
Failure Handling in RPL Implementations:
An Experimental Qualitative Study

Agnieszka Paszkowska and Konrad Iwanicki

Abstract The IPv6 Routing Protocol for Low-power and Lossy Networks (RPL) is
a recognized standard for routing packets in low-power wireless networks. Its two
popular implementations—TinyRPL and ContikiRPL—have been used for both re-
search and commercial purposes. However, despite their wide adoption, qualitative
studies of their behavior under various types of failures are essentially lacking.

Therefore, in this chapter, we aim to bridge this gap in a manner that may be
of interest to both researchers and practitioners. More specifically, we evaluate the
two implementations of RPL in a range of link and node failure scenarios. We show
that whereas the implementations handle well some classes of failures, for others
they exhibit undesirable behaviors or even fail completely. The results thus identify
failure scenarios handling which may require additional attention before employing
the implementations in real-world dependable embedded systems.

1 Introduction

A routing protocol is practically indispensable in embedded systems involving wire-
less low-power and lossy networks (LLNs). It allows network nodes that are out of
each other’s radio range to communicate by forwarding data packets via other, in-
termediate nodes. In effect, it alleviates several real-world problems associated with
implementing and deploying LLN-based embedded systems, notably communica-
tion obstacles in the target environment or large dimensions of the environment

Agnieszka Paszkowska (B) · Konrad Iwanicki
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. Banacha 2,
02-097 Warszawa, Poland, e-mail: ap321142@students.mimuw.edu.pl

c© Springer International Publishing AG, part of Springer Nature 2019
H. M. Ammari (ed.), Mission-Oriented Sensor Networks and Systems: Art and Science,
Studies in Systems, Decision and Control 163,
https://doi.org/10.1007/978-3-319-91146-5 3

49

ap321142@students.mimuw.edu.pl
https://doi.org/10.1007/978-3-319-91146-5_3

50 Agnieszka Paszkowska and Konrad Iwanicki

itself. If, in addition, the protocol is self-organizing, it can also significantly reduce
the administrative costs inherent in configuring and maintaining such systems.

The IPv6 Routing Protocol for Low-power and Lossy Networks (RPL) is meant
as such a protocol [36]. RPL is IETF’s standard, incorporating state-of-the-art so-
lutions, developed specifically to address the peculiar requirements of LLNs. It
has both proprietary and open-source implementations, among which TinyRPL for
TinyOS [27] and ContikiRPL for ContikiOS [6] are arguably the best known ones
[23]. In particular, TinyRPL and ContikiRPL, have become inherent components
of LLN protocol stacks in both research-oriented deployments and commercial so-
lutions. In short, to deliver their functionality, multiple embedded systems rely on
RPL-based networking provided by these implementations.

Nevertheless, despite the growing adoption of RPL’s implementations, many of
their aspects remain largely unexplored. One of such aspects is the behavior of the
implementations in various failure scenarios. As we elaborate in subsequent sec-
tions, whereas the performance of RPL’s implementations has been studied quan-
titatively, qualitative studies of their behavior under specific types of failures are
essentially lacking. Without such studies, however, it is not clear to what extent the
implementations can be relied upon in dependable embedded systems.

For this reason, here we aim to bridge this gap. To this end, we evaluate
the two aforementioned state-of-the-art implementations of RPL—TinyRPL and
ContikiRPL—in a range of failure scenarios. As the evaluation environment, we
employ low-level simulators: TOSSIM [26] and COOJA [31], respectively. The sce-
narios cover in turn crashes of specific nodes and links, so as to affect the network
topology in a particular manner, which would be hard to achieve with experiments
studying robustness purely statistically. We show that whereas some of the consid-
ered failures are handled well by the implementations, for others the implementa-
tions exhibit undesirable behaviors or even fail completely. We also identify causes
of such behaviors, which may be of particular interest to practitioners who are plan-
ning to use the implementations in their embedded systems. All in all, our results
shed new light on the dependability of RPL’s popular implementations.

The rest of this chapter is organized as follows. Section 2 gives an overview of
RPL. Section 3 surveys related work. Section 4 presents our experimental methodol-
ogy. Sections 5–8 discuss the results for the subsequent failure scenarios. Section 9
concludes and outlines possible future work.

2 Overview of RPL

To study the behavior of RPL’s implementations, let us first give an overview of RPL
itself, including details on how it provisions routes, what data structures it uses to
maintain the routes and how it handles failures and topology changes, to name just
a few examples. In addition to discussing the standardized aspects of the protocol,
we highlight unspecified issues, which are left open to implementations.

Failure Handling in RPL Implementations: An Experimental Qualitative Study 51

Although many routing techniques exist for LLNs, including shortest-path rout-
ing [9], compact routing [28], hierarchical routing [19], and routing by means of
geographic [22] or virtual [8] coordinates, to name a few representative examples,
RPL is in principle a centralized protocol. Despite a potentially inferior performance
of this technique [20], its choice can likely be attributed to simplicity.

Being a centralized protocol, RPL combines solutions for two basic traffic pat-
terns: so-called upward routing, in which all low-power nodes forward their pack-
ets to a common (central) destination node, typically a border router, with so-called
downward routing, from the border router to the nodes. These two basic patterns en-
able more complex ones, in particular, any-to-any routing between arbitrary nodes.
However, it is upward routing, implemented by means of a distance-vector algo-
rithm, that is the foundation of the protocol: if it does not work correctly, the other
patterns will not work either. Consequently, for brevity, in our studies we focus
solely on upward routing.

2.1 Preliminary Information

Recall that a routing protocol is responsible for directing packets in a LLN. More
specifically, a node receiving a packet from a given source node to a given destina-
tion node needs to select the next-hop node, to which the packet will be forwarded,
so that it can finally reach its destination. In LLNs, the next hop for a node is chosen
from the nodes within the node’s radio range. In RPL, such nodes are called the
node’s neighbors.

However, not every neighbor is a good candidate for the node’s next hop. This
is because transmitting a packet to a next hop should bring the packet closer to the
destination, or, stated more formally, it should decrease a cost of the packet reaching
the destination.

Therefore, each node in RPL’s upward routing distinguishes a subset of neigh-
bors that have a lower cost of sending a packet to the destination than this node.
Such neighbors are called the node’s parents. The node uses such a parent set to
select a single preferred parent: the primary parent chosen as a default next hop for
packets forwarded by the node to the given destination. The cost of sending a packet
from a node to the destination is in turn called the node’s rank.

Since when selecting a preferred parent, the node should in principle consider
the neighbors with the lowest ranks, the rank aims to reflect the node’s distance
from the destination. However, RPL’s specification does not state exactly how to
measure this distance. In particular, the node’s rank can depend on the requirements
of a specific application and the choice of a metric to be optimized globally in the
network when routing packets [35], for example, hop count, latency, or estimated
transmission count, ETX [5].

Conceptually, nodes and the wireless links to their parents form a directed graph.
Since when the network is stable a node’s rank is always greater that its parents’
ranks, the graph does not contain cycles and, consequently, is a directed acyclic

52 Agnieszka Paszkowska and Konrad Iwanicki

�

✁

✂

✄

☎

✆

✝

✞
✟

✠✡☛

☞✡☛

☞✡✌

☞✡✠

✍✡✎

✍✡✌

✍✡✏

✑✡✒

✎✡✓

Fig. 1 An example of a DODAG

graph (DAG). The destination, for example, a border router, is the sink in the DAG:
it has no outgoing edges. Therefore, the graph is often referred to as a destination-
oriented DAG, abbreviated as DODAG. The destination—the sink of the graph—is
in turn called the root of the DODAG.

Figure 1 presents a sample DODAG rooted at node A, with nodes’ ranks dis-
played as numbers. Links between nodes and their parents are represented by lines
with arrows pointing at the parent. A solid line leads to a preferred parent; a dashed
one to an alternative parent. Node A’s rank equals 1.0 and is the smallest rank in the
network because A is the DODAG’s root. For the same reason, A does not have any
outgoing edges. D, an internal node, has in turn five neighbors: A, B, E, F, and G.
Two of them, A and B, have their ranks lower than D’s rank, 2.1, and, consequently,
D considers them as parents: A is D’s preferred parent and B is an alternative one.
Although D has chosen as its preferred parent the neighbor with the smallest rank
among its parents, such a choice is not imposed by the protocol. For example, E has
C with rank 2.6 as its preferred parent, despite having D with a lower rank, 2.1, in its
parent set. The rest of D’s neighbors, E, F and G, have their ranks greater than D’s
rank, and, therefore, are D’s children in the DODAG. Moreover, D is both F’s and
G’s preferred parent. As a result, when, for instance, G wants to send a packet to the
root node A, it first transmits the packet to D, which forwards the packet directly to
A, yielding a hop count of 2. In contrast, the maximum number of hops to deliver a
packet in the DODAG is 4 and is required when the packet originates at node H.

2.2 Packet Forwarding

RPL’s DODAG thus describes all routes via which nodes can forward packets to the
root node. However, the actual packet forwarding at each node is delegated by RPL
to the node’s IPv6 stack. To this end, RPL running at the node registers the node’s
preferred parent’s IPv6 address as the default route in the node’s IPv6 routing table.
Based on this table, the node’s IPv6 stack selects next hops for forwarded packets.

Failure Handling in RPL Implementations: An Experimental Qualitative Study 53

Nevertheless, in spite of the delegated packet forwarding, RPL’s implementations
should provide endpoints for inserting and verifying a special option in the headers
of routable packets [15]. The option contains, among others, information used for
loop and error detection: a forwarding node’s rank and three flags: ‘O’, ‘R’, and ‘F’.

Recall that a node’s rank is meant to be greater than its preferred parent’s rank,
which aims to avoid routing loops during normal operation. However, such loops
may appear under failures, notably when the node has outdated information on its
neighbors’ ranks. Therefore, an additional loop-detection mechanism is needed to
quickly react to such rank inconsistencies. The mechanism detects an inconsistency
whenever the direction of a forwarded packet (the ‘O’ flag in the option) does not
match the rank relationship between the node transmitting the packet and the neigh-
bor receiving it. One case is when the packet is going upward (the ‘O’ flag is clear)
but the transmitter’s rank in the packet is lower than the receiver’s rank. Another
case is the packet going downward (the ‘O’ flag is set) with the transmitter’s rank in
the packet being greater than the receiver’s.

2.3 Parent Selection and Rank Computation

To register a default route, each node needs to select its preferred parent. This pro-
cess is inherently coupled with the node’s rank computation: the node’s rank and
preferred parent are chosen with a so-called objective function, which we abbreviate
as OF. As far as objective functions are concerned, RPL’s specification allows for
much flexibility. First, new objective functions can be introduced, so that computed
ranks and the method for selecting preferred parents would meet the requirements
of particular applications. Second, OFs are configurable per node.

To illustrate how RPL uses objective functions, recall that each node maintains a
parent set, a subset of neighbors from which the node chooses its preferred parent.
An entry in the parent set contains, among others, a parent’s address, rank and rout-
ing metric values for the parent and/or the link from the node to the parent. Since
the node computes its own rank locally, it has to exchange information on its ranks
with its neighbors by means of control traffic. The entries in the node’s parent set
are thus inserted and updated as a result of receiving control messages, which will
be discussed in more detail shortly.

The parent set is an input to an objective function, which the node uses to choose
its preferred parent. Parent selection should in principle be performed whenever the
parent set has potentially changed, for example, upon reception of a control message
with a neighbor’s rank update or parent unreachability detection [30]. As soon as the
node selects its preferred parent, it registers the route to the parent in its IPv6 routing
table as the default route.

The objective function is also responsible for computing the node’s rank after
a change of the preferred parent or the metrics associated with the parent. The al-
gorithm for rank computation is OF-dependent. Nevertheless, RPL’s specification
provides guidelines to be followed by every OF.

