
E2: A Framework for NFV Applications

Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,
Sylvia Ratnasamy, Luigi Rizzo, Scott Shenker

Presentation by Piotr Zalas

Palkar, Lan E2: A Framework for NFV Applications 1 / 31



Basic terms

Palkar, Lan E2: A Framework for NFV Applications 2 / 31



Overview of typical Central Office

Definition of CO

A CO is a facility commonly located in a metropolitan area to which
residential and business lines connect

CO’s hardware:

Broadband Network Gateways (BNGs) – connect broadband users to
the carrier’s IP backbone

Evolved Packet Core (EPC) gateways – connect cellular users to the
IP backbone

Devices supporting content caching, Deep Packet Inspection, parental
controls, WAN and application acceleration, traffic scrubbing for
DDoS prevention, firewalls, IPTV multicast, DHCP, VPN,
Hierarchical QoS, NAT, ...

Palkar, Lan E2: A Framework for NFV Applications 3 / 31



Reasons for migration to NFV

Problems:

the capital and operational expenses incurred by a carrier’s COs are
very high – there are many COs, each of non-trivial scale; e.g., AT&T
reports 5,000 CO locations in the US alone, with 10-100K subscribers
per CO

standalone devices with proprietary internals and vendor-specific
management APIs

new business models based on opening up infrastructure to 3rd party
services to exploit their physical proximity to users

Expected outcome:

uniform architecture based on commodity hardware

efficiency through statistical multiplexing

centralized management across CO locations

flexibility and portability of software services

Palkar, Lan E2: A Framework for NFV Applications 4 / 31



Problems introduced by NFV solutions

NFV products and prototypes tend to be merely virtualized software
implementations of products that were previously offered as dedicated
hardware appliances

Each software middlebox still comes as a closed implementation
bundled with a custom management solution

The operator must cope with many NF-specific management systems

NF developers must invent their own solutions to common but
non-trivial problems such as dynamic scaling and fault tolerance

Palkar, Lan E2: A Framework for NFV Applications 5 / 31



E2 – Elastic Edge

A framework for packet-processing applications that implements general
techniques for common issues:

placement (which NF runs where)

elastic scaling (adapting the number of NF instances and balancing
load across them)

service composition

resource isolation

fault-tolerance

energy management

monitoring

Palkar, Lan E2: A Framework for NFV Applications 6 / 31



Design overview

Palkar, Lan E2: A Framework for NFV Applications 7 / 31



E2 cluster architecture

Palkar, Lan E2: A Framework for NFV Applications 8 / 31



System Inputs – pipelets

node - NF or a physical port on the switch

edges - describe the traffic between nodes

filter - a boolean expression that defines what subset of the traffic
from the source node should reach the destination node

Palkar, Lan E2: A Framework for NFV Applications 9 / 31



Example of pipelet

Proxy p; NAT n; FW f;

Port<0-7> int;

Port<8-15> ext;

pipelet {

int [dst port 80] -> p;

int [!(dst port 80)] -> n;

p [!(dst ip my_net)] -> n;

n -> f;

f [FW.safe &&

!(dst ip wan_net)] -> ext;

f [!FW.safe] -> Drop;

}

Palkar, Lan E2: A Framework for NFV Applications 10 / 31



System Inputs – resources

NF description:

Native or Legacy API - native give better performance

Attribute-Method bindings - attribute → {port, per-packet metadata}
Scaling constraints - tell whether the application can be scaled across
servers/cores or not

Affinity constraints - how to split traffic across NF instances (e.g.,
”all packets with a particular TCP port”)

NF performance - an estimate of the per-core, per-GHz traffic rate
that the NF can sustain

Hardware description:

the number of cores (and speed) and the network I/O bandwidth per
server

the number of switch ports and entries in the switch flow table

Palkar, Lan E2: A Framework for NFV Applications 11 / 31



E2 Dataplane – E2D

Characteristics:

Modular architecture based on SoftNIC

Highly efficient (uses Intel DPDK)

Extensions to SoftNIC:

