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Abstract
Backup solutions increasingly offer cloud tiering, that is, mov-
ing selected data from on-premise storage to the cloud. As
subsequent backups usually contain repeating data, it is rea-
sonable to pair cloud tiering with deduplication to signifi-
cantly reduce the cloud storage utilization, and hence the
associated costs. However, solutions for cloud tiering with
deduplication that would harness the scaling potential of the
cloud tier and minimize the total expenditures due to this tier
are essentially still lacking. This paper aims to bridge this
gap. First, it introduces InftyDedup, a novel system for cloud
tiering with deduplication, which aims to maximize scalabil-
ity by utilizing cloud services not only for storage but also
computation. Accordingly, it performs deduplication in the
cloud, using distributed batch algorithms, in effect allowing
for processing multi-petabyte backups for a couple of dollars.
Second, the paper presents algorithms for InftyDedup that
employ multiple types of cloud storage to further reduce the
costs of the cloud tier. They take into account the character-
istics of each data chunk to efficiently select between cloud
services providing hot and cold data stores, thereby reducing
the overall costs by up to 26%–44%. The solutions are imple-
mented in a state-of-the-art commercial backup system and
evaluated in the cloud of a hyperscaler.

1 Introduction

Managing the surging volumes of data that require protection
or long-term retention increasingly necessitates novel backup
strategies [14]. A popular approach is employing cloud-based
solutions. For instance, according to Veeam, the number of
organizations adopting them is expected to rise from 60% in
2020 to 79% in 2024 [70]. In particular, in a survey by ESG,
72% of the participants confirmed utilizing tiering techniques
to move colder data (e.g., older backups and archives) from
on-premise storage to cloud storage [19].

In this context, data deduplication can become effective.
Since consecutive backups often contain repeating data [44,

47], this technique reduces storage utilization on the order of
tens of times [61]. As a result, it has been a core feature of
several storage systems for on-premise backup applications
[26, 53, 80]. In this light, for backup use cases, it is sensible
to consider cloud tiering with deduplication, that is, moving
data from a local tier (e.g., an on-premise backup appliance)
to a cloud tier (e.g., an object store of a hyperscaler), so that
ultimately the data kept in the cloud tier are deduplicated.

However, implementing solutions for cloud tiering with
deduplication poses two major problems. First, the state-of-
the-art cloud storage systems provided by hyperscalers, no-
tably Amazon, Google, and Microsoft, have been designed
for more general applications and do not offer deduplication
as core functionality for their clients. Consequently, custom
deduplication mechanisms suitable for cloud tiering have to
be developed. Second, there is a large variety of available
cloud storage service types, notably with respect to pricing
models. Whereas initially a lower cost of storage implied a
longer retrieval time, as in AWS Glacier, nowadays systems
like AWS Glacier Instant Retrieval [73] offer the same per-
formance as other cloud storage services. The trade-off is in
turn that with a decreased per-byte monthly storage fee, the
costs of data retrieval and the minimal data storage period are
increased. Therefore, algorithms have to be devised to decide
what type of service to use and for which data, specifically
taking into account the peculiarities due to deduplication.

As we discuss in more detail further in the paper, despite
some research progress, these two problems are largely open.
In short, regarding the first problem, although a few backup
applications [51, 68] and backend appliances [27, 34] with
deduplication offer mechanisms for cloud tiering, they heav-
ily rely on and are implemented mainly at the local tier. In
effect, global deduplication (i.e., of data written via differ-
ent local tiers) is not supported and, more importantly, the
entire process is fundamentally limited by the resources of
the local tier. In other words, despite the possibilities offered
by the hyperscalers, the actual scalability of the cloud tier
in such solutions is severely limited, proportionally to what
is offered by an instance of the local tier. As to the second
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problem, in turn, although the diversity of the service mod-
els offered by the hyperscalers (e.g., S3 vs. Glacier in AWS)
can also be exploited in some solutions [49], this has to be
configured manually or, at best, through policies depending
on data collection ages. However, deduplication typically en-
tails chunking data collections into smaller pieces that may
be referenced multiple times, thereby having possibly dif-
ferent access patterns. This calls for finer-grained and more
automated approaches to storage type selection.

In this paper, we address both these problems, introducing
solutions for scalable and cost-effective cloud tiering with
deduplication. Accordingly, our contributions are twofold.

First, we present InftyDedup, a novel system for cloud
tiering with deduplication. Like the existing tiering-to-cloud
backup solutions, InftyDedup moves selected data stored in a
local-tier system to cloud storage, based on customer-specific
backup policies. However, its operation aims to maximize
scalability by exploiting cloud services—not only for stor-
age but also computation. Therefore, rather than relying on
deduplication methods for on-premise solutions, InftyDedup
deduplicates data periodically in batches and using the cloud
infrastructure but before actually transferring them to the
cloud, which, among others, enables leveraging cloud mecha-
nisms such as dynamic resource allocation. Other necessary
functionalities, notably garbage collection of deleted data, are
supported in the same way. We integrate InftyDedup with HY-
DRAstor [26], our commercial backup system with dedupli-
cation, and evaluate its performance in the cloud of Amazon,
demonstrating, in particular, that multiple petabytes of data
can be deduplicated for a couple of dollars. All in all, being
highly independent of the local tier, InftyDedup overcomes
the limitations of the state of the art and offers unprecedented
scalability. To the best of our knowledge, this is the first ap-
plication of such solutions to multi-tier backup systems.

The second contribution is an algorithm for decreasing the
financial cost of storing deduplicated data in the cloud tier. It
extends InftyDedup by allowing it to move deduplicated data
chunks between cloud services dedicated to hot and cold stor-
age. Whereas existing solutions do not address the problem at
all or enable some optimizations at the level of data collections
(e.g., backups or files), the fact that chunks are deduplicated
between backups/files makes them arguably a better unit for
optimizations. In InftyDedup, they are moved based on their
metadata, notably reference counts due to deduplication and
terse information provided by system administrators on their
data collections. Our empirical evaluation of the algorithm
shows that mixing storage types can reduce the total financial
cost of cloud tiering with deduplication by up to 26–44%.

The rest of the paper is organized as follows. Sec. 2 gives
the necessary background. Sec. 3 describes the overall archi-
tecture and specific algorithms comprising InftyDedup. Sec. 4
discusses the algorithm for exploiting cold cloud storage for
cost minimization. Sec. 5 presents the experimental results.
Sec. 6 surveys related work. Finally, Sec. 7 concludes.