54 Agnieszka Paszkowska and Konrad Iwanicki

First of all, the rank value needs to reflect the node’s distance from the root and
has to be strictly increasing along the routes in the DODAG. To ensure the latter, the
protocol uses a MinHopRankIncrease parameter, which defines the smallest permit-
ted increase in rank per hop. As a result, the root’s rank must be the smallest rank
in the DODAG and every other node’s rank must be higher than any of its parents’
ranks and exceed its preferred parent’s rank by at least MinHopRankIncrease. This
feature is made use of by the aforementioned loop detection mechanism.

Furthermore, to enable breaking loops in the DODAG, which may occur upon
failures, a node’s rank must not increase by more than MaxRankIncrease within one
so-called version of the DODAG. Namely, a node keeps track of the smallest rank it
has computed in the current DODAG version, and, whenever its rank starts to exceed
that smallest rank by more than MaxRankIncrease, it concludes that the DODAG is
broken and disconnects from it by adopting a null preferred parent and an infinite
rank. However, since the change in its rank may be permanent, for instance, as a
result of a massive failure, DODAG versioning enables a complete reconstruction
of the DODAG. Such as process is initialized by the root generating the DODAG’s
new version number, either periodically or as a result of an external event (e.g., a
request from the network administrator). Upon discovering the new version, a node
can choose a completely new rank, not constrained by its rank in the old version.

Although parameters MinHopRankIncrease and MaxRankIncrease exist irre-
spective of an objective function, their values may potentially depend on the par-
ticular OF employed. Currently, there are two popular OFs.

First, all implementations of RPL are required to implement the Objective Func-
tion Zero, OF0 [33]. In OF0, a node’s rank equals the count of hops from the root
to the node. The criteria taken into account in the parent selection process include
both the candidate’s rank and the quality of the link to the candidate. It is, however,
the candidate’s rank that influences the result the most.

Second, in practice the Minimum Rank with Hysteresis Objective Function,
MRHOF [12] is commonly used. With MRHOF, a node uses a metric value retrieved
from an additional option in control messages to evaluate parents and compute its
rank. Various metrics can be used, for example, hop count, ETX, latency, though
they need to be additive. The node’s rank is calculated from the candidate parent’s
metric value incremented by the link metric to the candidate parent. The candidate
with the lowest path cost is chosen as the node’s preferred parent but only if it is
significantly better than the current parent. This mechanism of not choosing the best
parent unless truly beneficial is called hysteresis and is introduced in MRHOF to
make the DODAG more stable.

2.4 Control Traffic

The algorithm for choosing parents and calculating ranks generates control traffic
through which the nodes exchange information required by OFs. RPL introduces
several types of control messages, implemented as ICMPv6 [4] messages.

Failure Handling in RPL Implementations: An Experimental Qualitative Study 55

The first one, DIO (DODAG Information Object) messages, is responsible for
advertising nodes’ ranks: a DIO message sent by a node is an advertisement that the
node can serve for its neighbors as a next hop on their routes to the DODAG root.
The root of a DODAG systematically sends such a message. A neighbor receiving
the message can join the DODAG and select the sender node as its preferred parent.
When it sends its own DIO, its neighbors can do the same, and so on.

A DIO message thus needs to contain all the information necessary for joining
a DODAG, such as the DODAG’s identifier, version number and configuration, and
for considering the sender as a parent, for instance, information on the sender’s rank
and metric values. The configuration of a DODAG contains, among others, the iden-
tifier of the objective function to be used by the nodes to choose their parents and
compute their ranks and the two aforementioned parameters used in rank computa-
tion and maintenance: MinHopRankIncrease and MaxRankIncrease.

There is a trade-off between keeping the time of reaction to network changes
low and generating little control traffic for DODAG maintenance. To exploit this
trade-off, each node employs a so-called Trickle timer [25] for coordinating the
control traffic. After starting, the node sets its timer period to tmin (on the order of
milliseconds) and doubles the next period whenever the previous one finishes until
the period reaches tmax (on the order of minutes or even hours). However, the node
can reset the period back to tmin whenever it observes an important change or an
inconsistency in the DODAG.

The Trickle timer serves as the node’s scheduler for DIO messages. At the be-
ginning of each period, the node schedules the timer to a random time in the second
half of the period. When the timer fires, the node broadcasts a DIO message to its
neighbors unless the number of DIO messages it received in the current period ex-
ceeds some threshold. As a result, initially, nodes exchange many DIO messages and
thus quickly construct a DODAG. However, after this short period, the frequency of
DIO messages gradually decreases and stays low as long as the network is stable.
In effect, not only can changes in the network be accounted for rapidly but also few
messages are exchanged when the DODAG does not change, which minimizes the
control traffic.

The second type of RPL control messages, DIS (DODAG Information Solicita-
tion) messages, are used by nodes to actively ask their neighbors to provide informa-
tion on the DODAGs they are aware of. This results in a quicker reaction to network
changes at the cost of an increase in control traffic. A node broadcasts such DIS
messages periodically until it joins a DODAG. In contrast, when the node receives
such a message, it resets its Trickle timer so that it can quickly send back a DIO
response.

Another use-case for DIS messages is probing. The aim of probing is to keep
parent routing metrics up-to-date. Since probes are unicast messages, the response
DIOs are sent directly to the probe’s sender without a reset of the responding node’s
Trickle timer.

The other control messages introduced by RPL are not related to upward routing.
Therefore, we omit them here for brevity.

56 Agnieszka Paszkowska and Konrad Iwanicki

2.5 Open Issues

RPL’s specification does not provide solutions for all issues regarding the protocol,
leaving them open to implementations. To give some example, while it is spec-
ified when the Trickle timer for DIO messages must be reset, the list is not ex-
haustive. Implementations may thus choose to reset the timer in other situations.
Another example is the parent choice and rank computation, which are both OF-
and implementation-dependent. Nevertheless, the specification provides guidelines
that must be followed by all OF implementations. Finally, issues regarding routing
metric maintenance and neighbor unreachability detection are unspecified and left
open to implementations. All in all, the implementations have some freedom with
respect to the way they provide RPL’s functionality. This allows for adapting them
to various applications, which is another advantage in embedded systems.

2.6 RPL Implementations

As a result of the standardization, RPL has been implemented in several operating
systems for low-power wireless embedded devices. There thus exist both proprietary
and open-source implementations of RPL, among which TinyRPL for TinyOS [27]
and ContikiRPL for ContikiOS [6] are arguably the most widely known ones [23].
Therefore, we will focus on these two implementations in our analysis.

In short, both implementations are built on top of the IPv6 stacks of their under-
lying operating systems. They provide all basic features described in RPL’s spec-
ification. In addition, supported by the research community, they try to integrate
state-of-the-art solutions for the issues the specification leaves open. In particular,
from the perspective of our study, it is worth to mention that for routing metric
maintenance and neighbor unreachability detection, the implementations employ
algorithms drawing from numerous studies on the performance low-power wireless
communication and wireless link quality estimation.

What is more, the implementations have been widely tested and deployed in the
real world. In effect, various embedded systems have appeared that rely on these
implementations to deliver their own functionality.

3 Related Work

Because of this increasing popularity, RPL has been extensively evaluated in both
simulations and the real world. However, whereas RPL’s implementations have been
studied thoroughly from the performance perspective, their behavior under specific
types of failures has received significantly less research attention.

To start with, initial empirical studies of RPL focused on its efficiency. Results
obtained in early experiments, both in simulations [34, 3] and on testbeds [10, 3],

Failure Handling in RPL Implementations: An Experimental Qualitative Study 57

were promising but also unveiled first problems resulting from RPL’s underspec-
ification [3]. In particular, it was shown that although RPL successfully detected
simple failures [10], its DODAG reconstruction algorithms were not very efficient
[34].

As RPL’s specification was being clarified and improved, the protocol’s perfor-
mance was being further evaluated in various settings. To illustrate, Gaddour et al.
[11] studied the efficiency of ContikiRPL during DODAG formation for different
network topologies. Istomin et al. [17], in turn, evaluated the performance of actua-
tion in downward routing. Likewise, RPL’s performance was analyzed for different
parameter configurations, including objective functions [2] and network-layer met-
rics [16], to name just two examples. Finally, studies on interoperability of the two
aforementioned implementations of RPL—ContikiRPL and TinyRPL—showed that
while both implementations perform well on their own, they demonstrate surprising
performance artifacts when run together [23].

Furthermore, RPL’s performance has been compared to that of other routing
protocols, for instance, the Collection Tree Protocol [10], dissemination-based pro-
tocols [17], and protocols for Internet-enabled wireless sensor networks [32]. Re-
cently, RPL has also been extended into new routing protocols or even entire proto-
col suites [7, 1, 29].

All in all, those research activities have made RPL an attractive solution for in-
dustry, where dependability is an important feature. As a result, RPL’s implementa-
tions were evaluated in harsh conditions: under different levels of radio interference
[13, 29] and in various failure scenarios, featuring local failures [24], failures of
large groups of randomly selected nodes [14], of a few albeit critical nodes [14, 21],
and of the DODAG root [18]. Although earlier of those results [14, 21, 24] suggested
that RPL’s implementations are by and large stable and correctly handle failures, our
recent study [18] showed that those conclusions may have been too optimistic. More
specifically, we observed that ContikiRPL has surprising problems dealing with a
crash of the DODAG root, which is problematic in real-world systems because,
being typically more complex than sensor nodes and relying on a tethered power
supply, DODAG roots are prone to failures such as power outages.

Therefore, as a follow up on this observation, here we evaluate two popular im-
plementations of RPL—TinyRPL and ContikiRPL—in a much broader range of
failure scenarios and with different configuration parameters. Such a qualitative
study may thus be of interest to both researchers and practitioners because it al-
lows for a better understanding of conditions under which the implementations may
be relied upon.

4 Experimental Methodology

Let us start our study by describing the experimental setup we used for the two im-
plementations of RPL. We discuss the environments in which the implementations
were evaluated, including the experimental application, configuration parameters,

58 Agnieszka Paszkowska and Konrad Iwanicki

and performance metrics. We also explain the link and node failure scenarios in
which we tested the implementations.

4.1 Experimental Environments

To facilitate reproduction of our results, we evaluated the implementations in
publicly-available simulators. For the TinyOS implementation of RPL, TinyRPL,
we employed the TinyOS simulator, TOSSIM [26]. Similarly, for the ContikiOS
implementation of RPL, ContikiRPL, we utilized the Contiki network simulator,
COOJA [31]. Both environments are low-level simulators: they normally simulate
actual implementations of protocols—not their simplified models—and the obtained
results typically well predict the protocol’s real-world behavior.

As to the implementations themselves, we analyze the latest version of TinyRPL,
that is, one from January 5th, 2017. In contrast, when it comes to ContikiRPL, we
focus mainly on an the last stable version, 3.0, available at the time of writing this
chapter rather than on the latest one from the repository, that is, the one from January
5th, 2017. This is because the development version performs worse compared to the
stable one, which we highlight in our experiments.

4.2 Experimental Settings

The experimental application, which generated network traffic to be routed by RPL,
was designed to model a common communication pattern in LLNs: all-to-one data
collection. More specifically, each node generated short, one-frame data packets
that were forwarded by the network to the root. The interval between two consec-
utive packets generated by a node was chosen at random between T and 2T time
units, where T was a configuration parameter. This resulted in relatively uniform
multipoint-to-point traffic.

The experimental runs of the application presented here did not use any radio
duty cycling techniques but we did verify that the results with duty cycling did
not diverge from the presented ones. This choice is because duty cycling is a task
of the link layer, not RPL, and, as such, should not influence the correctness of
RPL’s implementations. Unless the network operates close to its maximal capacity,
which is usually not a normal situation in LLNs, and hence is not the case in our
experiments, the only observable effects on RPL of employing duty cycling are
higher latencies and lower throughput.

