
Sharding the Shards: Managing Datastore 
Locality at Scale with Akkio

Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas, Igor 
Zinkovsky, Luning Pan, Tony Savor, and David Nagle, Facebook; Michael Stumm, 

University of Toronto



Databases
Kamil Braun, University of Warsaw















Distributed databases



How to make distributed databases
which don’t not work



Horizontal partitioning
(or “sharding”)



key1 … stuff ...

key2 … stuff ...

key3 … stuff ...

key4 … stuff ...

key5 … stuff ...

key6 … stuff ...

key7 … stuff ...



key1 … stuff ...

key2 … stuff ...

key3 … stuff ...

key4 … stuff ...

key5 … stuff ...

key6 … stuff ...

key7 … stuff ...



key1 … stuff ...

key2 … stuff ...

key3 … stuff ...

key4 … stuff ...

key5 … stuff ...

key6 … stuff ...

key7 … stuff ...



key1 .. stuff ...

key2 .. stuff ...

key3 .. stuff ...

key4 .. stuff ...

key5 … stuff ...

key6 … stuff ...

key7 … stuff ...



shard 1

shard 2

shard 3

shard 5 shard 4



shard 1

shard 2

shard 3

shard 5 shard 4

shard 1

shard 1

shard 2

shard 2

shard 3

shard 3

shard 4

shard 4

shard 5

shard 5



ZippyDB
“a scalable key-value store”

(read: a distributed database)



ZippyDB
● data is partitioned horizontally
● each shard is configured to have a set of replicas (a shard replica set)
● one is called the primary, the rest are secondaries
● writes sent to primary, which then replicates to secondaries

“reads that need to be strongly consistent need to be directed to the primary”

“if eventual consistency is acceptable, then reads can be directed to a secondary”



ZippyDB
● each shard has a replication configuration

i.e.: how many replicas? How are they distributed across DCs and racks?
e.g.: “3 replicas, the primary + one secondary in one DC, the other secondary in a different DC”

● replication configuration -> replica set collection:
the collection of all replica sets having this configuration

● replica set collection -> location handle, it’s unique ID.
● ZippyDB provisions shards and replica set collections
● user inputs parameters and constraints that they must satisfy

e.g.: “replication factor = 3; always put 2 replicas in the same DC”

● ZippyDB assigns each shard’s replica to a physical machine
according to the given constraints



ZippyDB



What shards don’t give?



Data access locality



Data access locality
● = low latencies, e.g.

○ intra-DC communication latencies: ~1ms 
○ cross-DC latencies: ~100ms

● = low cross-DC bandwidth usage



Properties of shards
● unit of replication
● failure recovery
● load balancing
● some arbitrary subset of keys (e.g., according to a hash)
● size: usually tens of GBs
● number: a couple of tens of thousands

shards completely don’t care about data access locality :(



Today’s solutions for data access locality
● distributed caches?

○ require high cache hit rates to be effective
○ for big DBs, this required significant hardware infrastructure
○ typically don’t offer strong consistency

● replicate everything to all DCs?
○ all reads are local!
○ but the storage overhead…
○ and writes become very costly

Neither is ideal, especially for datasets with low R/W ratios (e.g. 1).



Solution?











Solution: data migration



● by the way, some systems have the option to migrate entire shards
● but due to their sizes, this is not effective for data access locality
● e.g. at Facebook, size of a typical working set of a single client: ~1MB



Sharding the shards
● split our “big shards” into smaller datasets: μ-shards
● size: hundreds of bytes to few megabytes
● different purpose (solving data access locality)
● defined to serve this purpose
● easy to migrate dynamically when access patterns change
● different than shards:

○ “first-class citizen”: visible to the client application
○ the client, not the DB, defines how data is “μ-sharded”

Note: they don’t work for all datasets
(e.g. Google Search, Facebook Social Graph)



Akkio: a locality management service
A layer between the DB and the client application for managing μ-shards.

● The client defines how data is partitioned to μ-shards.
● Akkio:

○ maps μ-shards onto replica set collections,
○ tracks client accesses to μ-shards
○ migrates μ-shards when it thinks it’s a good idea
○ directs client access requests to appropriate replica sets



Akkio is



ViewState
Example: the ViewState service (at FB)

● stores history of content previously shown to user
● each time user is shown content, new data is appended to ViewState
● used to decide what to show next

After installing Akkio at ViewState...



ViewState



Another example: AccessState





Akkio’s architecture



Akkio’s architecture
● Akkio Location Service

○ knows where μ-shards are (maps them to replica set collections)

● Access Counter Service
○ counts accesses to all μ-shards
○ how many times, type (read/write), from where

● Data Placement Service
○ decides where to place μ-shards
○ manages migrations

(all services by themselves distributed, e.g. on top of ZippyDB)



Accessing a key by the client
1. lookup the μ-shard of the key
2. ask ALS for the μ-shard’s location

(returns a location handle, identifying a replica set collection)
3. if the replication configuration of this collection has only remote DCs:

a. notify DPS that perhaps a migration should be performed
(this happens asynchronously: probably in a separate thread, perhaps sometime in the future)

4. contact a replica to access the data

ALS contacted on the critical path, so it uses distributed caches for speed.
Fortunately, storing locations of μ-shards is not very expensive...



Sizes



Migration
After client notices it had to do a remote data access to a μ-shard, it tells DPS.
DPS checks if it should migrate the μ-shard:

● asks ACS for the statistics
● calculates and assigns scores to replica set collections
● checks if the migration should be performed
● checks if the migration can be performed
● if so, migrates



Migration



Migration



Fault recovery
What if a DPS instance crashes in the middle of a migration?

● every instance has a global sequence number
● the number is persisted with every state related to a pending migration

e.g. with the μ-shard lock

● failed instances are restarted with a higher number
● restarted instance goes through a recovery process:

○ queries the location DB to identify ongoing migrations initiated by the failed instance
○ scans the μ-shard on source and destination to identify which steps have been completed

 “the sequence number for recovered migration is updated to avoid any conflicts with a stale, failed DPS 
server instance”


