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Abstract

With the increasing adoption of Internet of Things technologies for controlling physical processes, their dependability
becomes important. One of the fundamental functionalities on which such technologies rely for transferring information
between devices is packet routing. However, while the performance of Internet of Things—oriented routing protocols
has been widely studied experimentally, little work has been done on provable guarantees on their correctness in vari-
ous scenarios. To stimulate this type of work, in this article, we give a tutorial on how such guarantees can be derived
formally. Our focus is the dynamic behavior of distance-vector route maintenance in an evolving network. As a running
example of a routing protocol, we employ routing protocol for low-power and lossy networks, and as the underlying
formalism, a variant of linear temporal logic. By building a dedicated model of the protocol, we illustrate common prob-
lems, such as keeping complexity in control, modeling processing and communication, abstracting algorithms comprising
the protocol, and dealing with open issues and external dependencies. Using the model to derive various safety and live-
ness guarantees for the protocol and conditions under which they hold, we demonstrate in turn a few proof techniques
and the iterative nature of protocol verification, which facilitates obtaining results that are realistic and relevant in
practice.
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Introduction be the only way to ensure that related physical objects
are indeed capable of exchanging data.

However, designing and implementing a routing
protocol is far from trivial. Apart from the various
trade-offs in algorithms for selecting routing paths, a
major challenge is that the topology of a network is

The goal of routing is finding paths in a network along
which data packets can be sent to enable communica-
tion between nodes that are not connected directly.
Routing protocols are thus fundamental in the Internet
and will likely remain important in the emerging
Internet of Things (IoT),' which aims to make physical
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typically highly dynamic, that is, the node population
and link qualities constantly evolve. This is especially
apparent in low-power wireless networks, when nodes
are embedded in the surrounding environment. In
effect, a crucial element of a routing protocol is algo-
rithms that detect such changes and account for them
by adapting, rebuilding, or even tearing down com-
pletely the routing paths between nodes. The operation
of such route maintenance algorithms is inherently dis-
tributed among the nodes and can be influenced by
external (environmental) factors. In addition, even
standardized algorithms usually have a number of con-
figuration parameters, rely on external components
(e.g. for detecting failures), or even leave some issues
open to implementers.

As a result, it may be difficult to predict for a routing
protocol how its given implementation in a specific con-
figuration and particular network will behave in a given
scenario of network topology dynamics. Although such
behavior can sometimes be tested empirically, some sce-
narios, even ones that are likely in the real world, may
be difficult to reproduce during pre-deployment testing.
What is more, even if tests in given conditions are possi-
ble, they provide only a limited understanding of how
the conditions are allowed to change and what hazards
such changes entail. This implies that deploying a rout-
ing protocol in a real-world system poses some risks.
While often these risks are simply ignored, there are use
cases for which they have to be given more consider-
ation. A prominent example is many industrial ToT
applications, especially involving actuation of valuable
assets. Such applications frequently require a high
degree of dependability,” including guarantees on the
behavior of the employed routing protocol under vari-
ous network dynamics.

In this article, we give a tutorial on how such guaran-
tees can be derived formally. As the considered routing
protocol we select the IPv6 Routing Protocol for Low-
Power and Lossy Networks (RPL).> RPL is the current
IETF standard for routing IPv6 packets in low-power
wireless networks, developed to allow such networks to
be part of IoT. It has a couple of implementations,
among which two open-source ones, ContikiRPL* and
TinyRPL,” are arguably the most widely recognized
and deployed for both research and commercial pur-
poses. It also exhibits virtually all properties character-
istic of such standardized solutions: its specification is
rather voluminous, it relies on other IETF standards
and external components, and introduces over a dozen
of configurable parameters. As such, it serves well as a
running example of a relevant, practical routing
protocol.

The tutorial is actually inspired by real-world prob-
lems that we have encountered when deploying RPL
and is based on our previous work on those problems,
involving mainly modeling and verification®’ but also

some empirical approaches.®® Its goal as a whole is
allowing the readers to apply a similar reasoning to
produce complete proofs or counterexamples for their
own hypotheses about the dynamic operation of
distance-vector routing protocols, such as RPL, poten-
tially in custom parameter configurations and deploy-
ment scenarios, to improve the dependability of those
protocols and their implementations. The presented
techniques can in addition help the readers who are
familiar with (semi-)automated verification tools to
have their results, obtained for specific settings, gener-
alized to a range of possible deployments. Overall, as
we discuss in more detail in the next section, the cov-
ered material can be of value at all stages of a protocol
lifetime: it provides unique insight into an operation of
a routing protocol under network topology dynamics,
which can help improve its design, develop correct
implementations, and configure them for particular
deployment scenarios.

The tutorial targets a wide audience from the com-
munications community. As such, it does not assume
any prior experience with formal verification methods.
It requires only undergraduate-level knowledge of com-
puter logic and some background in networking. For
the same reason, while it does present examples of a for-
mal notation, that is, linear temporal logic (LTL),'*!" it
strives to explain as much as possible in a textual form,
thereby following a successful approach of analyzing
and proving classic distributed algorithms.'* All in all,
we hope that the tutorial is accessible not only to the
scientific community but also to practitioners involved
in building dependable systems.

The contributions of the tutorial are as follows:

e We start by surveying a broad spectrum of
approaches to ensuring correctness of protocol
implementations. This aims to position our work
and provide the readers with possible
alternatives.

® We then give the necessary background, that is,
an overview of RPL and LTL. These sections are
meant to be self-contained but they also offer rel-
evant pointers in the case the readers needs more
information.

e  What follows is the first part of the tutorial core,
in which we explain how selected aspects of RPL
can be modeled. The section emphasizes typical
problems encountered in the process: keeping
complexity in control, modeling processing and
communication, abstracting algorithms compris-
ing the protocol, and dealing with open issues
and external dependencies.

e In the second part of the tutorial core, we show
in turn how various hypotheses regarding
dynamic behaviors of the developed model can
be verified. We consider hypotheses regarding
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both safety and liveness, demonstrate a few
proof techniques, including custom ones, and
illustrate the iterative nature of a protocol verifi-
cation process, which are meant to help obtain-
ing results that are relevant in practice.

e Finally, we summarize and give possible further
directions. In particular, we briefly recapitulate
real-world applications of the results we have
developed using the methodology presented in
this tutorial.

The many facets of dependability

Dependability encompasses multiple aspects.'® In this
tutorial, we are concerned with ensuring that one can
rely on implementations of a routing protocol to cor-
rectly handle network topology changes that are obser-
vable in practice. We will not try to specify here precise
correctness requirements because they may vary
depending not only on the protocol but also its target
environment. However, the goal is to have guarantees
on the behavior of a protocol implementation under as
broad a spectrum of deployment settings and opera-
tional scenarios as possible, so that one is able to assess
the risks and consequences of protocol malfunctions,
and alleviate them, for instance, through additional
dedicated software  solutions  or  hardware
overprovisioning.

This formulation of the goal has two facets. The first
is ensuring that a protocol specification, that is, the
algorithms constituting the protocol, including their
assumptions, is correct. The second is ensuring that
implementations of the algorithms conform to their
specifications, that is, that they do not have bugs. The
difference between these two is subtle and they are often
treated together, especially since the development of a
protocol is typically an iterative process alternating
between specification, implementation, and testing.
Therefore, we also treat them together, thereby survey-
ing related work from a perspective of the entire proto-
col development cycle.

Methods for ensuring dependability

To start with, testing is crucial for assessing the perfor-
mance of a routing protocol implementation in prac-
tice. It may also reveal bugs in the implementation or
even in the design of the protocol itself. In low-power
wireless networks, a particularly popular form of test-
ing is integration testing, which involves entire protocol
implementations or their major components. It is typi-
cally performed in simulators, such as TOSSIM'* and
OMNeT++ .,  emulators, like COOJA'® and
Avrora,'” and on testbeds, for example, MoteLab,'®
Indriya,"” FIT/IoT-LAB,*® or 1KT.?' Nevertheless,
while integration testing is indispensable for general

performance assessment, it is hardly ever capable of
exercising all possible control flow paths, which is nec-
essary for reliability. To this end, one may additionally
employ finer-grained forms of testing, notably unit test-
ing.*>** However, those are aimed at individual soft-
ware modules and hence may be incapable of
identifying bugs resulting from module interactions.
Moreover, they require precise specifications of the
behavior of the modules, which need not be trivial to
derive from a specification for an entire protocol, espe-
cially since ideally the specification should not enforce
a particular modularization. Consequently, testing
alone may be insufficient to ensure that an implementa-
tion of a routing protocol is reliable, in particular, that
it correctly handles network topology changes that are
observable in practice.

On the contrary, appropriate solutions have to be
adopted also during protocol implementation because
without a sufficient quality of its code, it is difficult, if
not impossible, to make an implementation reliable. In
fact, unit testing can already be one example, as it is
typically done together with programming.?>>*
Another popular solution is to employ modern pro-
gramming languages® or domain-specific ones,”® which
aim to simplify software engineering and prevent cer-
tain types of bugs. Moreover, such languages are often
accompanied by dedicated design pattern,”’ integrated
development environments,”® and debuggers,”*>! the
goal of which is to further improve software quality.
Finally, additional compile- and run-time solutions can
also be deployed to improve memory safety,>* cross-
interface behavior,** assertion checking,* (distributed)
checkpointing,®® or software updates,®® to name just a
few examples. Nevertheless, development-oriented
solutions are yet unable to protect against all classes of
bugs. Furthermore, they rely on programmers to cor-
rectly interpret specifications not only to produce com-
pliant code but also to devise appropriate tests,
assertions, and the like. Above all, the specifications
and designs must themselves be correct; otherwise, even
their highest quality implementations are bound to
behave in an undesired manner.

For this reason, a protocol design process should
also promote quality. One successful approach is to
have it led by an expert group, supported by a broad
community. This allows for leveraging multiple skilled
people to identify and eliminate potential design flaws
and to propose various extensions or improvements.
For instance, RPL was devised by IETF’s dedicated
group, ROLL,?’ that engaged the low-power wireless
networking community worldwide by publishing
multiple working drafts and request for comments
(RFCs). Likewise, its two popular implementations,
ContikiRPL* and TinyRPL,> were developed in an
open-source model. In this context, it is also crucial
that the entire protocol development process is
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iterative, which enables fixing design flaws and imple-
mentation bugs identified during testing, thereby gra-
dually reducing their numbers. However, as online bug
reports and our examples from the previous section
suggest, even such an advanced process may be insuffi-
cient to produce routing protocol implementations that
are suitable for highly dependable systems.

Formal verification and model checking

This is where formal methods may be of use.
Depending on their type, they can be applied at all
development stages of a protocol and can yield prova-
ble guarantees that the protocol, as given by a specifi-
cation, or its implementation, behaves in a certain
manner under certain assumptions.

A particularly appealing approach is to employ
automated verification tools,® which for a model or
actual code of (a fragment of) a concurrent program—
in our case, a routing protocol—enumerate and explore
all or selected execution paths in order to find states
violating user-defined conditions or conclude that such
states do not exist. Examples of tools for generic con-
current programs include SPIN,** which defines a new
program modeling language, Promela, and performs
automated state space exploration of programs in this
language to prove user-provided time-insensitive prop-
erties or find counterexamples, UPPAAL,* which fea-
tures a graphical modeling interface and enables
verifying real-time properties, PRISM,*' which in addi-
tion allows for a faster, probabilistic state space explo-
ration, or MaceMC,** which operates on actual
implementation code rather than code written in a spe-
cial modeling language. Examples of tools designed
specifically for low-power wireless network protocols
are in turn KleeNet,* which checks global assertions in
protocol implementations by adopting symbolic execu-
tion to explore points at which control flow in their
code changes or branches, T-Check,* which, drawing
from MaceMC,* uses random walks over the state
space of a protocol implementation to probabilistically
verify user-supplied global properties, and Anquiro,*’
which instead of probabilistic exploration introduces
three levels of abstractions suitable for assessing proto-
cols at different networking layers.

Although automated software verification did help
identify bugs in various systems and protocols, includ-
ing ones for low-power wireless networks,*** this
approach has inherent limitations. Since it requires enu-
merating all visited protocol states, it suffers from state
space explosion. In principle, a state space grows expo-
nentially with the number of nodes, links, local vari-
ables of the nodes and fields of messages in transit, and
the different possible values they can attain. This means
that despite various optimizations employed by the
aforementioned tools, enumerating all relevant states is

frequently infeasible. In contrast, analyzing only a sub-
set of the states, as in probabilistic solutions, typically
does not give guarantees that a property always holds if
a verifier fails to find a counterexample. Therefore, by
and large, automated verification is typically performed
only for small systems, consisting of few nodes and
links. What is more, any property verified in such a sys-
tem is guaranteed only for this exact system. In other
words, generalizing the property to other networks or
different parameter settings necessitates other means.

Consequently, while automated verification is indis-
pensable for identifying some classes of problems, many
important properties are proved for protocols in a tra-
ditional way: by a human applying reasoning rules to
analyze a property in a range of network topologies
and configurations. Examples for low-power wireless
networks include deriving conditions for node ranking
that were later adopted by RPL,* devising algorithms
for route repair with a guaranteed approximation fac-
tor,”’” finding bounds for various next-hop selection
algorithms,*® and the original research underlying this
tutorial.®” An important benefit of this approach is that
it usually also gives deep understanding of why and
when (under what assumptions) a given property holds.

The traditional approach, however, requires tech-
niques that make deriving proofs doable in reasonable
time and facilitate checking them. This tutorial is par-
tially due to the fact that we have lacked such tech-
niques that would be aimed specifically at dynamic
behaviors of routing protocols. Prior approaches to
proving properties of such protocols, including the
aforementioned examples, typically consider a snapshot
of a system, often in some stable state, and involve
showing the properties for this snapshot. Our focus is in
contrast dynamic behavior due to continuous changes
in a network, which precludes considering just a single
snapshot. This bears some similarities to the problems
that the distributed systems community faces when
proving claims for eventual consistency:* many proofs
assume quiescent systems but such systems are in prac-
tice never quiescent.”® Like in our case, developing dedi-
cated techniques turns out beneficial.>!

All in all, the tutorial fills a gap in the prior work on
dependability of routing protocols. Compared to tradi-
tional formal approaches to proving properties of such
protocols, it has a unique focus on dynamic behaviors.
It also complements verification approaches based on
automated tools, by offering techniques that enable
generalizing their results. Finally, recognizing that there
is no “silver bullet” in dependability, it aims to facilitate
testing, implementation, and specification of a protocol
by providing means for deriving precise formulations
of properties that components of the protocol have to
exhibit to guarantee particular behaviors in specific sce-
narios; these properties can be utilized to develop test
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cases, implementations of the protocol, and, above all,
its specification.

Overview of RPL

As a running example of a routing protocol for the
tutorial, we adopt RPL. As mentioned previously, RPL
is a recognized, mature, practical solution, which in
addition exemplifies many typical consequences of stan-
dardization. Therefore, let us first give a brief overview
of the protocol, notably the terminology it employs.
The details can in turn be found in its main® and com-
panion RFCs.

Scope of interest

Given RPL’s complexity, in the tutorial we focus on
the algorithms that constitute its foundation, enabling
so-called upward routing. To explain, RPL supports
any-to-any communication but emphasizes multipoint-
to-point (convergecast) traffic, where many source
nodes, normally low-power wireless devices, collabora-
tively forward their packets, using distance-vector rout-
ing, to a common destination node, typically a more
powerful border router. This distance-vector routing in
a so-called upward direction is utilized not only for con-
vergecast but also for collecting topology information
at the border router or the intermediate forwarding
nodes themselves. The latter enables point-to-
multipoint traffic in the opposite, so-called downward,
direction: either by the border router initiating source
routing (i.e. computing entire routes and embedding
them into packets), or the intermediate nodes doing
simple forwarding based on the data collected earlier,
or a combination of the two approaches. Finally,
point-to-point communication is obtained by first for-
warding a packet upward to a border router (or a node
with relevant topology information) and then redirect-
ing it downward to the destination node.

Upward routing is thus fundamental to RPL: if it
does not work correctly, downward routing also fails
because of inconsistencies or a lack of topology infor-
mation at the border router or the intermediate nodes.
The algorithms enabling upward routing in RPL are
also inherently decentralized and far more intricate
than those enabling downward routing, which essen-
tially boil down to periodically reporting topology
information by all nodes and storing this information
for use during forwarding packets downward. For
these reasons, it is RPL’s algorithms enabling upward
routing that are our focus here. Since they follow the
classic distance-vector approach, the techniques we
present here can by and large be applied to other rout-
ing protocols following this approach.

Basic terminology

To support upward routing, each node keeps track of
the wireless links to the other nodes in its radio range,
so-called neighbors. RPL requires that the links be sym-
metric; asymmetric links are disregarded. Some of these
links are selected to form routing paths to possible des-
tination nodes. To minimize the memory and control
traffic overheads due to maintaining these paths, RPL
normally designates one or just a few nodes, typically
only border routers, to act as upward destinations;
other nodes can in turn be reached by downward rout-
ing from these destinations.

Routing paths are thus maintained per destination.
To this end, each node is given a rank that describes a
cost of reaching the destination from this node: the des-
tination itself has the lowest rank, and the further away
a node is from the destination, the higher its rank.
Among the node’s neighbors, those with their ranks
lower than the node’s own one are the node’s so-called
parents: forwarding a packet to a parent brings the
packet closer to the destination. Normally, however,
the node forwards all packets to a single parent, ideally
the one with the lowest rank. Such a parent is called the
node’s preferred parent. From a global perspective, the
nodes’ links to parents should thus form a directed
acyclic graph (DAG) with edges oriented toward the
destination. Such a graph is referred to as a destination-
oriented DAG, abbreviated as DODAG, whereas the
destination node is called the DODAG root. The links
to preferred parents, in turn, should form a directed tree
that is a subgraph of the DODAG and has the
DODAG root as its only sink. The paths in the tree are
simply the upward routing paths that packets follow.
Figure 1 illustrates these concepts.

Occasionally, a DODAG may need to be rebuilt.
This entails all nodes forgetting their parents and ranks,
and selecting new ones from scratch. Since such global
rebuilding is not instantaneous, a node must be able to
distinguish whether it has already performed the
rebuilding locally or not. This is done with DODAG
versions: each node remembers the DODAG’s version
and, when it observes a new version, it can transition to
this version by reselecting its preferred parent and rank.

Finally, the costs of reaching the DODAG root,
reflected in the nodes’ ranks, can be measured by a
range of metrics, such as the number of forwarding
hops to the root, the estimated number of transmis-
sions, or the average packet delivery latency.>* Since
different packets may need to be routed to minimize
different costs, RPL defines so-called instances. An
instance is an independent set of DODAGs, all opti-
mizing the same cost. A node can belong to multiple
instances. In each of them, it joins the defined
DODAGS, ideally, their newest versions, for each
choosing its rank and preferred parent independently.



International Journal of Distributed Sensor Networks

@ a node with rank 7.1
the DODAG root node

—— alink to a node's preferred parent

_____ {> alink to a node's alternative parent

Figure 1. An example of a DODAG.

Each packet is in turn assigned by the source node to
an appropriate instance,” depending on the cost metric
that should be minimized when routing the packet.

Control trdffic

A DODAG is built and maintained with two types of
link-local ICMPv6 messages: DODAG Information
Objects (DI10s) and DODAG Information Solicitations
(DISes). A DIO, transmitted by a node, advertises a
path from this node to the root in a given DODAG
version. Among others, it thus contains the DODAG’s
version and the node’s rank. It can be sent either to a
multicast IPv6 address denoting all neighbors of the
sender or to a unicast address of a particular neighbor.
In contrast, a DIS is used to solicit DODAG informa-
tion by a node from its neighbors. It can optionally be
restricted to a given RPL instance, a given DODAG,
or even a particular version of the DODAG. Like a
DIO, it can be multicast to all of the sender’s neighbors
or unicast to a particular one.

For a given node, the transmission of DIOs for a
DODAG is by and large governed by a so-called
Trickle timer.>* In essence, it is an aperiodic timer
whose goal is minimizing control traffic when the
DODAG is stable, yet allowing for quickly reacting to
changes and gradually stabilizing again. When the
timer fires, the node multicasts a DIO to its neighbors.
It can also unicast a DIO to a particular neighbor in
response to a DIS from this neighbor. DISes, in turn,
are typically multicast periodically, only when a node
does not belong to any DODAG or even does not
know its neighbors. Otherwise, unicast DISes to a spe-
cific neighbor may also be utilized by node to probe
whether the neighbor is still alive and reachable. Such
probing is not mandatory, though.

Apart from DIOs and DISes, RPL’s core specifica-
tion defines the following ICMPv6 messages:
Destination Advertisement Objects (DAOs),
Destination Advertisement Object Acknowledgements
(DAO-ACKs), and Consistency Checks (CCs). DAOs

and DAO-ACKs are utilized for reporting network
topology upward to enable downward routing. CCs, in
turn, are security-oriented messages, protecting against
reply attacks and synchronizing cryptographic coun-
ters. This functionality assumes that upward routing
works correctly, thereby being beyond our scope of
interest.