In order to test the implementations under various conditions, we conducted ex-
periments with different configuration parameters. Nevertheless, we provide default
values for the parameters that, unless noted otherwise, were used in the experiments.
The default duration of an experiment was 1 simulated hour. Nodes generated pack-
ets to be forwarded to the root every 10–20 seconds (T = 10s). The distinguished

Failure Handling in RPL Implementations: An Experimental Qualitative Study 59

node acting as the DODAG root was the node with id 0. The highest possible in-
crease in a node’s rank within a DODAG version (MaxRankIncrease) was by default
7, while the maximum number of hop-by-hop retransmissions of a packet was 5 per
hop. Finally, the experiments used either OF0 or MRHOF as the objective function.

We tested the implementations in so-called unit-disk topologies, which are often
used in theoretical analyses. In our case, they consisted of 121 nodes evenly dis-
tributed over an 11-by-11 grid. The radio range of each node was a circle with the
center at the node and radius r, where r ranged from 1 to 4. In other words, each
node had a perfect link to every node at a distance lower than or equal to r, and did
not have a link to any node at a distance greater than r. While this model is an ideal-
ized one, it is suitable for our purposes: if a protocol does not behave correctly in this
idealized model, it is highly unlikely that it will behave correctly in the real world.
Intuitively, in the unit disk model, a node can detect with a perfect accuracy whether
a link is up or down, which is crucial for proper neighbor unreachability detection.
In contrast, in the real world, there is no perfect failure detector. In particular, there
can be false positives that trigger unnecessary topology changes.

The results presented in the remainder of this chapter were gathered during rep-
resentative runs of the test application. Their analysis focuses mainly on the correct-
ness but also on the efficiency of the evaluated implementations. The first group of
metrics aims to examine the DODAG construction process. To this end, we tracked
the number of nodes with a preferred parent and a valid path to the root with re-
spect to time, and an average rank of a node in the network. Second, we evaluated
the stability of the constructed DODAG by tracking the number of nodes’ preferred
parent changes, Trickle timer resets, and generated control messages. Finally, we
used the last group of metrics, including metrics related to the network traffic and
end-to-end delivery rates, to evaluate the efficiency of resource usage by the nodes
in the network and the reliability of the network.

4.3 Experimental Scenarios

The experimental scenarios were designed to examine how the considered imple-
mentations of RPL behave in various conditions, in particular, under different link
and node failures.

However, the first scenario was free of failures and aimed to analyze how long
it takes the implementations to build the DODAG and how the implementations
behave when the network is stable. These results are used as a base line for analyzing
the results of subsequent experiments.

The second group was experiments with link failures. The scenarios in this group
included failures of both individual links and sets of links but here we focus on
single-link failures. None of the failures resulted in a network partition. Moreover,
we analyzed the consequences of a link failure depending on the importance of the
link. In particular, we considered experimental scenarios in which a failing link was

60 Agnieszka Paszkowska and Konrad Iwanicki

responsible for forwarding packets from either a large part of the network or just a
single node.

The next group of experimental scenarios concerned failures of non-root nodes.
Similarly to the previous group, the scenarios included failures of both individual
nodes and sets of nodes. Like previously, none of the failures analyzed in this group
resulted in a network partition. The failing nodes were either important ones, re-
sponsible for forwarding packets from a large part of the network, or leaf nodes,
not forwarding any packets except for their own. For brevity, however, we focus on
failures of only important nodes.

Finally, the last group encompassed scenarios with failures leading to network
partitions. One example was failures of DODAG roots. Other examples are both link
and node failures as a result of which all paths from some nodes to the root were
broken. Nevertheless, we focus on the DODAG root failures as they are extreme
cases of network partitions. Additionally, we tested scenarios in which the failing
links or nodes recovered after failures, thus rebuilding the broken paths.

All in all, our experimental scenarios cover a broad spectrum of crash-failures
that may occur in the real world. As such, they truly stress the considered imple-
mentations of RPL, so that we can study various claims about their fault tolerance.

5 Experiments without Failures

As mentioned in the previous section, we begin our analysis by presenting the results
of experiments without failures. Recall that the evaluation of the implementations
in the failure-free environment aims to examine how quickly the implementations
construct DODAGs and whether the DODAGs reach stable states.

To start with, Fig. 2 presents the number of nodes with a valid path to the DODAG
root during the course of a representative experiment conducted with TinyRPL. We
define a valid path from a node to the root as a sequence of nodes starting at the
node and ending at the root in which: (1) all nodes are correct and (2) every two
consecutive nodes are connected by a correct link and are in a child-preferred-parent
relation. We consider a DODAG as constructed when each node has a valid path to
the DODAG root and is thus able to forward packets to the root.

It can be observed in the figure that TinyRPL constructs a DODAG within sec-
onds. More specifically, as shown in Fig. 2(b), plotting the metric values in the first
minute of the experiment, the entire construction process took only 13 seconds for
the most sparse of the analyzed topologies: the unit-disk topology with radius 1.
Moreover, as can be observed in Fig. 2(a), once constructed, the DODAG was sta-
ble during the remaining period of the experiment, that is, all nodes always had valid
paths to the root.

Figure 3 presents the same plots for ContikiRPL. It can be observed in Fig. 3(b)
that constructing the DODAG for the same topology (i.e., the sparsest one) took
ContikiRPL almost a minute, which is 4 times more than in the case of TinyRPL.
The reason for this is a greater default minimum Trickle timer interval (tmin) in Con-

Failure Handling in RPL Implementations: An Experimental Qualitative Study 61

0 10m 20m 30m 40m 50m 1h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) unit disk, r = 1; duration = 1h; MRHOF

0 9s 19s 29s 39s 49s 59s
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(b) unit disk, r = 1; duration = 1m; MRHOF

Fig. 2 Duration of DODAG construction in TinyRPL

0 10m 20m 30m 40m 50m 1h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) unit disk, r = 1; duration = 1h; MRHOF

0 9s 19s 29s 39s 49s 59s
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(b) unit disk, r = 1; duration = 1m; MRHOF

Fig. 3 Duration of DODAG construction in ContikiRPL

tikiRPL than in TinyRPL and, consequently, a lower pace of DODAG information
dissemination via DIO messages. Similarly to TinyRPL, the DODAG built by Con-
tikiRPL remained stable, as shown in Fig. 3(a): after the initial construction period,
all nodes had a valid path to the root throughout the rest of the experiment.

What is more, from Fig. 4, which plots the average DODAG rank of a node, it can
be deduced that both implementations were able to construct optimal DODAGs. To
explain, with the smallest allowed increase in rank per hop (MinHopRankIncrease)
equal to 1 and the unit-disk links, a node’s rank in an optimal DODAG would be
equal to the node’s Manhattan distance to the root plus 1. Consequently, the average
rank of a node in an optimal DODAG would be equal to 11. It can be observed in
the figure that the average node rank in the constructed DODAGs was indeed 11 (or
at least close to 11 because of the limited resolution of the figure).

The metrics presented in the next three figures are used to analyze the stability
of the DODAG after the initial construction period and the overhead of the control
traffic in the period in which the DODAG should be stable.

62 Agnieszka Paszkowska and Konrad Iwanicki

0 10m 20m 30m 40m 50m 1h
time

0

2

4

6

8

10

12

av
g
ra
n
k

(a) TinyRPL

0 10m 20m 30m 40m 50m 1h
time

0

2

4

6

8

10

12

av
g
ra
n
k

(b) ContikiRPL

Fig. 4 Average rank (unit disk, r = 1; MRHOF)

To start with, the plots in Fig. 5 present the number of preferred parent changes
in an hour-long experimental run in the unit disk topology with radius 1. Figure 6, in
turn, shows the number of node Trickle timer resets in the same experiment. Recall
that a node resets its Trickle timer whenever it observes an inconsistency or a vital
change in the network. A large number of Trickle timer resets is thus an indicator of
a DODAG’s instability.

0 10m 20m 30m 40m 50m 1h
time

0

5

10

15

20

#
 p
ar
en
t
ch
an

ge
s
in
 1
s

(a) TinyRPL

0 10m 20m 30m 40m 50m 1h
time

0

5

10

15

20

#
 p
ar
en
t
ch
an

ge
s
in
 1
s

(b) ContikiRPL

Fig. 5 Parent changes (unit disk, r = 1; duration = 1h; MRHOF)

As can be observed in Fig. 5(b), a DODAG constructed by ContikiRPL in the
initial period stabilized after 1–2 minutes and changed only once throughout the
whole experiment. This matches well Fig. 6(b), which shows that all but one resets
of node Trickle timers happened in the construction period. In contrast, TinyRPL
did not build a final version of the DODAG in the initial period of the experiment.
For this reason, a few preferred parent changes during the course of the experiment
can be observed in Fig. 5(a). Nevertheless, these few changes were not vital enough

Failure Handling in RPL Implementations: An Experimental Qualitative Study 63

0 10m 20m 30m 40m 50m 1h
time

0

5

10

15

20

25

#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(a) TinyRPL

0 10m 20m 30m 40m 50m 1h
time

0

5

10

15

20

25

#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(b) ContikiRPL

Fig. 6 Trickle timer resets (unit disk, r = 1; duration = 1h; MRHOF)

for the nodes to reset their Trickle timers. Consequently, there were no Trickle timer
resets corresponding to these parent changes, as shown in Fig. 6(a).

Figure 7 illustrates the control traffic in the analyzed experiments. Control mes-
sages tracked in the plots are mainly DIO messages, scheduled by the nodes’ Trickle
timers. As a result, at the beginning of the experiment, when the Trickle periods
were short, we can observe a large number of transmitted control messages. How-
ever, as soon as the DODAG stabilized and the periods of the node Trickle timers
reached their highest values, the control traffic decreased and stayed low as long as
the DODAG was stable.

0 10m 20m 30m 40m 50m 1h
time

0

10

20

30

40

50

60

70

#
 c
on

tr
ol
 m

es
sa
ge
s
in
 1
s

(a) TinyRPL

0 10m 20m 30m 40m 50m 1h
time

0

10

20

30

40

50

60

70

#
 c
on

tr
ol
 m

es
sa
ge
s
in
 1
s

(b) ContikiRPL

Fig. 7 Control messages (unit disk, r = 1; duration = 1h; MRHOF)

As can be observed in both plots in Fig. 7, the control traffic was not uniform. In
other words, periods of control message transmissions were interleaved with peri-
ods when there was no control traffic. There are two reasons for this phenomenon.
First, since all nodes were booted roughly at the same time and almost immediately

64 Agnieszka Paszkowska and Konrad Iwanicki

constructed the DODAG, their Trickle period starts were close in time. Second, the
nodes scheduled their DIO messages in the second half of the Trickle period, thus
leaving the aforementioned gaps in the control traffic. Moreover, the longest Trickle
period for each implementation can be easily computed from the figures by sum-
ming the lengths of the longest gap and the following busy period. Accordingly, the
longest Trickle period is about 4 minutes for TinyRPL and about 16 minutes for
ContikiRPL, which matches their configurations. Consequently, when the DODAG
is stable, out-of-the-box ContikiRPL generates less control traffic than out-of-the-
box TinyRPL but this configuration can be changed.

The subsequent charts present results for metrics that were used to evaluate the
reliability and resource consumption of the two implementations of RPL. The relia-
bility was assessed by tracking end-to-end delivery rate. It was defined as the percent
of all data packets generated by the nodes from the beginning of the experiment that
were successfully delivered to the root. Resource consumption was in turn assessed
by measuring network traffic, that is, the accumulated number of control and data
packets generated by the nodes, the number of hops taken by those packets, as well
as the number of physical radio transmissions of the packets. Since radio commu-
nication is typically the most resource-consuming activity of low-power wireless
nodes, network traffic serves well as a proxy metric for resource consumption.

