐 , 𝑛𝑏, 𝑎𝑥) can be

done.

The reasoning can be repeated until the optimal capacity with resilience restriction 𝑟 is reached

QED.

A.5 TrGuide Definitions
To formalize lemma 2 and lemma 3, additional definitions and operations related to TrGuide are

introduced:

Operation 3. Swap is an operation which changes the location of two components between nodes:

𝑠𝑤𝑎𝑝 : 𝐶 ×𝐶 × 𝑁 × 𝑁 ×𝐴 ↛ 𝐴; (42)

𝑠𝑤𝑎𝑝 (𝑐𝑎, 𝑐𝑏, 𝑛𝑎, 𝑛𝑏, 𝑎𝑥) = 𝑎𝑦 ⇔ 𝑎𝑦 (𝑐) =

𝑛𝑎 if 𝑐 = 𝑐𝑏

𝑛𝑏 if 𝑐 = 𝑐𝑎

𝑎𝑥 (𝑐) if 𝑐 ≠ 𝑐𝑎 ∧ 𝑐 ≠ 𝑐𝑏

(43)

Operation 4. 𝐶𝑦𝑐𝑙𝑒𝑛 is a generalization of a swap to more than two components:

𝑐𝑦𝑐𝑙𝑒𝑛 : 𝐶 × ... ×𝐶 × 𝑁 × ... × 𝑁 ×𝐴 ↛ 𝐴; (44)

𝑐𝑦𝑐𝑙𝑒𝑛 (𝑐1, ..., 𝑐𝑛, 𝑛1, ..., 𝑛𝑛, 𝑎𝑥) = 𝑎𝑦 ⇔ 𝑎𝑦 (𝑐) =

𝑛2 if 𝑐 = 𝑐1

...

𝑛1 if 𝑐 = 𝑐𝑛

𝑎𝑥 (𝑐) if 𝑐 ≠ 𝑐1 ∧ ..𝑛 ∧ 𝑐 ≠ 𝑐𝑛

(45)

Definition 7. Each operation moves at a time a number of components which is equal to the
number of components which change their position during the operation. Relocation moves 1 component
at a time, swap / push 2 at a time, and 𝑐𝑦𝑐𝑙𝑒𝑛 moves 𝑛 components at a time.

Definition 8. For any two arrangements 𝑎𝑥 and 𝑎𝑦 ,𝑛𝑒𝑥𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑆𝑡𝑒𝑝 (𝑎𝑥 , 𝑎𝑦) is an arrangement
𝑎𝑧 meeting all of the following criteria:

crit. #1: |{𝑐 |𝑎𝑥 (𝑐) = 𝑎𝑦 (𝑐)}| < |{𝑐 |𝑎𝑧𝑐 = 𝑎𝑦 (𝑐)}| (46)

crit. #2:𝑚𝑎𝑥 (𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥),𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑦)) >=𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑧) (47)

crit. #3:𝑚𝑖𝑛(𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑎𝑥), 𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑎𝑦)) <= 𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑎𝑧) (48)

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

27:32 A. Jackowski et al.

A.6 Lemma 2
Lemma 2. For any given arrangements 𝑎𝑥 and 𝑎𝑦 , TrGuide can find

𝑛𝑒𝑥𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑆𝑡𝑒𝑝 (𝑎𝑥 , 𝑎𝑦) = 𝑎𝑧 by moving at most three components at a time.

Proof: Let’s select a component 𝑐𝑎 forwhich𝑎𝑥 (𝑐𝑎) = 𝑛𝑎∧𝑎𝑦 (𝑐𝑎) = 𝑛𝑏∧𝑛𝑎 ≠ 𝑛𝑏 . If𝑛𝑏 can accept 𝑐𝑎
without violating 𝑐𝑟𝑖𝑡 .#2 and 𝑐𝑟𝑖𝑡 .#3, then the𝑛𝑒𝑥𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑆𝑡𝑒𝑝 (𝑎𝑥 , 𝑎𝑦) is 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐𝑎, 𝑛𝑎, 𝑛𝑏, 𝑎𝑥).