Rank and parent selection

Based, in particular, on DIOs received for a DODAG,
each node maintains a local neighbor set. An entry in
the set corresponds to one of the node’s neighbors and
contains the neighbor’s address and its last advertised
DODAG version and rank. It may also contain the
routing metric values for the neighbor and/or for
the link with the neighbor, or other data that allows
the node to compute these values. The neighbor set is
thus the node’s local view of its neighborhood.

From among the entries in its neighbor set, a node
selects its preferred parent and computes its rank,
depending on the parent’s rank and metric values. This
may happen either immediately whenever the neighbor
set is updated or be deferred to allow for processing
multiple updates in one batch. The details, however, are
not part of RPL’s main standard because optimizing
different routing costs may require different metrics®
and different ways of selecting parents and computing
ranks. Instead, RPL delegates parent and rank selection
to so-called objective functions, providing only con-
straints on how these functions must operate and guide-
lines on how they can be designed. Importantly, for
every objective function, a node’s rank must be greater
than the node’s preferred parent’s at least by a constant,
denoted as MinHop RankIncrease; the root’s rank must
in turn be exactly MinHopRanklIncrease. Furthermore,
in any DODAG version, a node’s rank must not grow
from its minimal value by more than another constant,
MaxVersionRankIncrease; if it were to grow more, the
node must adopt an infinite rank and a null parent,
effectively losing its routing path to the root. Apart
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from these constraints, however, there is a lot of flexi-
bility in how an objective function can select parents
and ranks, what costs it can optimize, and what metrics
it can use.

The two commonly implemented objective functions
are the Objective Function Zero (OF0)” and the
Minimum Rank with Hysteresis Objective Function
(MRHOF).>® OFO0 utilizes an adapted hop count as the
underlying routing metric and selects as a node’s pre-
ferred parent a neighbor that offers the node the lowest
rank. MRHOF, in turn, is typically implemented for a
range of routing metrics, notably the estimated trans-
mission count, and, when selecting a node’s preferred
parent, avoids switching the current one if the gain in
the node’s rank were to be lower than a threshold,
denoted ParentSwitchThr. This mechanism of not
switching the parent unless sufficiently beneficial is
called hysteresis and aims to make the DODAG more
stable.

Open issues

As a final remark, despite specifying the core function-
ality associated with DODAG maintenance, the suite of
documents constituting RPL’s standards leaves a num-
ber of issues open to implementations. For instance, as
we have already mentioned, when reselecting a node’s
preferred parent and rank, an implementation may
choose an immediate or deferred approach. Similarly, it
may incorporate virtually any policies on introducing
new DODAG versions and transitioning from one ver-
sion to another. The same is true for managing RPL’s
instances and many other protocol aspects.

Furthermore, some issues are delegated to external
solutions, whose operation again need not be specified
precisely. A prominent example is so-called routing
adjacency maintenance, that is, the maintenance of the
nodes’ neighbor sets, notably routing metric values and
reachability information. Although to some extent this
is or can be done through DIOs and DISes, RPL’s spe-
cification suggests other mechanisms, such as link-layer
triggers®’ and IPv6 neighbor unreachability detection.>®
In either case, virtually no requirements are provided
for such mechanisms.

In general, for a protocol like RPL, leaving issues
underspecified is likely unavoidable. This, however,
poses problems when implementing or modeling the
protocol.

Linear temporal logic

Proving the behavior of a routing protocol such as
RPL necessitates a formalism that, on one hand, guar-
antees that any derived properties indeed hold given

the assumptions made in the proofs and, on the other
hand, is powerful enough to enable deriving properties
that are meaningful in practice. The formalism underly-
ing this tutorial is LTL,'"® which we briefly introduce
next, taking a perspective that in our view helps under-
standing the core parts of the tutorial and appreciating
its soundness. Note that, by necessity, our discussion of
LTL focuses only on the aspects relevant to the rest of
the tutorial; fully mastering the formalism may in turn
require some effort. To this end, we assume that the
readers are familiar with propositional logic, on which
LTL is based. Should the readers need more informa-
tion on either of the formalisms, we recommend a clas-
sic book by Ben-Ari."!

Syntax and semantics

LTL extends propositional logic with the ability to
express and prove temporal properties. To this end, it
enriches the set of propositional operators that can be
used in formulas (i.e. true, false, =, A, V, —, <) with
new, temporal ones. The two fundamental temporal
operators are () (named next) and % (referred to as
until). However, others, which can be defined in terms
of these two, are also commonly utilized for conveni-
ence, in particular O (always/globally) and < (eventu-
ally/finally).

The semantics of LTL is in turn defined for computa-
tions. A computation, o, is an infinite sequence of
states, numbered 0, 1, 2, ..., which models the flow of
time. A formula, ¢, may be satisfied in some state i of o
and not be satisfied in another state j, which is denoted
o,i E ¢ and o,j ¢, respectively. Each state of a com-
putation is thus mapped to a set of formulas that are
satisfied in this state. The temporal operators give the
ability to express dependencies between states. By con-
vention, it is assumed that a formula, ¢, is satisfied for
a given computation, o, which is written o = ¢ (i.e.
without the state number), if it is satisfied in the first
state of o, that is, 0,0 = ¢.

More formally, let AF be a countable, possibly infi-
nite set of atomic formulas, that is, ones including nei-
ther the propositional nor temporal operators. In
essence, it describes basic properties of a program at
various moments, such as the memory contents, the
instruction to be executed by a process, and the like. A
computation is a function, o : N — 247, that maps each
state i € N to a set of (composite) formulas, o(i) € 247
satisfied in this state, which are built out of the atomic
formulas and the operators. More specifically, the satis-
faction relation, |, for a formula in any state i of any
computation o is defined by induction on the structure
of the formula as follows:

e For an atomic formula p € AF":
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o,i | p if and only if (abbreviated as iff) p € o(i).
e For the false formula:
o, i Ffalse.

e Fora formula built with the propositional opera-
tor implies:

ogiE¢—yiffo,ifporo,i .

e For a formula built with the temporal operator
next:

o,il= Odiffo, (i + 1) ¢.

e For a formula built with the temporal operator
until:

0,1 | ¢ iff there exists some j =i, such that
o.jEyandforallisk<j, o,k E ¢.

The semantics of the other propositional and tem-
poral operators can be derived based on syntactic
equivalences: ~¢p=¢ — false, true=—false, ¢V y=-d
=, GNY=(=¢pV ), b = h=(d = P) N () — §),
So=true?Z ¢, Op=—- (—¢). In particular, for the
aforementioned popular temporal operators, the
semantics derived in such a way is intuitive:

e For a formula built with the temporal operator
eventually|finally:

o,i E O¢ iff there exists some j =i, such that o,/ = ¢.

e For a formula built with the temporal operator
always/globally:

o,i Q¢ iff forallj=i, o,j E ¢.

Figure 2 gives a graphical illustration summarizing
the semantics of the temporal operators.

To facilitate developing even more intuition, let us
also consider two combinations of the operators that
are commonly encountered in this tutorial. First, for-
mula ¢ (eventually always ) is satisfied in state i of
a computation iff ¢ is satisfied in some state j =i and
all subsequent states of the computation, that is, iff
starting from some state j, ¢ is continuously satisfied.
Second, formula O0$¢ (always eventually @) is satisfied
in state i of a computation iff for every state j = i, there
exists some state k = j, such that ¢ is satisfied in state %,
that is, iff starting from state i, ¢ is satisfied repeatedly
but not necessarily continuously. The two formulas are
thus not equivalent. More specifically, the first implies
the second but not the other way around.

Last but not least, let us exemplify formula patterns
for two types of properties—safety and liveness—that
are of particular importance in program verification. A
safety property describes that some undesired effect
(i.e. “something bad”) never happens. A formula for
such a property thus often has the following form:
O-¢, where ¢ describes the undesired condition. A
liveness property, in turn, expresses that some desired
effect (i.e. “something good”) eventually occurs, typi-
cally under some condition. A formula corresponding
to such a property is thus often constructed as follows:
O — $d), where  and ¢ describe, respectively, the
precondition and the desired effect. Put differently,
safety properties correspond to invariants whereas

¢ formula O ¢ holds in state i of computation o if and
o,ik Q¢ ——————————@ - ———eo—o only if (iff) formula ¢ holds in the next state, i + 1, of
i1 ! i*1 J-1 I J*1 the computation
(a)
¢ formula ¢¢ holds in state i of computation o iff
o,iEOP ————— @ — oo formula ¢ eventually holds starting from state Z, that
-1 ! i+1 J1 I J*1 is, ¢ holds in some state j > i of the computation
(b)
¢ ¢ ¢ ¢ ¢ formula O¢ holds in state i of computation o iff
o,i FO¢ e ——————————— @ —————o—o formula ¢ holds always starting from state 7, that is,
i-1 i i+1 -1 J J+1 ¢ holds for all states j > i of the computation
(©)
formula ¢ Uy holds in state i of computation o iff
oL iE dUY ¢ ¢ ¢ |4 formula ¢ holds until formula ¢ holds, that is, ¢ holds
, @@ —— o —o--- . . . .
i1 i i+1 j-1 j j+1 in some state j > i of the computation and ¢ holds for
all states k suchthati < k < j
(d)

Figure 2. An illustration of the semantics of common temporal operators in LTL: (a) temporal operator next, (b) temporal
operator eventually, (c) temporal operator always, and (d) temporal operator until.
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process P;
var
s : integer
i : integer
X : integer;
begin
while i < N do begin
x := random(M);
send (Q, x);
S = s + X;
1 =1+ 1;
end;
while true do
end ;
end .

0;
0;

begin

o I e Y S R

process Q;
var
r : integer
i : integer
y : integer;
begin
while i < N do begin
no-op ();
y := receive (P);
r (=1 +Y;
i =1+ 1;
end ;
while true do begin
end ;
end .

[
S o

SS IS

o 3 N L B

Listing 1. An example of a concurrent program.

liveness properties describe progress. To behave cor-
rectly, a program normally has to ensure both.

Modeling a program in LTL

To illustrate how LTL can be utilized for modeling and
verification of concurrent programs, let us consider an
example of such a program, presented in Listing 1. It
consists of two processes: P and Q. Process P executes
N iterations of a loop, with variable i being the itera-
tion counter and N being a constant. In each iteration,
it draws a random number, x, from the set
{0,1, ..., M — 1} (line 2), where M is a constant, sends
the random value to process Q (line 3), and adds it to
an accumulator variable, s (line 7-8). The infinite loop
at the end (lines 2-2) is just to simplify verification in
that we need not consider what happens when the pro-
cess ends. Similarly, process Q executes N iterations of
a loop, also with variable i being the iteration counter.
In each iteration, it receives a number, y, from process
P (line 4), and adds it to an accumulator variable, r
(line 4). Again, the infinite loop at the end is just for
simplicity. Likewise, the empty operation, no-op (line
2), is solely to make the numbers of similar lines in the
two processes match to facilitate our presentation.

Assuming that communication provided by the send
and receive functions is reliable, when both processes
enter their infinite loops (lines 7-8), their accumulator
variables should be equal. In other words, for any exe-
cution of the program, s is eventually always equal to r
or, in the LTL notation, for every computation, o, rep-
resenting an execution of the program, we have:
o E OUO(s = r). Our goal is to illustrate how this intui-
tive liveness property can be proved formally.

To this end, let us first explain how the program
from Listing 1 can be modeled in LTL. It consists of the
two processes that execute independently, that is, each

process has its own address space and program counter.
In the case of address spaces, what matters in the code
displayed in the listing is the values of variables i, x, s
for process P and i, y, r for process Q. To avoid ambigu-
ities when referring to variable i, we will use a subscript
denoting the process owning the variable: ip for process
P and ip for process Q. We will write x = v and ip = 2
to express that P’s variable x has value v and Q’s vari-
able i has value 2 respectively. To avoid constraining
our reasoning to a particular hardware architecture, we
assume that the integer type describes all integer values.
From the perspective of program counters, in turn, we
assume for simplicity that each numbered line of the list-
ing is a single instruction. If this were not the case, we
would consider lower-level machine code instead of the
code from the listing, which would only add complexity
without affecting our conclusions. We will write Qp = 7
to denote that P’s program counter points at the
instruction in line 7 of the code for P, that is, that this
instruction is the next to be executed by P. Likewise, we
will write @y = 3 to denote that process Q is about to
execute its instruction in line 3.

For advancing the program counters, we assume a
so-called asynchronous process execution model from
distributed systems. This model is highly general
because it does not restrict the relative running speeds
of processes: in a period when one process executes one
instruction, another process can execute an arbitrary,
albeit finite number of instructions; what is more, these
speeds can change arbitrarily in time. Such extremely
weak assumptions thus allow for applying the model to
virtually any distributed system. From our perspective,
its main implication is that any instruction pointed by
P’s and Q’s program counters eventually has a chance
to be executed, which usually (but not always) advances
the counter, as we formalize for the individual instruc-
tions shortly.



International Journal of Distributed Sensor Networks

Likewise, we adopt an asynchronous communication
model: when invoking the send function for a message
(line 3), P never blocks but continues immediately and
the message can take arbitrarily long to be delivered to
Q. Moreover, since we assumed that the communica-
tion is reliable, O is guaranteed to get the message, pro-
vided that it has a chance to do so, that is, it executes
the receive operation (line 3) sufficiently many times
(which it does). If no message has been sent by P, the
receive function at O waits. We can model such commu-
nication with a delivery multiset, Dp_,p, that contains
messages in transit from P to Q: they have been sent by
P but not yet received by Q. Dp_.p is a multiset rather
than a plain set because the random function (line 2)
can return the same value more than once, and hence
multiple instances of the value can be simultaneously in
delivery.

This brings us to the random number generator. We
simply assume that the invocation of the random func-
tion always eventually finishes and returns an arbitrary
value from the subset {0,1,2,...,M — 1}. In other
words, like previously, our assumptions on the random
number generator are extremely weak and thus model
virtually any solution employed in practice.

Given this information, we are ready to formalize a
single LTL state of the considered system and possible
transitions between such states that may happen during
computations. More specifically, a state consists of: the
values of P’s and Qs program counters (@p and Q)
and variables (ip, ip, x, y, s, r), and the multiset repre-
senting messages in transit from P to O (Dp_p). In the
initial state, numbered 0, the program counters point
to the first instructions of the processes (i.e. @p = 1
and @y = 1), variables ip, ig, s, r are equal to 0, vari-
ables x and y have undefined values, and the delivery
multiset is empty (i.e. Dp_o = (). In the case of state
transitions, in turn, we want to model as fine-grained
changes to these elements as possible, given the selected
granularity of instructions. Therefore, a state transition
corresponds to executing exactly one instruction by one
of the processes, which is a standard way of modeling a
computation in LTL."" The possible state transitions
due to executing instructions by process P are thus as
follows (cf. also Figure 3 for a control flow diagram):

(P1) The effect of executing the instruction in line
1 (i.e. when @p = 2) depends on the value of
ip. If this value is equal to or greater than NV,
then @p becomes 2; otherwise, @Qp becomes 2.
In both cases, the remaining state elements
are unaffected.

The instruction in line 2 assigns some value,
ve{0,1,....,M — 1}, being the result of the
random function, to variable x and advances
@p to 2 without changing the other elements.

4

(4]

Figure 3. A control flow diagram for process P and Q from
Listing | (the boxes correspond to the lines of code).

(P3) Line 3 corresponds to sending a message,
which results in adding the value of x (i.e. v)
to the Dp_p multiset, updating @Qp to 2, and
leaving the other elements intact.

Assuming that the value of s is u, executing
the instruction in line 4 makes s equal to the
sum of u and v (where v is the value of x),
advances @Qp to 5, and changes no other
elements.

The instruction in line 5 increments the value
of ip by one, does the same for @Qp, changing
it to 6, and has no other effects.

The only effect on the state of executing the
instruction in line 6 is that @Qp becomes 1.
Executing the instruction in line 7 just
advances @Qp to 7 with no other effects.
Finally, the instruction in line 8 sets @p back
to 8, leaving the other elements intact.

(P4)

For process O, in turn, thanks to the appropriate
line numbering in the listings, the transitions are mostly
analogous. Let us thus give only the differing ones:

Q1)
(Q2)

The only effect of executing the no-op
instruction in line 2 is advancing @y to 3.

The instruction in line 3 is receiving a mes-
sage. Therefore, it can be executed only if
there is some message in transit, that is,
Dp_.g # 0. Let v € Dp_ be one of such mes-
sages (where v € {0,1, ...,M — 1}). In such
a case, @y becomes 4, y becomes v, and v is
also removed from Dp_,o. The other state ele-
ments remain unmodified. If, in turn, there
are no messages in delivery, that is,
Dp_.p = 0, the instruction is not executed: no
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state transition corresponding to process Q
executing the instruction is allowed.

In summary, the model is rather intuitive.
Nevertheless, it describes precisely what comprises our
system from the verification perspective and how the
system can evolve.

Verifying the program in LTL

The model is in principle what many automated model
checkers (e.g. the aforementioned SPIN®%) would use
internally, likely in an optimized form, for the program
from Listing 1. We could also feed such a tool directly
with our target formula. In essence, the model checker
would start from the initial state, and then by perform-
ing one of the allowed transitions, it would modify ele-
ments of this state, thereby obtaining a new state. By
conducting such a state space exploration, it could
check whether the formula holds, that is, it would pro-
duce and check all relevant states reachable from the
initial one so as to ensure that the formula indeed holds
in all possible executions of the program. All in all,
using automated model checking for the program from
Listing 1, we could attempt to automatically verify
whether the property expressed as the aforementioned
formula holds for the model describing the system run-
ning the program.

However, such a verification attempt would yield
limited results because, as mentioned previously, to test
if the formula is true, a model checker would enumer-
ate all relevant states, which, depending on constants
M and N, could lead to the aforementioned state space
explosion. To give an example, in our model, the
random function returns an arbitrary integer value
between 0 and M — 1. As the random number genera-
tor samples the M values with replacement (i.e. any
value can be returned more than once), invoking the
function N times during a computation already gener-
ates MY possible computation branches that have to be
verified. What is more, each of them branches further,
depending on the interleaving of concurrent instruc-
tions of the two processes and the particular order of
message receptions. Let us consider just those computa-
tions in which all messages are first sent by P, and only
then is any message received by Q. For N messages in
transit, assuming for simplicity that they are all unique,
there are N! different orders in which these messages
can be received. In short, the number of possible com-
putations just for this family of interleavings is another
fast growing function of N. This implies that in practice
our verification would have a chance to complete only
if tiny values of M and N were selected.

What is more, its results would be valid only for the
selected values of the constants. In contrast, formally
proving that the results also hold for all M>0 and N>0

(i.e. generalizing the results) would anyway need to be
done by other means. Although one may argue that, in
the case of the considered program and formula, such
generalization is intuitive, this is only because of their
simplicity. For more complex systems, such as those
describing routing protocols, proving properties, even
seemingly intuitive ones, often turns out far from trivial
and may lead to unexpected observations, as we will
demonstrate in this tutorial. In other words, to over-
come the limits of automated verification, one does
need alternative approaches to formally proving LTL
formulas.

One approach to deriving such proofs is to directly
employ the semantics of LTL. In this approach, one
analyzes a model of the considered system to show that
the target formula is true or to find a counterexample.
Depending on the formula, this may require demon-
strating the existence of a particular computation in
which the formula is true or proving that the formula
holds in all computations satisfying some constraints.
The process typically boils down to analyzing the initial
state and possible state transitions. As such, it resem-
bles automated model checking but does not require
enumerating all states. Instead, it allows for using regu-
lar reasoning techniques, notably mathematical induc-
tion, to prove formulas generally, not just for specific
configurations. For example, in the case of a routing
protocol, one can prove in this way that some property
holds in any network and not just the particular one
that is fed to a model checker.

Another approach that in principle can give the
same effects is to derive proofs in a deductive system
for LTL. One such system is dubbed .Z."" It comprises
a set of axioms, that is, an initial set of formulas that
are assumed to be true, and two inference rules, gener-
alization and modus ponens, that transform formulas
constituting premises into a formula being a conclu-
sion. In this system, proving a formula is somewhat
mechanical: a proof is a finite sequence of formulas,
such that the last formula is the target formula and
each formula is either an axiom or a result of applying
generalization or modus ponens to respectively one or
two earlier formulas. The axioms utilized in the proof
can be either basic general formulas, defined as true by
the system itself, or formulas specific to the program
for which the proof is derived, essentially describing
state transitions such as those we modeled previously.
As to the inference rules, apart from generalization and
modus ponens, derivative rules can also be used, nota-
bly induction. Importantly, .Z is sound and complete,'"
so it can be used instead of or in addition to the
approach relying on the semantics.