Figure 8 presents the end-to-end delivery rate for two hour-long experiments
evaluating both implementations. As can be observed in Fig. 8(a), although the net-
work did not suffer from any failures throughout the experiment, the end-to-end
delivery rate for TinyRPL did not reach 100% but remained at the level of 90%. In
other words, on average 1 data packet out of 10 was lost on its route toward the root
and, consequently, did not reach the root. The reason for this was packet collisions
caused by the small radio range of the nodes in the utilized topology and the high
packet generation frequency (T = 10s). On the other hand, due to the quick DODAG
construction in TinyRPL, even packets generated by the nodes at the beginning of
the experiment were successfully delivered to the root, which is visible in Fig. 8(a)
as the high end-to-end delivery rate in the first seconds of the experiment.

0 10m 20m 30m 40m 50m 1h
time

0

20

40

60

80

100

en
d
-t
o
-e
n
d
 d
el
iv
er
y
 r
at
e
(%

)

(a) TinyRPL

0 10m 20m 30m 40m 50m 1h
time

0

20

40

60

80

100

en
d
-t
o
-e
n
d
 d
el
iv
er
y
 r
at
e
(%

)

(b) ContikiRPL

Fig. 8 End-to-end delivery rate (unit disk, r = 1; duration = 1h; MRHOF)

Failure Handling in RPL Implementations: An Experimental Qualitative Study 65

In Fig. 8(b), in turn, we can see that the final end-to-end delivery rate for Con-
tikiRPL after one hour was slightly higher than that for TinyRPL. However, due to
the longer DODAG construction period in ContikiRPL, the end-to-end delivery rate
was low in the first seconds of the experiments and reached its highest value only
after some period.

Figure 9, in turn, shows the network traffic in the two experiments. Packets, rep-
resented in the figure by a solid line, include both data packets generated every
10–20 seconds by each node and control packets carrying mainly DIO messages
scheduled by the nodes’ Trickle timers. Nevertheless, the number of control packets
did not exceed 5% of the total number of packets. This also influenced the aggre-
gate number of hops taken by the packets because the number of hops for a packet
depends on the packet’s type. In the analyzed configuration, it was always 1 for a
control packet and on average 10 for a data packet. The transmissions in the figure,
in turn, correspond to physical radio transmissions. Since control packets are broad-
cast and not acknowledged, the nodes never retransmit them. As a result, there was
always 1 transmission for a single control packet. In contrast, due to transmission
collisions, data packets were sometimes unacknowledged and required retransmit-
ting. The maximum number of transmissions per data packet was limited by the
value of the aforementioned configuration parameter, which was equal to 5. In prac-
tice, however, as can be observed Fig. 9, retransmissions were occasional in both
implementations and did not incur much overhead on resource consumption.

0 10m 20m 30m 40m 50m 1h
time

0

50000

100000

150000

200000

250000

300000

#

packets

hops

transmissions

(a) TinyRPL

0 10m 20m 30m 40m 50m 1h
time

0

50000

100000

150000

200000

250000

300000

#

packets

hops

transmissions

(b) ContikiRPL

Fig. 9 Network traffic (unit disk, r = 1; duration = 1h; MRHOF)

As mentioned previously, the analysis hitherto has not concerned the latest de-
velopment version of ContikiRPL available from the repository at the time of this
writing (i.e., the one from January 5th, 2017). This is because that version of Con-
tikiRPL does not construct a stable DODAG. More specifically, as can be observed
in Fig. 10(a), which plots the same experiment but with the latest version of Con-
tikiRPL, a few nodes changed their preferred parent almost every second of the ex-
periment. In contrast, as we have already shown in Fig. 5(b), only one node changed

66 Agnieszka Paszkowska and Konrad Iwanicki

its preferred parent after the construction phase in the experiment with the earlier
version, selected for our analyses. The increased number of parent changes also re-
sulted in an increased number of observed Trickle timer resets, as can be verified in
Fig. 10(b), and highly unstable ranks, visible in Fig. 10(c). This, in turn, increased
the accumulated network traffic (not plotted), and hence, resource consumption. For
these reasons, we settled on the earlier, yet more predictable and stable version of
ContikiRPL.

0 10m 20m 30m 40m 50m 1h
time

0

5

10

15

20

#
 p
ar
en
t
ch
an

ge
s
in
 1
s

(a) Parent changes

0 10m 20m 30m 40m 50m 1h
time

0

5

10

15

20

25

#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(b) Trickle timer resets

0 10m 20m 30m 40m 50m 1h
time

0

5

10

15

av
g
ra
n
k

(c) Average rank

Fig. 10 ContikiRPL (latest version) (unit disk, r = 1; duration = 1h; MRHOF)

5.1 Summary

To sum up, the experiments in the failure-free environment have shown that both an-
alyzed implementations of RPL quickly construct stable DODAGs. Moreover, when
used for routing, the constructed DODAGs deliver the majority of packets without
wasting network resources. It can thus be concluded that the implementations, at
least some of their versions, behave as expected in the failure-free environment.

Failure Handling in RPL Implementations: An Experimental Qualitative Study 67

However, real-world networks are rarely free of failures. Therefore, in the next sec-
tions we proceed to failure-oriented experimental scenarios.

6 Experiments with Link Failures

We start our failure-oriented experiments with scenarios involving link failures. We
consider a link as failed if every transmission over this link is lost, that is, it is not
received by the target node. We evaluate how quickly the implementations react to
link failures, depending on the chosen objective function and other configuration
parameters. We also examine the consequences of link failures on the stability of
the DODAG and reliability of packet forwarding.

Not all links in the network are equal. Depending on the network topology and
the shape of the DODAG, some links are “important” in that packets from a signif-
icant fraction of nodes are forwarded through them to the DODAG root, whereas
others are “unimportant” in that they are utilized by single nodes or not utilized at
all. Moreover, the combinations of links that may fail are numerous. Since we are
unable to test all link failure scenarios in this section, we analyze two selected ones:
a failure of a single “important” link and a failure of a single “unimportant” link.

The experiments presented in this section lasted for two simulated hours; link
failures occurred after the first hour. Such a timespan was chosen because it can be
concluded from the previous section that an hour is enough for both implementa-
tions to construct DODAGs and stabilize.

6.1 Important Link Failure

In order to simulate a failure of an “important” link, we removed the link between
nodes with identifiers 0 and 1 in the unit-disk topology with radius 1, as visualized in
Fig. 11. The removed link was thus one of two links leading directly to the DODAG
root and, as such, forwarded roughly half of data packets generated by all nodes.

MRHOF

Figures 12–14 compare the behavior of the two implementations of RPL with
MRHOF as the objective function in response to the analyzed link’s failure.

As can be observed in Fig. 12(a), ContikiRPL reacted to the failure quickly:
within seconds. In contrast, as visible in Fig. 12(b), it took TinyRPL about 3 minutes
to rebuild the DODAG, so that each node would again have a valid path to the root.
This difference can be attributed mostly to the slightly different policies for resetting
the Trickle timer in the two implementations.

More specifically, Fig. 13 presents the occurrences of Trickle timer resets caused
by the failure. It can be observed in Fig. 13(b) that in TinyRPL the first node reset

68 Agnieszka Paszkowska and Konrad Iwanicki

� ✁

Fig. 11 Failure of an important link

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
a
th

to
 t
h
e
ro
ot

(a) ContikiRPL

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
a
th

to
 t
h
e
ro
ot

(b) TinyRPL

Fig. 12 Nodes with a valid path to the root (unit disk, r = 1; MRHOF)

its Trickle timer immediately after the failure. However, the DODAG was not fully
rebuilt until other nodes reset their timers 3 minutes later. In ContikiRPL, in turn, all
additional resets of the node Trickle timers occurred immediately after the failure,
as visible in Fig. 13(a), and, therefore, the failure was handled more quickly.

Figure 14 depicts an increase in control traffic following the Trickle timer resets
after the failure. In both implementations, an increase in the control traffic can in-
deed be observed. Nevertheless, it is not significant compared to the stable period in
the experimental scenarios without failures, as presented in Fig. 7.

OF0

Although the reaction to the failure was not immediate in TinyRPL, both implemen-
tations managed to rebuild the DODAG when MRHOF was the objective function.
Figures 15–17 present the results of the same experiments but conducted with OF0
as the objective function.

It can be observed in Fig. 15(a) that with OF0 rebuilding all nodes’ paths to the
root took TinyRPL about 6 minutes, twice as long as with MRHOF. In contrast,
it can be concluded from Fig. 15(b) that ContikiRPL with OF0 as the objective

Failure Handling in RPL Implementations: An Experimental Qualitative Study 69

0 20m 40m 1h 1h20m 1h40m 2h
time

0

5

10

15

20

25

30

35

#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(a) ContikiRPL

0 20m 40m 1h 1h20m 1h40m 2h
time

0

5

10

15

20

25

30

35

#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(b) TinyRPL

Fig. 13 Trickle timer resets (unit disk, r = 1; MRHOF)

0 20m 40m 1h 1h20m 1h40m 2h
time

0

10

20

30

40

50

60

70

#
 c
on

tr
ol
 m

es
sa
ge
s
in
 1
s

(a) ContikiRPL

0 20m 40m 1h 1h20m 1h40m 2h
time

0

10

20

30

40

50

60

70

#
 c
on

tr
ol
 m

es
sa
ge
s
in
 1
s

(b) TinyRPL

Fig. 14 Control messages (unit disk, r = 1; MRHOF)

function did not manage to rebuild the DODAG at all. As a result, over 100 nodes,
the nodes whose paths to the root contained the broken link, were not able to forward
their packets to the destination throughout the rest of the experiment.

While the link failure in TinyRPL was followed by a Trickle timer reset, as can
be observed in Fig. 16(a), it turns out that ContikiRPL with OF0 as the objective
function did not even react to the failure, not to mention recovering from it. In other
words, as can be seen in Fig. 16(b), no node in the network reset its Trickle timer
in response to the failure. Moreover, it can be derived from Fig. 17(b) that since an
average rank of a node in the network did not change as a result of the failure, then
also the rank of the node with id 1 did not change. This, in turn, means that the node
with id 1 did not notice for an hour that its link to the root was not working. The
reason for this is that ContikiRPL does not estimate link metrics nor does it employ
any neighbor unreachability detection mechanism when configured with OF0 as the
objective function.

70 Agnieszka Paszkowska and Konrad Iwanicki

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) TinyRPL

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(b) ContikiRPL

Fig. 15 Nodes with a valid path to the root (unit disk, r = 1; OF0)

0 20m 40m 1h 1h20m 1h40m 2h
time

0

5

10

15

20

#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(a) TinyRPL

0 20m 40m 1h 1h20m 1h40m 2h
time

0

5

10

15

20

#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(b) ContikiRPL

Fig. 16 Trickle timer resets (unit disk, r = 1; OF0)

0 20m 40m 1h 1h20m 1h40m 2h
time

0

2

4

6

8

10

12

av
g
ra
n
k

(a) TinyRPL

0 20m 40m 1h 1h20m 1h40m 2h
time

0

2

4

6

8

10

12

av
g
ra
n
k

(b) ContikiRPL

Fig. 17 Average rank (unit disk, r = 1; OF0)

Failure Handling in RPL Implementations: An Experimental Qualitative Study 71

Since ContikiRPL with OF0 as the objective function was not able to detect and
react to the smallest possible failure, the failure of a single link, it would not be able
to handle more complex failures either. As a result, we do not consider ContikiRPL
in the configuration with OF0 in the remainder of the evaluation.

Although the analyzed experiments showed that, apart from ContikiRPL with
OF0, all implementation-objective-function configurations were able to handle the
failure and recover from it, this is not true for all possible values of configuration
parameters. More specifically, decreasing the maximum number of retransmissions
for a packet in TinyRPL made TinyRPL unable to rebuild the DODAG, irrespective
of which objective function was used.