If moving 𝑐𝑎 to 𝑛𝑏 violates 𝑐𝑟𝑖𝑡 .#2, then 𝑛𝑏 already hosts

𝑚𝑎𝑥 (𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑥),𝑚𝑎𝑥𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑎𝑦)) components of 𝑔𝑟𝑜𝑢𝑝 (𝑐𝑎), so a component 𝑐𝑏 with

𝑔𝑟𝑜𝑢𝑝 (𝑐𝑎) = 𝑔𝑟𝑜𝑢𝑝 (𝑐𝑏) for which 𝑎𝑦 (𝑐𝑏) ≠ 𝑛𝑏 exists. Therefore 𝑠𝑤𝑎𝑝 (𝑐𝑎, 𝑐𝑏, 𝑛𝑎, 𝑛𝑏, 𝑎𝑥) is the

𝑛𝑒𝑥𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑆𝑡𝑒𝑝 (𝑎𝑥 , 𝑎𝑦). Swaps can always be done without violating 𝑐𝑟𝑖𝑡 .#3, as swap does not

change the number of components on any machine.

If moving 𝑐𝑎 to 𝑛𝑏 violates 𝑐𝑟𝑖𝑡 .#3 but does not violate 𝑐𝑟𝑖𝑡 .#2, a component 𝑐𝑏 for which 𝑎𝑦 (𝑐𝑏) ≠
𝑛𝑏 exists. However, 𝑐𝑏 can be swapped with 𝑐𝑎 only if it does not violates the maxConflicts. If the

maxConflicts is violated, the entire algorithm can be repeated to move 𝑐𝑏 to 𝑎𝑦 (𝑐𝑏). If 𝑐𝑏 cannot be

moved to 𝑎𝑦 (𝑐𝑏), just as 𝑐𝑎 cannot be moved to 𝑎𝑦 (𝑐𝑎), the procedure can be repeated again, up to

𝑥 < |𝐶 | times, until a component 𝑐𝑥 can be moved to 𝑎𝑦 (𝑐𝑥) or a cycle is formed. In either case,

such an algorithm can move more than 3 components at a time, which is forbidden. However, if

there is no cycle, the 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐𝑥 , 𝑛𝑎, 𝑎𝑥) is the 𝑛𝑒𝑥𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑆𝑡𝑒𝑝 (𝑎𝑥 , 𝑎𝑦). If a cycle longer than
3 exists, we use the lemma 3 to find the 𝑛𝑒𝑥𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑆𝑡𝑒𝑝 (𝑎𝑥 , 𝑎𝑦) within the cycle.

In this way, all cases have been examined QED.

A.7 Lemma 3
Lemma 3. For any given arrangements 𝑎𝑥 and 𝑎𝑦 , if a cycle p of length 𝑛 > 3, formed by com-

ponents 𝑐1, 𝑐2, ..., 𝑐𝑛 for which 𝑎𝑦 (𝑐1) = 𝑎𝑥 (𝑐2) ∧ ... ∧ 𝑎𝑦 (𝑐𝑛) = 𝑎𝑦 (𝑐1) exists, TrGuide can find the
𝑛𝑒𝑥𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑆𝑡𝑒𝑝 (𝑎𝑥 , 𝑎𝑦) = 𝑎𝑧 by moving at most three components at a time.

Proof: First, consider the situation that ∃𝑖, 𝑗 ∈ {1..𝑛}((𝑖 < 𝑗) ∧ (𝑎𝑥 (𝑐𝑖) = 𝑎𝑥 (𝑐 𝑗))). In such case,

reduce the considered cycle to 𝑐𝑖 , ...𝑐 𝑗 . If the length of the cycle is 2 or 3, use swap or 𝑐𝑦𝑐𝑙𝑒3 as the

nextBalancingStep. Otherwise, repeat the reasoning with the shorter cycle.