In practice, to prove a given formula, usually the
most fitting approach is selected. Consequently, to
prove our formula, $O(s = r), for the program from
Listing 1, we will combine both approaches. To this
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end, let COUNT(Dp_.p) denote the number of messages
in delivery, that is, the number of elements in multiset
Dp_.p. Similarly, let SUM(Dp_.p) be the sum of the ele-
ments. Given these definitions, we could start by
semantically proving the following safety formula,
which may be treated as an additional lemma (i.e. a
derivative formula in L). What the formula states is
that if there are no messages in delivery, then the sum
of the values in delivery is zero

O( COUNT(Dp_g) = 0 — SUM(Dp_g) =0) (1)

However, since this formula is straightforward, we
omit its proof, thereby treating it as an axiom. Instead,
we focus on two more elaborate invariants. Their goal
is to bind the messages in transit from P to Q with the
values of either s and » or ip and ip. More specifi-
cally—intuitively—r can lag behind s in that the value
of r should always be less than s by the sum of all mes-
sages that have been sent by P but not yet received by
0, SUM(Dp_.p); in particular, if there are no such mes-
sages, r should be equal to s. We could express this
with the following formula: O(s = r + SUM(Dp_p)).
Likewise, ip lags behind ip by the number of messages
in  delivery, which  we  could formalize:
O(ip = ip + COUNT(Dp_.p)). However, this intuition is
not completely valid, as there may be inconsistencies
between the moment when a message is sent or received
and the corresponding moment when s/ip or r/ig is
incremented with x/1 or y/l, respectively. The correct
versions of the formulas thus have to take this into
account, thereby depending on the current instruction
to be executed by each of the two processes. The
revised formula for s and r is thus as follows

D( (@P 75 4 N @Q 7& 4 — N =r+ SUM(DP*}Q)) A
(@P:4/\@Q7é4 g s+ x :r+SUM(DpﬁQ))/\
(@P#4/\@Q:4 g N :r"rSUM(Dp‘,Q)‘Fy)/\
(@p=4AQp=4 — s+x =r+SUMDp_p)+»))

(2)

The formula for ip and iy is similar

O (@p#4AQp#5)A(Qp £4 NGy #5) —
ip= iQ + COUNT(DPHQ)) A
(Qp =4V @p =5 A(Qp #4AQy #5) —
ipt+t 1= iQ + COUNT(DPHQ)) A
(Qp #4NQp £5 A (@y =4V Qp =5) —
ip = iQ + COUNT(DP*,Q) + 1)/\
(@p=4Vv@p=5A(@Q,=4V@y=5) —
ip + 1 =iy + COUNT(Dp_p) + 1))

3)

Proof of Formula (2). We utilize standard induction
on state number.

As the inductive base, we consider the initial state 0,
inWhiCh@p = 1,@Q = I,SZO,}”ZO,ip:O,iQ :O,X
and y are undefined, and Dp_.p = (). Let us observe that

the formula is constructed in such a way that the four
implications constituting it refer to disjoint configura-
tions of @p and @g: exactly one implication has its pre-
mises true. More specifically, since @p = 1 and @y = 1
in state 0, only the premises of the first implication in
the formula are true. However, also the conclusion of
this implication, s = r + SUM(Dp_.p), is true, because
we have s = 0, r = 0, and SUM(Dp_p = 0) = 0. All in
all, since the other three implications are also true
because of their premises being false, the formula as a
whole is indeed true in state 0.

For the inductive step, we take an arbitrary state
t€40,1,2, ...} and—assuming that the formula is true
in all states up to and including +—we prove that it is
also true in state # + 1. We achieve this by analyzing all
state transitions to show that none of them makes the
formula false.

Let us start with transition (P1). Before the transi-
tion, we have the formula true and @Qp = 1. (and hence
@p # 4). Consequently, we must have either s = r +
SUM(DP*,Q), if @Q 7é 4, ors=r-+ SUM(DP*,Q) + v, if
Qg = 4. After the transition, in turn, @p becomes either
2 or 7 (and hence still @p # 2), while the other elements
of the state, notably s, r, y, Dp_p, and @Qp, do not
change. Therefore, since either s = r + SUM(Dp_.p) or
s =r+ SUM(Dp_p) + y, depending on the value of
@y, is true before the transition and none of the values
changes, the same equality holds after the transition:
the transition does not invalidate the formula.

Precisely the same reasoning can be applied to transi-
tions (P2) and (P5) ... (P8).

Let us thus consider transition (P3). Before the tran-
sition, we have @p = 1 (and hence @p # 4). Let us also
denote the values of the other variables as follows:
s = v, ¥ = v, SUM(Dp_p) = vsp, and x = v, for some
integers vy, v, Vsp, Vv, and, if @y =4, let y = v, for
some integer v,. Moreover, from the inductive assump-
tion we know that either s=r + SUM(Dp_p), if
Qp #4, or s=r+ SUM(Dp_p) +y, if @Qp=4. In
other words, if @y # 4, then v, = v, + vgp (); if in
contrast @y = 4, then vy = v, + vgp + v, (Fk). After
the transition, in turn, @p becomes 4, v, is added to the
Dp_,p multiset, and hence SUM(Dp_p) becomes
vsp + v, and the values of the other variables are
unchanged, in particular s = vy, ¥ = v,, x = vy, and, if
@p =4, y =v,. From the fact that now @p = 2, to
prove that the formula is true, we must show that either
s+ x=r+ SUM(Dp_p), if Qp # 4, or
s +x=r+SUM(Dp_p) +y, if @y =4. Case I: Let
@Qp # 4. We have s + x = vy + v, as neither s nor x
changes its values during the transition. We also have
r + SUM(Dp—.p) = v, + (vsp + v) because r does not
change its value and SUM(Dp_p) becomes vgp + vy.
From (%), in turn, we know that equation vy = v, + vgp
holds. Adding v, to both sides of the equation and mak-
ing use of the associativity of addition, we get
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v t vy =V, + (vsp + v,). In other words, indeed
stx=vitve=v+ (vsp +vy) =r + SUM(Dp_p).
Case 2: Let @y = 4. We again have s +x = v; + v, as
neither s nor x changes its values during the transition.
We also have r + SUM(Dp_p) +y =v. + (vsp + vx)
+ v, because r and y do not change their values and
SUM (Dp_.p) becomes vsp + v,. From (%), in turn, we
know that equation vy = v, + vsp + v, holds. Again,
adding v, to both sides of the equation and making use
of the associativity and commutativity of addition, we
get vy + vy = v, + (vsp + vv) +v,. Therefore, indeed
stx=vi+tve=v.+ (vsp +v) v, =r+SUMDp_g)
+ y. The combined conclusions for Cases 1 and 2 thus
indeed prove that also transition (P3) does not invali-
date the formula.

The reasoning for transition (P4) is symmetric, so we
leave it to the interested readers.

Furthermore, transitions (P1) and (P4) ... (P8) are
the same as the corresponding transitions for process
0. Moreover, a similar reasoning as, for instance, for
transition (Q2) can be applied to transition (P5), which
represents a no-op. Therefore, what is left to analyze
for process Q is the unique message reception transi-
tion, that is, transition (Q3).

Before transition (Q3), we have @y = 3 (and hence
Qp #4), s=v,, r=v, and SUM(Dp_o) = vsp, for
some integers vy, v, vsp, and, if Qp = 4, also x = v, for
some integer v,. In addition, from the inductive
assumption, we have either s =r + SUM(Dp_p), if
@p 7é 2, or stx=r-+ SUM(DP*)Q), if @P =4. In
other words, if @Qp # 4, then vy = v, + vgp (I); other-
wise, if @Qp = 4, then vy + v, = v, + vgp (). After the
transition, in turn, @, becomes 4, y becomes v, for
some integer v, <vsp, SUM(Dp_,p) becomes vsp — vy,
and the other variables preserve their values. Since now
@p =4, to prove that the formula is true, we must
show that either s = r + SUM(Dp_.9) + y, if @p # 4, or
s+x=r+SUMDp_p) +y, if @Qp =4. Case I: Let
@p #4. We have s = v, as the value of s does not
change during the transition. We also have
r+ SUM(Dp_g) +y=v,+ (vsp —v,) + v, as r does
not change during the transition, SUM(Dp_.o) becomes
vsp — v, and y becomes v,. From (}), in turn, we know
that equation vy = v, + vgp holds. Subtracting and add-
ing v, to the right-hand side of the equation and mak-
ing use of the associativity of integer addition, we get
vy = v, + (vsp — 1) + v,. Rewriting the three equa-
tions, we thus get the desired conclusion
s=vy=v.+ (sp—v) +v,=r+SUMDp_g) +y.
Case 2: Let @Qp = 2. We have s + x = v; + v, as neither
s nor x changes its value during the transition. We also
have r + SUM(Dp_p) +y=v, + (vsp — V) + v, as r
does not change during the transition, SUM(Dp_p)
becomes vsp — vy, and y becomes v,. From (1), in turn,
we know that equation v; + v, =v, + vsp holds.
Again, we can enhance the equation with v,, thereby

obtaining vs + vy = v, + (vsp — v,) + v,. Rewriting the
three equations, we again get the desired conclusion
stx=vi+tve= v, +(vsp—v,) t v, =r+SUM(Dp_op)
+ y. The combined conclusions for Cases 1 and 2 thus
indeed prove that also transition 2 does not invalidate
the formula.

Having shown that no transition makes the formula
false, we proved the inductive step, that is, that for any
state ¢, if the formula is true in this state, then it is also
true in the next state, ¢+ + 1. By applying mathematical
induction to the base and the inductive step, we can
thus conclude that Formula (2) is indeed an invariant
of the program from Listing 1, which ends the proof.(J

An analogous semantic proof can be conducted for
Formula (3), so we leave it as an exercise for the inter-
ested readers. Instead, we exemplify how the deductive
system, .Z, can be used to complement semantic proofs.
To this end, let us first introduce a few formulas that
can be derived directly from the transitions for the con-
sidered program and will serve as axioms describing the
control flow in the program. In essence, they express
the global effects of particular instructions on the pro-
gram counters and variables ip and ig. More specifi-
cally, for any integer value v;, the first formula states
that whenever process P enters the infinite loop in lines
7-8 with ip having value v;, then the process remains in
the loop forever without any further changes to ip

U(((@p =7V @p =8 ANip =v;) — 4)
O(@p =7V @p = 8) Aip = v,))

The same formula for process Q is as follows

O((@p =7V Qg =8) Aig = v;) — (5)
0@y =7V Qg = 8) Aig = v;))

The next formula, in turn, describes the termination
of the main loop of process P, that is, that starting
from ip equal to 0, the loop will eventually finish with
ip equal to N. Like the previous ones, the formula can
be proved by mathematical induction, semantically or
by using Z. Since it is straightforward, we omit the
proofs for brevity and treat the formula as an axiom

O(@p =1Aip=0)— H(@p=TAip=N)) (6)

An analogous formula is true for process Q. Its proof
is only slightly more involved in that it necessitates
employing Formulas (3), (4), and (6) to show that in
each iteration, the receive instruction from line 3 of
Listing 1 is eventually executed as there is ultimately a
message to be received. Therefore, again, we omit the
proof of the formula for brevity, treating the formula as
an axiom

D((@Q:1/\iQ:O)—><>(@Q:7/\iQ:N)) (7)
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We are now ready to prove our main hypothesis: for
any computation, o, of the program from Listing 1, we
have o = $UO(s = r). Because of space constraints, we
do not quote here all basic general axioms of proposi-
tional logic and the deductive system, ., that are uti-
lized in the proof. However, since they are intuitive, we
are still able to precisely present the major steps of the
proof.

Proof. Combining Formulas (4)—(7), we get

d((@p = 1/\@Q: 1/\ip=0/\iQ:0)—>
OO((@p =TV @p = 8) A (@p = 7V @g = 8)A
ip:N/\iQ:N))

In other words, if the two processes start from their
first instructions (@p = 1 A @y = 1) with their i vari-
ables equal to the initial values (ip = 0 Aip = 0), then
eventually they will reach and forever remain in
their infinite loops ((Qp = 7V @p = 8) A (Qp = 7V Qg
= 8)) with their i variables being constantly equal
to N (ip =N ANip=N). Combining the formula
with Formula (3), which expresses the invariant depen-
dency between ip, ip, and COUNT(Dp_.¢), we can infer
that

(@, = IA@Q: 1/\iP:0/\iQ:0)—>
OO(@p =7V @p = 8) A (@ = TV @p = B)A
COUNT(Dy..0) = 0))

Likewise, applying also the invariant for
COUNT(Dp_.g) and SUM(Dp_.p), that is, Formula (1),
we prove that in addition SUM(Dp_p) is eventually
always zero

H(@p = IA@Q: lAip:O/\iQZO)—>
OO(@p = 7V @p=8) A (@ = 7V G = 8)A
SUM(Dpg) = 0))

Therefore, combining this with the invariant describ-
ing the dependency between SUM(Dp_.p), s, and r,
that is, Formula (2), we can conclude that the following
formula is true

D((@pz1/\@Q=1/\ip=0/\iQ=O)—>Q|:|(S=I”))

Finally, since any computation, o, of the program
starts with a state in which the program counters of the
two processes point to the first instructions and the
variables are equal to their initial values (i.e. we have
ofEQp=1AQp=1Aip=0Aip=0), we can con-
clude from the formula that in the computation s is
eventually always equal to r (i.e. o = OO(s = r)), which
ends the proof. a

All in all, we hope to have illustrated that LTL is a
sound and powerful formalism. It allows for capturing

many intricacies of the dynamic behavior of concurrent
programs. We will demonstrate its potential for deriv-
ing practically relevant formal guarantees for a routing
protocol, like RPL.

Modeling RPL’s dynamic behavior

As we showed in the previous section, proving dynamic
properties formulated in LTL for a concurrent program
requires a model of a system running the program. In
the case of a routing protocol, in particular RPL, the
model should cover not only the algorithms constitut-
ing the protocol but also the impact of the environment
in which they operate, notably the possible dynamics of
nodes and links. The parts of the model describing the
algorithms can be constructed based directly on algo-
rithm descriptions, for example, the relevant RFCs in
the case of RPL. They can also be built from existing
protocol implementations, such as the aforementioned
TinyRPL and ContikiRPL. The behavior of the envi-
ronment, in turn, is typically modeled based on com-
munity knowledge.

In any case, the model has to satisfy two seemingly
conflicting requirements. On one hand, its assumptions
should not be oversimplified to a point that meeting
them would be infeasible in the real world. Otherwise,
the properties derived for the model would have little,
if any practical relevance. On the other hand, its level
of detail (i.e. complexity) should be under control.
Otherwise, verifying even a simple property would be
tedious, an example of which is arguably the proofs
from the previous section. One of the main challenges
in modeling is thus discovering which aspects can be
simplified, how to perform the simplification, and what
its practical consequences are.

A common first step to addressing this challenge is
building a targeted model, including only those aspects
of the protocol that are relevant to the behaviors of
interest. If properly constructed, such a dedicated
model does not preclude verifying other behaviors. On
the contrary, this can be done by extending the model
with new components or removing or replacing some
existing ones.

Consequently, we will develop such a dedicated
model here. More specifically, our model will target
RPL’s DODAG construction and maintenance, which
is the enabler of upward routing. To further limit its
complexity, we will focus on a single instance and
DODAG, because considering more would bring little
new insight from the perspective of the tutorial. In
addition, having completed the tutorial, the interested
readers will be in position to develop the model appro-
priately. As a side note, the model will be a union of
the models from our previous papers,®’ further
extended to cover extra aspects. This in particular
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implies that its key parts have been double-checked
against ContikiRPL and TinyRPL to ensure that they
are consistent and implementable.

We start by defining a state of the considered system,
as required by the notion of computation in LTL. We
then proceed to identifying possible state transitions.
Finally, we formalize axioms describing the interplay
between the two, which determine the dynamic beha-
vior of the system.

System state

In line with the common terminology and previous sec-
tions, a system running a routing protocol such as RPL
is defined in terms of nodes and links. Nodes host pro-
cesses that execute the program implementing the algo-
rithms constituting the protocol. Links are directed
logical connections between pairs of nodes, thereby
being a medium through which the processes can
exchange packets. Together, they form a fixed directed
communication graph, Geoy = (Veom, Ecom), In which
the vertices correspond to the nodes (ie.
Veom = Nodes), whereas the edges correspond to the
links (i.e. Ecoy = Links). We assume that the number
of nodes (and hence links) is finite and the graph is
connected. These two assumptions are necessary for
liveness properties.

Both nodes and links can be subject to failures,
which disrupt their regular operation. A basic failure
class in distributed systems is so-called crash-stop fail-
ures.'> When a node crashes, it forever stops executing
its program. Likewise, when a link crashes, it forever
stops delivering packets. In contrast, the broadest class
represents so-called Byzantine failures, in which failing
nodes and links may behave arbitrarily and may even
collude. Yet, hardly any practical routing protocol—
RPL not being an exception—can tolerate nodes failing
that way: routing protocols normally assume collabora-
tive rather than malicious nodes. Similarly, nonmali-
cious links are normally considered.

Consequently, although one can adopt any failure
class in LTL-oriented models, here we settle on a class
that arguably covers a sufficient range of failures
encountered in practice: so-called crash-recovery fail-
ures. In this class, a crashed node or link can recover:
after recovery, a node starts its program from the
beginning and a link resumes delivering packets. A
node or link may thus alternate between being live and
dead, which more faithfully models a real network. In
this context, since the delivery of a packet between two
neighbors depends on the liveness of these nodes and
the links between them in some time span, to simplify
formulations of our properties, we introduce a concept
of “adjacency”: we say that two nodes are adjacent in a
given LTL state iff in this state they are both live and

the links between them in both directions are live as
well.

Finally, it is important to note that having the com-
munication graph, Geoy, fixed does not preclude mod-
eling dynamic networks. This is because the liveness of
nodes and links may change dynamically, and so may
other parameters affecting a DODAG, such as routing
metrics of nodes and links and packet loss rates over
individual links. In effect, even a highly mobile network
can be modeled by having the graph contain all links
and varying the liveness of individual links according to
a particular mobility pattern. Given this introduction,
we are ready to discuss what information an individual
node and link contributes to a global system state.

Node state. Any global state has to contain for each
node the data that the algorithms considered in the
model require to run on this node. To this end, like in
the example from the previous section, rather than
modeling the node’s memory bytes, processor registers,
and the like, we will model only values of relevant pro-
gram variables. This approach reduces complexity and
ensures the correct types of these variables. At the same
time, it does not preclude modeling practical problems,
like those related to storage limitations, if we chose to
do so. For instance, if we wanted to verify the behavior
of a protocol under a lack of packet buffers, we could
introduce a variable representing a limited-size buffer
pool. In our case, however, since the model targets
RPL’s DODAG construction and maintenance, we
limit our interest to the variables listed in Table 1 and
corresponding to the concepts mentioned in the over-
view of the protocol.

Table I. Variables comprising the state of a node.

Name Description

Version contains a nonnegative integer value that equals
the current DODAG version the node hosting
the variable belongs to

is the identifier of the neighbor that the hosting
node has selected as its preferred parent in the
current DODAG version or a special value, null,
if the node has no parent

contains a nonnegative integer value that
represents the hosting node’s rank in the current
DODAG version or a special value, infinity ()
equals to the minimal rank that the hosting node
has ever had in the current DODAG version,
which in particular may be infinity

is a set of the hosting node’s neighbors of which
the node is aware, with each entry, n,
corresponding to one such neighbor and
containing the fields listed in Table 2

Prefpar

Rank

Minrank

neighborset

DODAG: destination-oriented DAG.
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Table 2. Fields of each entry, n, in a node’s neighborset.

Table 3. RPL’s constants a node utilizes.

Name Description Name Description

n. id equal to the neighbor’s identifier and used as the  InitiaDODAGVersion a value of the DODAG version a
discriminator for the set node initially has

n. version containing the DODAG version that the hosting ~ MinHopRankIncrease a minimal value by which a node’s
node believes the neighbor currently belongs to rank should differ compared to the

n. rank equal to the rank in this DODAG version that parent’s rank

the hosting node believes the neighbor currently
has

being true if the hosting node believes that the
neighbor is reachable (e.g. can be communicated
with because the two nodes are adjacent) or
false otherwise

possibly some other fields (e.g. with routing
metric values or information relevant to
unreachability detection) that are treated as
“black boxes”

n. reachable

DODAG: destination-oriented DAG.

Variables version, prefpar, and rank describe
the node’s place in a DODAG (version). Variable min-
rank is utilized to enforce that the node’s rank never
grows unbounded, that is, above MaxVersion
RankIncrease. Finally, variable neighborset is
the node’s knowledge of its neighborhood, which is
necessary, among others, when selecting prefpar and
rank. Each entry of a node’s neighborset contains
the fields enumerated in Table 2.

For any node X € Nodes and any global state
t €{0,1,2, ...} of the system in a specific LTL compu-
tation involving the model, we will use notation var
x(?) to refer to the value of X’s variable var in state ¢,
for example, minrank x(f). Although in states in
which the node is dead, we could adopt some place-
holder values for its variables, to reflect the actual situ-
ation, we consider these values as undefined instead.