2 Background

This section reviews the characteristics of deduplication stor-
age, backups, and cloud services, which are essential to In-
ftyDedup architecture.

2.1 Deduplication Storage
Deduplication is a data reduction technique that avoids writ-
ing the same data twice. For data with many duplicates, dedu-
plication reduces the storage capacity requirements of the
system [61], increases throughput, and decreases network
traffic [3]. Typically, deduplication is implemented in the fol-
lowing steps [75]. Firstly, the data stream is chunked into
small immutable blocks of size from 2 KB to 128 KB [62].
Secondly, each block receives a fingerprint, for instance, by
computing SHA-256 hash of the block’s data. Finally, the
fingerprint is compared with other fingerprints in the system,
and if the fingerprint is unique, the block’s data is written.

The deduplicated blocks are typically organized in a di-
rected acyclic graph. Each file has its root block, which corre-
sponds to a vertex that keeps references to other blocks. The
blocks with actual data are leaves of the DAG and keep no
references. Blocks with data corresponding to a particular file
form a subgraph of vertices reachable from the root block rep-
resenting that file. Therefore, the movement of a deduplicated
file to a different tier is effectively the movement of a subset
of leaves that are reachable from the root block of the file.

A block can be removed after it is migrated to another sys-
tem. However, reclaiming storage capacity in the system with
deduplication is nontrivial, as the system must ensure that
there are no other references to the removed block. There-
fore, complex garbage-collecting algorithms that can process
blocks’ metadata for hours are implemented [32, 60].

The most natural use case for deduplication is backup stor-
age, as most data does not change in consecutive backups. In
our research, we leverage the characteristics and lifecycle of
backups to decrease the total storage cost.

2.2 Lifecycle of Backups
Typically, numerous copies of the backup data are created
based on assigned retention policies [56]. From the perspec-
tive of our research, there are two important constraints re-
garding the timing and life cycle of protected data.

On the one hand, the data should become quickly avail-
able and up-to-date in case of a disaster. For instance, Zerto
reports [78] that their customers achieve Recovery Point Ob-
jectives of seconds, and Recovery Time Objectives of minutes.
To achieve such ambitious objectives, recent data is kept as
closely as possible to the infrastructure which is recovered.

On the other hand, older versions of backups need to be
stored for weeks, months, or even years [69]. As the objec-
tive points for older data differs, backups are often moved
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to cheaper storage after a specific time [72, 79]. Cloud is of-
ten chosen to keep the older backups for numerous reasons,
including storing data in a different physical location. The
pricing model of cloud storage is also appealing but, as we
describe in the next section, many factors influence the total
cost of storage in the cloud.

2.3 Cloud Storage
The majority of the cloud storage market is shared between
three hyperscalers (Amazon Web Services, Microsoft Azure,
and Google Cloud) [65], so in our considerations we assume
services offered by the three as a market standard.1 The portfo-
lio of hyperscalers consists of numerous storage and comput-
ing products: from databases, queues, and distributed filesys-
tems to simple storage primitives such as objects or blocks.
Our goal is to minimize the storage cost of backups, so our
research focuses on the most affordable products. The lowest
price per stored gigabyte is offered by cold archival object
stores, which are orders of magnitude cheaper than block de-
vices, as shown in Tab. 1. However, the total cost consists of
many factors, including fees per request or IO, charges for re-
moving data before meeting the minimal storage duration, and
the cost of data transfer. Accessing data in some types of the
coldest storage takes additional time (e.g., 12 hours) but every
hyperscaler offers cold storage with instant access [20,22,73].

Amazon
Web Services

Microsoft
Azure

Google
Cloud

Block Storage [$/GB] 0.05 0.15 0.04
Object Storage [$/GB] 0.021 0.0166 0.02

Archival
Object Storage [$/GB] 0.004 0.01 0.004

Coldest Archival
Object Storage [$/GB] 0.00099 0.00099 0.0012

Table 1: Sample2monthly costs of storing blocks and objects
in public clouds [6, 30, 46].

Uploading data to the cloud is usually free, whereas cost
of downloading data once a month can outweigh the cost of
monthly data storage. In either case, the network throughput
to the cloud is a major concern. Hyperscalers offer connecting
data centers to the cloud dircetly (e.g., with 100 GbE) [7, 11]
but the availability of such a high throughput networks is
limited to specific regions. Alternatively, physical devices can
be used for the quick movement of data [9], but it is rather
for peculiar applications. Therefore, moving terabytes to the
cloud can take up days.

1However, there are numerous innovative services offered by other
providers. For instance, the latest trend to decentralize the cloud [57, 58] can
help to implement InftyDedup efficiently.

2The price of storage products depends on many factors, including region.
Moreover, each cloud provides numerous products, for instance, each provider
offers more than one cold object store. The prices between providers cannot
be compared directly, however, the point is that there are several categories
of cloud storage products similar to the order of magnitude of the price.

2.4 Cloud Computing
The product portfolio of cloud computing services is also ver-
satile. There are virtual machines (e.g., AWS EC2), contain-
ers (e.g., AWS ECS), and other services, such as event-driven
function execution (e.g., AWS Lambda). Some of the prod-
ucts are prepared for specific use cases, including machine
learning [31] and databases [4, 29].

The pricing model of computation services is typically
based on the cost of the lower-level resource billing. For
instance, ECS allows running containers on EC2 instances,
so the cost of container execution depends on the amount and
size of virtual machines which host the containers [5]. The
billing model enables using a large number of nodes (e.g., a
hundred servers) momentarily which costs next to nothing.

What is important for cost reduction, hyperscalers offer
so-called spot instances, which are virtual machines with a
discounted price up to 90% but can be interrupted at any
moment . The exact price of a spot instances depends on
multiple factors (e.g., the momentary demand), but historical
data shows that achieving both very low risk of termination
and significant cost reduction is possible [28]. Virtual ma-
chines (including spot instances) can have their own local
storage (e.g., SSD drives), which is cheaper than network-
attached drives but has limited durability as the data are lost
if the machine is destroyed or fails. To minimize the costs of
computations, we considered all of these cloud attributes in
InftyDedup architecture, which we will describe shortly.