At this point, we can assume that the length of the cycle is 𝑛 > 3 and 𝑎𝑥 (𝑐1), ..., 𝑎𝑥 (𝑐𝑛) are
pairwise different. Using 𝑐𝑦𝑐𝑙𝑒𝑛 (𝑐1, ..., 𝑐𝑛, 𝑎𝑥 (𝑐1), ..., 𝑎𝑥 (𝑐𝑛), 𝑎𝑥) does not change the capacity but

moves more than three components at a time. If possible for any 𝑖 , one of the following operations

should be selected as the 𝑛𝑒𝑥𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑆𝑡𝑒𝑝 (𝑎𝑥 , 𝑎𝑦):

𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐𝑖 , 𝑎𝑥 (𝑐𝑖), 𝑎𝑦 (𝑐𝑖), 𝑎𝑥) (49)

𝑠𝑤𝑎𝑝 (𝑐𝑖 , 𝑐 (𝑖+1)%𝑛, 𝑎𝑥 (𝑐𝑖), 𝑎𝑥 (𝑐 (𝑖+1)%𝑛), 𝑎𝑥) (50)

𝑐𝑦𝑐𝑙𝑒3 (𝑐𝑖 , 𝑐 (𝑖+1)%𝑛, 𝑐, 𝑎𝑥 (𝑐𝑖), 𝑎𝑥 (𝑐 (𝑖+1)%𝑛), 𝑎𝑥 (𝑐 (𝑖+2)%𝑛), 𝑎𝑥) (51)

If none of the three operations is allowed, there are the following consequences. First, the 𝑐𝑦𝑐𝑙𝑒𝑛 does

not violate the resilience requirement of nextBalancingStep, otherwise a swap would be possible

(the same argument as in the lemma 2). Therefore, 𝑐𝑦𝑐𝑙𝑒𝑛 would be the 𝑛𝑒𝑥𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑆𝑡𝑒𝑝 (𝑎𝑥 , 𝑎𝑦)
but it moves too many components.

We can prove that if 𝑠𝑤𝑎𝑝 and 𝑐𝑦𝑐𝑙𝑒3 violate the 𝑐𝑟𝑖𝑡 .#2, then 𝑐𝑦𝑐𝑙𝑒𝑖 violates it as well for 𝑖 > 3,

which leads to a contradiction. For every 𝑗 <= 𝑛, device 𝑎𝑥 (𝑐 𝑗) hosts maximal allowed number

of components from the 𝑔𝑟𝑜𝑢𝑝 (𝑐 (𝑗+1)%𝑛), otherwise swap is possible. Device 𝑎𝑥 (𝑐 𝑗) also hosts

maximal allowed number of components from the 𝑔𝑟𝑜𝑢𝑝 (𝑐 (𝑗+2)%𝑛), otherwise the 𝑐𝑦𝑐𝑙𝑒3 would be

possible. As 𝑐𝑦𝑐𝑙𝑒3 moves two components to their 𝑎𝑦 location, moving any of the component from

𝑐 (𝑗+2)%𝑛 (even the one already on its 𝑎𝑦 device) does not violate 𝑐𝑟𝑖𝑡 .#1. Therefore, any of 𝑐 (𝑗+2)%𝑛
can be moved to 𝑎𝑥 (𝑐 (𝑗)) to not violate 𝑐𝑟𝑖𝑡 .#1, but as 𝑐𝑦𝑐𝑙𝑒3 violates the 𝑐𝑟𝑖𝑡 .#2, every 𝑎𝑥 (𝑐 (𝑗))

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

Derrick: A Three-Layer Balancer for Self-Managed Continuous Scalability 27:33

must host the maximal allowed number of components from every group hosted on 𝑎𝑥 (𝑐 (𝑗+2)%𝑛). It
implies that any cycle of even length violate the 𝑐𝑟𝑖𝑡 .#2, as every second node needs to host the

maximal allowed number of all components from every group from other hosts with the same

parity. Moreover, cycles of odd length violate 𝑐𝑟𝑖𝑡 .#2 as well, as swaps violating 𝑐𝑟𝑖𝑡 .#2 implies

𝑎𝑥 (𝑐 𝑗) hosts the maximal allowed number of components from the 𝑔𝑟𝑜𝑢𝑝 (𝑐 (𝑗+1)%𝑛). Therefore, the
limit of allowed components from 𝑔𝑟𝑜𝑢𝑝 (𝑐 (𝑗+1)%𝑛) is achieved on every node, which contradicts

the fact that 𝑐𝑦𝑐𝑙𝑒𝑖 is possible. Therefore, 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑤𝑎𝑝 or 𝑐𝑦𝑐𝑙𝑒3 is the nextBalancingStep QED.

REFERENCES
[1] Kyar Nyo Aye and Thandar Thein. 2014. A Data Rebalancing Mechanism for Gluster File System. Ph. D. Dissertation.