Basic modules utilized to implement E2’s components for NF
placement, interconnection, and dynamic scaling (e.g. modules for
load monitoring, flow tracking, load balancing, packet classification,
and tunneling across NFs)

Native API – for better performance and richer message abstraction

Control API exposed to E2’s Server Agent

Why OVS is not suitable

[Its] expressiveness and functionality are limited by the flow-table
semantics and predefined actions of OpenFlow

Palkar, Lan E2: A Framework for NFV Applications 12 / 31



E2 Control Plane

The E2 control plane is in charge of:

Placement – instantiating the pipelets on servers

Interconnection – setting up and configuring the interconnections
between NFs

Scaling – dynamically adapting the placement decisions depending on
load variations

Ensuring affinity constraints of NFs

Palkar, Lan E2: A Framework for NFV Applications 13 / 31



E2 Control Plane – NF placement and interconnection

Stages of NF placement:

Step 1: Merging pipelets into a single policy graph (pGraph)

Step 2: Sizing

Step 3: Converting the pGraph to an iGraph (instance graph)

Step 4: Instance placement - use Kernighan-Lin heuristic for
minimizing inter-server traffic

Step 5: Offloading low-level functions such as L2/L3-forwarding,
VLAN/tunneling, and QoS packet scheduling to the hardware switch

Service Interconnection:

Instantiating NFs’ ports

Adding traffic filters

Configuring the switch and the E2D

Palkar, Lan E2: A Framework for NFV Applications 14 / 31



NF placement example

Palkar, Lan E2: A Framework for NFV Applications 15 / 31



Service interconnection example

E2 converts edge annotations on an iGraph (a) into output ports (b) that
the applications write to, and then adds traffic filters that the E2D
implements (c)

Palkar, Lan E2: A Framework for NFV Applications 16 / 31



E2 Control Plane – dynamic scaling

Scaling algorithm:

NFs report on their instantaneous load, and the E2D itself detects
overloads based on queues and processing delays

When a node signals overload the Server Agent notifies the E2
Manager

E2 Manager updates estimates, recalculates iGraph and places new
NF instances

Flow is split between old and new NFs

Flow splitting is problematic

Usually traffic for a given flow must reach the instance that holds that
flow’s state. Prior solutions depend on state migration techniques, which
is both expensive and incompatible with legacy applications, or require
large rule sets in hardware switches.

Palkar, Lan E2: A Framework for NFV Applications 17 / 31



E2 Control Plane – dynamic scaling

Migration avoidance algorithm:

Upon splitting, the range filter on the hardware switch is initially
unchanged, and the new filters (two new ranges plus exceptions) are
installed in the E2D of the server that hosts old NF

As old flows in gradually terminate, the corresponding exception rules
can be removed

When the number of exceptions drops below some threshold, the new
ranges and remaining exceptions are pushed to the switch, replacing
the original rule

The trade-off is the additional latency to new flows being punted between
servers (but this overhead is small and for a short period of time) and
some additional switch bandwidth.

Palkar, Lan E2: A Framework for NFV Applications 18 / 31



E2 Control Plane – dynamic scaling

(a) Flows enter a single NF instance. (b) Migration avoidance partitions
the range of Flow IDs and punts new flows to a new replica using the
E2D. Existing flows are routed to the same instance. (c) Once enough
flows expire, E2 installs steering rules in the switch.

Palkar, Lan E2: A Framework for NFV Applications 19 / 31



Evaluation

Hardware:

1 x Intel Xeon E5-2680 v2 CPU with 10 cores in each of 2 sockets

3 x Intel Xeon E5-2650 v2 CPU with 8 cores in each of 2 sockets

Each server is connected to the switch via one 10 Gbps link

Intel FM6000 Seacliff Trail Switch with 48 10 Gbps ports and 2,048
flow table entries

Four 10 G links from external ports on switch to traffic generator

Traffic generator – server with four 10G NICs and two Intel Xeon
E5-2680 v2 CPUs

Configuration:

On each server, we dedicate one core to run the E2D layer

E2 Manager runs on a standalone server that connects to each server
and to the management port of the switch on a separate 1 Gbps
control network.