3 InftyDedup Architecture

InftyDedup moves selected data from local tier systems
(which are on-premise backup appliances implemented as
in Section 2.1) to the cloud tier. Local tier stores data not se-
lected for tiering or before data is moved to the cloud, so it is
expected to have their own deduplication and to be hardware-
failure resistant to some degree (e.g., by implementing erasure
codes or RAID). As shown in Fig. 1, the cloud tier keeps dedu-
plicated data of files moved to the cloud with necessary per-
sistent metadata and occasionally executes highly optimized
batch algorithms.

Before we describe the details of the structures and algo-
rithms, we discuss our study of cloud characteristics (Sec. 3.1)
and the assumptions we made based on them (Sec. 3.2). After
that, we describe the structure of in-cloud data and metadata
(Sec. 3.3), model of communication between tiers (Sec. 3.4),
algorithms for deduplication (Sec. 3.5), garbage collection
(Sec. 3.6), and data restore (Sec. 3.7).

3.1 Cloud Cost Considerations
We studied the pricing of cloud storage and computing prod-
ucts to design InftyDedup architecture in line with the current
trends. First, we chose product types which are common for
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Figure 1: InftyDedup architecture.

all vendors and compared the pricing models and capabilities
of each product with other products of the same cloud. We
did not compare pricing between vendors, as our goal was
to design an architecture that is cost efficient for any regular
cloud, not choosing a particular vendor.

Keeping 1 PB of non-deduplicated data in a standard cloud
object storage costs between $16,600 and $21,000 per month,
and between $3,600 and $10,000 in the case of archival object
storage with instant access. Therefore, the overall cost of
storing data with deduplication, including additional storage
for deduplication metadata and costs of computations, must
be lower than that to bring any financial benefit.

Considering the deduplication block of 8 KB, 10:1 dedu-
plication, and 20 bytes per fingerprint, 1 PB of data requires
262 GB of fingerprints. If new backups of similar size are writ-
ten each week, over 496 billion queries whether a fingerprint
exists in the cloud are required each month.

Modern architectures of inline deduplication often keep the
fingerprint index (or its parts) on SSDs [3,23,45]. Considering
a naive approach in which each deduplication query requires
a read IO from an SSD drive, at least 190k IOPS are required
to perform the necessary queries each month. To estimate the
cost, let us consider AWS as an example. The monthly cost of
EBS gp3 block storage which provides such amount of IOPS
is $978, and EC2 instances (m5.large) capable of utilizing the
IOPS cost $3827. With the total cost of nearly $5000 monthly

for just handling deduplication queries, there is still room
for a cost benefit from deduplication (depending on usage
patterns and deduplication ratio), but the price is significant
in comparison to the cost of storage without deduplication.

These calculations led us to our conclusion that, despite
the fact that SSDs generally provide a high number of ran-
dom read IOs, relying on random read intensive fingerprint
index stored in the cloud environment is not negligibly cheap.
There are techniques that reduce the number of read IOs for
traditional sequential workloads [80], but their efficiency is de-
creased for modern non-sequential workloads, which need to
be handled just as classic sequential workloads, as explained
by Y.Allu et al. [2]. Moreover, the efficiency of methods that
rely on the data locality (like SISL [80]) decreases when data
is highly fragmented.3 Finally, these methods often are not
prepared to update block information during deduplication,
which is a necessary part of our algorithms for cold storage.

On the other hand, transferring data within the cloud is
free of charge, and even the cheapest instance can transfer
hundreds of gigabytes per hour [10]. Having the possibility
of dynamically scaling resources between zero and hundreds
of servers, processing the fingerprint index sequentially with
a batch job can be more cost-effective than keeping the finger-
print index online 24/7 or relying on short-lived lambdas [8].
In particular, considering up to 10 times cheaper computation
using the aforementioned spot instances. This key observation
was used when designing the InftyDedup architecture based
on assumptions explained in the next section.

3.2 Assumptions and Design Decisions
Despite the connections between tiers, our principal assump-
tion is that our cloud tiering duplication must be processed
outside of the local tier to prevent resource restrictions and en-
able functionalities like deduplication between many local tier
systems. Therefore, all metadata required for deduplication
must be stored and processed outside the local tier.

As the network throughput between the tiers is limited, the
data movement between the tiers should be minimal. There-
fore, only non-duplicate data must be uploaded to the cloud
tier. When restoring data, it must be possible to download
only the data which is not already present in the local tier.
However, for efficient disaster recovery, quick and granular
backup restores must be possible, even when the local tier is
unavailable.

The next major assumption is that batch processing is pre-
ferred over streaming processing. Therefore, the algorithms
are executed occasionally (e.g., once a day or week for dedu-
plication and even less frequently for garbage collection).
There are multiple reasons for that. Firstly, as our cost analysis
of public clouds shows, being prepared for data deduplication

3Fragmentation also concerns restore throughput [37, 41] but in the case
of cloud storage, the read performance scales, and even with random 8 KB
reads the egress traffic cost is equal to per request fee of such small reads.
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24/7 is not negligible cheap. Secondly, as explained in Sec-
tion 2.2, the backups are typically moved to the cloud after
a specified period, so batch processing can be done without
disrupting the data lifecycle. Finally, tiering to cloud with
deduplication requires steps that take a significant time: up-
loading data to the cloud, and garbage collection to reclaim
data in the local tier. Therefore, performing costly inline dedu-
plication brings few benefits in practice, and we decided to
use cheaper batch processing which is executed occasionally.

Garbage collection in the cloud tier must be cost-aware
to ensure that the cost of data removal is not higher than
keeping data for a longer period. Similarly, storing frequently
accessed data in cold cloud storage actually increases the
costs, so the deduplication and garbage collection algorithms
must be extendable with intelligent storage type selection.

Finally, our solution is meant to be suitable for a variety of
cloud platforms and providers. Although in our description
and evaluation we focus on the most popular hyperscalers, our
architecture can be easily adapted to others. In particular, we
paid special attention to private clouds which ensure privacy
and compliance. Therefore, our solution was also entirely
verified in our private environment.

3.3 Data and Metadata in Cloud

Based on the aforementioned assumptions, we designed in-
cloud structures of InftyDedup as follows. The largest struc-
ture contains the blocks with deduplicated data, and these
blocks are grouped into containers. Selecting the size of con-
tainers depends on the cloud pricing, as writing and reading
larger containers requires fewer requests but increases rewrit-
ing cost when reclaiming space after garbage collection.