This brings us to another observation: any global
state has to incorporate for each node information
indicating whether the node is live or dead in this state.
Accordingly, we will denote as LiveNodes(#) C Nodes
the set of nodes that are live in state ¢ of a specific LTL
computation. In particular, we assume that in the ini-
tial state, r=0, all nodes are dead, that is,
LiveNodes(0) = 0.

Finally, we assume for simplicity that the identifier
of the DODAG root node is predefined and does not
change in any computation. If necessary, this assump-
tion can easily be dropped, though. For completeness,
in Table 3, we also provide a summary of constants that
a node in RPL utilizes.

Link state. For each link, in turn, any global state has to
contain packets that are in transit over the link in this
state. Since link-layer communication between nodes is
normally implemented by a stack of various low-lever

MaxVersionRankIncrease a maximal value by which a node’s
rank is allowed to grow in a given
DODAG version

a minimal value by which a node’s
rank has to change in order to
warrant preferred parent
reselection (used for some

objective functions)

ParentSwitchThr

DODAG: destination-oriented DAG.

protocols and operating system modules, being in tran-
sit may in practice describe several conditions. To give
some examples, a packet in transit may be: in some buf-
fer at some layer of the operating system of the trans-
mitting node, in a buffer of the radio of this node, on
air, in a buffer of the radio of the receiving node(s), or
in one of the operating system buffers of these nodes.
Consequently, to reduce the complexity of our model
and at the same time cover all such situations, we repre-
sent all packets in transit over a given link like in the
example from Listing 1: as a delivery multiset for this
link, denoted Iinkdset.

Furthermore, as highlighted previously, the core of
DODAG maintenance is done mostly through ICMPv6
DIO messages, which carry the necessary information;
DIS messages, in turn, are used mostly to solicit trans-
missions of DIO messages, whereas the purpose of
RPL’s other messages is delivering functionality that
already relies on upward routing, thereby being beyond
the scope of our interest. Consequently, by properly
abstracting the rules of DIO transmissions, neighbor
reachability detection, and routing metric value
maintenance—which we address shortly—we can limit
our reasoning on DODAG construction to DIO mes-
sages. Accordingly, we assume that the delivery multi-
set, linkdset, for a link contains only packets
carrying such messages, thereby ignoring other packets.

What is more, we will be interested in DIO messages
that can be received by a specific node. Therefore, for
convenience, for each node X € Nodes, we define a
per-node delivery multiset, nodedioset x, as the union
of the multisets for the incoming links to this node, that
is, in any state ¢t € {0, 1,2, ...}, we have nodedioset
x(® = Uy, x)eLinks 1inkdset (y x)(#). All link-related
variables contributing to the system state are summar-
ized in Table 4.

Each DIO message, d, in our model includes the
fields listed in Table 5. The fields simply allow the
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Table 4. Variables comprising the state of a link.

Name Description

Linkdset is a multiset comprising all DIO messages in
transit over the link, with each message
containing the fields listed in Table 5

Nodedioset defined for a convenience for each node X as a

multiset containing all DIO messages in transit to
the node, that is, nodedioset x = Uy, xycLinks
linkdset (Y, X)

DIO: DODAG information objects.

Table 5. Fields of a DIO message, d, in a links’s Iinkdset.

Name Description

d. id contains the transmitting node’s identifier

d. version equals to the node’s DODAG version (at the
time of the transmission)

d. rank equals to the node’s rank within this version (at

the time of the transmission)

possibly some other fields (e.g. for neighbor
reachability detection and routing metric value
maintenance) that are again treated as “black
boxes”

DODAG: destination-oriented DAG.

transmitting node to advertise the current values of its
corresponding variables, which is in general the goal of
a DIO message.

Finally, like a node, a link may be live or dead in any
state. Therefore, we denote as LiveLinks(#) C Links the
set of links that are live in state ¢ of a specific LTL com-
putation. Again, we assume that in the initial state,
t =0, all links are dead, that is, LiveLinks(0) = @. In
this context, unlike the previous variables, the values of
linkdset or nodedioset are defined even if the corre-
sponding link or node is dead. This is because these
variables represent multiple situations a DIO message
can be in and hence a failure of a single component
need not affect the message. For example, the presence
of a message in a delivery multiset can represent a situa-
tion where the message is still in some buffer of the
transmitting node and hence need not be affected by
the crash of a link or a receiving node. We will forma-
lize precise message delivery guarantees shortly.

State transitions

To recap, in our model, a global state of the system
incorporates information on which nodes and links are
live, what packets are in transit over which links, and
what values the local variables of the live nodes have.
To be able to model an LTL computation, we need to
define the possible transitions of the system between
such states.

Figure 4. A compacted control flow diagram for process P and
Q from Listing | (cf. Figure 3).

As a starting point, consider again the example from
Listing 1 (with the control flow also visualized in
Figure 3), in which a state transition was always due to
one of the processes executing the instruction pointed
by its program counter. Adopting that approach here
would be problematic, though. Even if we provided
code of a program implementing RPL, it would be
rather voluminous, considering RPL’s specification
and its implementations. This would remain true even
if we limited the program to the aspects relevant only
to the modeled variables, which we have confirmed
empirically. In effect, any computation for the model
would involve an excessive number of states, a large
fraction of which would be completely immaterial to
our reasoning and, yet, would have to be taken into
account in our analyses. As an illustration, consider for
instance Formula (2) from the aforementioned exam-
ple. Even though it describes a simple invariant
between two variables, it is composed out of four impli-
cations, whose sole purpose is addressing states with
arguably irrelevant, temporal inconsistencies between
the variables.

This observation hints at a potential solution to
modeling state transitions: rather than to an execution
of an individual instruction, a state transition can cor-
respond to an execution of a logically related group of
program instructions. For instance, in the example
from Listing 1, instead of modeling the control flow of
processes P and Q as in Figure 3, we can model it by
grouping logically related instructions as in Figure 4.
In particular, having such a single composite instruc-
tion describes the execution of the entire body of the
program loop (lines 2—6 of Listing 1) would reduce the
elaborate invariant expressed in Formula (2) to the ele-
gant and intuitive C(s = r + SUM(Dp_.p)), which mod-
els the core dependency between variables s and 7.

This approach has to be further adapted to capture
not only the studied algorithms but also the impact the
environment has on them. In particular, in the example
from Listing 1, we disregarded process and communi-
cation channel failures. To address this issue, we can
model a state transition as a more general event. An
event can correspond to an execution of a logically
related group of program instructions, at a granularity
even coarser than in the previous example, or some
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external phenomenon of the environment, including a
crash or recovery of a processes or communication
channel.

In general, apart from reducing model complexity,
the event-based approach to describing state transitions
has several advantages. It reflects the way protocol
specifications are written, as they typically describe
how protocols react to various events. It also matches
many software architectures for low-power wireless sys-
tems, which are often event-driven. At the same time,
without any special provisions, it can model asynchro-
nous process execution and communication, which, as
mentioned previously, are usually assumed for distribu-
ted algorithms. Likewise, with well-defined effects on
the global state, it is by no means “less formal” than
the program-counter-based approach from that sec-
tion: events are simply higher level instructions that
operate on the global state defined in the model.

Consequently, we employ the event-based approach
here: a transition between two global system states is
due to a particular event occurring. In the rest of this
section, we thus list events triggered by the program
running on the nodes and events caused by the environ-
ment. We give some intuition behind each event and
discuss what components of the global system state it
affects. The precise temporal properties for the events
are in turn formalized in the next section.

Program-driven events. The events triggered by the pro-
gram can occur only if the node they concern (i.e. the
node executing RPL’s software) is live. They are simply
responsible for modifying the node’s local variables and
the delivery multisets of the links to and from the node,
and are as follows:

(@) DODAG version generation—occurs when RPL
decides to build a new DODAG version; causes the
executing node to set its variable version to a new
version number and to reset its variables prefpar,
rank, and minrank to their initial values (as forma-
lized in the next section);

(b) DODAG version adoption—takes place when
RPL on the executing node decides to join a given
DODAG version; again, causes the node to change
its version to the given version number and to reset
its variables prefpar, rank, and minrank;

(c) Parent and rank reselection—happens whenever
RPL running on a node decides to change the node’s
place in the present version of its DODAG; causes
the node to set its prefpar and rank to new val-
ues, potentially also modifying minrank to the new
value of rank;

(d) Neighbor entry addition—occurs independently
of RPL, for instance, when an external protocol for
routing adjacency maintenance discovers a node’s

neighbor; causes a new entry, n, representing the
neighbor to be added to the node’s neighborset,
with field n. id set to the neighbor’s identifier, fields
n. version and n. rank set to their initial values (as
formalized in the next section), and the other fields,
which are not controlled by RPL, set arbitrarily;

(e) Neighbor entry removal—also takes place inde-
pendently of RPL, for example, when another pro-
tocol decides that a node’s neighbor is no longer
worth monitoring; causes the entry, n, representing
the neighbor to be removed from the node’s
neighborset;

(f) Neighbor entry update of non-RPL fields—again,
happens independently of RPL; for an existing entry,
n, in the executing node’s neighborset, can cause
changes to any of the entry’s fields except for n. id,
n. version, and n. rank, which are controlled by
RPL;

(g) DIO message reception—occurs when a packet
containing a DIO message, d, in the delivery multi-
set, 1inkdset, for a link to a node from one of its
neighbors is received and passed to RPL for process-
ing; may cause a removal of message d from multiset
linkdset (if this is the last instance of d to be received,
as explained shortly); in addition, if an entry, n, cor-
responding to the neighbor (i.e. n. id=d. id)
exists in the executing node’s neighborset, causes
fields n. version and n. rank of the entry to be set
to the values of the corresponding fields, d. version
and d. rank, of the message; otherwise, has no effect
on the node’s neighborset;

(h) DIO message transmission—takes place if RPL
running on a node decides to transmit a packet with
a DIO message, d, to a neighbor; causes d to be
added to the delivery multiset, 1inkdset, for the
link from the node to the neighbor, with field d. id
equal to the node’s identifier and fields d. version
and d. rank equal to the node’s variables version
and rank, respectively.

Each event thus indeed represents a logically related
group of program instructions that forms a certain
whole. Likewise, each of them can in principle be exe-
cuted at any time, if the executing node is live. This
explains why node program counters are not necessary
in the global system state.

Environment-driven events. The events triggered by the
environment are in turn as follows:

(a) DIO message loss—occurs if a packet contain-
ing a DIO message, d, that is in transit over
some link (i.e. is present in the link’s delivery
multiset, 1inkdset) is lost (i.e. will not be
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received by the target node); causes d to be
removed from 1inkdset;

(b) Link start-up—takes place when a dead link
goes up; causes the link to become live;

(¢) Link death—happens when a live link goes
down; causes the link to become dead and may
cause all or some of the messages in the link’s
delivery multiset, 1inkdset, to be removed
from this multiset;

(d) Node start-up—occurs when a dead node
(re)starts; causes the node to become live and
sets its local variables to their initial values (fol-
lowing the rules formalized in the next section);

(e) Node death—takes place when a live node crashes;
causes the node to become dead and makes the
values of all its local variables undefined.

Whereas start-ups and crashes of particular nodes
and links are typically defined per scenario, packet loss
is an inherent feature of any low-power wireless net-
work. For this reason, let us look more closely into
modeling communication, especially since apart from
packet loss, real-world communication may also exhibit
packet corruption, duplication, and reordering, and, as
emphasized previously, we strive to avoid any assump-
tions that would make our model unrealistic.

We start with packet corruption, which can manifest
in a range of ways: from garbled bits to entire messages
maliciously injected by an attacker. In all cases, the
result is that a node receives a packet that has never
been sent by any other node. As mentioned previously,
routing protocols normally do not tolerate Byzantine
failures and hence are not prepared to handle such
spurious packets. Therefore, for protection, they—or,
to be precise, entire network stacks they belong to—
adopt a number of countermeasures at different layers:
from checksums to various encryption schemes. In
effect, core algorithms of the protocols typically assume
that the problem of packet corruption is effectively
dealt with elsewhere, which we formalize as the follow-

ing property:

No creation: If node B receives a packet over the link from
node 4, then the packet must have been earlier trans-
mitted by node 4 over this link.

As the subsequent phenomena, let us consider packet
loss and duplication as they both affect packet delivery
guarantees. For the communication channel between
the two processes in the example from Listing 1, we
assumed perfect delivery, under which any transmitted
packet is delivered exactly once. In contrast, assuming
perfect delivery in low-power wireless networks is sim-
ply unrealistic, especially for broadcast transmissions
that are heavily utilized by RPL for packets with DIO

messages. In other words, we must not ignore the two
phenomena in our model.

A major issue when formalizing non-zero loss and
duplication is again that we want to make as minimal
and realistic assumptions as possible. For instance,
accepting a certain percentage of packet loss is not sen-
sible, especially since some low-power wireless links
may have a truly low and variable quality. Therefore,
we take an opposite approach, assuming that both loss
and duplication are unknown for any link and may
vary arbitrarily in time, which we formalize as follows:

Finite loss: If node A4 always eventually transmits a
packet over a link to node B, then node B always
eventually receives a packet over the link.

Finite duplication: 1f node 4 eventually always does
not transmit a given packet over a link to node B,
then node B eventually always does not receive the
packet over the link.

What the first property states is that if a node repeat-
edly forever transmits packets over a link, then the node
on the other side of the link also repeatedly forever
receives (some) packets over that link (recall the earlier
explanation for the always eventually combination of
temporal operators). There is no requirement as to
which of the packets will actually be received or how
many (consecutive) packets in such an infinite stream
are allowed to be lost. In other words, there is no bound
on packet loss and we cannot assume any specific
chances of an individual packet being lost. However,
thanks to being so extremely pessimistic, the property
captures virtually all loss patterns encountered in the
real world. Likewise, the second property expresses
minimal assumptions on packet duplication. What it
requires is only that the number of duplicates of a given
packet be finite if the packet is transmitted a finite num-
ber of times, so that the reception of the packet’s dupli-
cates ceases at some point (recall the explanation for the
eventually always combination of temporal operators).
In other words, no node forever keeps receiving the
same packet (unless the packet is transmitted ad infini-
tum). The two properties are thus indeed extremely
weak, which makes any conclusions derived based on
them readily applicable in the real world. They were
inspired by what is sometimes referred to as fair-loss
delivery'® but the original definition of that delivery
model differs, though. Moreover, for the sake of simpli-
city, their present formulation implicitly assumes that
nodes 4 and B are always adjacent, that is, 4, B, and
the links between them are always live. We deal with
this assumption when formalizing the actual axioms for
our model.

As the final phenomenon, let us consider packet
reordering. In principle, even packets transmitted over
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the same link may arrive in any order, depending on
the policies at the link layer. Consequently, we do not
assume any particular packet delivery order, again
being pessimistic.

Axioms describing RPL’s operation

Given the definition of a global system state and the
allowed transitions between such states, we are ready
to formulate axioms describing when and how pre-
cisely specific transitions can take place. Considering
the tutorial nature of this article, instead of the sym-
bolic notation of LTL, we will continue using the nat-
ural language, like in the link properties from the
previous section. In general, this is a common
approach when analyzing distributed algorithms'? as
it greatly facilitates explaining the adopted reasoning
and—when applied judiciously—need not make the
reasoning “less formal.” To support this claim, we
illustrate that in particular the previous properties for
links can be expressed in the symbolic notation of
LTL.

To this end, let us define the following predicates for
DIO message transmissions and receptions:

® x_dio(4,B,d) is true in any state i>0 of any com-
putation o iff the transition to this state corre-
sponds to a transmission by node 4 of a given
DIO message d over the link from 4 to B;

e rx_dio(A,B,d) is true in any state i>0 of any
computation o iff the transition to this state cor-
responds to a reception by node B of a given
DIO message d over the link from 4 to B;

e x_some(A, B) is true in any state ;>0 of any com-
putation o iff the transition to this state corre-
sponds to a transmission by node 4 of some DIO
message over the link from 4 to B;

® rx_some(A, B) is true in any state >0 of any com-
putation ¢ iff the transition to this state corre-
sponds to a reception by node B of some DIO
message over the link from 4 to B.

With these predicates, the finite duplication property
can be translated literally for any computation o, any
nodes 4 and B, and any DIO message d:

Finite duplication:
o E OO-tx_dio(4,B,d) —
SO-wrx_dio(A4, B, d)

The same is true for finite loss:

Finite loss:
o E OOix_some(4, B) — OOrx_some(A, B)

Only the translation of the no creation property may
arguably seem less straightforward:

No creation:

o E (O-rx_dio(4, B, d)) v
(—rx_dio(4,B,d) % (tx_dio(A,B,d)\
—rx_dio(4, B, d)))

The reason for such a seemingly involved translation
is that there is no standard operator in the symbolic
notation that would allow in a given state of a compu-
tation for referring to past states. Consequently, to
ensure that a reception of a packet over a link is pre-
ceded by a transmission of this packet over the link,
the formulation utilizes the temporal operator until,
which enforces the desired order of events. More specif-
ically, it states that a given DIO message, d, is either
never received by node B over the link from 4 to B or is
not received over this link until it has been transmitted
by node 4 over the link. The last conjunction is neces-
sary to ensure that transmission and reception of the
same message do not happen simultaneously: the mes-
sage can be received only after it has been transmitted
and not also when it is being transmitted. Usually, with
some practice, performing such translations into the
symbolic notation is not overly difficult.

After this interlude, we can thus proceed to formu-
lating the axioms describing RPL’s operation, as
derived from its specification. They are divided into
four groups that correspond to distinct pieces of func-
tionality necessary given our focus on RPL’s DODAG
formation and maintenance.

Control traffic axioms. The properties describing control
traffic, that is, the way DIO messages are exchanged
between neighboring nodes, can be formulated as follows.

CT1:If a node receives a DIO message, d, then the
message must have been transmitted earlier by the
node’s neighbor: d. id equals to the neighbor’s identi-
fier whereas d. version and d. rank equal, respectively,
to the neighbor’s version and rank from the moment
of transmitting d.

CT2:If a node’s neighbor is always eventually adja-
cent to the node, then the node always eventually
receives a DIO message from this neighbor.

CT3:4 node eventually never receives a given DIO
message.

They correspond directly to the previous link prop-
erties, albeit formulated in a manner that takes into
account the way RPL utilizes DIO messages. More spe-
cifically, property CT1 corresponds to no creation, in
addition defining how the values of fields id, ver-
sion, and rank, are set in a message. CT2 is in turn
equivalent to finite loss but, by taking into account
adjacency, factors in node and link failures, and, by
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considering that RPL transmits DIO messages perpe-
tually, omits the satisfied transmission-related assump-
tion from the original property. Finally, CT3
corresponds to finite duplication, again assuming that
any DIO message is transmitted by a node finitely
many times. All in all, the assumptions in the control
traffic properties are extremely weak, which is to make
any conclusions drawn under them broadly applicable
in the real world.

Routing adjacency maintenance axioms. As the next group,
let us formulate properties describing routing adjacency
maintenance, that is, the rules for maintaining nodes’
local neighborsets. On one hand, this functionality
is by and large beyond RPL’s specification: it is
assumed to be performed by external solutions. On the
other hand, to form and keep a DODAG, RPL relies
on the nodes’neighborsets to be up to date.
Formalizing the rules of routing adjacency mainte-
nance is thus crucial to enable reasoning about RPL’s
behavior in a dynamic network.

Accordingly, let us start with two properties that,
while not formulated explicitly in RPL’s specification,
can arguably be inferred from it.

RA1:Always, if a node’s neighborset changes (i.e.
entries are added or removed, or their fields are modi-
fied), then the node eventually reselects its prefpar
and rank, or dies.

RA2:Always, for each entry, n, in a node’s neigh-
borset, n. rank is infinite and n. version is equal to
InitialDODAGVersion, if the node has received no
DIO message, d, with d. id equal to n. id since the
entry was added to the node’s neighborset, or n.
rank is equal to d. rank and n. version is equal to d.
version, where d is the last DIO message with d.
1id equal to n. id received by the node since the entry
was added to the node’s neighborset.

Property RAL1 states that any change to a node’s
neighborset is followed by prefpar and rank
reselection, unless the node dies. Note that not only is
its formulation natural but also does not enforce any
particular reselection policy: the reselection can be done
immediately, after some time (e.g. in a different operat-
ing system context), or periodically. In other words, it
does not constrain potential implementations beyond
what is truly required.

Property RA2, in turn, formalizes consistency of
those fields of neighborset entries that are fully con-
trolled by RPL: their values for an entry for a given
neighbor are copied from DIO messages from this
neighbor. Again, this formalization can be inferred
from RPL’s specification.

In contrast, when it comes to formalizing the actual
tracking of neighbors and their adjacency, the specifica-
tion contains no precise information, leaving this issue
to external solutions. Yet, to be able to prove anything,
we do have to make some assumptions on the behavior
of such solutions. We formalize these assumptions as
properties RA3 and RA4.