MERAL Portal.

[2] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel, and Peter Vajgel. 2010. Finding a needle in haystack: Facebook’s

photo storage. In 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI 10).
[3] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat

Srivastav, Jiesheng Wu, Huseyin Simitci, et al. 2011. Windows azure storage: a highly available cloud storage service

with strong consistency. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. 143–157.
[4] Ceph. 2022. Balancer Plugin. Retrieved April 16, 2023 from https://docs.ceph.com/en/mimic/mgr/balancer/

[5] Ceph. 2022. CHAPTER 3. PLACEMENT GROUPS (PGS). Retrieved April 16, 2023 from https://access.redhat.com/

documentation/en-us/red_hat_ceph_storage/5/html/storage_strategies_guide/placement_groups_pgs

[6] Ceph. 2022. Placement Groups. Retrieved April 16, 2023 from https://docs.ceph.com/en/latest/rados/operations/

placement-groups/

[7] Ceph. 2022. V0.94.10 HAMMER. Retrieved April 16, 2023 from https://docs.ceph.com/docs/master/releases/hammer/

[8] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, Jeffrey John Furman, Sanjay

Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed

database. ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.
[9] Tom Coughlin. 2021. C1Q 2021 HDD Update. Retrieved April 16, 2023 from https://forbes.com/sites/tomcoughlin/2021/

05/04/c1q-2021-hdd-update/

[10] Fausto Distante and Vincenzo Piuri. 1989. Hill-climbing heuristics for optimal hardware dimensioning and software

allocation in fault-tolerant distributed systems. IEEE transactions on reliability 38, 1 (1989), 28–39.

[11] John R Douceur and Roger P Wattenhofer. 2001. Large-scale simulation of replica placement algorithms for a serverless

distributed file system. In MASCOTS 2001, Proceedings Ninth International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems.

[12] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech Kilian, Przemyslaw Strzelczak, Jerzy

Szczepkowski, Cristian Ungureanu, and Michal Welnicki. 2009. HYDRAstor: A scalable secondary storage.. In FAST,
Vol. 9. 197–210.

[13] OpenStack Foundation. 2022. Administrator’s Guide. Retrieved April 16, 2023 from https://docs.openstack.org/swift/

latest/admin_guide.html

[14] OpenStack Foundation. 2022. Increasing partition power. Retrieved April 16, 2023 from https://specs.openstack.org/

openstack/swift-specs/specs/in_progress/increasing_partition_power.html

[15] Lukasz Golab, Marios Hadjieleftheriou, Howard Karloff, and Barna Saha. 2013. Distributed data placement via graph

partitioning. arXiv preprint arXiv:1312.0285 (2013).
[16] Greg Holt. 2011. Building a Consistent Hashing Ring. Retrieved April 16, 2023 from https://docs.openstack.org/swift/

latest/ring_background.html

[17] Hanxu Hou, Patrick PC Lee, Kenneth W Shum, and Yuchong Hu. 2019. Rack-aware regenerating codes for data centers.

IEEE Transactions on Information Theory 65, 8 (2019), 4730–4745.

[18] HPE. 2018. StorageExperts What’s new with HPE Scalable Object Storage with Scality RING? Retrieved April 16, 2023

from https://community.hpe.com/t5/Around-the-Storage-Block/What-s-new-with-HPE-Scalable-Object-Storage-

with-Scality-RING/ba-p/7008183

[19] Hung-Chang Hsiao, Hsueh-Yi Chung, Haiying Shen, and Yu-Chang Chao. 2012. Load rebalancing for distributed file

systems in clouds. IEEE transactions on parallel and distributed systems 24, 5 (2012), 951–962.
[20] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey Yekhanin.

2012. Erasure coding in windows azure storage. In 2012 USENIX Annual Technical Conference (USENIX ATC 12). 15–26.
[21] IBM. 2018. IBM Cloud Object Storage System™, Storage Pool Expansion Guide. Retrieved April 16, 2023 from https:

//www.ibm.com/docs/en/STXNRM_3.14.1/coss.doc/pdfs/storagePoolExpansion_bookmap.pdf

[22] IDC. 2022. Enterprise Storage Systems Market Share. https://idc.com/promo/enterprise-storage-systems.