The results of an experiment with such a configuration are presented in Fig. 18.
Similarly to ContikiRPL with OF0, not only did TinyRPL fail to rebuild the broken
paths, which is visible in Fig. 18(a), but also no node reacted to the failure by reset-
ting its Trickle timer, as can be observed in Fig. 18(b). We tracked this phenomenon
to an emergent behavior of TinyRPL’s code for neighbor unreachability detection
but the explanation is out of the scope of this chapter.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) Nodes with a valid path to the root

0 20m 40m 1h 1h20m 1h40m 2h
time

0

2

4

6

8

10

12

14
#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(b) Trickle timer resets

Fig. 18 TinyRPL (unit disk, r = 1; OF0; max. retransmissions = 3)

6.2 Unimportant Link Failure

In order to simulate a failure of a link that is not responsible for forwarding a large
part of all packets, the link between nodes with ids 0 and 1 in the unit-disk topology
with radius 4 was removed, as depicted in Fig. 19.

Figure 20 presents the results of this experiment for both implementations with
MRHOF as the objective function. As can be observed in Fig. 20, ContikiRPL re-
acted to the failure more quickly than TinyRPL, which matches the results of the
experiments analyzed in the previous section. Nevertheless, the reaction times for

72 Agnieszka Paszkowska and Konrad Iwanicki

� ✁

Fig. 19 An unimportant link failure.

both implementations were slightly higher than when the same link was subject to
the failure in the previous experiment. This is because in this experiment the link
was more loaded—at the network level—than in the previous experiment: since
fewer packets failed to be forwarded over this link in a given time period, RPL was
not able to detect the failure as fast as in the previous experiment.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) TinyRPL

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(b) ContikiRPL

Fig. 20 Nodes with a valid path to the root (unit disk, r = 4; MRHOF)

The results for TinyRPL with OF0 did not differ significantly from the presented
results. For this reason, their analysis is omitted here.

6.3 Summary

To sum up, the experiments with the simplest type of failure, affecting a single link,
show that while the default configurations of the two implementations are by and
large able to handle the failure, there exist out-of-the-box configurations for which

Failure Handling in RPL Implementations: An Experimental Qualitative Study 73

this does not hold. What is more, in principle, it is not obvious why such configura-
tions fail. This suggests that the two popular implementations of RPL may not yet
be off-the-shelf solutions; on the contrary, their adoption in real-world embedded
systems may require expertise.

7 Experiments with Node Failures

As the next step, we analyze the behavior of the implementations under different
types of node failures. Since any node failure can be simulated by correlated link
failures, we consider only those configurations from the previous section in which
an implementation was able to properly handle a link failure. Therefore, we do not
examine ContikiRPL with OF0 in this section.

Except for one 3-hour long experiment, the experiments analyzed in this section
lasted for 2 simulated hours. Similarly to the link failures in the experiments from
the previous section, all node failures in the experiments from this section occurred
after the first simulated hour.

7.1 Important Node Failure

Like links, nodes may be more or less “important,” depending on the network topol-
ogy and the shape of a DODAG. Drawing from the previous section, we focus only
on the failures of “important” nodes, that is, ones that forward packets from a large
fraction of other nodes. In order to test the implementations under the failure of
such a node, we turned off one of the two root’s neighbors, the node with id 1, in
the unit-disk topology with radius 1, as shown in Fig. 21.

� ✁

Fig. 21 Failure of an important node

The results turned out to be very similar to the results of the experiments with
failures of important links, analyzed in the previous section. To illustrate, Fig. 22

74 Agnieszka Paszkowska and Konrad Iwanicki

presents the number of nodes with a valid path to the DODAG root for TinyRPL
and ContikiRPL with MRHOF as the objective function.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) TinyRPL

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(b) ContikiRPL

Fig. 22 Nodes with a valid path to the root (unit disk, r = 1; MRHOF)

As can be observed in Fig. 22(a), it took TinyRPL about 3 minutes to rebuild
paths from all working nodes to the DODAG root after the failure. ContikiRPL, in
turn, more quickly reacted to the failure and reconstructed the DODAG, as visible in
Fig. 22(b). Note that in both cases the number of nodes with a valid path to the root
after the failure did not reach the level it had before the failure; it was lower exactly
by 1. However, since we assume that non-working nodes do not have a valid path
to the root, this is an expected result. All in all, these results match precisely those
obtained for the failure of the link between the nodes with ids 0 and 1 (cf. Fig. 12).

7.2 Node Failure and Recovery

Since failed nodes (and links) may recover, our next scenario aimed to evaluate the
implementations’ behavior in response to such a recovery. To this end, a 3-hour long
experiment was conducted. Similarly to the previously described scenario, the node
with id 1 was turned off after the first hour of the experiment (cf. Fig. 21). However,
after the second hour the node was turned back on to see the implementations’
reactions to the recovery. From the results of the previous experiment, we concluded
that an hour is enough for both implementations to handle the failure.

TinyRPL

First, we discuss the results for TinyRPL. Figure 23 presents the number of nodes
with a valid path to the root throughout the experiment for MRHOF, Fig. 23(a), and
OF0, Fig. 23(b). For both objective functions, a 3–5-minute long decrease in the

Failure Handling in RPL Implementations: An Experimental Qualitative Study 75

analyzed metric occurred after the first hour of the experiment, immediately after
the failure, which is in line with the previous results. After the second hour, in turn,
a small increase could be noticed. The increase was caused by the node with id 1
reentering the network and brought the metric back to the value before the failure.

0 30m 1h 1h30m 2h 2h30m 3h
time

0

20

40

60

80

100

120

#
 n
o
d
es
 w

it
h
 a
 v
al
id
 p
a
th

to
 t
h
e
ro
ot

(a) MRHOF

0 30m 1h 1h30m 2h 2h30m 3h
time

0

20

40

60

80

100

120

#
 n
o
d
es
 w

it
h
 a
 v
al
id
 p
a
th

to
 t
h
e
ro
ot

(b) OF0

Fig. 23 Nodes with a valid path to the root (TinyRPL; unit disk, r = 1)

As can be observed in Fig. 24, neither the failure nor the recovery of the broken
node resulted in a large increase in control traffic. Nevertheless, additional control
messages transmitted as a result of the topology changes are visible in the plots for
both objective functions.

0 30m 1h 1h30m 2h 2h30m 3h
time

0

10

20

30

40

50

60

70

#
 c
on

tr
ol
 m

es
sa
ge
s
in
 1
s

(a) MRHOF

0 30m 1h 1h30m 2h 2h30m 3h
time

0

10

20

30

40

50

60

70

#
 c
on

tr
ol
 m

es
sa
ge
s
in
 1
s

(b) OF0

Fig. 24 Control messages (TinyRPL; unit disk, r = 1)

An important result from this experiment is also presented in Fig. 25, showing the
average rank of a node in the DODAG throughout the experiment. For both objective
functions, an increase in the average rank can be observed after the first hour of
the experiment, which can be attributed to detecting the failure. More specifically,

76 Agnieszka Paszkowska and Konrad Iwanicki

nodes that selected node 1 as their preferred parent before the failure had to find an
alternative preferred parent after the failure. Since the alternative parent had a higher
rank than node 1, the nodes’ ranks increased as a result of the change, and so did
the average rank. In contrast, after the recovery of the failed node, TinyRPL brought
the average rank back to the value before the failure, irrespective of which objective
function was used. This means that the DODAG restored by the implementation
after the recovery was equally good as the one before the failure. Nevertheless,
because of not generating much additional control traffic (cf. Fig. 24), this DODAG
restoration process took some 20 minutes.

0 30m 1h 1h30m 2h 2h30m 3h
time

0

2

4

6

8

10

12

14

av
g
ra
n
k

(a) MRHOF

0 30m 1h 1h30m 2h 2h30m 3h
time

0

2

4

6

8

10

12

14

av
g
ra
n
k

(b) OF0

Fig. 25 Average rank (TinyRPL; unit disk, r = 1)

ContikiRPL

Figure 26 presents the results of the same experiment but for ContikiRPL with
MRHOF. The plot of the number of nodes with a valid path to the DODAG root
for ContikiRPL in Fig. 26(a) resembles the one for TinyRPL in Fig. 23(a). How-
ever, a small difference can be observed in the plot for the average rank of a node
in the DODAG for ContikiRPL in Fig. 26(b) and that for TinyRPL in Fig. 25(a).
Namely, in ContikiRPL, contrary to TinyRPL, the average rank did not change after
node 1 reentered the network. In particular, the routes built before the failure were
not restored after the recovery of the failed node. As a result, some packets were
routed through longer routes in the last hour of the experiment than in the first hour,
thus generating slightly more network traffic than it was necessary. In other words,
the DODAG restored by ContikiRPL was not as good as the one before the failure.

Failure Handling in RPL Implementations: An Experimental Qualitative Study 77

0 30m 1h 1h30m 2h 2h30m 3h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) Nodes with a valid path to the root

0 30m 1h 1h30m 2h 2h30m 3h
time

0

2

4

6

8

10

12

av
g
ra
n
k

(b) Average rank

Fig. 26 ContikiRPL (unit disk, r = 1; MRHOF)

7.3 Correlated Node Failures

To complete the picture of node failures, we analyze a more complex scenario, that
is, correlated failures of multiple nodes. Figure 27 presents the part of the unit-disk
topology with radius 1 affected by the failure. The failure of three nodes, marked in
the figure with crosses, occurred after the first hour of the experiment. Recall that the
node with id 0 is the root of the DODAG. As a result, one of the broken nodes was
the root’s direct neighbor. This, together with the proximity of the broken nodes,
makes the failure potentially difficult to handle.

� ✁

Fig. 27 Correlated node failures

Before we analyze the results of the experiment, let us focus on the node with
identifier 2. Since we could observe in Sect. 5 that all analyzed implementations
constructed an optimal DODAG, we can assume that the dashed links in Fig. 27

78 Agnieszka Paszkowska and Konrad Iwanicki

mark the path from the node with identifier 2 to the root before the failure. The bold
solid links with arrows, in turn, determine the shortest possible path between these
nodes after the failure. As a result of the failure, the length of the path from node 2
to the DODAG root increased so that the hop count became 6. Since the links in the
analyzed topology are perfect and retransmissions rare, the ETX difference between
the paths should not exceed 6 either. We thus consider the implementations with two
configurations of MaxRankIncrease: one in which the nodes’ rank growths caused
by the failure should not be higher than MaxRankIncrease and another in which the
growths would be higher for some nodes.

New Rank Does Not Exceed MaxRankIncrease

With the default value of MaxRankIncrease, equal to 7, the rank growth caused
by the failure for any node should not be higher. Consequently, for both OF0 and
MRHOF, the implementations should reconstruct the DODAG after the failure.

We start the analysis from TinyRPL. Figures 28 and 29 present TinyRPL’s reac-
tion to the failure when MRHOF and OF0, respectively, were used as the objective
functions.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) Nodes with a valid path to the root

0 20m 40m 1h 1h20m 1h40m 2h
time

0

10

20

30

40

50

60

70

#
 c
on

tr
ol
 m

es
sa
ge
s
in
 1
s

(b) Control messages

Fig. 28 TinyRPL (unit disk, r = 1; MRHOF)

In the case of MRHOF, as can be observed in Fig. 28(a), the number of nodes
with a valid path to the root sharply decreased immediately after the failure, but
then it quickly increased to the value of 118, which is the number of all nodes
except for the three broken ones. In other words, TinyRPL with MRHOF detected
the failure and reacted to it within seconds. The quick reaction, however, resulted in
a significant increase in the control traffic, as visible in Fig. 28(b) and not observed
in the previous experiments in this configuration.