RA3:If a node’s neighbor is eventually always nonad-
Jacent, then an entry, n, with this neighbor’s identifier
as n. id eventually always either is absent from the
node’s neighborset or has its n. reachable flag
set to false.

RA4:If a node’s neighbor is eventually always adja-
cent, then an entry, n, with this neighbor’s identifier
as n. id is eventually always present in the node’s
neighborset and has its n. reachable flag set
to true.

Property RA3 describes the rules of detecting
unreachable neighbors. To be considered unreachable,
a node’s neighbor, from some moment in time, has to
permanently remain nonadjacent to the node (i.e. it has
to be dead or its link with the node has to be down).
This in particular means that neighbors that are tempo-
rarily nonadjacent need not be detected as
unreachable—only ones that remain so for extended
periods—in practice, depending on the timeouts of an
actual failure detector. In other words, our assumptions
on the failure detector are extremely weak, which
makes any conclusions derived under them more
broadly applicable in the real world. As a side note,
our assumptions resemble those for what is known as
eventually perfect failure detector in classic distributed
algorithms.'? Furthermore, regarding the marking of a
neighbor entry as unreachable, the formulation of the
property again does not impose any particular imple-
mentation: the marking can be done through the reach-
able flag or by removing the entry from the node’s
neighborset.

Property RA4 is symmetric to RA3 in that it consid-
ers reachable neighbors. Consequently, for brevity, we
omit its discussion and proceed to formalizing another
functionality.

DODAG versioning axioms. The next group of properties
describes the management of DODAG versions. Unlike
the previous one, this functionality does belong to
RPL. Nevertheless, some of its aspects, notably those
related to liveness, are still underspecified. Therefore,
like previously, let us start with those properties that
can arguably be inferred from RPL’s specification.

DV1:When a node starts for the first time, its version
is set to InitialDODAGVersion.
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DV2:Always, if a node changes the value of its version
(i.e. either generates or adopts a value), then it even-
tually reselects its prefpar and rank, or dies.

DV3:Always, a node’s version does not decrease.

Property DV1 defines the initial value of a node’s
version variable, thereby not requiring any further
comment.

Property DV2 entails prefpar and rank reselec-
tion after any change to a node’s version variable. It
thus expresses the very goal of introducing a new ver-
sion for a DODAG, that is, forcing the DODAG to be
rebuilt. Like RA1l in the case of neighborset
changes, DV2 does not specify precisely when such a
reselection should take place, thereby not constraining
implementations.

Finally, property DV3 states that DODAG versions
are monotonic. It is worth mentioning that while forma-
lizing the intent of RPL’s designers, this property is only
approximated but not guaranteed by the protocol. First,
because of a limited width (8 bits) of version variables
in RPL’s specification, they can overflow. Second, since
they are not backed up to stable storage (e.g. flash), they
are reset to their initial values after a node’s restart. The
effect in both cases is that DV3 can be violated in the
real world. It can be shown formally that such violations
may preclude nodes from installing a new DODAG ver-
sion. Consequently, to minimize the risk of such situa-
tions, rather than plain 8-bit integers for versions,
RPL’s specification adopts so-called lollipop counters.>
Moreover, even if such a situation occurs, it can be
recovered from by letting some DODAG version con-
verge and then introducing a new one. For these rea-
sons, we assume property DV3 to be true.

The next aspect concerns DODAG version genera-
tion. By and large, RPL’s specification leaves this issue
open to implementers, notably when it comes to which
node introduces a new version and when. In principle,
we could assume that any node is allowed to start a
new DODAG version. In practice, however, for man-
agement reasons, it is typically the root node that gen-
erates new versions, while the other nodes adopt them
based on information from their neighborsets.
Therefore, being able to follow either of the two
approaches, we choose the latter one here. In contrast,
we defer specifying when a new version is generated to
particular operational scenarios, if they need this.
Overall, the assumptions on generating DODAG ver-
sions are formalized as property DV4.

DV4:Always, if a node changes its version to some
value, v, then either the node is the root and v is a new
value generated by it, or the node has an entry, n, in
its neighborset such that n. version equals to
v, and hence v is an adopted value.

Related to DODAG version generation is adoption
of generated versions, which is also the last aspect in the
considered group of properties. Like previously, RPL’s
specification contains virtually no requirements on when
a node should adopt a new DODAG version. However,
never demanding the node to do so precludes liveness: a
DODAG version newly generated by the root node may
never be adopted by any other node. On the other hand,
aggressively forcing a node to adopt any new version it
learns about may be an overkill. In search for a middle-
ground, we thus oblige a node to change its version to
a newer one only if not doing so would make it always
lag behind some of its neighbors. Moreover, we do not
force the node to change its version to a particular
value: it may select the adopted version on its own.
These weak requirements are formalized as property
DVS5, which completes the group of axioms related to
DODAG versions management.

DVS:Always, if a node’s version equals to some
value, v, and there always exists in the node’s
neighborset an entry, n, such that n. version is
greater than v and n. reachable is true, then
eventually the node’s version is not equal to v.

Objective function axioms. As the last group, we consider
axioms describing the selection of a node’s preferred parent
and rank in a DODAG version. As mentioned previously,
this functionality is delegated to objective functions, such
as OF0> and MRHOF.>® In principle, they are treated by
RPL as “black boxes.” Nevertheless, the protocol, some-
times implicitly, does define a few requirements on their
results, which we gather into the following properties.

OF1:4 node’s prefpar and rank change only as a
result of reselection, a change of the node’s version,
or the node’s death and (re)start; otherwise, they
remain unmodified.

OF2:4 node’s minrank is always equal to the mini-
mal value of the node’s rank either since the node
last changed its version or since the node has first
started if it has never changed its version from the
InitialDODAGVersion value.

OF3:4lways, when reselecting its prefpar and
rank, the root node adopts null and
MinHopRankIncrease, respectively. These are
also the initial values of the two variables at the root
node when the node (re)starts or changes its version.

OF4:Always, when reselecting its prefpar and
rank, a non-root node adopts null as prefpar iff
it also adopts infinite rank. These are also the initial
values of the two variables at the non-root node when
the node (re)starts or changes its version.
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OF5:Always, when reselecting its prefpar and
rank, a non-root node adopts null and infinity,
respectively, iff its neighborset does not contain
an entry, n, for which a potential rank, r, can be com-
puted (in an objective-function-specific way), such
that n and r satisfy all the following constraints:

() n. version=version,

(b) n. rank < infinity,

(¢) n. reachable = true,

(d) r<infinity,

() r=n. rank + MinHopRankIncrease,

(f) r<minrank + MaxVersionRankIncrease.

Otherwise, the node adopts n. idand r as its pre-
fpar and rank, respectively, for some neighbor n,
such that n and r satisfy all conditions (a)—(f).

Property OF1 defines the only events that affect a
node’s prefpar and rank variables.

Property OF2 formalizes the dependency between a
node’s rank, minrank, and version. Again, it is
worth mentioning that it reflects the intent of RPL’s
designers and is only approximated by the protocol.
This is because, like a node’s other variables, minrank
is not required to be backed up to stable storage, and
hence if the node reboots, the value of this variable
need not be restored. In contrast, if we dropped OF2
for node crashes and restarts, it can be formally shown
that RPL would not be able to recover from some fail-
ures, such as network partitions. Such problematic sce-
narios are rather unlikely, though. Moreover, nothing
prevents RPL’s implementation from backing up min-
rank. Therefore, we assume OF2 to hold also in the
presence of node crashes and reboots.

Property OF3 specifies that the root node’s rank in
any DODAG version is fixed, equal to
MinHopRankIncrease, and, regarding its position in
a DODAG, the node never has any prefpar.

Finally, properties OF4 and OF5 are similar in that
they describe rules for prefpar and rank selection by a
non-root node. Property OF4 entails that a non-root
node without a prefpar has to adopt an infinite rank
and vice versa, which represents the fact that it does not
have a routing path to the root node. Property OF5, in
turn, gives conditions for a non-root node’s neighbor, n,
under which the neighbor can be considered as the node’s
prefpar: condition (a) states that, at least given the
node’s knowledge, the neighbor has to belong to the
same DODAG version; condition (b)—that the neighbor
must not have an infinite rank, at least it must
have advertised a finite rank to the node; condition (c)—
that the neighbor has to be considered reachable by the
node; condition (d)—that the rank the node would have
if this neighbor were its preferred parent, a so-called
potential rank, r, has to be finite; condition (e)—that the

potential rank has to be greater from the neighbor’s rank
at least by a constant, MinHopRankIncrease; and con-
dition (f)—that the potential rank must not exceed the
node’s minrank by more than another constant,
MaxVersionRankIncrease. All these conditions can
be inferred from RPL’s specification. The operation
of an objective function, in turn, is modeled in prop-
erty OF5 in two ways. First, the property does not
specify how the potential ranks are computed, which
is left to the particular objective function employed.
Second, the property does not specify which of the
neighbors satisfying all conditions (a)—(f) is selected
as a node’s preferred parent. In other words, under
property OFS5, prefpar and rank are indeed selected
by the objective function, which appears as a “black
box” to RPL, while they are guaranteed to satisfy the
conditions necessitated by the protocol.

Summary of lessons learned

All in all, the presented model does cover the aspects fun-
damental to studying the dynamic behavior of RPL’s
DODAG construction and maintenance. Its system state
includes all the elements that contribute to a DODAG at a
particular moment: nodes, links, messages, versions, ranks,
preferred parents, neighbor tables, adjacency, and routing
metric values. At the same time, the state exhibits features
characteristic to distributed systems, such as distribution
of information among nodes and messages in transit,
knowledge inconsistency between different nodes and even
at a single node, communication with loss, duplication,
and out of order delivery, and node and link failures and
recoveries, to name a few prominent examples. The transi-
tions between such states are also granular enough to
model the evolution of these features in time. Finally, the
rules for the transitions have been meticulously inferred
from protocol descriptions, implementations, and commu-
nity knowledge, so that the dynamic behavior they model
comes close to what is observed in a real-world system,
which we confirmed, among others, empirically.®”

When presenting these issues, we aimed to illustrate
typical problems that have to be faced when devising a
formal model of a routing protocol. We highlighted the
need for limiting complexity by focusing on features
that are vital to the phenomena of interest. We showed
how to model processing and communication, abstract
algorithms comprising the protocol, and approach open
issues and external solutions on which the protocol
depends. Throughout our discussion, we emphasized
the need for avoiding oversimplifying and overspecify-
ing the model, which would otherwise make its beha-
vior deviate from that observable in the real world,
thereby limiting its potential for deriving practically rel-
evant conclusions. Therefore, even though parts of the
model can likely be reused out of the box for other
routing protocols, we believe that it is the knowledge
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we aimed to share when presenting it that can guide the
readers in their own modeling attempts.

What we have not discussed yet is in turn the iterative
nature of a typical modeling process. In particular, the
presented model is a result of over a dozen iterations that
improved its various aspects. We illustrate how such
adjustments can be performed at the end of the next sec-
tion, as this requires some practice in verification.

Verifying hypotheses on RPL’s behavior

Given a model that describes the dynamic behavior of a
routing protocol, we can formulate hypotheses regarding
this behavior in various situations. We can then employ
the LTL reasoning rules discussed previously to try to
prove that a particular hypothesis holds for the model.

One possible outcome of such a verification attempt
is a counterexample that identifies a specific scenario in
which the hypothesis is violated. Analyzing such a
counterexample we can conclude that the hypothesis is
indeed false. In particular, many hypotheses that we
formulated for RPL and that seemed intuitive at first
turned out not to hold in the end. In effect, we were
forced to reformulate them or abandon altogether, in
both cases gaining new insights.

However, it may also be the case that we are missing
some assumptions in our model or in the particular sce-
nario the hypothesis considers. Armed with this knowl-
edge, we may revise the model or make the considered
scenario more specific. This reinforces our previous
remark that a protocol verification process is typically
iterative, alternating between modeling the protocol
and (dis)proving hypotheses on its behavior, which is
how our models of RPL emerged.

In any case, a product of the process that is at least
equally important as a proof of a hypothesis is precise
information on what properties of the model and the
considered scenario are crucial for the hypothesis to
hold. This knowledge can be utilized in practice at virtu-
ally all stages of protocol development. At the design
stage, it can determine the architecture of the algorithms
constituting the protocol and can drive their specifica-
tion: one way or the other the information has to be put
in the specification to facilitate building correct imple-
mentations. At the implementation and testing stages, it
can help develop correct code: having the crucial prop-
erties explicitly formulated, it is much easier to maintain
them in the code and to devise dedicated test scenarios.
Finally, at the deployment stage, being aware of the
assumptions on the scenarios in which the hypothesis
holds gives more confidence in the reliability of the pro-
tocol in the target environment. In particular, in the
case of RPL, even though the specification and imple-
mentations had already existed for several years, the
aforementioned findings from our modeling and

verification process still turned out relevant in prac-
tice,’ as we summarize further in the paper.

To this end, however, apart from an appropriate
methodology and models, which were covered in the
previous sections, one also requires suitable proof tech-
niques. In particular, as mentioned previously, even if
some hypotheses can be verified through (semi-)auto-
mated model checkers, manual proof techniques are
typically necessary to generalize the results to other net-
work configurations, protocol parameter settings, and
the like. In this section, we thus give examples of the
main techniques that we adopted and developed when
proving various hypotheses for RPL. The techniques
are discussed with selected hypotheses serving as run-
ning examples. Considering the tutorial nature of this
article, the choice of the hypotheses aims to be illustra-
tive rather than exhaustive. Nevertheless, we cover both
safety and liveness properties.

Proving safety properties

Safety properties are often formulated as invariants
that have to hold in all or in well-defined states of com-
putations. A fundamental technique for proving an
invariant in LTL is mathematical induction on time,
that is, on the sequence of states representing a compu-
tation. This is precisely what we did when proving
Formula (2) for the example from Listing 1. To con-
duct such a proof (cf. Figure 5), we take an arbitrary
computation that is possible in the scenario that the
property considers. Then, as the inductive base, we
need to prove that the property holds in some state of
the computation, typically but not necessarily the first
state. Finally, as the inductive step, from the fact that
the property holds in an arbitrary state (and all previ-
ous states) of the computation, we have to derive that
it also holds in the next state. Depending on the prop-
erty, rather than all states, we may consider only those
that satisfy some specific criteria.

Sample property. To illustrate the use of this technique,
we will show the lower bound on ranks in RPL, that is,
the fact that all ranks ever appearing in the system are

(Inductive base) Prove that property ¢ holds in some state 7.

¢ ¢ ¢ ¢ $?
——————————@ - ?@—0

(Inductive step) From the fact that property ¢ holds in state #; (and all
previous states), prove that it holds in the next state, #;41, by showing that
no possible state transition from #; to #;, invalidates ¢.

Figure 5. A typical approach of verifying an invariant by
induction on time in an arbitrary computation.
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at least MinHopRankIncrease. More specifically, we
will prove the following lemma.

Lemma [. Always, if a node is live, its variable rank
and fields rank of all entries in its neighborset are
greater than or equal to MinHopRankIncrease.
Likewise, always, field rank of any DIO message in
transit is greater than or equal to MinHopRank
Increase.

Note that we named the property as “lemma”
instead of “hypothesis.” This is to indicate that it is
true. Irrespective of the naming convention, however,
the property itself is not mentioned explicitly in RPL’s
specification. Nevertheless, as we will demonstrate, it
can be derived from our model of the protocol and
hence from the specification itself. Having such an
explicit formulation facilitates adding checks for the
property in the code of RPL’s implementations.
Considering that MinHopRankIncrease is greater
than zero, this can, for instance, help protect the proto-
col from rank corruption errors that once led to a col-
lapse of ARPANET routing.®

Before delving into the proof, however, let us intro-
duce some notation that will make our reasoning more
succinct. More specifically, we define the following
multisets:

®  Ranksyus(t) = UXe]LiveNodes(t){ rank X(t)}o which
encompasses the values in state ¢ of variable
rank for all nodes that are live in this state;

®  RanksNpenus(f) = UXeliveNodeS(t){ n. rank(t) | n
€ neighborset x(#)}, which contains the val-
ues in state ¢ of fields n. rank of all entries, n, in
the neighborset s of all nodes that are live in
state f;

L4 RanksDIOS(t) = U(Y,X)E]Links{ d. rank (l) |
d€linkdset (y y)(t)}, which comprises the
values in state ¢ of fields d. rank of all DIO
messages, d, that are in transit in state 7.

We will denote the union of these multisets as
Ranks.(t) = Ranksy,s(1)U
Ranksnprents () U Rankspios(t). Note that they are all
multisets rather than plain sets because a given value
may appear in a particular multiset many times. For
example, many nodes can simultaneously have their
ranks infinite, and we would like to keep track of each
such rank. Moreover, careful readers may have noticed
that for Ranksy,s and RanksNurenys, We consider only
nodes that are live in a given state, whereas for
Rankspios, we consider all links. The same is true in the
case of the lemma itself. The reason is that the values
of variables rank and neighborset are undefined if
a node is dead. In contrast, a delivery multiset,

Ilinkdset, is defined for any link (i.e. either live or
dead) to account for the various places a message in
transit may be at, as explained previously.

With this notation, Lemma 1 can be reformulated as
follows:

For any state t € {0,1,2, ...} of any computation involving
our model, for all r € Ranks.(t), we have r
= MinHopRankIncrease.

Inductive proof. We are now ready of give a proof of the
lemma.

Proof. Consider an arbitrary computation for our model.

The inductive base is the first state: + = 0. In this
state, there are no DIO messages in transit yet because
there is no previous state transiting from which a node
could have transmitted a DIO, and DIOs do not appear
spontaneously (property CT1). In other words,
Rankspios(0) = (), and hence for any r € Rankspios(0),
we have r = MinHopRankIncrease. When it comes
to nodes, in turn, they are all dead in state 0. Therefore,
Ranksyas(0) = 0 and Ranksnpenws(0) = 0, and hence
again for any r € Ranksy,s(0) U Ranksnprens(0), we
have r = MinHopRankIncrease. All ranks in the
system are thus indeed at least MinHopRank
Increase in state 0 of the computation, that is, for all
r € Ranks,(0), we have r = MinHopRankIncrease,
which constitutes the inductive base.

For the inductive step, we take an arbitrary state,
t=0, and assume that in this state all ranks appearing
in the system are at least MinHopRankIncrease, that
is, for all r € Ranks.(tf), we have
MinHopRankIncrease. We will show that no event
in the system generates a rank value smaller than
MinHopRankIncrease, and thus in the next state,
¢t + 1, of the computation, for all ¥ € Ranks,.(t + 1), we
also have ¥ = MinHopRankIncrease.

To this end, we analyze what effects each possible
event has on Ranks,(t + 1) if this event corresponds to
the transition of the system from state ¢ to state ¢ + 1.

A

(a) Node start-up. If the event corresponding to the
transition of the system from state ¢ to state
t + 1 is a start of some node X, the following
dependencies hold: Ranksyas(t + 1) =
Ranksv,s(H) U{ rank x(t+ 1)}, Ranksnvrentrs
(t + 1) = RanksNorenus(f) U{ n. rank (¢ + 1) |
n € neighborset yx(t+ 1)}, and Rankspios
(t + 1) = Rankspios(t). In other words, X’s
rank and fields rank of all entries in X’s
neighborset appear in the appropriate mul-
tisets, whereas the multiset of DIOs in transit
remains unchanged. If X is the root node, then
rank x(t + 1) = MinHopRankIncrease
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(property OF3); otherwise, rank y(t + 1) = o (g) Neighbor entry removal. If the event during the
(property OF4). In both cases, we thus have transition from state 7 to ¢ + 1 is a removal of a
rank x(t+ 1) = MinHopRankIncrease. previously existing entry, n, from some X’s
Consequently, since for all r € Ranksvy,s(t), neighborset, the corresponding multiset is
= MinHopRankIncrease, also for all shrunk by the value of n. rank (f). As a result,
¥ € Ranksy,s(t + 1), ¥ = MinHopRank the following dependencies hold Ranksvyas
Increase. Similarly, for each entry, n, in X’s (t + 1) = Ranksvyas(2), Ranksnprgnes(t + 1) C
neighborsetinstate t + 1, we have n. rank Ranksnprgnts (1), and Rankspios(t + 1) =
(t + 1) = o (property RA2). Therefore, since Rankspios(?), and hence for all
for all r € Ranks\pgnus(f), ¥ = MinHopRank ¥ € Ranks,(t + 1) C Ranks,(t), we must have »/
Increase, also for all # € RanksnbEnts = MinHopRankIncrease.