The largest metadata structure contains file recipes, which
are effectively a list of consecutive blocks as they appear in
each file. If one block exists in a file multiple times, it also
occurs multiple times in its file recipe. There are two types of
file recipes. Firstly, there are unprocessed file recipes (UFR in
short), which are provided by the local tier. UFRs contain the
fingerprint of each block, as the local tier does not know the
block’s cloud location. Later, during deduplication processing,
each entry of UFR receives a cloud address of the block it
references, so the file recipe is converted to processed file
recipes (PFR in short). PFRs can be a simple list of cloud
addresses or have a tree structure to enable the deduplication
of PFR’s parts. In the latter case, fingerprints of PFR chunks
are added to the fingerprint index, which is described shortly.

The second largest metadata structure is a fingerprint index
which contains a mapping from the deduplication fingerprint
of each block to its cloud location. The index is expected to
be smaller than file recipes, as it contains only one entry per
fingerprint. The fingerprint index is bucketed [63] rather than
sorted, meaning the fingerprints are divided into thousands of
buckets based on a hash function. Such data representation en-
ables optimization of distributed fingerprint index processing,

as each bucket is small enough to fit into server memory.
There are also a few smaller structures that keep informa-

tion per file or per container, which are orders of magnitude
smaller than the previous two. The metadata structures are
compressed to reduce space and network usage.

3.4 Communication between Tiers
The exchange of data between the tiers is bidirectional but
kept to a minimum as a network connection between the tiers
can easily become a bottleneck. Two types of information are
sent from the local tier to the cloud. For each file selected for
cloud tiering, the local tier system generates a UFR, which
contains a list of fingerprints of all blocks in the file. The
UFR is later used as an input to batch deduplication, which
generates in return a leaves-to-upload list that is, in fact, a list
of containers. Each container consists of unique blocks that
have not been uploaded to the cloud tier yet. Based on the
list, the local tier uploads the blocks to the cloud. The blocks
can be later downloaded from the cloud tier, which happens
during the file restore operation.

Therefore, the cloud tier has minimal requirements on the
interface of the local tier. It is sufficient that the local tier can
generate a UFR and later upload blocks based on the list of
fingerprints. The local tier can be composed of multiple sys-
tems if each system uses coherent chunking and fingerprinting
methods.

3.5 Batch Deduplication
Batch deduplication (BatchDedup in short) is our distributed
method of performing block deduplication in the cloud. It
is expected to be performed periodically, in harmony with
schedule of backups and garbage collection in local tier sys-
tems. Each execution of BatchDedup is a distributed, fault-
tolerant computation that ultimately modifies persistent struc-
tures kept in the cloud storage. The computations are divided
into steps, and each of the steps consists of smaller jobs that
are parallelized and can be repeated in an event of node fail-
ure. For instance, our implementation uses Hive, which relies
on YARN [67] to schedule jobs, and HDFS [59] for reliable
storage of temporary data. The jobs can be executed on spot
instances as proposed in the AWS best practices guide [16]
because even if the processing is interrupted, the valid version
of metadata is always kept in the cloud storage.

In short, BatchDedup takes UFRs as an input, specifies new
containers with blocks to be uploaded, waits until the local tier
upload the blocks, and updates persistent metadata. The UFRs
are expected to be uploaded to the cloud before BatchDedup
is started (UFRs partially uploaded do not participate in the
process). The steps are as follows:

Step #1: UFR processing selects blocks that need to be
uploaded to the cloud by comparing fingerprints in UFRs
with the fingerprint index. The fingerprint index and UFRs
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Figure 2: First two steps of BatchDedup processed in a dis-
tributed manner.

are bucketed based on fingerprints, and the buckets are dis-
tributed across multiple servers. After that, the fingerprints
are compared in batches that are small enough to fit in mem-
ory. As the size of UFRs is expected to be comparable to
the size of the fingerprint index, the cost of fingerprint index
distribution does not dominate the cost.

Step #2: Container generation divides blocks selected in
Step #1 into containers to generate descriptions for the local
tier. Each server processes a subset of blocks, and the blocks
are distributed based on their original file (so blocks from the
same file can be placed in the same container). The blocks
are sorted by the order (offsets) in their original files,4 as
preserving the original order makes the later step of uploading
the container easier, and reduces the number of requests for
garbage collection and data restores for non-fragmented data.

Step #3: PFR update is conducted after the first two steps,
when the block location (its container and offset) is finally
known for both new and old blocks. Based on that information,
each newly written file receives its PFR.

Step #4: Blocks upload is initiated by the local tier sys-
tems. The local tier systems first download the descriptions
of containers (which blocks should be uploaded to which con-
tainer). After that, each of the local tier systems uploads the
actual data. When the uploads are completed successfully, the
in-cloud metadata structures are updated to mark the new files
as ready in the cloud.

The first two steps of BatchDedup are depicted in Fig. 2.
Similar techniques are used to perform the remaining steps of
BatchDedup and garbage collection in scale.

Overall, the process is expected to take time: BatchDedup
is executed periodically, the computation in Steps #1-#3 is
expected to take from minutes to hours, and the block upload
in Step #4 can even take days, depending on the data volume
and network bandwidth. As Step #4 is inevitable in any cloud-
tiering solution, cloud tier alone is not suitable for providing
very short RPO (e.g., below a minute). However, for files
moved to the cloud tier after a given period, it is possible to
schedule all steps in periods that will not violate the timing
constraints of the backup policy.

4A block is expected to exist in multiple files or to be repeated within one
file. In such a case, only the first appearance is stored in a container.

3.6 Batch Garbage Collection
Batch garbage collection (BatchGC in short) is expected to
be executed periodically but less frequently than BatchDedup.
Its purpose is to identify blocks that are no longer referenced
by any PFR and reclaim free space in the containers. However,
deciding whether a container should be modified to remove
unreferenced data is nontrivial, as rewriting a container in the
cloud has a significant cost, so we propose different strategies
to decide whether a container should be rewritten.

PFRs keep addresses of containers, so rewriting a con-
tainer require modifications in PFRs. The cost of processing
PFRs is discouraging, as PFRs can be many times larger than
fingerprint index. However, garbage collection is done oc-
casionally, so even if it is few times more expensive than
BatchDedup, the overall cost of InftyDedup is not affected
that much. Therefore, our main goal is ensuring scalability
which enables meeting the time constraints of other garbage
collection algorithms for deduplication storage [24, 60].