In contrast, as observed in Fig. 29(a), the recovery process with OF0 as the ob-
jective function took TinyRPL over half an hour, far longer than with MRHOF. This
resulted in a considerably lower total end-to-end packet delivery rate. On the other

Failure Handling in RPL Implementations: An Experimental Qualitative Study 79

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) Nodes with a valid path to the root

0 20m 40m 1h 1h20m 1h40m 2h
time

0

10

20

30

40

50

#
 c
on

tr
ol
 m

es
sa
ge
s
in
 1
s

(b) Control messages

Fig. 29 TinyRPL (unit disk, r = 1; OF0)

hand, the increase in control traffic presented in Fig. 29(b) is barely visible, and
hence much lower when compared to that for MRHOF in Fig. 28(b).

The reason for the observed differences in the two metrics in the experiments
with MRHOF and OF0 lies in the number of times the nodes reset their Trickle
timers in response to the failure. As can be observed in Fig. 30(a), there were many
Trickle timer resets when MRHOF was employed as the objective function. Conse-
quently, the control messages traffic increased, the information on the failure was
quickly disseminated in the network, and nodes could immediately handle the in-
consistency. In contrast, when OF0 was used as the objective function, there were
only two Trickle timer resets, as visible in Fig. 30(b). They thus did not cause a sig-
nificant increase in the control traffic. This, in turn, resulted in the slow propagation
of DODAG information in the network and, consequently, long recovery time.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

5

10

15

20

25

#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(a) MRHOF

0 20m 40m 1h 1h20m 1h40m 2h
time

0

5

10

15

20

25

#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(b) OF0

Fig. 30 TinyRPL: Trickle timer resets (unit disk, r = 1)

80 Agnieszka Paszkowska and Konrad Iwanicki

The results for ContikiRPL with MRHOF are similar to those for TinyRPL with
MRHOF. Therefore, we do not present them here for brevity.

The experiments hitherto showed that the implementations were capable of re-
building the DODAG, so that all working nodes could successfully forward packets
to the root. However, let us examine how close the reconstructed DODAG was to
the optimal one. To this end, Fig. 31 compares the average rank of a node in the
DODAG after the failure.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

2

4

6

8

10

12

14

av
g
ra
n
k

(a) TinyRPL MRHOF

0 20m 40m 1h 1h20m 1h40m 2h
time

0

2

4

6

8

10

12

14

av
g
ra
n
k

(b) TinyRPL OF0

0 20m 40m 1h 1h20m 1h40m 2h
time

0

2

4

6

8

10

12

14

av
g
ra
n
k

(c) ContikiRPL MRHOF

Fig. 31 Average rank (unit disk, r = 1)

It can be observed in Fig. 31(a) that although for TinyRPL with MRHOF there
was a significant increase in the average rank immediately after the failure, the rank
stabilized below 12 after several minutes. When OF0 was used, in turn, the aver-
age rank was slowly increasing for over half an hour after the failure, as visible in
Fig. 31(b). Nevertheless, as soon as the DODAG was fully reconstructed, the aver-
age rank also stabilized before reaching 12. In contrast, in Fig. 31(c) for ContikiRPL
with MRHOF, a sharp increase in the average rank was followed by a smooth de-
crease. The average rank, however, quickly dropped back below 12. It can thus be
concluded that the DODAGs, once fully reconstructed, were equally close to opti-
mal ones for both implementations.

Failure Handling in RPL Implementations: An Experimental Qualitative Study 81

New Rank Exceeds MaxRankIncrease

We reasoned at the beginning of this section that the increase in rank of the node
with identifier 2 resulting from the failure is at least 6. Consequently, if we set
MaxRankIncrease to 5 instead of 7, the node with identifier 2 should not be able
to find a new valid path to the root after the failure because its rank would then
exceed its minimum rank before the failure by more than MaxRankIncrease, which
is forbidden according to RPL’s specification. Figure 32 thus presents the number
of nodes with a valid path to the root throughout the same experiment but with
MaxRankIncrease set to 5.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
a
th

to
 t
h
e
ro
ot

(a) TinyRPL MRHOF

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
a
th

to
 t
h
e
ro
ot

(b) ContikiRPL MRHOF

Fig. 32 Nodes with a valid path to the root (unit disk, r = 1; MaxRankIncrease=5)

As can be observed in the figure, in contrast to the specification, both TinyRPL
and ContikiRPL managed to rebuild the paths for all 118 working nodes, including
the node with identifier 2. This result is incorrect and is a consequence of the differ-
ences between RPL’s specification and both analyzed implementations in tracking
the smallest rank in the current DODAG version. In the next section, we give a more
detailed explanation for these differences.

7.4 Summary

The experiments with node failures confirmed the conclusions gathered in the previ-
ous sections. While the two implementations of RPL correctly handle some simple
and more complex scenarios, there exist situations where they do not behave as
expected; on the contrary, their behavior is incorrect. Moreover, although the imple-
mentations seem to be able to recover from node failures, in some configurations
the recovery takes a long time during which the network is not fully reliable.

82 Agnieszka Paszkowska and Konrad Iwanicki

8 Experiments with Network Partitions

As a final step, we evaluate the implementations in scenarios where some nodes get
disconnected from the DODAG root as a result of failures. Recall that according to
RPL’s specification, a disconnected node should first detect that it does not have any
path to the root. It should then discard its preferred parent, set its rank to infinity,
and stop forwarding packets.

The experiments presented in this section lasted for 2 or 3 simulated hours, de-
pending on a particular scenario; the failure occurred always after the first hour.

8.1 Root Failure

One example of a failure resulting in a network partition is a failure of the DODAG
root. As a result of such a failure, all nodes stop having a valid path to the root,
which is visualized in Fig. 33. It is thus an extreme case of a network partition. We
analyze it separately for each of the two implementations of RPL. For TinyRPL, we
also consider the two objective functions, whereas for ContikiRPL—only MRHOF.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

Fig. 33 Nodes with a valid path to the root under a failure of the root

TinyRPL with MRHOF

Figures 34–36 present the results of the experiment for TinyRPL with MRHOF
as the objective function. It can be observed in Fig. 34(a) that, although no node
had a valid path to the root after the failure, the majority of nodes continuously
had nonnull preferred parents. Moreover, the nodes that discarded their preferred
parents immediately selected new ones, thereby creating cycles in the DODAG. For
this reason, a large number of parent changes can be observed in Fig. 34(b) after the
failure. More specifically, the average number of parent changes in each second after

Failure Handling in RPL Implementations: An Experimental Qualitative Study 83

the failure was five times the number of parent changes in the initial second during
the DODAG construction. After the failure, the DODAG was thus highly unstable.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
o
d
es
 w

it
h
 a
 p
re
fe
rr
ed
 p
a
re
n
t

(a) Nodes with a preferred parent

0 20m 40m 1h 1h20m 1h40m 2h
time

0

10

20

30

40

50

60

#
 p
ar
en
t
ch
an

ge
s
in
 1
s

(b) Parent changes

Fig. 34 TinyRPL (unit disk, r = 1; MRHOF)

The average rank of the nodes in the DODAG is, in turn, presented in Fig. 35.
After the failure, it fluctuated a lot. The sharp changes can be owed to the nodes
changing their ranks to infinity, which is represented as value 65 535, and back again
to finite values. Nevertheless, a constant growth in the average rank can be observed.
In particular, the average rank growth exceeded the maximum allowed growth for
a single node, as specified by MaxRankIncrease, without any visible reaction from
the implementation.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

2000

4000

6000

8000

10000

12000

14000

av
g
ra
n
k

Fig. 35 TinyRPL: Average rank (unit disk, r = 1; MRHOF))

The large number of parent changes after the failure was also accompanied by
a huge increase in control traffic, which is observable in Fig. 36(a). Namely, over
100 control messages per second were generated in the network after the failure,
more than 10 times the number of data packets. This incurred a significant overhead

84 Agnieszka Paszkowska and Konrad Iwanicki

on the accumulated traffic, and hence, global resource consumption. As shown in
Fig. 36(b), due to the increase in the control traffic, the total number of generated
packets increased a few times. This, in turn, combined with forwarding data packets
over cyclic routes, led to an increase of approximately 30% in the total number of
transmissions. In conclusion, rather than reducing, TinyRPL actually increases the
global network traffic and resource usage after a crash of the DODAG root.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

50

100

150

#
 c
on

tr
o
l
m
es
sa
ge
s
in
 1
s

(a) Control messages

0 20m 40m 1h 1h20m 1h40m 2h
time

0

200000

400000

600000

800000

#

packets

hops

transmissions

(b) Network traffic

Fig. 36 TinyRPL (unit disk, r = 1; MRHOF)

TinyRPL with OF0

Figures 37 and 38 present the results of a 3-hour long experiment for TinyRPL
with OF0. As can be observed in Fig. 37(b), the number of parent changes with
OF0 was significantly lower than that with MRHOF, depicted in Fig. 34(b). On
the other hand, for the majority of time after the failure, all nodes had a nonnull
preferred parent, which is visible in Fig. 37(a). In particular, no node discarded its
preferred parent until almost an hour after the failure, and a node that finally did it,
immediately selected a new preferred parent. In other words, the DODAG included
cycles that were not broken for a long time. This is, however, the consequence of
the fact that TinyRPL does not implement the mechanism for loop detection when
OF0 is employed as the objective function. Moreover, it can be concluded that such
mechanism is indeed necessary for RPL to behave efficiently in the presence of
network changes.

Similarly to the results for MRHOF, a stable growth in the average rank, exceed-
ing MaxRankIncrease, can be observed for OF0 in Fig. 37(c). The growth rate is
much lower in the case of OF0, though. This can be attributed to the slower reaction
to network changes for TinyRPL with OF0 due to long Trickle timer intervals at the
nodes. The intervals were long, in turn, as because of the lack of the loop detection
mechanism, only a few nodes reset their Trickle timers in response to the failure,
which can be verified in Fig. 37(d).

Failure Handling in RPL Implementations: An Experimental Qualitative Study 85

0 30m 1h 1h30m 2h 2h30m 3h
time

0

20

40

60

80

100

120

#
 n
o
d
es
 w

it
h
 a
 p
re
fe
rr
ed
 p
a
re
n
t

(a) Nodes with a preferred parent

0 30m 1h 1h30m 2h 2h30m 3h
time

0

5

10

15

20

#
 p
ar
en
t
ch
an

ge
s
in
 1
s

(b) Parent changes

0 30m 1h 1h30m 2h 2h30m 3h
time

0

5

10

15

20

25

30

av
g
ra
n
k

(c) Average rank

0 30m 1h 1h30m 2h 2h30m 3h
time

0

2

4

6

8

10

12

#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(d) Trickle timer resets

Fig. 37 TinyRPL (unit disk, r = 1; OF0)

Contrary to the experiments with MRHOF, an increase in the control traffic for
OF0 is barely visible in Fig. 38(a). This is because no loops were detected and
therefore, the nodes did not reset their Trickle timers in response. Nevertheless, an
about 25% growth in the number of hops and transmissions can be observed in
Fig. 38(b). The reason is that the nodes forwarded data packets through routes that
contained the undetected cycles.

In conclusion, TinyRPL fails to correctly handle a crash of the DODAG root,
irrespective of which objective function it is configured with. The main reason for
this lies in TinyRPL’s implementation of the enforcement mechanisms for the rank
growth limit, described by MaxRankIncrease. As a reminder, according to RPL’s
specification, each node in the DODAG has to keep track of the smallest rank it has
ever assigned in the current DODAG version. Whenever its rank starts to exceed
the smallest rank by more than MaxRankIncrease, the node must conclude that the
DODAG is broken, discard its preferred parent, and adopt an infinite rank. However,
TinyRPL does not follow the specification in that the node keeps “forgetting” the
smallest rank in the current DODAG version. In effect, the nodes’ ranks may grow
to infinity, as observed in our experiments.