Palkar, Lan E2: A Framework for NFV Applications 20 / 31



E2D Performance

Loopback test:

NF generates packets and then absorbs them (NF → E2D → NF )

E2D incurs 0.3 µs delay (or 0.15 µs for each direction)

Forwarding through E2D on a single core fully saturates the server’s
10 Gbps link

Native API – Zero-copy vports performance:

NF1 → E2D → NF2, both NFs are on same server

Reduces latency of NF-to-NF communication by over 2.5x on average

Increases throughput by over 26x

Native API – Bytestream vports performance:

Pipeline of 3 NFs performing DPI on TCP stream

E2D guarantees reliable transfer of all messages between NFs that use
bytestream vports, with much less overhead than full TCP

Save 25% of processing cycles, for the same amount of input traffic

Palkar, Lan E2: A Framework for NFV Applications 21 / 31



E2D Performance

Comparison of CPU cycles for three DPI NFs, without and with
bytestream vports. The both cases use the native API.

TCP – NF for unpacking stream; SIG – signature matching with the
Aho-Corasick algorithm; HTTP – HTTP parser; RE – redundancy
elimination using Rabin fingerprinting.

Palkar, Lan E2: A Framework for NFV Applications 22 / 31



E2D Performance

Native API – Metadata Tags overhead:

The inter-NF throughput using our zero-copy native API under two
scenarios is measured

In Header-Match, the E2D checks a particular header field against a
configured value; no metadata tags are attached to packets.

In Metadata-Match, the source NF adds tag for each packet; then the
E2D then checks the tag against a configured value.

Adding metadata lowers throughput by 5.7%.

Native API – URL tag test:

Each packet must be forwarded to corresponding CDN NF based on
URL in their header

First case: tag packet with URL of CDN and let E2D resolve it

Second case: add NF for splitting traffic to each CDN

Second approach increase CPU load by 41%.

Palkar, Lan E2: A Framework for NFV Applications 23 / 31



Placement algorithm performance

Evaluated on 24 servers and 24 external ports.

It takes 14.6ms to compute an initial placement for a 100-node iGraph

Controller has a response time of 1.76ms when handling 68 split
requests per second (which represents the aggressive case of one split
request per core per second).

Conclusion: centralized controller is unlikely to be a performance
bottleneck in the system.

Palkar, Lan E2: A Framework for NFV Applications 24 / 31



Placement algorithm – network performance

Types of iGraphs:

Linear – linear chain of 5 NFs

Randomized – 10 NFs with random edges

Palkar, Lan E2: A Framework for NFV Applications 25 / 31



Performance of dynamic scaling

1 Gbps of input traffic

2000 new flows arriving each second on average

1 NF at the beginning of the test

During test NF is split and flows are distributed

Palkar, Lan E2: A Framework for NFV Applications 26 / 31



Performance of dynamic scaling

Palkar, Lan E2: A Framework for NFV Applications 27 / 31



Performance of dynamic scaling

Palkar, Lan E2: A Framework for NFV Applications 28 / 31



Overall performance – E2 under dynamic workload

Conclusion: E2’s resource consumption scales dynamically to track the
trend in input load. Avg CPU gap: 22.7%, net gap 16.4%.

Palkar, Lan E2: A Framework for NFV Applications 29 / 31



Conclusions

E2 provides the operator with a single coherent system for managing
NFs

E2 relieve developers from having to develop per-NF solutions for
placement, scaling, fault-tolerance, and other functionality

E2 did not impose undue overheads, and enabled flexible and efficient
interconnection of NFs

our placement algorithm performed substantially better than random
placement and bin-packing

our approach to splitting NFs with affinity constraints was superior to
the competing approaches

Palkar, Lan E2: A Framework for NFV Applications 30 / 31



Thanks for Your attention

Link to paper:
http://delivery.acm.org/10.1145/2820000/2815423/p121-palkar.pdf

Palkar, Lan E2: A Framework for NFV Applications 31 / 31