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

https://docs.ceph.com/en/mimic/mgr/balancer/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/5/html/storage_strategies_guide/placement_groups_pgs
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/5/html/storage_strategies_guide/placement_groups_pgs
https://docs.ceph.com/en/latest/rados/operations/placement-groups/
https://docs.ceph.com/en/latest/rados/operations/placement-groups/
https://docs.ceph.com/docs/master/releases/hammer/
https://forbes.com/sites/tomcoughlin/2021/05/04/c1q-2021-hdd-update/
https://forbes.com/sites/tomcoughlin/2021/05/04/c1q-2021-hdd-update/
https://docs.openstack.org/swift/latest/admin_guide.html
https://docs.openstack.org/swift/latest/admin_guide.html
https://specs.openstack.org/openstack/swift-specs/specs/in_progress/increasing_partition_power.html
https://specs.openstack.org/openstack/swift-specs/specs/in_progress/increasing_partition_power.html
https://docs.openstack.org/swift/latest/ring_background.html
https://docs.openstack.org/swift/latest/ring_background.html
https://community.hpe.com/t5/Around-the-Storage-Block/What-s-new-with-HPE-Scalable-Object-Storage-with-Scality-RING/ba-p/7008183
https://community.hpe.com/t5/Around-the-Storage-Block/What-s-new-with-HPE-Scalable-Object-Storage-with-Scality-RING/ba-p/7008183
https://www.ibm.com/docs/en/STXNRM_3.14.1/coss.doc/pdfs/storagePoolExpansion_bookmap.pdf
https://www.ibm.com/docs/en/STXNRM_3.14.1/coss.doc/pdfs/storagePoolExpansion_bookmap.pdf
https://idc.com/promo/enterprise-storage-systems

27:34 A. Jackowski et al.

[23] Alan W. Johnson and Sheldon H. Jacobson. 2002. On the convergence of generalized hill climbing algorithms. Discrete
applied mathematics 119, 1-2 (2002), 37–57.

[24] Saurabh Kadekodi, Francisco Maturana, Sanjith Athlur, Arif Merchant, KV Rashmi, and Gregory R Ganger. 2022.

Tiger:{Disk-Adaptive} Redundancy Without Placement Restrictions. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22). 413–429.

[25] Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram Subramanya, Juncheng Yang, KV Rashmi, and Gregory R

Ganger. 2020. {PACEMAKER}: Avoiding {HeART} attacks in storage clusters with disk-adaptive redundancy. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). 369–385.

[26] Saurabh Kadekodi, KV Rashmi, and Gregory R Ganger. 2019. Cluster storage systems gotta have HeART: improving

storage efficiency by exploiting disk-reliability heterogeneity. In 17th USENIX Conference on File and Storage Technologies
(FAST 19). 345–358.

[27] Govinda M Kamath, N Prakash, V Lalitha, and P Vijay Kumar. 2014. Codes with local regeneration and erasure

correction. IEEE Transactions on information theory 60, 8 (2014), 4637–4660.

[28] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel Lewin. 1997. Consistent

hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing. 654–663.

[29] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage system. ACM SIGOPS
Operating Systems Review 44, 2 (2010), 35–40.

[30] Huiba Li, Yiming Zhang, Dongsheng Li, Zhiming Zhang, Shengyun Liu, Peng Huang, Zheng Qin, Kai Chen, and

Yongqiang Xiong. 2019. Ursa: Hybrid block storage for cloud-scale virtual disks. In Proceedings of the Fourteenth
EuroSys Conference 2019. 1–17.

[31] Michael Luby, Mark Watson, Tiago Gasiba, Thomas Stockhammer, and Wen Xu. 2006. Raptor codes for reliable

download delivery in wireless broadcast systems.. In CCNC, Vol. 6. 192–197.
[32] Julia Palmer, Jerry Rozeman, Chandra Mukhyala, and Jeff Vogel. 2021. Magic Quadrant for Distributed File Systems

and Object Storage. ID: G00738148.