BatchGC consists of the following steps:
Step #1: File removal processes non-removed PFRs to

find blocks that are still referenced by at least one file.
Step #2: Container verification checks how many blocks

in each container are live. Based on one of the strategies, a
set of containers that will be removed or rewritten is selected.

Step #3: Container metadata are updated based on the
decision taken in Step #2. New metadata for modified con-
tainers are calculated. In particular, some of the blocks may
receive a new address, so new versions of the fingerprint index
and PFRs are computed.

Step #4: Containers are rewritten to actually reduce
space usage. When all newly generated containers are writ-
ten, the metadata computed in Step #3 take effect, and old
containers are deleted.

We investigated three strategies which decide whether a
particular container should be rewritten:

GC-Strategy #1: Reclaim only empty containers. As in
most cloud services sending a request to remove an entire
container is free of charge, the strategy brings cost reduction
(as less capacity needs to be stored) with no additional cost.
However, the strategy does not remove containers in which
only a fraction of data has been deleted.

GC-Strategy #2: Reclaim containers if the rewrite pays
for itself after T days. To determine whether rewriting a
container will bring a cost benefit, the following ratio can be
calculated for each container:

gcr =
COSTrewrite

Tdays ∗CAPACITYto_be_reclaimed ∗COSTbyte_per_day
(1)

Only if gcr < 1.0 rewriting container is cheaper than storing
its data for Tdays. However, picking the right value of Tdays
is nontrivial. For instance, if Tdays is the time left until the
next BatchGC, the containers are rewritten only if it brings
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financial benefit before the next chance to remove any data.
In many cases, such Tdays value is too small and will prevent
from rewriting some containers, despite the fact that rewriting
the container would bring a financial benefit in the long run.
On the other hand, large Tdays value implies often rewriting,
which can lead to exceeding Strategy #1 costs.

GC-Strategy #3: Reclaim containers based on file expi-
ration dates. GC-Strategy #2 can be improved, if files contain
information about their expiration date. Such information can
be provided by the local tier systems in UFRs, if the expira-
tion date results from the backup configuration. Therefore, for
each container, Tdays can be calculated as the maximal expira-
tion date of its blocks (aligned up to the BatchGC schedule).
The expiration date is expected to increase in time,5 as new
files with later expiration dates will be sotred. However, even
with the constantly increasing expiration dates, the cost never
exceeds GC-Strategy #1, as a non-empty container is rewritten
only when it is beneficial.

3.7 File Restore
The cloud metadata format supports straightforward file re-
stores. Each file has its own object, with the key based on
the local tier system identifier and file path. Therefore, object
storage interface features such as ACLs and per-prefix listings
can be used for convenient file management. Based on the
content of PFR, which stores the container address and data
offset, the file can be read without any interaction with the
local tier systems. As PFRs are updated during BatchGC, the
movement of data between containers during GC does not
spoil the reads.

However, egress traffic is a major cost, so the restore can
be integrated into the local tier system for cost reduction. If
the block is available locally, there is no need to download
it from the cloud. If the block is not available locally, it is
downloaded, and optionally be stored in the local tier system,
as some workloads require reading data again in the near
future (e.g., restoring multiple similar VMs). Implementing
such local-tier assisted reads requires storing fingerprints in
PFRs, which increases the storage cost for metadata. The
fingerprints can be added and removed from PFRs on-demand
during BatchDedup or BatchGC.

4 Cold Storage Utilization

To reduce the cost of storing data in the cloud, InftyDedup can
be extended with an algorithm that selects whether a block
should be stored in hot or cold cloud storage. Our primary
goal was to utilize services that offer different pricing with
comparable durability and latency [22, 73], to prevent situa-
tions in which the movement of data to cold storage negatively

5The expiration date for a container can also decrease if someone deletes a
file before the expiration date. We find such case rather marginal. In particular,
enabling WORM protection [50] prevents such removals.

Figure 3: Architecture of data and metadata with two types of
data storage. Fingerprint index is extended.

Figure 4: Writing blocks to more than one storage type. Block
b5 is written to hotter storage, despite the fact it is already
available in colder storage if it brings a cost benefit due to
frequent restores of b5.

affects the recovery time.6 Therefore, we focused on colder
storage which offers a reduced price of storing data but in-
creases the price of restores, and demands a minimal storage
period (e.g., 90 days). To utilize the storage effectively, we
rely on two additional pieces of information provided with
each file (in UFRs):

1. Current expiration date, as in GC-Strategy #3.
2. Rough, expected frequency of file restore.
As explained earlier, the expiration time is typically known.

The restore frequency is unknown in advance but assessing
the read frequency of file is a common practice for data kept
in the cloud. For instance, Amazon explicitly recommends
different storage classes for data accessed "once per quarter"
and "1-2 times per year". In the specific case of backups,
assessing restore frequency should be relatively easy, as a
study of a large number of backup jobs [12] suggests that
backup domains are divided into these with very frequent
restores, sporadic restores, and virtually no restores. More-
over, particular backup policies clearly influence the restore
frequency [54], and an upper bound on the restores can be
calculated based on restore SLAs. Finally, modern backup
software already implements tools that allow viewing histori-
cal data on the restore frequency of selected resources [71].

The persistent data and metadata structures are organized
as shown in Fig. 3. The process of container writing during
BatchDedup and BatchGC is extended, so each black can be
stored in an appropriate cloud storage type, as shown in Fig. 4.

6Usage of our algorithms with the coldest storage services which length-
ens the retrieval process is also possible. However, in such case providing
an additional information regarding the required retrieval time of each file is
necessary.
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Each block is stored in a storage type for which the following
formula has lower value:

t=COSTinsert+(COSTB/day+COSTrestore∗FREQrestore)∗EXPtime (2)

In the formula, the COSTinsert depends on cloud pricing,
as well as the sizes of the block and its container, as the
amortized cost of data insertion is included. The COSTB/day
describes the storage cost of the block. The COSTrestore de-
pends on the data locality, as many blocks can be read with
one request, so the upper bound for the COSTrestore can be cal-
culated as one request per block or assessed with a heuristic.
The FREQrestore and EXPtime are inherited from each file ref-
erencing block, and stored with each block in the fingerprint
index.

However, further adjustments to FREQrestore and EXPtime
are required. That is because the first decision about storage
type must be taken when the block is stored for the first time,
when blocks’ FREQrestore and EXPtime are understated, as
more references will come in the future. For instance, a block
can be initially stored in cold storage but soon it receives more
references and its actual restore frequency increases signifi-
cantly. Vice-versa, data with short EXPtime can be kept in hot
storage, despite the fact a reference with a larger EXPtime will
come soon.