(t + 1), ¥ = MinHopRankIncrease. Finally, (h) DIO message transmission. If the event causing
since Rankspios(t + 1) = Rankspios(t) and for the transition from state ¢ to state r + 1 is a
all r € Rankspios(t), r = MinHopRank transmission of a DIO message, d, by some
Increase, also for all ¥ € Rankspios(t + 1), ¥/ node X to node Y, then d is added to linkdset
= MinHopRankIncrease. All in all, for all of link (X,Y). Field rank of the message is
¥ € Ranks,(t + 1), we have v = copied from X’s variable rank at the time of
MinHopRankIncrease. transmission, that is, d. rank (¢t + 1) = rank

(b) Node death. If the event corresponding to the x(t) (property CT1). If effect, Rankspios(t + 1)
transition from state ¢ to ¢+ + 1 is a death of = Rankspios(t) U{ rank x(f)}, while the other
some node X, then the multisets do not get any multisets remain unmodified: Ranksy,(t + 1)
new elements; on the contrary, they can shrink. = Ranksvas(f) and  Ranksnprgnus(t + 1) =
To be precise, the following dependencies hold: Ranks\orentrs (7). However, since rank
Ranksy,s(t + 1) C Ranksy,(2), RanksnorEntrs x(t) € Ranksy,s(t) C Ranks,(t) and for all
(t + 1) C Ranksnprents(?), and Rankspios r € Ranks,(t), r = MinHopRanklIncrease, we
(¢t + 1) C Rankspios(t). Therefore, since Ranks, know that rank x(f) = MinHopRank
(t + 1) C Ranks.(t) and for all r € Ranks.(t), r Increase. Taking everything into account,
= MinHopRankIncrease, we can conclude we can thus conclude that for all
that for all # € Ranks.(t + 1), ¥ = MinHop r' € Ranks.(t + 1), we  have 7 =
RankIncrease. MinHopRankIncrease.

(c) Link start-up. A start-up of some link does not (1) DIO message reception. If the event is in turn a
affect any of the multisets, and hence for all reception by node X of a DIO message, d, from
¥ € Ranks.(t + 1) = Ranks.(t), ¥ = MinHopRank node Y, then two multiset changes may result.
Increase. First, d may be removed from the linkdset for

(d) Link death. Upon a death of some link (X, Y), link (¥,X), if this is the last reception of the
only Rankspios is affected because some message (i.e. X will receive no more duplicates
DIO messages in transit between node X of d over link (Y,X)). In other words,
and node Y may get lost, that it Rankspios(t + 1) C Rankspios(f), and hence for
Ranksyas(t + 1) = Ranksvas(f), Ranksnpiknts all ¥ € Rankspios(t + 1), we have » =
(t+1)=  Ranksnorenus(f), and  Rankspios MinHopRankIncrease. Second, the entry, n,
(t + 1) C Rankspios(t). Consequently, for all that corresponds in X“s neighborset to node
¥ € Ranks,(t + 1) C Ranks,(t), we have ¥ = Y (le. n. id (t+1)=d. id (t) =7Y) is
MinHopRankIncrease. updated such that n. rank (t + 1) = d. rank

(e) Neighbor entry addition. If the event corre- (t) (property RA2). In other words,
sponding to the transition from state ¢ to state Ranksnpenus(f + 1) = Ranksnprenus(H)\{ 1.
t + 1 is an addition of a previously nonexistent rank (H}U{ d. rank ()}. Yet, d. rank
entry, n, to node X’s neighborset, the (t) € Rankspios(t) C Ranks.(t) and for all
value of the entry’s field rank, which is equal r € Ranks,(t), we have r = MinHop
to infinity (property RA2), appears in RankIncrease. Therefore, we also have d.
Ranksnppnus(f + 1). In effect,  for  all rank (f) = MinHopRankIncrease, and
¥ € Ranks,(t + 1) = Ranks,(t) U{~}, we have hence for all » € Ranksnprgnus(t + 1), ¥ =
= MinHopRankIncrease. MinHopRankIncrease. Finally, Ranksvyas

(f) Neighbor entry update of non-RPL fields. This (t + 1) = Ranksvy.s(f) because the event does

event does not affect any of the multisets, and
thus for all ¥ € Ranks,(t + 1) = Ranks.(t), ¥ =
MinHopRankIncrease.

not affect the nodes” variable rank. We can
thus conclude that for all ' € Ranks.(t + 1),
indeed ¥ = MinHopRankIncrease.
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(G) DIO message loss. In the case of a DIO message
loss, a DIO message is removed from /linkdset of
some link (X,Y), and hence Rankspios
(t + 1) C Rankspios(t) while Ranksy,s(t + 1) =
Ranksv,s(t) and Ranks\ppnys(t + 1) =
Ranksnprgntss(2). Consequently, for all
¥ € Ranks.(t + 1) C Ranks.(t), we have r =
MinHopRankIncrease.

(k) Parent and rank reselection. If the event corre-
sponding to the transition from state ¢ to state
t+ 1 is a parent and rank reselection at some
node X, then Ranksy,(t + 1) = Ranksy,(t)
\{ rank x(®}U{ rank x(t+ 1)} while
RanksNpgns(f + 1) = RanksNorgnts(f) and
Rankspios(t + 1) = Rankspios(t). Therefore, to
ensure that for all /' € Ranks.(t + 1)/ =
MinHopRankIncrease, we have to show that
rank x(t+ 1) = MinHopRankIncrease.
There are three possible cases that dictate the
value of rank x(¢t + 1). First, if X is the root
node, then rank x(t+ 1) = MinHopRank
Increase (property OF3). Second, if X is not
the root and is unable to select its prefpar,
then rank x(t+ 1) = o (property OF4).
Third, if X is not the root but manages to select
its prefpar, then rank x(t+ 1) = ry for
some value ry <o (property OF5). However,
we must have ry = n. rank (f) +
MinHopRankIncrease for some entry n in
X’s neighborset (property OF5 5). Since n.
rank (t) € RanksNpentrs(t) C Ranks,(f) and for
all  r € Ranks,(f), r =  MinHopRank
Increase, we must have ry = 2X
MinHopRankIncrease. In other words, in all
three cases, rank y(t + 1) = MinHopRank
Increase, and hence we can conclude that
for all # € Ranks,(t + 1), we have /¥ =
MinHopRankIncrease.

(1) DODAG version change (i.e. generation or adop-
tion). The same dependency between the multi-
sets occurs for a DODAG version change at
some node X: Ranksyy(t + 1) = Ranksyas(t)\{
rank x(®)}U{ rank x(t+ 1)}, RanksnbEnus
(t + 1) = Ranksnprenus(f), and Rankspios(t + 1)

= Rankspios(t). This time, however, rank
x(t + 1) can attain two values: if X is the root
node, then rank x(¢t+ 1) = MinHopRank
Increase (property OF3); otherwise, rank
x(t + 1) = o (property OF4). In both cases, we
can conclude that for all ¥ € Ranks,(t + 1), we
have ¥ = MinHopRankIncrease. This com-
pletes the inductive step.

The proofs of the inductive base and the inductive
step together confirm that in any state € {0, 1,2, ...}
of the selected computation, for all » € Ranks.(t), we

have r = MinHopRankIncrease. Since the compu-
tation has been chosen arbitrarily among all possible
computations for our model, the lemma holds in any
such computation, which ends the proof. [J

Further examples of safety properties. To reinforce the
claim that induction on the sequence of states constitut-
ing a computation is indispensable for proving safety
properties, we give Lemmas 2 and 3, leaving their
proofs with our model as an exercise for the interested
readers.

Lemma 2. Always, if a node is live, its variable rank
either is infinite or does not exceed its
minrank + MaxVersionRankIncrease.

Lemma 3. In any state, let v,,, be the value of the
root node’s variable version, if the root node is live in
this state, or else, if the root node is dead, either the last
value of variable version that the root node had
before it died or InitialDODAGVersion if it has
never started up. With this notation, always, if a node is
live, its variable version and fields version of all
entries in its neighborset are less than or equal to
Vioor- Likewise, always, field version of any DIO mes-
sage in transit is less than or equal to v,y;.

Lemma 2 is complementary to Lemma 1 in that it
gives an upper bound on a node’s rank at any time. Its
proof is simpler than the proof of Lemma 1 because
fewer events directly affect a node’s variable rank. As
a side note, in a few cases, the aforementioned incorrect
behavior that we demonstrated for the two popular
RPL’s open-source implementations under failures®’
was correlated with the violation of Lemma 2, resulting
from bugs that prevented the implementations from
satisfying some of the properties of our model that are
crucial for the lemma to hold.

Lemma 3, in turn, bounds the DODAG version a
node may have. Its proof is very similar to the pre-
sented one but for each event involving a DODAG ver-
sion, we have to consider two cases: one in which the
event affects the root node and the other in which a
non-root node is affected. We will utilize the lemma in
another proof in the next section.

Further examples of safety properties can also be
found in our previous papers.®’

Proving liveness properties

While proving safety often boils down to what we pre-
sented hitherto, proving liveness may be more intricate,
as a particular technique may be strongly dependent on
what precisely is being proved. The techniques that we
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will present in this and subsequent sections illustrate
this claim, as they have been developed for proving live-
ness with regard to particular aspects of RPL. Since
distance-vector routing protocols in general employ
similar solutions, (some of) the techniques, possibly
after some adaptation, may likely be reused also for
other protocols. Nevertheless, by no means do we con-
sider the techniques a complete repertoire for proving
liveness. On the contrary, we envision that their pro-
spective users will encounter problems that will require
novel approaches. Therefore, our main goal is to dis-
cuss carefully selected examples so as to provide the
readers with some directions and inspiration for attack-
ing such problems.

We start with local liveness properties, normally
involving a single node or a couple of nodes. We then
exemplify proving global properties, referring to the
entire node population.

Example of a local liveness property. Liveness properties
that involve a small number of nodes can often be
derived from the properties comprising the model with-
out any sophisticated techniques. Occasionally, even
(semi-)automated model checkers can help to this end.
More advanced examples, in turn, include proofs by
contradiction or some form of induction. Since we will
illustrate the use of contradiction in a proof of a global
liveness property in the next section, in this section we
discuss an example of custom induction for proving a
local liveness property, formulated as Lemma 4. As a
side note, we will use this lemma to prove the afore-
mentioned global liveness property.

Lemma 4. Always, if a node’s version is equal to
some value, v, and there always exists in the node’s
neighborset an entry, n, such that n. version is
greater than or equal to some Vg, =Vipw and n.
reachableis true, then eventually always the node’s
version will be no less than vyg,.

In short, the lemma combines the properties describ-
ing the adoption of new DODAG versions, notably
properties DV5 and DV3, into something useful: the
premises of the lemma are the same as of property DV5
but the conclusions are stronger. It states that if a node
is aware of a DODAG version that is newer than its
own one and that has already been adopted by a stable
neighbor (i.e. one with which the node has a reliable
link for a sufficiently long time), then eventually the
node will abandon its current DODAG version and
join a new one: either the one adopted by the neighbor
or some yet newer. The difficulty in proving the lemma
is that nothing in the model (and in RPL’s specifica-
tion) forces a node to adopt a specific DODAG version

and hence it can potentially change its version multiple
times. Worse yet, so can its neighbors in the meantime.
We will use induction to show that irrespective of the
number of such changes that may be necessary, the
node’s DODAG version will forever reach or exceed
the given neighbor’s version.

Proof. Consider an arbitrary computation for our
model, an arbitrary node X participating in this com-
putation, and an arbitrary state of the computation, ¢,
in which the premises of the lemma hold, that is, for
SOme Vigy and vyigy such that vyg, = vio,, we have: ver-
sion x(t;) = v, and for every state ¢ = ¢,, there exists
n € neighborset x(t), such that n. version (f) =
Vhigh and n. reachable (t) = true (n can vary
between the various states 7). To prove the lemma, we
need to show that starting from some state ¢ =1#,, X’s
version will forever be no less than vyg, that is, for
all 7 =t;, we will have version x(t') = vig,.

To conduct this proof, we will use induction on the
difference between Vg and vy, that is, on
VA = Vhigh — Viow- We can conduct such a proof because
va belongs to nonnegative integers, for which a natural
order exists: each number has well defined
predecessors.

As the inductive base, let us take vy = 0. In this case,

already in state ¢, we have version x(t) = Vagn =
Viow. Moreover, since X’s version never decreases
(property DV3), for all ¥ =¢,, we have version x(¢)
= vyqr. Consequently, we can take ¢ = £, which estab-
lishes the inductive base.

For the inductive step, in turn, we assume that the
lemma holds for all vy <i, for an arbitrary i =0. We
will show that it also holds for vp =i + 1>0.

More specifically, from the premises of the lemma,
we know that in state ¢, version x(t;) = Vi and for
every state 7=t there exists neneighborset x(f),
such that n. version (f) = vjg and n. reachable
(t) = true. Since va>0, we have
Vhigh = View + Va>Vjow, and hence can conclude that
there exists a state, #,>f, such that version
x(tn) = v for some v # vy, (property DVS5). From the
fact that t<t,, version x(t;) = Vi, version
x(tn) = v, and vy, # v, we can infer that vy, <v
(property DV3). We thus have to consider two cases
with regard to the value of v compared to the value of
Vhigh-

If v = vyg, then in state ¢,,, node X’s version has
already reached or exceeded vy, that is, version
x(tn) = Vpign. Moreover, as previously, since X’s ver-
sion never decreases (property DV3), for all ¢ =¢,,
we have version x(f) = vyg. Therefore, f indeed
exists and is equal to #,,.
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If, in turn, viigh>v>vjey, then version x(ty) = v
while our previous assumption still holds: for every
state t=t,,, there exists n € neighborset x(t), such
that n. version (f) = vpg and n. reachable
(t) = true. Consequently, since Vg >Vv>vy,, and
Vhigh — Viow = I + 1, we have vye;, — v<1i, and hence can
use the inductive assumption (i.e. taking ¢, — ¢, and
Va “— Vhign — v). What we get in effect is that there exists
some state, t; =t,>t,, such that, starting from this
state, X’s version is forever no less than vy, that is,
for all ¥ = t;, we have version x(f) = Vg.

These two cases thus conclude the inductive step.
The proofs of the inductive base and the inductive step,
combined with the fact that the initial state, g, the
node, X, and the considered computation have been
chosen arbitrarily, confirm that the lemma holds for
our model. O

Example of a global liveness property. Let us return to
Lemma 4, namely to its formulation, which exemplifies
that a liveness property is typically conditional: given
some assumptions, a desired effect (“something good”)
will occur. As the lemma describes a local property, its
assumptions are simply copied from a property defined
in our model (DV5). However, this need not always be
the case. In particular, for a global property, one nor-
mally needs some additional assumptions on the entire
system. Let us thus first demonstrate how such assump-
tions can be formalized. As a running example, we aim
to prove a global property in which the desired effect
is—informally—the following: “all nodes eventually join
(adopt) a DODAG version generated by the root node.”
To start with, we need the aforementioned universal
assumptions stating that the communication graph,
Gcowm, 1s finite and connected. In contrast, if the num-
ber of nodes were infinite, propagating the generated
version would never finish. For a similar reason, if some
nodes were disconnected from the rest, they would
never get a chance to learn about the generated version.
Pursuing this line of reasoning further, we may
observe that learning about a DODAG version depends
not only on the existence of links between nodes but
also on whether the nodes and links are live, and hence
we introduce assumptions Al and A2. Finally, the root
node may generate multiple DODAG versions, some of
which will not (and need not) be adopted by all nodes,
but we do want to have some guarantees nevertheless.
We deal with this problem by formalizing DODAG ver-
sion generation by the root node as assumption A3.

Al:Eventually always, all nodes are live.

A2:Eventually always, all links are live.

A3:Eventually always, the root node does not generate
a new value for its version.

The formulation of assumptions A1-A3 borrows
from a standard approach to analyzing eventually
consistent distributed algorithms:**>! assume that the
system becomes and remains quiescent (the “eventu-
ally always” in A1-A3) and show it will eventually
become consistent as well. Demanding system quies-
cence, assumptions A1-A3 may seem strong at first,
but this impression is wrong if they are interpreted
correctly. The “eventually always” should be inter-
preted as “from some moment in time for a suffi-
ciently long period,” where “sufficiently long”
depends on the actual timings, which are not modeled
in LTL. In particular, propagating a DODAG version
in RPL can in practice take as little as a few hundred
milliseconds, even in large networks. Furthermore, “all
nodes/links” in A1 and A2 could be relaxed to a span-
ning tree, which in addition need not have all its parts
simultaneously live. This, however, would require an
extended discussion, which we would like to avoid as
being immaterial. Consequently, we adopt this stan-
dard, quiescence-based formulation of the assumptions
and formalize our target global liveness property as
Lemma 5. Since assumptions A1-A3 are not universal
but rather specific to the particular operational scenario
considered in the lemma, we state them explicitly in the
lemma body.

Lemma 5. If assumptions Al, A2, and A3 hold, then
eventually always, each node has its version equal to
the root node’s version.

Even disregarding its assumptions, the fact that the
lemma is a global liveness property should be apparent.
It describes the expected behavior of all nodes. Its
desired effect is in turn the adoption by the nodes of
the last DODAG version generated by the root node.

One of the main challenges in proving such a prop-
erty is that it is often impossible to conduct the proof
on a snapshot of the system (i.e. a single state of a com-
putation involving the system). On the contrary, since
the configuration of the system is dynamic, such proofs

Figure 6. The node’s hop counts from the root node in the
sample network from Figure 1.
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(Inductive base) Prove that in some state #y the property is guaranteed to
have been satisfied for all initiator nodes (with their hop counts equal to 0).

(Inductive step) From the fact that property holds for all nodes within / hops
from the initiators, prove that in some state 7, it is guaranteed to have been
satisfied for all nodes that are & + 1 hops away from the initiators.

Figure 7. Verifying a liveness property by induction on hop
count in the communication graph.

usually analyze what happens in multiple specific con-
secutive states of the computation. Identifying a
sequence of such important states need not be straight-
forward. In our experience, however, an effective
approach is to match the analysis in the proof with the
way the desired effect spreads in the system.

In particular, a good initial heuristic is trying to
prove such a property by induction on hop count in the
communication graph, Gcoy = (Nodes, Links), from
the nodes that initiate the desired effect. The communi-
cation graph is fixed and assigning each node a hop
count computed by the breadth-first search (BFS) algo-
rithm run from a well-defined set of initial nodes yields
a partial order suitable for induction (see Figure 6 for
an example).

To conduct such a proof, we start by taking an arbi-
trary computation that satisfies the assumptions of the
property: in the case of Lemma 5, assumptions A1-A3.
Then, as the inductive base, we need to prove that the
property holds at the initiating nodes, for which the
hop count is 0: for our lemma, the root node. Typically,
this requires finding a state, #,, of the computation in
which the property has been satisfied at the initiator
nodes (cf. Figure 7). Finally, as the inductive step, from
the fact that the property holds for all nodes within
h =0 hops from the initiators, we have to derive that it
also holds for all nodes within 2 + 1 hops. Again,
although the details may vary depending on the prop-
erty, this normally requires demonstrating the existence
of a state, #, + 1, in which the property is guaranteed to
have been satisfied at all nodes that are 2 + 1 hops
away from an initiator. We illustrate this technique in
the proof of Lemma 5.

Proof. For our model, consider an arbitrary computa-
tion that satisfies assumptions A1, A2, and A3.

From assumption A1, there exists a state of the com-
putation, #,4s € {0, 1,2, ...}, such that, starting from
this state, all nodes are always live. Similarly, from
assumption A2, there exists a state of the computation,
timks € {0,1,2, ...}, such that, starting from this state,
all links are always live. From assumption A3, in turn,
there exists a state of the computation,
tvoor € {0,1,2, ...}, such that, starting from this state,
the root node never generates a new value for its vari-
able version.

Let, thus, ty = max(tyodes, Links» troot), that is, starting
from ¢, all nodes and links are always live and the root
node never generates a new value for its variable ver-
sion. We will denote vgna as the value of the root
node’s variable version in state #y, that is, vgna =
version yu(ty).

We will use induction on the hop count from the
root node to prove that, for any 2 = 0, for all nodes that
are up to 4 hops away from the root, there exists a state,
ty = by, starting from which the nodes forever have their
variables version equal to vy,

To this end, as the inductive base, consider 4 = 0.
The only node at this distance from the root node is
the root node itself. From the definition of state fy, in
turn, we know that in this state the root node’s ver-
sion equals to Venal, that is, version ,ep(ty) = Viinal.
Moreover, in no state ¢ = fy, does the root node gener-
ate any new value for its version. Therefore, the only
way for the root node to change its version from
Veinal to some other value, v/, would be by adopting that
value (property DV4). We will prove by contradiction
that this is not possible.