[33] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov, Abhinav Sharma, Mike Shuey, Richard

Wareing, Monika Gangapuram, Guanglei Cao, et al. 2021. Facebook’s tectonic filesystem: Efficiency from exascale. In

19th USENIX Conference on File and Storage Technologies (FAST 21). 217–231.
[34] John Paulsen. 2021. Energy Assisted Magnetic Recording Will Solve the Need for Capacity. Retrieved April 16, 2023 from

https://blog.seagate.com/enterprises/energy-assisted-magnetic-recording-will-solve-the-need-for-capacity/

[35] Jerome Saltzer and M Frans Kaashoek. 2009. Principles of computer system design: An introduction. Morgan Kaufmann.

[36] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010. The hadoop distributed file system. In

2010 IEEE 26th symposium on mass storage systems and technologies (MSST). Ieee, 1–10.
[37] Piotr Skowron, Marek Tomasz Biskup, Łukasz Heldt, and Cezary Dubnicki. 2013. Fuzzy adaptive control for het-

erogeneous tasks in high-performance storage systems. In Proceedings of the 6th International Systems and Storage
Conference. 1–11.

[38] Przemyslaw Strzelczak, Elzbieta Adamczyk, Urszula Herman-Izycka, Jakub Sakowicz, Lukasz Slusarczyk, Jaroslaw

Wrona, and Cezary Dubnicki. 2013. Concurrent Deletion in a Distributed Content-Addressable Storage System with

Global Deduplication. In 11th USENIX Conference on File and Storage Technologies (FAST 13). 161–174.
[39] Li Wang, Yiming Zhang, Jiawei Xu, and Guangtao Xue. 2020. MAPX: Controlled Data Migration in the Expansion of

Decentralized Object-Based Storage Systems. In 18th USENIX Conference on File and Storage Technologies (FAST 20).
1–11.

[40] Qingsong Wei, Bharadwaj Veeravalli, Bozhao Gong, Lingfang Zeng, and Dan Feng. 2010. CDRM: A cost-effective

dynamic replication management scheme for cloud storage cluster. In 2010 IEEE international conference on cluster
computing. IEEE, 188–196.

[41] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn. 2006. Ceph: A scalable, high-

performance distributed file system. In Proceedings of the 7th symposium on Operating systems design and implementation.
307–320.

[42] Sage A Weil, Scott A Brandt, Ethan L Miller, and Carlos Maltzahn. 2006. CRUSH: Controlled, scalable, decentralized

placement of replicated data. In SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. IEEE, 31–31.
[43] Wei Xie and Yong Chen. 2017. Elastic consistent hashing for distributed storage systems. In 2017 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 876–885.
[44] Mi Zhang, Shujie Han, and Patrick PC Lee. 2017. A simulation analysis of reliability in erasure-coded data centers. In

2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS). IEEE, 144–153.

Received 5 May 2022; revised 30 September 2022; accepted 17 March 2023

ACM Trans. Storage, Vol. 19, No. 3, Article 27. Publication date: June 2023.

https://blog.seagate.com/enterprises/energy-assisted-magnetic-recording-will-solve-the-need-for-capacity/

	Abstract
	1 Introduction
	2 Data Arrangement Problems and Solutions
	3 Requirements on Data Balancing
	3.1 High Capacity Utilization
	3.2 Resilience to Failures
	3.3 Balancing Distinguished Components
	3.4 Keeping Related Data in One Rack
	3.5 Limiting Data Movements
	3.6 Limiting Non-stable Components
	3.7 Final Remarks

	4 Derrick's Overview
	4.1 Hill Climbing in Derrick
	4.2 Central Balancing
	4.3 Transition Guide
	4.4 Distributed Balancing

	5 Derrick's Details
	5.1 Capacity and Resilience in CentrBal
	5.2 Multiple ScoreDims in CentrBal
	5.3 DistrBal ScoreDims
	5.4 Components Stability in TrGuide
	5.5 Stability of DistComps in TrGuide
	5.6 Final Remarks

	6 Evaluation
	6.1 Comparison with Ceph and Swift
	6.2 Distributed Balancing Evaluation
	6.3 Performance Evaluation

	7 Conclusions
	A Formalization
	A.1 Problem Statement
	A.2 Auxiliary Functions, Definitions and Corollaries
	A.3 Operations
	A.4 Lemma 1
	A.5 TrGuide Definitions
	A.6 Lemma 2
	A.7 Lemma 3

	References