Therefore, both FREQrestore and EXPtime should be heuris-
tically modified. A heuristic that worked very well in our
experiments relies on block reference counts. First, we select
a number R of expected references for each block (e.g., a
hardcoded value 5 or value calculated from the system state).
Then, we modify FREQrestore and EXPtime for blocks that
have not reached the expected number based on the formula
(e.g., we multiply it by R− r, where r is the actual number
of references). In the end, the FREQrestore and EXPtime for
newly written blocks are more similar to their future values.

In justified cases, a block can be stored in multiple storage
types (e.g., when a block stored in cold storage receives a ref-
erence with high FREQrestore), but BatchGC will eventually
remove the unnecessary copies. Similarly, BatchGC can move
a block from one type of storage to another (e.g., a reference
with high restore frequency has been deleted). Generally, dur-
ing BatchGC, a formula for calculating whether a container
should be rewritten, takes into account the potential cost re-
duction caused by a change of the storage type. A decision on
whether rewriting a particular container is profitable must be
made for the whole container because rewriting the container
also introduces costs. Nevertheless, blocks from one container
can be moved to containers in various tiers (Fig. 5).

Figure 5: Rewriting containers to multiple types of storage.

5 Evaluation

We performed multiple experiments to evaluate InftyDedup
and we present them in two parts. First, we evaluate the per-
formance and cost of our implementation executed in a public
cloud. Secondly, we evaluate our garbage collection and stor-
age type selection strategies under various workloads.

5.1 Performance Evaluation

To evaluate the performance, we implemented InftyDedup
using Apache Hive [21], which we selected as a possible
approach to provide portability between different public and
private clouds. We present results from the implementation of
our batch algorithms, as uploading containers and restoring
data are straightforward object storage operations in which
the bottleneck is expected mostly on the network to the cloud
(even a naive implementation can saturate 1 GbE network
with uploads and restores using a single core).

Our batch algorithms are much different from the state-
of-the-art tiering to cloud with deduplication techniques,
therefore comparing with existing solutions was not possi-
ble. Instead, we just present the results using publicly avail-
able hardware. The evaluation was conducted in AWS using
m5d.xlarge instances with 4x vCPU and 16 GiB of RAM. We
aimed to use the smallest possible instances (to maximize
the horizontal scaling) but in our workloads the technological
stack of Apache Hive did not utilize the limited memory of
the smallest instances efficiently. The selected instance type
has 1x 150 GB NVMe which costs less than network attached
EBS.

Presented experiments used synthetic data with the follow-
ing characteristics. Each file contained approximately 51 GB
(as backup files typically have tens of gigabytes or more [74])
chunked into blocks of approximately 64 KB (the target block
size of the deduplication system for which we prepared In-
ftyDedup). The content of the files is described with each
experiment. We decided to present results with synthetically
generated data, as our algorithms mostly distribute the data
(e.g., based on fingerprints) and later sort the the data in small
portions, so the exact characteristic of the data (e.g., the initial
order of block) does not affect the performance much.

5.1.1 Batch Deduplication Processing

We evaluated BatchDedup in configurations varying in size.
Each experiment consisted of two steps. In the first (initial)
step, a large number of files without duplicates was processed
to resemble a situation in which new backups were uploaded
to the cloud. In the second (incremental) step, a dataset 3x
smaller than the initial backup is uploaded to the cloud (as
typically incremental backups are smaller than their full back-
ups [12]), where 90% of the blocks are duplicates (which
matches the expected average daily deduplication ratio [12]).
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Figure 6: BatchDedup performance.
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Figure 7: BatchDedup with growing data.
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Figure 8: BatchGC performance.

The smallest configuration (8 instances) uploads 3072 files in
the first step and 1024 in the second step. In larger configu-
rations, the amount of data to be processed is scaled linearly
with the system size. Therefore, the smallest test processed
metadata of 208 TB data and the largest one of 1.66 PB.

In all configurations, the first step takes up between 1h25m
and 2h10m (Fig. 6), and the second step takes up to 30m.
Overall, the performance scales close to linearly. We analyzed
the resource utilization, and the main bottleneck is the CPU,
as most of the time its usage is above 95%. The network
and the local NVMe drive are underutilized, with peak per-
node usage of respectively 350 MB/s of network bandwidth
and 6% of disk utilization. We expect that the performance
can be further optimized but the computation cost is already
marginal compared to the cost of data storage. For instance, in
the experiment with 32 instances, the second stage eliminates
250 TB of duplicates and costs below $1, which is less than
0.1% of monthly savings on storage. Similarly, the costs of
accessing in-cloud metadata during processing were marginal,
as both steps required roughly 250K GETs ($0.1), 20K PUTs
($0.1), and transfer within one zone is free of charge.

We also conducted a different experiment with multiple
steps of incremental uploads in one configuration (8 in-
stances). As shown in Fig. 7, the computation time increases
close to linearly with the amount of non-duplicate data which
is added to the fingerprint index in each experiment.

5.1.2 Batch Garbage Collection Processing

First, we evaluated BatchGC by removing a fraction of
data uploaded in the experiments described in Section 5.1.1.
Specifically, we removed the data uploaded in the first step
to resemble removing the oldest version of a backup. In each
verified configuration, the processing took between 61 and 65
minutes.

BatchGC, unlike BarchDedup, reads all PFRs, so we also
verify that the processing time increases close to linearly
with the size of both fingerprint index and filerecipes as (Fig.
8). The results confirm that for data with many duplicates
BatchGC is more expensive than BatchDedup. However,
BatchGC is expected to be executed less frequently, so both
algorithms will have comparable total execution costs.

5.2 Strategies Evaluation
We evaluated how our garbage collection and storage type
selection strategies behave in a large number of workload sim-
ulations. The strategies optimize the costs of storing data for
months and years, so we could not conduct these experiments
in the public cloud, as it would take too long. Instead, we
ran some initial experiments to confirm that we understand
the pricing model and features of the cloud, and based on the
results, we implemented a simulator. The simulator calculates
costs based on cloud pricing of storage, requests, transfer, and
other factors like the minimal storage duration.

Each experiment was conducted in numerous configura-
tions of workload characteristics and system parameters. We
present aggregated (minimal, maximal, and average) results,
with values normalized to the result with the minimal cost.