Accordingly, assume that a transition of the system
from some state ¢ =1¢, to state ¥ + 1 corresponds to
the root node adopting some V' # vy as its version,
that is, version ,ou(f) = Vina While version
roor(f + 1) = V. Since V' # vgpa, we must have v/ >vga
(property DV3). The transition also implies that, in
state ¢, the root node’s neighborset contained an
entry, n, which had its field version equal to v/, that
iS, n € neighborset ,,,(f') and n. version
() = V' (property DV4). Combining these two facts
we thus get that in state #, in which the root node was
live, in the root node’s neighborset there was an
entry, n, which had its field version greater than the
value of the root node’s variable version, that is,
n€neighborset ,,(f') and n. version (f) = Vv >
Vinal = version ,.(?). This, however, contradicts
Lemma 3, which asserts that n. version (f) < ver-
sion ,ue(t). In other words, the considered transition
is impossible, and hence indeed, in all states = ¢, we
must have version ,,,(f) = Vena, Which establishes
the inductive base.

For the inductive step, assume that for all nodes that
are up to 2=0 hops away from the root node, there
exists a state, #, = fy, such that, starting from this state,
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the nodes’version variables forever equal vg,.. We
will show that for all nodes that are up to # + 1 hops
away from the root node, there exists a similar state,
tp +1=ty, starting from which, the nodes’version
variables are always equal to vepy).

To this end, consider an arbitrary node, X, that is
h + 1 hops away from the root node. We will first show
that for this node, there exists a state, #, + | x = 5, start-
ing from which the node’s variable versionis equal to
Veinal, thatis, forallt=1¢, + | x, version x(f) = Vfipal.

To begin with, from the definition of #, and the fact
that X is 2 + 1 hops away from the root node, we
know that in all states ¢=1¢,, node X is adjacent to
some node, Y, that is # hops away from the root and
for which version y(f) = vgna. This has two impor-
tant implications.

First, node X’s neighborset eventually always
contains an entry corresponding to node ¥ and having
its reachable flag set to true (property RA4), that
is, there exists some state, fx_,eqcn = ty, such that in all
states f =ty jeach, there exists n € neighborset x(t)
such that n. id (¢f) =Y and n. reachable
(t) = true.

Second, from ¢, node X is guaranteed to always
eventually receive a DIO message from node Y (prop-
erty CT2). Field version of each such message, d, is
equal to the value of version y in the state in which d
was transmitted by Y (property CT1). Messages that
had been transmitted by Y before its version became
Vinal May still be in transit after #,, and hence may be
received by X in some states following #,. However,
eventually always, the reception of such messages by X
does not occur (property CT3), that is, there exists some
state, tx. 4o, such that any DIO message, d, received by
X from Y in any state ¢ = x4, satisfy the condition: d.
version (t) = Vfpal-

Since, as mentioned previously, from #,, X always
eventually receives a DIO message from Y, let ¢y seq be
the first state numbered at least max(tx, gio, tx.reacn) N
which such a message, d, is received. From the defini-
tion of tx seq, we are guaranteed in this and all subse-
quent states what follows. First, there exists in X’s
neighborset an entry, n, corresponding to node Y and
having its reachable flag set to true. Second, field
version of this entry is equal to vy, as this is the
value of the same field in d and any following DIO
message received by X from Y (property RA2). Put dif-
ferently, in any state ¢=1y s, there exists
neéneighborsety(f) such that n. reachable () =
true and n. version (f) = vgna. Let us analyze two
cases depending on the relation between version
x(tx fietia) and veng.

If version x(tx fisa) = Vena, then in all states
t =ty field, version x(t) = vna (property DV3). Let
us thus denote tx finas = Lx, field-

If, in turn, version x(fx fies) < Vinal, then, from
the definition of state fx g4, the premises of Lemma 4
are satisfied in this state, with v, = version
x(tx field) and Vyign = Vina. Consequently, the lemma
entails that there exists some state, fx_jemmq, Such that in
all states f=ftx jomma, version x(f) = vena. Let us
thus denote tx finar = tx, lemma-

To recap, in both cases, there exists a state, ty, final,
such that in all states 1=ty gnq, version x(t) = Venal
Moreover, from the inductive assumption, in any state
t =ty final = th, We have version ,oo(f) = Vinal. At the
same time, from Lemma 3, we know that in particular
for every state ¢=ty puu, versiony(f) < version
r0t(t). Combining these three facts, we conclude that in
all states t=ty uw, we must have version
x(&) = Vgna. In  other words, we can take
Ih+1,x = tx sina as the sought state, starting from which
node X’s version is forever equal to vpal.

Since node X was chosen arbitrarily, the same holds
for any node that is 2 + 1 hops away from the root.
Therefore, we can  take 41 = max xenodes

| X is h + 1 hops away from the root node}(t; + 1.x), as

the state starting from which all nodes that are 4 + 1
hops away from the root node forever have their vari-
ables version equal v, which completes the induc-
tive step.

Combining the inductive base and the inductive step
with the fact that the communication graph formed by
nodes and links is finite and connected, and hence the
maximal distance in hops of any node from the root
node is bounded, we can conclude that eventually
always each node in the considered computation has its
version equal to the root node’s version. Finally,
since the computation was chosen arbitrarily among all
computations satisfying assumptions Al, A2, and A3,
Lemma 5 simply holds. O

Devising custom non-trivial inductive orders

While induction on hop count may be a good starting
point when trying to prove a global liveness property, it
need not work in all cases. As an illustration, let us con-
sider Hypothesis 1, whose simplified version was origi-
nally subject of our previous work.’

Hypothesis 1:1f A1, A2, and A3 hold, then eventually
always, all nodes have their ranks finite.

The desired effect in the hypothesis concerns RPL’s
fundamental functionality: building a DODAG that
allows all nodes to perform upward routing to the root
node. To be precise, for a DODAG to be formed, every
non-root node must have its prefpar non-null.
However, to simplify our reasoning by uniformly treat-
ing the root node and non-root nodes, we consider
rank s instead of prefpar s in the hypothesis. This is
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because a non-root node has its prefpar non-null iff
its rank is finite (properties OF4 and OF1), whereas
the root node’s prefpar is always null while its
rank is always finite (properties OF3 and OF1). As to
the assumptions, the motivation behind Al and A2 is
the same as for Lemma 5. Assumption A3 is in turn
dictated by the fact that a DODAG version change
resets all non-root nodes’rank s and prefpar s (prop-
erty OF4), and hence, if a given version does not exist
sufficiently long, all nodes will not be able to join it and
select their preferred parents and ranks appropriately.

We leave to the interested readers’ discretion an
attempt to prove Hypothesis 1 by induction on hop
count in the communication graph. In summary, under
an additional assumption, which we will return to
shortly, it is relatively straightforward to prove the
inductive base and show that if all nodes within i =0
hops from the root eventually always have their rank s
finite, then a node within i + 1 hops also eventually
has its rank finite.” Although the latter may seem as
the inductive step, there is a subtle issue: the conclusion
states “eventually has its rank finite” rather than
“eventually always has its rank finite.” The lack of
“always” implies that the node within i + 1 hops may
not forever keep its rank finite, which would be neces-
sary for proving the inductive step. In contrast, proving
the actual inductive step need not be possible. The rea-
son is that because of continuous changes in the rout-
ing metrics of the node’s neighbors, in some states of
the computation, the node may not be able to select as
its prefpar a neighbor that is up to i hops away from
the root; it may be able to select a neighbor that is, for
instance, i + 2 hops away, though.

This observation hints at the main problem with hop
count as the inductive order for a proof of Hypothesis
1: parent selection by the objective function depends on
dynamic routing metric values and hence may not
reflect the nodes’static hops from the root. In particu-
lar, if at some point a neighbor with a larger hop count
offers a node a better potential rank (r in property
OF5) than a neighbor with a smaller hop count, then
the node can select the former as its prefpar. As an
example, consider the node with rank 4.3 and its neigh-
bors with ranks 2.1 and 3.3 in Figure 1. Therefore, an

intuitive induction order seems to be the one induced
by the preferred parent relation.

There are two problems with this relation, though.
First, the subgraph induced by the nodes’ links to pre-
ferred parents need not be acyclic, which is necessary
for a graph describing an order. Second, the node’s pre-
ferred parents can change in subsequent states of a
computation, whereas inductive reasoning requires an
order to be fixed. As a result, we cannot utilize the pre-
ferred parent relation as an order for induction.

To propose an alternative order, let us introduce a
concept of what we dubbed best ever parents (BEPs). A
node’s BEP is defined for a given DODAG version and
is the node’s current or former preferred parent, whose
selection gave the node the smallest rank ever in this
particular DODAG version for the first time. In our
notation, this is the node’s prefpar whose selection
led to the last drop in the node’s minrank after the
node’s version had been modified for the last time or
after the node had started for the first time, if its ver-
sion had never been modified (see Figure 8).

Given this concept, in any state, ¢t € {0,1,2, ...}, of
a computation involving our model, for any given
DODAG version, v, either one that was generated
before ¢ or may yet be generated after ¢, we define a
directed BEP graph, Gpppg)(t) = (Vaepw)(D), Eepe)(t)),
which is a subgraph of the communication graph
Gcom- More specifically, its set of vertices is simply the
set of all nodes, that is, Vep)(f) = Nodes. Its set of
edges, in turn, contains links from non-root nodes to
their BEPs in DODAG version v in state ¢, that is,
Epepw(t) = {(X,Y) € Links | in state ¢, ¥ is X’s BEP
in DODAG version v}. The following lemmas describe
the properties of the BEP graph.

Lemma 6. Always, the best-ever-parents (BEP) graph
for any DODAG version, v,
Geerey = (VEPM), EBEP()) 18 finite and composed out of
two  disjoint  subgraphs: a  directed  tree
GBEP*T(V) = (VBEP*T(V)aEBEpr(V))a having the root node
as the only sink and comprising non-root nodes that
have had a BEP within DODAG version v, and an
unconnected graph, Geer—uey = (VeeEP—U®)>
Epep_u(y), containing the remaining nodes. In other

A version changes or node starts minrank decreases for the last time;

w ® prefpar in this state is the BEP
» O
o=
3¢
S x
© % MINEANK we—

= 0 ./ » rank

time / LTL state no.

Figure 8. An illustration of the best ever parent (BEP) idea.
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words, in any state ¢ € {0, 1,2, ...} of any computation
involving our model, Eggp_10)(f) = Epepey(f), and
Vaep—1o)(t) = {X € Nodes | X is the root or there exists
a link (Y, X) € Epgpw)(t) for some Y € Nodes}, whereas
Vaer—uw(t) = Vaera)(O\Veep—1) () = Nodes\ Vaep_1()
(1) and Eggp—u)(t) = Epepay(O\Egep—1o(1) = 0

Lemma 7. The best-ever-parents (BEP) graph for any
DODAG version, v, GBEP(v) = (VBEP(V)aEBEP(V)) eventu-
ally always does not change. In other words, in any
computation involving our model, there exists some
state fggpn) € {0, 1,2, ...}, such that for any ¢ = tzgp),
Gsepe)(t) = Grepw)(tBEP())-

The proofs of these lemmas (merged into a single
lemma) can be found in our earlier paper.” The interested
readers should likely be able to recreate them. To give
some hints, proving Lemma 6 requires showing two prop-
erties, which in both cases can be done by contradiction:
first, that the BEP graph never contains any cycle and sec-
ond, that any path in the graph ends at the DODAG root.
Proving Lemma 7, in turn, boils down to observing that a
node’s minrank is an integer with a lower-bound forma-
lized in Lemma 1 and hence cannot decrease indefinitely.

From our perspective, what is more important than
the details of the proofs themselves is the implications
of the lemmas. Lemma 6 essentially states that, in any
state of any computation, the BEP graph for any
DODAG version is acyclic and hence can represent a
partial order of nodes. Lemma 7 implies in turn that
from some state of any computation this order is fixed.
Combining the lemmas, we can thus conclude that the
order induced by the BEP graph is suitable for proofs
by mathematical induction. An example of a possible
BEP graph, and the induced order, for the sample
DODAG from Figure 1 is presented in Figure 9.

Such a proof proceeds roughly in the same manner
as in the previous techniques but involves some extra
steps. Like usual, we start by taking an arbitrary com-
putation that satisfies the assumptions of the property
that is being proved. Then, we consider a specific

DODAG version, v, and state, #zzp(), in which the BEP
graph for this DODAG version becomes fixed (cf.
Lemma 7) as well as succeeding states. To establish the
inductive base, we need to show that in some or all
such states (depending on the property), the property
holds for the sink of the BEP graph, that is, the root
node. As the inductive step, in turn, we take an arbi-
trary non-root node and from the fact that the property
holds for the node’s BEP in some or all of the consid-
ered states (again, depending on the property), we have
to derive that it also holds for the node itself. At this
point, mathematical induction allows us to claim that
the property holds for the root node and all non-root
nodes that have a BEP in the considered DODAG ver-
sion, that is, it holds for the subgraph
GBEP—T(v) = (VBEP—T(V)aEBEP—T(V)) of the BEP graph (Cf
Lemma 6). In turn, to ascertain that the property holds
for all nodes—not only for those in the subgraph—we
can show, for instance, that there is no node in the con-
sidered DODAG version that does not have a BEP,
that is, Vagp_u@) = 0 (cf. Lemma 6).

As we demonstrate next, following this approach
allows for proving what we tried to express in
Hypothesis 1: that RPL is able to build and maintain a
DODAG. From a broader perspective, in turn, our dis-
cussion hitherto exemplifies how one can devise a dedi-
cated inductive order to match the way the desired
effect of a global liveness property spreads in the sys-
tem. Finally, the presented theoretical concept of BEPs
also has practical applications, such as monitoring
DODAG health for generating DODAG versions,
especially for custom routing metrics.’

Working with hypotheses and assumptions

Given a technique advertised as suitable for proving
that nodes in RPL are capable of choosing and keeping
finite ranks, we will proceed slightly differently than
previously. Rather than just giving the target lemma,
we will present the entire process of formulating and
proving it. We will propose an initial version of the

= @< @ a node with its minimal rank ever equal 7.1
""""" ’ : 2 @

----------- P> alink to a node's best ever parent (BEP)

the DODAG root node (has no BEP)

Figure 9. An illustration of the best ever parents in the sample DODAG from Figure 1.
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lemma by adding two assumptions and adapting
Hypothesis 1 to the devised proof technique. While
proving the lemma, we will be reformulating it and
introducing further assumptions. This will illustrate
what we mentioned previously: that a formal verifica-
tion process is normally iterative. All in all, this section
is meant to complete the suite of skills that we believe
are necessary to begin modeling and verifying routing
protocols on one’s own.

Formulating an initial hypothesis. We start with the missing
assumption mentioned in the previous section. More
specifically, let us observe that the only way for a non-
root node to get its rank finite is prefpar and rank
reselection because the other events affecting the node’s
rank (property OF1) make it infinite (property OF4).
Yet, the rules of the reselection process (properties OF4
and OFS5), are insufficient to guarantee liveness, that is,
guarantee that the node would adopt a finite rank if
specific conditions were met. Indeed, there exist LTL
computations that satisfy all properties of our model
and assumptions A1-A3 but in which the potential
ranks, r, calculated by non-root nodes during pre-
fpar and rank reselection are always infinite (cf. prop-
erty OFY). In effect, in such computations, non-root
nodes never have their ranks finite. In other words,
without additional liveness conditions for computing
potential ranks, Hypothesis 1 is false. Since RPL’s spe-
cification does not explicitly define such conditions,
entirely delegating the computation of nodes’ potential
ranks to objective functions, we did not include them
among the OF properties in our model. Consequently,
we address this issue now by introducing assumption
A4,

Ad:Always, if a non-root node reselects its prefpar
and rank, then for each entry, n, in its neighborset
that satisfies conditions (a), (b), and (c) of property
OF5, the potential rank, r, computed by the node
satisfies conditions (d) and (e) of property OF5.

What A4 states is that for each neighbor set entry
representing a node’s neighbor that belongs to the same
DODAG version as the node, has itself advertised a
finite rank recently, and is considered by the node as
reachable, the node is guaranteed to obtain a finite
rank, irrespective of the objective function and values
of the routing metrics employed. Demanding in this
case that a potential rank be finite, albeit possibly very
high, is a sensible assumption, further backed by what
RPL’s aforementioned implementations ensure.
Although we could adopt a weaker one, this would
require a deeper discussion, which is not strictly rele-
vant and is thus avoided here for brevity.

The second issue is that the current formulations of
the OF properties, and our model in general, com-
pletely abstract out routing metrics. However, changes
to their values do affect calculated potential ranks and
hence the nodes’ ranks. Therefore, to continue treating
routing metrics as “black boxes” while being able to
reason about their changes, we introduce assumption
AS.

AS:Always, if a non-root node reselects its prefpar
and rank, the potential rank, r, computed for each
entry, n, in the node’s neighborset satisfies the follow-
ing condition: r =n. rank + p( n), where p(
n)does not depend on n. rank.

Assumption A5 stems from RPL’s recommendation
regarding the function for computing potential ranks:
the function should be additive. At the same time,
through function p, the assumption leaves a lot of free-
dom in how precisely routing metric values contribute
to potential ranks computed by an objective function
during reselection. In effect, it captures all practical
configurations in RPL’s both aforementioned open-
source implementations. Therefore, we believe it is rea-
listic. What is more, it allows us to treat routing metrics
are “black boxes,” in particular, to describe their
changes for a given entry, n, in a node’s neighborset
in terms of changes to the values of p( n).

Given A4 and A5 we are ready to revise the false
Hypothesis 1, reformulating it into Hypothesis 2.
Apart from including the two assumptions, the new
hypothesis explicitly foresees that more may yet be nec-
essary. In addition, it considers only the members of
the final BEP tree, Ggep—r(y;,,), for which the inductive
technique that we devised in the previous section can
be applied; the isolated nodes, forming the other sub-
graph of the final BEP graph, Gpgp_u(y,,). are in turn
disregarded.

Hypothesis 2:If assumptions AI-AS5 and possibly
some yet unforeseen omes hold, then eventually
always, each member of BEP tree Gppp_ry,,) has its
rank finite, where Vena is the last DODAG ver-
sion at the root node in accordance with assumption
A3.

Refining the hypothesis. If we introduced yet another
assumption, A6, proving Hypothesis 2 would be rela-
tively easy, which we leave as an exercise to the inter-
ested readers.

A6:For each entry, n, in a node’s neighborset,
eventually always p( n') is equal to its smallest value
ever in a given DODAG version, that is, its smal-
lest value since the node’s version last changed or
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since the node started for the first time, if its ver-
sion has never changed.

Assumption A6 makes it possible for the routing
metrics for a neighbor—or, given assumption AS5, the
corresponding values of p( n )—to grow arbitrarily.
Nevertheless, it also requires them to ultimately con-
verge to their minimal values in a given DODAG ver-
sion and remain such forever. In combination with
assumptions A1-AS5, this ensures that eventually always
a node’s BEP is a suitable candidate for the node’s pre-
ferred parent according to property OF5. In particular,
the potential rank, r, it offers the node is within the
node’s rank limit defined by OF5 5.

However, assumption A6 is too strong to be satisfi-
able in practice: routing metrics rarely remain fixed at
their minimal values; on the contrary, usually they
change dynamically. Consequently, for our work to
have any real-world relevance, this assumption must be
weakened, which implies allowing routing metrics to
grow. However, considering the previous argument, if
this growth were unbounded, then it would be possible
for a node to always lack a neighbor entry satisfying
OF5(f). We thus have to somehow limit the growth of
the routing metric values.

To this end, for each neighbor entry, n, we assume
that p( n ) is always within some constant, p,, from its
minimal value in a given DODAG version. Despite not
being stated in RPL’s specification, this requires
MaxVersionRankIncrease to depend on this con-
stant and, what may be even more unexpected, also on
the global network topology, which is again not men-
tioned in the specification. What is even worse, the spe-
cification may suggest the opposite, implying that
MaxVersionRankIncrease is for local DODAG
repairs.

We encourage the interested readers to come up with
these dependencies of MaxVersionRankIncrease
on their own. As a hint, try to find a scenario in which
MaxVersionRankIncrease must not be smaller
than p, X (N — 1), where N is the node population
size.” A more precise formulation of the dependencies
is in turn expressed by assumption A6, which is a wea-
kened version of assumption A6, that is, A6 replaces
A6. As a side note, this exemplifies how formal meth-
ods can help designing routing protocols and creating
their specifications.

AG6':For each entry, n, in a node’s neighborset,
eventually always p( n) does not exceed its smallest
ever value in a given DODAG version, v, by more
than MaxVersionRankIncrease | D, where D is
the final depth of BEP tree Gpgp_t).

Having addressed the liveness of prefpar and rank
reselection as well as the dynamics of routing metric

values, it seems we may be ready to formulate and
attempt to prove a variant of our target hypothesis,
Hypothesis 2, which has stronger conclusions than
Hypothesis 2.

Hypothesis 2':If assumptions A1-A5, A6 and possibly
some yet unforeseen omes hold, then eventually
always, each member of the final BEP tree,
GBEP—T(vyy), has its rank finite, not exceeding its
minrank in DODAG versionvgn by more than
d X MaxVersionRankIncrease | D, where d is
the node’s depth in the BEP tree, D is the final depth
of the BEP tree itself, as defined in assumption A6,
and Veng is the last DODAG version at the root
node in accordance with assumption A3.