86 Agnieszka Paszkowska and Konrad Iwanicki

0 30m 1h 1h30m 2h 2h30m 3h
time

0

10

20

30

40

50

60

70

#
 c
on

tr
ol
 m

es
sa
ge
s
in
 1
s

(a) Control messages

0 30m 1h 1h30m 2h 2h30m 3h
time

0

200000

400000

600000

800000

1000000

1200000

#

packets

hops

transmissions

(b) Network traffic

Fig. 38 TinyRPL (unit disk, r = 1; OF0)

ContikiRPL with MRHOF

The results of the same experiment for ContikiRPL are presented in Fig. 39 and 40.
As can be observed in Fig. 39(a), the failure resulted in some nodes discarding their
preferred parents and selecting new ones. Consequently, a growth in the number
of parent changes is visible in Fig. 39(b) and in rank in Fig. 39(c). Nevertheless,
after a short period of changes, the DODAG stabilized again. More specifically, all
nodes selected their preferred parents, the number of parent changes in one second
dropped back to the level from before the failure and the average rank growth ceased.
However, as visible in Fig. 39(c), the average rank grew by more than 7 compared
to the one before the failure, and hence, MaxRankIncrease was exceeded.

In Fig. 40(a), in turn, it can be observed that although the failure resulted in an
increase in control traffic, the increase did not last for more than a few minutes
and hardly affected the accumulated network traffic, as can be verified in Fig. 40(b).
Consequently, contrary to TinyRPL, handling the crash of the DODAG root by Con-
tikiRPL did not cause a significant increase in global resource usage.

Nevertheless, while ContikiRPL’s behavior is better than TinyRPL’s, it is not
fully correct either. In particular, despite the root being down, the nodes were still
using their resources to forward generated data packets over the entire network to the
root’s neighbors, which, in turn, could not forward them further and were forced to
drop them. Consequently, although the nodes did not generate extra traffic, the traffic
they did generate was still far from optimal. Optimally, after the nodes detected the
failure, they should have stopped forwarding any data packets as there was no route
through which those packets could have been delivered to the root.

The reason for the observed behavior in ContikiRPL is the same as in the case of
TinyRPL: improper management of the smallest rank assigned to a node in a given
DODAG version. In the case of ContikiRPL, however, the incorrect changes to the
value happen not virtually always but only occasionally. Nevertheless, in a network
of a few tens of nodes, they are still a problem.

Failure Handling in RPL Implementations: An Experimental Qualitative Study 87

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
o
d
es
 w

it
h
 a
 p
re
fe
rr
ed
 p
a
re
n
t

(a) Nodes with a preferred parent

0 20m 40m 1h 1h20m 1h40m 2h
time

0

5

10

15

20

25

#
 p
ar
en
t
ch
an

ge
s
in
 1
s

(b) Parent changes

0 20m 40m 1h 1h20m 1h40m 2h
time

0

10

20

30

40

50

60

70

av
g
ra
n
k

(c) Average rank

Fig. 39 ContikiRPL (unit disk, r = 1; MRHOF)

0 20m 40m 1h 1h20m 1h40m 2h
time

0

10

20

30

40

50

#
 c
on

tr
ol
 m

es
sa
ge
s
in
 1
s

(a) Control messages

0 20m 40m 1h 1h20m 1h40m 2h
time

0

100000

200000

300000

400000

500000

600000

#

packets

hops

transmissions

(b) Network traffic

Fig. 40 ContikiRPL (unit disk, r = 1; MRHOF)

When it comes to the latest version of ContikiRPL, as of January 5th, 2017, it be-
haves correctly in this failure scenario. More specifically, in response to the failure,
all working nodes discarded their preferred parents, as visible in Fig. 41(a), set their

88 Agnieszka Paszkowska and Konrad Iwanicki

ranks to high values, as plotted in Fig. 41(b), and stopped forwarding data packets,
as can be observed in Fig. 41(c). Consequently, there were only a few transmissions
in reaction to the failure, which can be observed in Fig. 41(c), and they were all
transmissions of control messages. Note that the number of hops after the failure
increased faster than the number of transmissions. This was because a request from
the test application to send a data packet counted as one hop even if the packet was
not transmitted over the network because of, for example, a lack of the default route
in the node’s IPv6 routing table. Consequently, since the test application contin-
ued to generate data packets after the failure and RPL ceased to transmit them at
some point, the growth rate of the number of hops exceeded that of the number of
transmissions.

0 20m 40m 1h 1h20m 1h40m 2h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 p
re
fe
rr
ed
 p
ar
en
t

(a) Nodes with a preferred parent

0 20m 40m 1h 1h20m 1h40m 2h
time

0

100

200

300

400

500

av
g
ra
n
k

(b) Average rank

0 20m 40m 1h 1h20m 1h40m 2h
time

0

50000

100000

150000

200000

250000

300000

350000

#

packets

hops

transmissions

(c) Network traffic

Fig. 41 ContikiRPL (latest version) (unit disk, r = 1; MRHOF)

Nevertheless, recall that the DODAG constructed by the latest version of Con-
tikiRPL is not stable. What is more, in contrast to the analyzed version, the new
version fails in the next scenario, which we believe is even more important from a
practical perspective.

Failure Handling in RPL Implementations: An Experimental Qualitative Study 89

8.2 Root Failure and Recovery

Hitherto, we have shown that neither TinyRPL nor ContikiRPL correctly handles
a crash of the DODAG root. Our subsequent experiments aim to examine whether
the implementations manage to rebuild a DODAG and return to a stable state when
the root recovers from its failure. The experiments lasted for 3 hours. The root fail-
ure occurred after the first hour of each experiment, whereas the recovery after the
second hour.

TinyRPL

In the case of TinyRPL with MRHOF, as can be observed in Fig. 42(a) and 42(b),
the DODAG was reconstructed immediately after the root had recovered. Moreover,
since the average rank quickly returned to the level from before the failure, as shown
in Fig. 42(c), it can be concluded that the reconstructed DODAG was as good as the
initial one.

0 30m 1h 1h30m 2h 2h30m 3h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) Nodes with a valid path to the root

0 30m 1h 1h30m 2h 2h30m 3h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 p
re
fe
rr
ed
 p
ar
en
t

(b) Nodes with a preferred parent

0 30m 1h 1h30m 2h 2h30m 3h
time

0

5

10

15

20

a
v
g
ra
n
k

(c) Average rank

Fig. 42 TinyRPL (unit disk, r = 1; MRHOF)

90 Agnieszka Paszkowska and Konrad Iwanicki

Figure 43 presents the network traffic throughout the experiment. Although an
increase in the number of generated packets and performed transmissions can be
observed between the failure and the recovery, the metrics returned to the values
from before the failure as soon as the root recovered.

0 30m 1h 1h30m 2h 2h30m 3h
time

0

200000

400000

600000

800000

1000000

1200000

#

packets

hops

transmissions

Fig. 43 TinyRPL: Network traffic (unit disk, r=1; MRHOF)

Figure 44 presents the results of the same experiment, but with OF0 as the ob-
jective function. Although TinyRPL with OF0 managed to rebuild the DODAG and
bring the average rank of a node back to the value from before the failure, the recon-
struction process took the implementation significantly longer than when MRHOF
was used, about 20 minutes instead of a few seconds. Again, this can be attributed
to the low number of nodes reseting their Trickle timers in response to network
changes when OF0 is employed as the objective function, which can be verified in
Fig. 44(c).

ContikiRPL

In ContikiRPL, in turn, all nodes rebuilt their paths to the root within seconds after
the recovery, as shown in Fig. 45(a). It can be observed in Fig. 45(b), however,
that it took the implementation more than half an hour to bring the average node’s
rank back to the value before the failure. The reason for this is that TinyRPL and
ContikiRPL manage their parent sets in a different way, the details of which we omit
here for brevity.

Finally, recall that while the analyzed version of ContikiRPL does not react cor-
rectly to the root failure, its latest version does. Let us thus check whether the latest
version also correctly handles the DODAG root’s recovery. As can be observed in
Fig. 46, the latest version of ContikiRPL did not reconstruct the DODAG after the
root had recovered from the failure. More specifically, neither did any nonroot node
select a preferred parent, which can be verified in Fig. 46(a), nor did it adopt a low
rank, which is visible in Fig. 46(b) in the third hour of the experiment. It can be thus
concluded that the implementation is not capable of recovering from a failure of

Failure Handling in RPL Implementations: An Experimental Qualitative Study 91

0 30m 1h 1h30m 2h 2h30m 3h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) Nodes with a valid path to the root

0 30m 1h 1h30m 2h 2h30m 3h
time

0

5

10

15

20

av
g
ra
n
k

(b) Average rank

0 30m 1h 1h30m 2h 2h30m 3h
time

0

2

4

6

8

10

12

14

#
 T

ri
ck
le
 T

im
er
 r
es
et
s
in
 1
s

(c) Trickle timer resets

Fig. 44 TinyRPL (unit disk, r = 1; OF0)

0 30m 1h 1h30m 2h 2h30m 3h
time

0

20

40

60

80

100

120

#
 n
od

es
 w

it
h
 a
 v
al
id
 p
at
h

to
 t
h
e
ro
ot

(a) Nodes with a valid path to the root

0 30m 1h 1h30m 2h 2h30m 3h
time

0

10

20

30

40

50

60

70

av
g
ra
n
k

(b) Average rank

Fig. 45 ContikiRPL (unit disk, r = 1; MRHOF)

the DODAG root. Again, the reason lies in yet another method of maintaining node
parent sets in the new version of ContikiRPL compared to the previous versions.

92 Agnieszka Paszkowska and Konrad Iwanicki

0 30m 1h 1h30m 2h 2h30m 3h
time

0

20

40

60

80

100

120

#
 n
o
d
es
 w

it
h
 a
 p
re
fe
rr
ed
 p
a
re
n
t

(a) Nodes with a preferred parent

0 30m 1h 1h30m 2h 2h30m 3h
time

0

100

200

300

400

500

av
g
ra
n
k

(b) Average rank

Fig. 46 ContikiRPL (latest version) (unit disk, r = 1; MRHOF)

8.3 Summary

The DODAG root failure scenario analyzed in this section was the most extreme
case of a network partition. The results for other scenarios with network partitions
are analogous to the presented ones. For this reason, we omit them here.

All in all, the results for scenarios involving network partitions are unfavorable
for both analyzed implementations of RPL. Neither TinyRPL nor ContikiRPL cor-
rectly reacts to such failures: nodes keep forwarding data packets to the root even
though all their paths to the root are broken, thereby unnecessarily wasting re-
sources. In some cases, the failure additionally results in a huge increase in network
traffic and, consequently, resource consumption. This, in turn, may be a major ob-
stacle to deploying RPL in real-world embedded systems. Moreover, it turns out that
the failure-handling behavior of the implementations may vary drastically between
versions, which complicates deployments even more.

9 Conclusions

To sum up, the following general conclusion can be drawn from our dependability-
oriented experiments with the two popular implementations of RPL. When a net-
work is not subject to any failures, both implementations behave as expected: their
control traffic volume gradually decreases to the minimal values and remains so,
which corresponds to RPL’s stable state. However, as soon as failures are intro-
duced into the links and/or nodes, the implementations’ behavior starts to diverge
from the desirable one, sometimes with grave consequences for the network.

More specifically, it turns out that although the implementations are capable of
handling simple link or node failures in the majority of the evaluated parameter set-
tings, there exist configurations in which such failures are not even detected, not

Failure Handling in RPL Implementations: An Experimental Qualitative Study 93

to mention proper handling. The results for more complex failures, notably those
leading to network partitions, are even more concerning. In both TinyRPL and Con-
tikiRPL, nodes keep forwarding packets to the root node even if all their routing
paths are broken. An effect of this inability to conclude that a major failure has
taken place is that the nodes unnecessarily waste precious resources on transmitting
packets that are never delivered to the root. In TinyRPL, the control traffic actually
explodes after the failure, which could drain the energy of typical battery-powered
nodes in a few days rather than months or years; in ContikiRPL, the increase is less
pronounced. In any case, however, such futile transmissions combined with the lack
of automatic nodes’ reaction to the failure may give the network administrators an
impression that everything functions properly, which may delay detecting the failure
even by the human administrators. This, in turn, may be particularly problematic if
the root node is an actuator that controls some important equipment. All in all, the
two popular implementations of RPL are simply not robust against failures.