5.2.1 Workload Characteristics

Our simulator allowed specifying following factors to evalu-
ated various backup workloads:

Data source was selected from the following two sets.
Firstly, we generated synthetic workloads in which a given
fraction of data was modified and deleted for each day. Both
types of modifications were applied in variable length stream-
contexts (of size from 1 to 1024 blocks), so a given number
of consecutive blocks was modified at once. Introduction
of the stream-contexts was necessary, as data modified in
small contexts is more fragmented, so the number of requests
required to read is increased. Secondly, FSL traces [64] were
used, as they are real-world datasets that contain information
on how the data of multiple users change over the years.

Retention policy specifies how long each file (backup) is
be stored. We analyzed a large number of documents and
guidelines related to retention policies [1, 25, 66] to generate
realistic policies. Typically, each type of backup is stored for
a longer time than its backup period (e.g., weekly backups
are kept for four weeks). In our experiments, daily backups
are kept for one week, weekly backups are kept for a month,
monthly backups are kept for a year, and yearly backups are
kept for five years. Based on that, we came up with three
different policies: keepAll policy in which all types of backups
are stored in the cloud, dailyExcluded in which daily backups
are excluded (so only backups stored for at least a month are
kept in the cloud), and dailyOnly in which only daily backups
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are kept in the cloud. In all experiments, the data were written
for a period of 5 years.

Read patterns remarkably affect the total cost of owner-
ship of data in the cloud. Unlike for writing data, we have
not found any collected read traces for backup data. Similarly,
there are no precise guidelines that describe typical backup
read patterns. Therefore, we adapted a model in which each
file is read with a given probability, and verified the full spec-
trum of possible values.

5.2.2 Garbage Collection Strategies Evaluation

To evaluatd how the proposed garbage collection strategies
perform in different workloads, we conducted a large number
of experiments with the pricing model of AWS S3 standard
as hot storage and Glacier Instant Retrieval as cold storage.7

We denoted the experiments in which the storage types are
mixed as mixed. We verified our three strategies for garbage
collection. Strategy #1 is denoted as onlyEmpty, less{25, 50,
75, 99} denotes Strategy #2 with the T parameter such that
the behavior is equivalent to reclaiming space when less than
25, 50, 75, 99 percent of container capacity is used by live
data, and Strategy #3 is denoted as costBased.

As shown in Fig. 9, onlyEmpty strategy achieved the worst
results. In general, keeping data in hot storage was more
expensive than in cold / mixed storage, which is expected
since there were no reads in the experiments. For cold / mixed
storage, costBased strategy gave significantly better results
(on average 1.4%-23%), whereas for hot storage (where the
rewrite cost is marginal) it gave similar results to less99.
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Figure 9: Garbage collection with different strategies.

In another set of experiments (Fig. 10), which included
reads, there are more differences between the strategies. On
average, costBased strategy is only 2.2% better, but comparing
the worst cases, the difference is 24%. The analysis of the
number of containers that are rewritten, deleted empty, or
remain live at the end of the test, confirms that onlyEmpty has
the largest number of containers that are live (Fig. 11).

7At the moment of writing, cold storage had 4/25x more expensive
PUT/GET requests, 5.25x times cheaper storage costs, the minimum storage
duration was 90 days, and an additional per-gigabyte retrieval cost for cold
storage was equal fee for 3000 GET requests.

The analysis of garbage collection strategies led to the
question of how container sizes affect the costs, as smaller
containers increase the probability of removing the entire con-
tainer but also increase the number of PUT requests needed
to store data initially or during container rewriting. As shown
in Fig. 12, for the costBased strategy, the lowest average cost
is with 16 MB containers (4 MB and 64 MB are respectively
4.5% and 2% more expensive). The smallest, 1 MB containers
were the most expensive, even with the onlyEmpty strategy,
because with such small size the costs of the initial container
creation prevail (Fig. 13). In case of cold storage, cost of PUT
requests is significant, so storing the data in small containers
in cold / mixed storage increases the cost up to 40%.
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Figure 10: Garbage collection
strategies with reads.

mixe
d / c

os
tB

ase
d

mixe
d / o

nly
Empty

mixe
d / le

ss2
5

mixe
d / le

ss5
0

mixe
d / le

ss7
5

mixe
d / le

ss9
9

0

0.5

1

N
or

m
al

iz
ed

to
ta

lc
on

ta
in

er
s

rewritten deleted live

Figure 11: Normalized num-
ber of containers rewritten,
deleted empty and live.
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Figure 12: Garbage collection
with varying container sizes.
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Figure 13: Cost breakdown
with different container sizes.

5.2.3 Storage Storage Type Selection

We evaluated our storage type selection strategies in work-
loads with varying read frequency. For each experiment, there
are 4 synthetically generated sets of files, and each set has a
different read frequency: once a month, once a year, once a
year with 1% probability, and once a year with 0.1% prob-
ability. All 4 sets were written together, just as in a storage
system that keeps files with varying read frequencies. The
experiments were conducted in series, and in each series the
read frequency was scaled by a factor from 0.001 to 10. There-
fore, cases in which reads are virtually not existent, in which
reads dominates the total cost, and cases in-between were
evaluated. A real-world ratio between backup and recovery
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jobs is typically 100 : 1 [13] but varies depending on the sys-
tem [12]. In our tests, the ratio of backups to recoveries for
scale factor 0.01 is 70− 700 : 1 (mean=216 : 1) depending
on the retention policy, therefore we expect results with scale
factors 0.01 and 0.1 to reflect a typical use-case.

As shown in Fig. 14, on average mixed strategy gives 55%
cost savings in comparison to cold if there are many reads and
70% in comparison to hot if there are hardly any reads. The
breakdown of newly created containers (Fig. 15) confirms
that data ends up in cold storage when there are hardly any
reads, and in hot storage when there are frequent reads. The
cost breakdown (Fig. 16) confirms that our strategy for mix-
ing storage types balances the costs between the expensive
storage of hot data and the expensive reads of cold data.
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Figure 14: Storage type se-
lection depending on read fre-
quency.
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after reclamation.
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Figure 16: Cost breakdown with varying read frequencies.

We also evaluated how predicting the number of references
in the future affects the cost. Fig. 17 presents the normalized
cost, depending on the selection of expected references num-
ber. Mixing the storage types without predicting that more
references will come, the cost is higher on average by 11%
(worst case 277%) compared to predicting 5-10 references.
For 3-10 references, the results are very similar (the lowest
average cost was achieved with 10 and the lowest worst-case
scenario with 5). Therefore, we confirmed that predicting the
number of references brings significant cost reduction. How-
ever, in general the results are not very sensitive for slight
changes in the expected number of references.