Proof. For our model, consider an arbitrary computa-
tion that satisfies assumptions A1-A5 and A6. From
assumptions A1-A3 and Lemma 5, there exists a state,
tversion, Starting from which all nodes and links are live,
no new DODAG versions are generated, and all nodes
have their variables version equal to the root’s variable.
Note thus that vgpy = version ye(tversion) 18 the final
DODAG version. From Lemma 7, there exists a state,
1BEP(v,y)» SUCh that, starting from this state, the BEP
graph for the final DODAG version, Gpgp(y,,). does
not change, that is, for any = tggp(y,,), we have
GBEP(v) (1) = GBEP()(BEPOr,))-  Let  us  denote
to = max(tBep(vy,y)» tversion)- Since from Lemma 6 for any
t, GpEP(v,,)(t) defines a partial order on nodes, we will
perform induction over the final BEP tree for DODAG
VErsion Vnal, that is, Geep—ry,,)(fo), Which also means
that we will analyze the system states starting from ¢,.

As the inductive base consider the root node, whose
depth, d, in the BEP tree, Gagp—r(vy,,)(f0), is 0. For any
t=0, we have rank ,,,(t) = MinHopRankIncrease
(properties OF1 and OF3). Therefore, for any ¢ =0, we
also have minrank ,,,(f) = MinHopRankIncrease
(property OF2). Combining these two facts, for all
t=ty, we get rank ,,,(t) < minrank ,u(f) + 0
X MaxVersionRankIncrease | D < o, which
establishes the inductive base.

To show the inductive step, in turn, consider an
arbitrary non-root node, X, with depth d =i + 1 in the
final BEP tree, Gpgp_r(v,,)(t0), and its BEP in the tree,
node Y, with depth i, where 0 <i<D. Our inductive
assumption is that there exists some state, ty = fy, such
that in all states t=ty, ranky(t)
< minranky(t) + iX MaxVersionRankIncrease
|/ D < . We have to show that there exists an analo-
gous state, fy =1y, such that in all states 7 =1y,
rankx(t)
<minranky() + (i +1)X MaxVersionRankIn-
crease | D < .
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We start by showing that eventually always, when-
ever X calculates—in compliance with OF5 —the
potential rank for the entry corresponding to Y in its
neighborset, then this potential rank, which we
denote as r y y, does not exceed X’s minrank by more
than (i + 1) X MaxVersionRankIncrease | D. In
other words, we will show that there exists some state
ty.y =ty such that for any state t=ty y, we have
ry, y(t) < minrankx(t) + i+ X
MaxVersionRankIncrease | D. To this end, let us
make the following observations.

(i) From #, on, nodes X and Y are forever adja-
cent. Consequently, there exists a state,
tx.v.reach = to, starting from which the entry
corresponding to Y in X’s neighborset,
which we denote as ny,y, always exists and
has its reachable flag set to true (property
RA4), that is, for all states 1=ty y, reach, WE
have n x y € neighborsety(f) and ny y.
reachable (t) = true.

(i) From f on, versiony =version

v = vanal. Therefore, there exists a state,

tx v ver = ty, starting from which field ver-

sion of entry n y y is also vgna (properties

CT1, CT2, CT3, and RA2), that is, in all

states 1=ty y ver, We have n x y . version

(t) = version x(f) = Vgnal-

From ty on, rank y is finite and does not

exceed minrank y by more than

i X MaxVersionRankIncrease | D (induc-

tive assumption). As a result, there exists a

state, fy.y.jank = ty, starting from which also

field rank of entry n y y satisfies this condi-
tion (properties CT1, CT2, CT3, OF2, and

RA?2), that is, in all states = tx_y, yquk, We have

nyy. rank(t) <=minranky(t)+ i X

MaxVersion

RankIncrease /D < <.

(iv) There exists a state, fx,y,men = ty, from

which on p( 7 x,y) does not exceed its smallest

value in DODAG version vgna, which we
denote as P, 7 x.v) by more than

MaxVersionRankIncrease | D (assump-

tion AG6), that is, in all states = ftx v, men, WE

have p( n x ) < Ppinpy( 7 xv) T

MaxVersionRankIncrease | D.

(v)  (v) From the fact that node Y is node X’s BEP
in DODAG version vg,, and that, in any
DODAG version, a node’s minrank can only
decrease (property OF2), from f#y on, min-
rank yx is finite and exceeds minrank y by at
least P,y ( 7 x.v), that is, for any state
t=1y, we have minrank y(t) + Py ("
x.v) < minrank x(f) < .

(iif)

(iv)

Consider state IX.Y pot = max(to,tx, Y, reach>1X., Y vers
1X. Y, rankLx, ¥, mer)- 1N any state =ty y ,o, the entry cor-
responding to node Y, n y y, is guaranteed to exist in
node X’s neighborset (observation 1), and satisfy
conditions 5 (obs. 2), 5 (obs. 3), 5 (obs. 1), and both 5
and 5 (assumption A4) of property OF5. Moreover, the
potential rank for this entry, r x y, has to satisfy what
follows (where M = MaxVersionRankIncrease):

. r(0) 2 oy y. rank ) + p(nx )0

Obssj minranky(t)+ i X M |/ D + p(nx y)t)

obs. 4
< minrank y(t) + pumean(x.y) + @+1)

X M |D

bs. 5
’< minrank x(t) + (i+1) X M /D < .

Since i<D, and hence (i + 1) X MaxVersion
RankIncrease | D < MaxVersionRankIncrease,
this also implies that r x y satisfies OF5 5. All in all, we
have just proved that from ty y ,, on, whenever Y,
which is X’s BEP, is also X’s prefpar, then X’s rank,
assigned from r y y, satisfies the conclusions of the
lemma.

As the next step, we will prove that node X has a
chance to choose node Y as its prefpar, and hence to
adopt r y y as its rank, that is, it performs prefpar
and rank reselection at least once after r y y starts
satisfying the conclusions of the lemma. To this end, let
us observe that any of the events that affect X’s
neighborset is followed by such a reselection (RA1).
In particular, the event affecting n y y as the one that
makes r y y start satisfying the conclusions of the
lemma is followed by a reselection. Since, from that
event, r y y continues satisfying the conclusions of the
lemma forever, during the reselection, X can
indeed choose Y as its prefpar and adopt r x y as its
rank.

To recap, we have proved that eventually whenever
Y, which is X’s BEP, is also X’s prefpar, then X’s
rank satisfies the conclusions of the lemma, and that X
has at least one chance to choose Y as its prefpar,
and hence adopt such a rank. Therefore, if node X
takes this chance, choosing Y as its prefpar, and
keeps this choice in all succeeding states, then indeed its
rank eventually always satisfies the conclusions of the
lemma. However, no property or assumption forces X
to do so. In particular, node X may always eventually
(i.e. from time to time) select as its prefpar another
node that makes its rank exceed its minrank + (i + 1)
X MaxVersionRankIncrease | D. To prevent this,
we thus have to introduce another rule of prefpar
and rank reselection, such as assumption A7.

AT:Always, if a node selects a finite rank and non-
null prefpar, then its neighborset does not
contain an entry, n, that satisfies all conditions (a)—
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(f) of property OF5 and that offers the node a poten-
tial rank, r, smaller than the selected rank.

A7 simply states that a node always selects as its pre-
ferred parent the neighbor that offers it the lowest
potential rank. This can be the node’s BEP or another
neighbor, if during a particular reselection that neigh-
bor offers the node a smaller rank than the BEP. For
node X, if adopting the potential rank offered by its
BEP, Y, already guarantees that X’s rank does not
exceed X’s minrank by more than (i+1) X
MaxVersionRankIncrease | D, then so does adopt-
ing an even smaller rank. In other words, with A7, tak-
ing tx = tx v por completes the proof of our inductive
step, because for all ¢ = ty, we have rank y(¢) < min-
rank y(f) + (i + 1) X MaxVersionRankIncrease
/D < oo,

However, instead of concluding the entire proof, let
us observe that despite not forcing the objective func-
tion to select a node’s BEP as the preferred parent, A7
may still be too constraining. This is because it always
requires the objective function to select a preferred par-
ent that offers the node the lowest rank. Since always
aiming at the best preferred parent may result in fre-
quent parent changes, there exist objective functions,
such as MRHOF,*® that explicitly rely on more free-
dom in the choice of a node’s preferred parent. This
freedom is realized by employing the aforementioned
hysteresis, which prohibits the node from switching its
preferred parent unless this is sufficiently beneficial,
that is, unless the potential rank offered by the new par-
ent is lower than the node’s current rank by more than
a threshold, denoted ParentSwitchThr. Consequently,
to capture such freedom in our model, we have to relax
A7, replacing it with assumption A7.

A7’ :Always, if a node selects a finite rank and non-
null prefpar, then its neighborset does not contain
an entry, n, that satisfies all conditions (a)—(f) of
property OF5 and that offers the node a potential
rank, r, smaller than the selected rank by more than
ParentSwitchThr.

While A7—and hysteresis in general—gives much
more freedom when selecting preferred parents, it may
lead to their suboptimal choices if ParentSwitchThr >
0. To explain, under the previous assumptions, if select-
ing a node’s BEP as prefpar guaranteed that the
node’s rank would not exceed minrank by a margin
larger than (i + 1) X MaxVersionRankIncrease |
D, then selecting a neighbor offering a potential rank
greater by up to ParentSwitchThr, would make the
margin grow by ParentSwitchThr, which would
violate the conclusions of the lemma. What is more,
such a growth would accumulate with nodes’ depth in
the BEP tree, as at each hop, the rank resulting from

the choice of a corresponding node’s prefpar may be
suboptimal up to ParentSwitchThr. At the same
time, this latter observation gives a hint on how our
assumptions could be patched: the tolerated routing
metric values oscillations have to take into account hys-
teresis in parent selection. More precisely, we can
replace assumption A6 with a stronger one, A7, which
also indicates that ParentSwitchThr must not
exceed MaxVersionRankIncrease | D.

A6":For each entry, n, in a node’s neighborset,
eventually always p( n ) does not exceed its smallest
ever value in a given DODAG version, v, by more
than MaxVersionRankIncrease / D
—ParentSwitchThr, where D is the final depth of
BEP tree GBEP—T(V)~

Apart from taking A7 instead of A6, our previous
reasoning remains valid otherwise, verifying which we
leave to the interested readers. In other words, the
inductive step holds with txy = tx y o

Combining the inductive base and the inductive step
with the fact that the final BEP tree, Gpep—r(y,,). 15
finite and connected, and hence its maximal depth, D, is
bounded, we can conclude that in the considered com-
putation, eventually always, each node belonging to the
tree has its rank finite, not exceeding its minrank by
more than d X MaxVersionRankIncrease | D,
Finally, since the computation was chosen arbitrarily
among all computations satisfying the given assump-
tions, Hypothesis 2’ is simply true. (]

To emphasize this fact, we present the final hypoth-
esis that we have just proved as Lemma 8.

Lemma 8. If assumptions Al, A2, A3, A4, A5, A6”,
and A7 hold, then eventually always, each member of
the final BEP tree, Gpep—r(vy,,). has its rank finite, not
exceeding its minrank by more than d
X MaxVersionRankIncrease | D, where d is the
node’s depth in the BEP tree, D is the final depth of the
BEP tree itself, as defined in assumption A7, and vl
is the last DODAG version at the root node in
accordance with assumption A3.

Closing remarks. The previous reasoning showed how by
iterating on hypotheses and their assumptions we can
prove a key property for RPL. In particular, given
Lemma 8, we can further show that the final BEP tree
eventually always covers all nodes, that is, eventually
always  Veep—r(wga) = VBEPOma)» @S formalized in
Lemma 9. A relatively straightforward proof of the
lemma can be done by contradiction, which we again
leave to the interested readers.
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Lemma 9. If assumptions AI1-AS5, A6”, and A7’ hold,
then eventually always, the final BEP graph contains
no isolated nodes, that is, Vpepug,.) = VBEP-T(wm) (OT
equivalently, Vazep— v = 0).

Finally, by combining Lemmas 6, 7, 8, and 9, we can
also conclude what follows.

Lemma 10. If assumptions A1-AS, A6”, and A7’ hold,
then eventually always, all nodes have their ranks finite.

Lemma 10 constitutes the essence of RPL’s
DODAG maintenance from the perspective of the con-
sidered model and hence reinforces our claims about
the potential of the presented techniques for verifica-
tion of dynamic behaviors of routing protocols. What
is equally important, however, is the insight we
obtained while proving the lemma. In particular, we
identified assumptions under which the lemma holds,
found issues in RPL’s specification that may require
extra treatment by implementers, and gave explicit
dependencies between some key configuration para-
meters, which are not mentioned in the specifications.
This knowledge can be employed to improve the relia-
bility of RPL-based systems, both in general and in
specific deployment scenarios.

Summary of lessons learned

Overall, in this section, using our model of RPL, we
aimed to illustrate how one can verify properties
describing dynamic behaviors of a routing protocol.
We covered both canonical types of properties that are
distinguished in program verification: safety and live-
ness. Safety properties typically correspond to invar-
iants that have to hold in all or in well-defined states of
computations in a system. We thus demonstrated a
common approach to checking an invariant, which
involves analyzing all possible transitions between glo-
bal system states and proving that none of them vio-
lates the considered invariant. Liveness properties, in
turn, often describe various forms of progress that a
system is expected to make under specific assumptions.
We argued that a good verification heuristic is trying to
match a proof of such a property with the way the
desired effect it describes spreads in the system, giving
a few examples substantiating this argument. We also
exemplified that particularly involved properties may
require devising custom inductive orders. Finally, we
illustrated the iterative nature of a normal verification
process, which includes formulating a hypothesis,
attempting to verify it, revising its assumptions or the
model, and repeating everything, possibly more than
once.

Furthermore, while it was not our main goal in this
tutorial, we specifically selected the properties serving

as our examples so that together they cover a key
aspect of RPL’s functionality for upward routing:
DODAG construction and maintenance. In particular,
we formulated invariants bounding rank values and
DODAG versions, progress properties for version
adoption, and, finally, lemmas formalizing RPL’s abil-
ity to continuously reselect node ranks and parents in
an evolving network, so that globally they correspond
to a DODAG. Equally important as the properties
themselves is the insight presented while proving them,
like the identified assumptions under which they hold
or undocumented dependencies between RPL’s config-
uration parameters they entail. In this light, we also
tried to discuss practical relevance of individual proper-
ties, in particular, where they were not formulated in or
even implied by RPL’s specification. We recapitulate
them shortly. As a final remark, since RPL’s upward
routing is an application of classic distance-vector rout-
ing technique, some of the properties we proved can be
applied directly to other routing protocols based on
this technique.

In contrast, we did not even aspire to show what
one might expect as a “complete repertoire” of verifica-
tion techniques for dynamic behaviors of routing pro-
tocols. We simply believe that no such concept exists.
Instead, however, we strove to touch upon all verifica-
tion aspects that we believe to be relevant, to give suffi-
ciently illustrative examples, and to put everything into
perspective so as to demonstrate the behaviors of a key
piece of functionality incorporated into routing proto-
cols. We hope that this knowledge will help the readers
to start their own verification attempts.

Applying the results in practice

Throughout the tutorial, we gave several examples of
how the particular results or insights can be applied in
practice. In fact, the presented analyses were actually
inspired by real-world problems that we encountered
when deploying RPL. The covered techniques were in
turn developed to address these problems, which ulti-
mately resulted in fixing existing protocol implementa-
tions and adjusting their configurations based on our
findings. We are unable to precisely discuss those
results here. Nevertheless, we do provide highlights and
pointers, so that the interested readers can explore
these topics at their discretion.

One example was invalid responses of the two open-
source RPL implementations to crashes of border
routers (DODAG roots):* an entire network either
completely collapsed or entered a state of increased
resource consumption without actually detecting the
failure. It was not clear whether this behavior was due
to bugs in the implementations or emergent properties
of the protocol itself. Using the techniques covered in
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this tutorial, we proved that, by design, RPL is able to
handle crashes of border routers or, in general, network
partitions, and derived formal conditions that have to
be met to this end.® In particular, a variant of Lemma
1 was necessary in the proofs, and they involved further
safety and global liveness properties. Since some of
those conditions had never been explicitly formulated,
the implementations simply did not satisfy them, and
hence operated incorrectly.

Another example was nonstandard, albeit intuitive
route construction criteria taking into account energy
consumption, for which the two implementations com-
pletely collapsed.” Like previously, using the techniques
presented here, we derived conditions for provably cor-
rect route formation and identified potentially impre-
cise statements in RPL’s specification, which may lead
to invalid protocol configurations. In particular, var-
iants of the assumptions used to prove Lemma 8 were
one of the results of the process. The insight obtained
when deriving these assumptions allowed us to formu-
late practical guidelines for RPL’s implementers, adop-
ters, and designers of future objective functions and
route optimization criteria.’

What these two examples also illustrate is that the
aforementioned risks involved in deploying a routing
protocol—even one having mature and widely adopted,
and hence seemingly reliable implementations—may
indeed be considerable and have profound conse-
quences. They also reinforce the previous claim that
guarantees on the behavior of the protocol can help
manage such risks, which is more and more relevant
with the surging real-world deployments of IoT tech-
nologies for controlling physical processes.

Conclusion

To sum up, routing is fundamental technology underly-
ing today’s Internet and will likely remain crucial in the
emerging IoT. Routing protocols are examples of what
is referred to as “complex systems.” In particular, they
operate on many nodes in a distributed fashion, nor-
mally leave some issues open to implementers, rely on
external solutions providing side functionalities, involve
multiple configuration parameters, and interact with
their environment. As a result, predicting their behavior
is often nontrivial. At the same time, especially in the
context of industrial 10T, where nodes collaboratively
control physical processes, overall system dependability
requires, among others, precise guarantees on the beha-
vior of the routing protocols employed.

In this tutorial, we illustrated how such guarantees
can be derived formally. As a running example of a
routing protocol, we adopted RPL, the current de jure
standard for low-power wireless networks, which are
one of the key communication technologies in IoT. The

underlying formalism was in turn based on LTL, which
allowed us to focus on actual dynamic behavior (i.e. the
evolution) of a system rather than just properties of sta-
tic system snapshots. After a brief introduction to RPL
and LTL, we showed how a routing protocol such as
RPL can be modeled in the selected formalism and how
such a model can be utilized for verifying the dynamic
behavior of the protocol.

In the modeling part, we aimed to illustrate the com-
mon problems that one is likely to encounter when
devising a formal model of a routing protocol. To avoid
excessive complexity, we concentrated on the core,
albeit sufficiently broad subset of RPL’s DODAG con-
struction and maintenance functionality. We showed
how to model processing and communication, abstract
algorithms comprising the protocol, and deal with open
issues and external dependencies. In our discussion, we
emphasized the need for avoiding oversimplifying and
overspecifying the model, which would otherwise limit
the real-world applicability of the conclusions from ver-
ification attempts involving the model.

In the verification part, in turn, we strove to demon-
strate how safety and liveness properties—the two types
of properties crucial for distributed algorithms and
hence routing protocols—can be proved with our model
of RPL. To this end, we discussed a few techniques,
including invariance checking, contradiction, and
induction on various orders. We also exemplified how
to approach devising a custom inductive order, which
may be necessary for proving more involved properties.
Finally, we demonstrated the iterative nature of a typi-
cal verification process, including hypothesis formula-
tion, possibly failed proof attempts to identify missing
or incorrect assumptions, and gradual hypothesis
refinement to make it truly realistic and relevant in
practice.

In terms of content, although this was not our main
objective, we did cover several key areas of RPL’s
DODAG construction and maintenance functionality.
For example, we proved fundamental bounds on nodes’
ranks and DODAG versions in a correctly functioning
system, liveness of DODAG version dissemination, and
guarantees on the global rank and parent assignment
and upkeep. What the tutorial also highlighted as being
as important as these results was the insight obtained
when producing them. This included assumptions nec-
essary for the proved properties to hold, dependencies
between seemingly unrelated configuration parameters,
and other issues that are not mentioned explicitly or are
simply missing in RPL’s specification.

All in all, we believe that this tutorial and its pointers
can be of value for both theoretical and practical pur-
poses. From the practical perspective, the presented
results can themselves be utilized when extending RPL
or designing new distance-vector routing protocols,
writing  specifications, implementing them, and
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configuring for particular deployment scenarios. The
aforementioned real-world problems with RPL that
inspired our work are a good example. From the theo-
retical perspective, in turn, the tutorial may guide build-
ing new models or retargeting the presented one and
proving additional properties. For instance, further use
of our methodology, not covered here for the sake of
brevity, led to deriving guarantees on RPL’s fault toler-
ance, control traffic behavior, and the impact of asym-
metric links; nevertheless, many issues, like the
performance of routing adjacency maintenance solu-
tions, downward routing, or multicast, are still open.
As our deployment experiences and previous research
underlying this tutorial indicate, such knowledge is
valuable when aiming at highly dependable systems, as
in industrial IoT.
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