This is in stark contrast to the requirements of many LLN-based embedded sys-
tems. Because of the characteristics of LLNs, failures of both links and nodes are
not uncommon. Consequently, it is crucial for RPL’s implementations to handle
such failures in a correct and efficient manner. The evaluated implementations thus
have to be fixed before they can be utilized in real-world systems in which depend-
ability is important. However, the fixing process may not be straightforward. The
example of the different versions of ContikiRPL shows that addressing problems in
one usage scenario may have unpredictable consequences in others. In other words,
it may not be easy to determine whether a given change to the implementation is
actually a “fix.” We may thus need better methods of verifying the compliance of
an implementation with RPL’s specification. What is more, it is not clear whether
fixing the implementations is possible without changing RPL’s specification itself.
It may well be that changes to the specification or novel algorithms [18] are neces-
sary to improve failure handling. Importantly, we may also need formal methods for
proving the correctness of the core protocol and such algorithms.

Acknowledgements This work was supported by the National Center for Research and Develop-
ment (NCBR) in Poland under grant no. LIDER/434/L-6/14/NCBR/2015. K. Iwanicki was addi-
tionally supported by the Polish Ministry of Science and Higher Education with a scholarship for
outstanding young scientists.

References

1. Boubekeur, F., Blin, L., Leone, R., Medagliani, P.: Bounding degrees on RPL. In:
Q2SWinet ’15: Proceedings of the 11th ACM Symposium on QoS and Security for Wireless
and Mobile Networks, pp. 123–130. ACM (2015). DOI 10.1145/2815317.2815339

2. Brachman, A.: RPL objective function impact on LLNs topology and performance. In: In-
ternet of Things, Smart Spaces, and Next Generation Networking: 13th International Con-
ference, NEW2AN 2013 and 6th Conference, ruSMART 2013, St. Petersburg, Russia, Au-
gust 28-30, 2013. Proceedings, pp. 340–351. Springer Berlin Heidelberg (2013). DOI
10.1007/978-3-642-40316-3 30

94 Agnieszka Paszkowska and Konrad Iwanicki

3. Clausen, T., Herberg, U., Philipp, M.: A critical evaluation of the IPv6 routing protocol for low
power and lossy networks (RPL). In: 2011 IEEE 7th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), pp. 365–372. IEEE (2011).
DOI 10.1109/WiMOB.2011.6085374

4. Conta, A., Gupta, M.: Internet Control Message Protocol (ICMPv6) for the Internet Protocol
version 6 (IPv6) Specification. RFC 4443 (2006). DOI 10.17487/RFC4443

5. De Couto, D.S.J., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric for
multi-hop wireless routing. In: MobiCom ’03: Proceedings of the 9th Annual Interna-
tional Conference on Mobile Computing and Networking, pp. 134–146. ACM (2003). DOI
10.1145/938985.939000

6. Dunkels, A., Gronvall, B., Voigt, T.: Contiki – A lightweight and flexible operating system for
tiny networked sensors. In: 29th Annual IEEE International Conference on Local Computer
Networks, pp. 455–462. IEEE (2004). DOI 10.1109/LCN.2004.38

7. Duquennoy, S., Landsiedel, O., Voigt, T.: Let the tree bloom: Scalable opportunistic routing
with ORPL. In: SenSys ’13: Proceedings of the 11th ACM Conference on Embedded Net-
worked Sensor Systems, pp. 2:1–2:14. ACM (2013). DOI 10.1145/2517351.2517369

8. Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker, S., Stoica, I.: Beacon
vector routing: Scalable point-to-point routing in wireless sensornets. In: Proceedings of the
2nd Conference on Symposium on Networked Systems Design & Implementation, NSDI ’05,
pp. 329–342. USENIX Association (2005)

9. Frey, H., Pind, K.: Dynamic source routing versus greedy routing in a testbed sensor network
deployment. In: Proceedings of the 6th European Conference on Wireless Sensor Networks,
EWSN ’09, pp. 86–101. Springer-Verlag (2009). DOI 10.1007/978-3-642-00224-3 6

10. Gaddour, O., Koubâa, A.: RPL in a nutshell: A survey. Computer Networks 56(14), 3163–
3178 (2012). DOI 10.1016/j.comnet.2012.06.016

11. Gaddour, O., Koubâa, A., Chaudhry, S., Tezeghdanti, M., Chaari, R., Abid, M.: Simulation and
performance evaluation of DAG construction with RPL. In: Third International Conference
on Communications and Networking, pp. 1–8. IEEE (2012). DOI 10.1109/ComNet.2012.
6217747

12. Gnawali, O., Levis, P.: The minimum rank with hysteresis objective function. RFC 6719
(2012). DOI 10.17487/RFC6719

13. Han, D., Gnawali, O.: Performance of RPL under wireless interference. IEEE Communica-
tions Magazine 51(12), 137–143 (2013). DOI 10.1109/MCOM.2013.6685769

14. Heurtefeux, K., Menouar, H., AbuAli, N.: Experimental evaluation of a routing protocol for
WSNs: RPL robustness under study. In: 2013 IEEE 9th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob), pp. 491–498 (2013).
DOI 10.1109/WiMOB.2013.6673404

15. Hui, J., Vasseur, J.P.: The routing protocol for low-power and lossy networks (RPL) option
for carrying RPL information in data-plane datagrams. RFC 6553 (2012). DOI 10.17487/
RFC6553

16. Iova, O., Theoleyre, F., Noel, T.: Stability and efficiency of RPL under realistic conditions in
wireless sensor networks. In: 2013 IEEE 24th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), pp. 2098–2102. IEEE (2013). DOI
10.1109/PIMRC.2013.6666490

17. Istomin, T., Kiraly, C., Picco, G.P.: Is RPL ready for actuation? A comparative evaluation
in a smart city scenario. In: Wireless Sensor Networks: 12th European Conference, EWSN
2015, Porto, Portugal, February 9-11, 2015. Proceedings, pp. 291–299. Springer International
Publishing (2015). DOI 10.1007/978-3-319-15582-1 22

18. Iwanicki, K.: RNFD: Routing-layer detection of DODAG (root) node failures in low-power
wireless networks. In: 2016 15th ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks (IPSN), pp. 13:1–13:12. IEEE (2016). DOI 10.1109/IPSN.2016.
7460720

19. Iwanicki, K., van Steen, M.: On hierarchical routing in wireless sensor networks. In: Proceed-
ings of the 2009 International Conference on Information Processing in Sensor Networks,
IPSN ’09, pp. 133–144. IEEE Computer Society (2009)

Failure Handling in RPL Implementations: An Experimental Qualitative Study 95

20. Iwanicki, K., van Steen, M.: A case for hierarchical routing in low-power wireless embedded
networks. ACM Trans. Sen. Netw. 8(3), 25:1–25:34 (2012). DOI 10.1145/2240092.2240099

21. Khelifi, N., Kammoun, W., Youssef, H.: Efficiency of the RPL repair mechanisms for low
power and lossy networks. In: 2014 International Wireless Communications and Mobile
Computing Conference (IWCMC), pp. 98–103. IEEE (2014). DOI 10.1109/IWCMC.2014.
6906339

22. Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: Geographic routing made practical. In: Pro-
ceedings of the 2nd Conference on Symposium on Networked Systems Design & Implemen-
tation, NSDI ’05, pp. 217–230. USENIX Association (2005)

23. Ko, J., Eriksson, J., Tsiftes, N., Dawson-Haggerty, S., Terzis, A., Dunkels, A., Culler, D.:
ContikiRPL and TinyRPL: Happy together. In: Proceedings of the Workshop on Extending
the Internet to Low power and Lossy Networks (IP+SN 2011) (2011)

24. Korte, K.D., Sehgal, A., Schönwälder, J.: A study of the RPL repair process using Con-
tikiRPL. In: Dependable Networks and Services: 6th IFIP WG 6.6 International Conference
on Autonomous Infrastructure, Management, and Security, AIMS 2012, Luxembourg, Lux-
embourg, June 4-8, 2012. Proceedings, pp. 50–61. Springer Berlin Heidelberg (2012). DOI
10.1007/978-3-642-30633-4 8

25. Levis, P., Clausen, T., Hui, J., Gnawali, O., Jo, K.: The Trickle algorithm. RFC 6206 (2011).
DOI 10.17487/RFC6206

26. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and scalable simulation of entire
TinyOS applications. In: SenSys ’03: Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems, pp. 126–137. ACM (2003). DOI 10.1145/958491.
958506

27. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J.,
Welsh, M., Brewer, E., Culler, D.: TinyOS: An Operating System for Sensor Networks, pp.
115–148. Springer Berlin Heidelberg (2005). DOI 10.1007/3-540-27139-2 7

28. Mao, Y., Wang, F., Qiu, L., Lam, S.S., Smith, J.M.: S4: Small state and small stretch routing
protocol for large wireless sensor networks. In: Proceedings of the 4th USENIX Conference
on Networked Systems Design & Implementation, NSDI ’07, pp. 8–8. USENIX Association,
Berkeley, CA, USA (2007)

29. Mohammad, M., Guo, X., Chan, M.C.: Oppcast: Exploiting spatial and channel diversity for
robust data collection in urban environments. In: 2016 15th ACM/IEEE International Con-
ference on Information Processing in Sensor Networks (IPSN), pp. 19:1–19:12. IEEE (2016).
DOI 10.1109/IPSN.2016.7460681

30. Narten, T., Nordmark, E., Simpson, W., Soliman, H.: Neighbor discovery for IP version 6
(IPv6). RFC 4861 (2007). DOI 10.17487/RFC4861

31. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level sensor network sim-
ulation with COOJA. In: Proceedings. 2006 31st IEEE Conference on Local Computer Net-
works, pp. 641–648. IEEE (2006). DOI 10.1109/LCN.2006.322172

32. Radoi, I.E., Shenoy, A., Arvind, D.: Evaluation of routing protocols for Internet-enabled wire-
less sensor networks. In: ICWMC 2012: The Eighth International Conference on Wireless and
Mobile Communications (2012)

33. Thubert, P.: Objective function zero for the routing protocol for low-power and lossy networks
(RPL). RFC 6552 (2012). DOI 10.17487/RFC6552

34. Tripathi, J., de Oliveira, J.C., Vasseur, J.P.: A performance evaluation study of RPL: Routing
protocol for low power and lossy networks. In: 2010 44th Annual Conference on Information
Sciences and Systems (CISS), pp. 1–6. IEEE (2010). DOI 10.1109/CISS.2010.5464820

35. Vasseur, J.P., Kim, M., Pister, K., Dejean, N., Barthel, D.: Routing metrics used for path cal-
culation in low-power and lossy networks. RFC 6551 (2012). DOI 10.17487/RFC6551

36. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
J.P., Alexander, R.: RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550
(2012). DOI 10.17487/RFC6550

	Failure Handling in RPL Implementations: An Experimental Qualitative Study
	Agnieszka Paszkowska and Konrad Iwanicki
	Introduction
	Overview of RPL
	Preliminary Information
	Packet Forwarding
	Parent Selection and Rank Computation
	Control Traffic
	Open Issues
	RPL Implementations

	Related Work
	Experimental Methodology
	Experimental Environments
	Experimental Settings
	Experimental Scenarios

	Experiments without Failures
	Summary

	Experiments with Link Failures
	Important Link Failure
	Unimportant Link Failure
	Summary

	Experiments with Node Failures
	Important Node Failure
	Node Failure and Recovery
	Correlated Node Failures
	Summary

	Experiments with Network Partitions
	Root Failure
	Root Failure and Recovery
	Summary

	Conclusions
	References