The mixed strategy depends on the expected frequency
of reads, which may be incorrectly assessed. We conducted
experiments with a significant prediction error (value underes-
timated and overestimated ten times). Even such large estima-
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Figure 17: Cost of storing
data depending on expected
number of references.
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Figure 18: Cost of storing
data depending on the error
of frequency prediction.

tion error, the results are close to perfect (Fig. 18). Therefore,
in all other experiments we assumed the perfect estimation,
to facilitate studying the remaining experimental parameters.

5.2.4 Different Public Clouds

To confirm that our strategies are generally applicable to pub-
lic clouds, we repeated most of the experiments with the pric-
ing model of Google Cloud and Microsoft Azure. As our
evaluation shows, mixing cold and hot storage reduces the
costs for all three major providers (Fig. 19). The noticeable
differences in gain between the cloud providers follow from
the different ratios of costs, especially the cost of storing data
and egress traffic. On average, keeping data only in hot stor-
age is 66% more expensive, and keeping data only in cold
storage is 30% more expensive than using the mixed strategy.
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Figure 19: Comparison of gain from mixing storage types
with different public cloud pricing.

5.2.5 FSL Traces

Finally, we verified our strategies using the FSL traces [64].
Specifically, we used the available homes snapshots dataset
with 64 KB chunking. The traces contain metadata of files
chunked during writing, but they have no information about
the read pattern. Therefore, for each user, we verified how
our storage type selection works with the varying number of
reads (restoring each backup with a frequency from 0.0001
to 1 time a month). As shown in Fig. 20, at the extreme read
frequencies the mixed strategy keeps almost all the data in
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the cheapest of the two storage types. However, if the num-
ber of reads is in between, the mixed strategy works better
than keeping data in a single type of storage, as depending
on the data characterization a different decision should be
taken for each block. In particular, the characterization of the
reference number of each block is important, as frequently
referenced blocks are accessed more often. Therefore, mixing
the storage type can outperform keeping the data in one stor-
age type, decreasing the cost by 26%-44%. This result shows
that even when the restore frequency of each file is known in
advance, relying on the selection of one storage type can be
significantly more expensive than using our mixed strategy.
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Figure 20: Storage cost in experiments with FSL traces.

6 Related Work

Hierarchical storage is widely adapted, as storage devices
offer a trade-off between cost, capacity, and performance [52].
Systems with storage tiers are actively researched and, in
recent years, a large number of publications refer to tiering
in the cloud [36, 43, 55]. Hsu et al. [35] propose an AI-based
prediction model for the classification of whether data is cold
or hot. Liu et al. [42] describe an online algorithm for two-tier
cloud storage which works without any prior knowledge of
future access frequencies. However, less attention is given to
tiering techniques in the cloud in the context of deduplication.

MUSE [76] is a framework focused on providing SLA
for deduplicated data focused on the primary storage use
case, which is a different use case than storing backups. DD
Tier [27] is a tiering with deduplication that performs its
computation in the local tier, hence imposing fundamental
restrictions and limitations. Firstly, deduplication of data from
more than one local tier system is not possible, as each system
performs the deduplication on its own. Furthermore, all or at
a least large fraction of metadata is needed locally to operate.
Therefore, metadata are stored in both tiers, which not only
increases storage capacity usage, but also forces downloading
a large amount of metadata to recover even a single file. More-
over, the resources for metadata storage and processing of the
local tier are limited. As locally stored metadata can consume
hundred of terabytes of local storage, the size of the cloud tier
is limited (to 2x the size of the local tier). Alike, deduplication
and garbage collection algorithms cannot overuse scarce local
resources, especially RAM, CPUs, and disk I/Os. Therefore,

perfect hashing is used to decrease memory requirements
below 3 bits per fingerprint, so extending it with techniques
similar to our storage type selection is very difficult.

DD Tier introduces a technique for estimating how much
space will be freed from the local tier after moving data to
the cloud, and in recent years, significant research attention
has been paid to the problem of selecting files for efficient
data removal and migration in systems with deduplication
[33, 39, 48]. As long as such methods do not require storing
additional metadata locally, they can be used with InftyDedup.

A large number of publications explore the topic of se-
curity threats of deduplication in the cloud. Therefore, sev-
eral methods of preventing particular attack types were pro-
posed [18,38,40,77]. Alike, side channels leaking information
from deduplication storage are studied [15, 17]. The majority
of threats arise from the situation in which a public cloud
provider implements the deduplication between users. InftyD-
edup is meant to be used by a single organization, and writing
to InftyDedup requires accessing the local tier, so the situa-
tion is much different. Still, some organizations might find
the deduplication side-channels as a threat within the organi-
zation, and adding security mechanisms to InftyDedup can be
required. Nevertheless, users of InftyDedup may not trust the
cloud provider, so the local tier can encrypt the blocks with
actual data stored in InftyDedup. The structure of the data
(information on which blocks are referenced by which files)
is still exposed to allow the computations in the computations,
but the situation is pretty much the same in any tiering with
deduplication, as restoring blocks reveals the structure of files.

7 Conclusions

We presented InftyDedup, a novel, cloud-native approach to
tiering to cloud for a storage system with deduplication. Com-
pared to the state of the art, our architecture does not impose
any limit on the size of the cloud tier and supports dedu-
plication from multiple first-tier systems. We implemented
InftyDedup for a commercial storage system (HYDRAstor)
and evaluated it in a public cloud (AWS). The evaluation con-
firmed the desired scalability of deduplication handling: our
batch algorithms, designed to reduce cloud costs and harness
dynamic resource allocation, were able to process metadata
of multi-petabyte data collections for a couple of dollars.

To further decrease the cost of cloud storage, we proposed
an extension to InftyDedup, which moves chunks between
hot and cold cloud stores based on their anticipated access
patterns. Its evaluation with real-world traces showed that our
deduplication-specific heuristic for adjusting the expected
read frequency, which takes into account block reference
counts, decreased the costs on average by 11%, and the over-
all solution achieved 26%–44% reductions. The algorithm
requires minimal input from a system administrator and was
demonstrated to retain its cost benefits even when the admin-
istrator’s estimations were under- or over-estimated.
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