
Parallelizing User-Defined Aggregations
using Symbolic Execution

Veselin Raychev, Madanlal Musuvathi, Todd Mytkowicz

Presentation by Tomasz Knopik

1. User-Defined Aggregation and parallelism

2. SYMPLE
a. idea and semantic execution

b. symbolic data types

c. implementation

3. Efficiency

User-Defined Aggregations
The goal is to answer different user’s questions on big data sets, with as
much parallelism as possible.

Data set: query logs

It’s a real life use case for real companies like:

Google, Facebook, Microsoft, Amazon, Ebay etc...

Example questions we would like to ask
● What is an average time spent by user on our page ?

● How much time does average user spend on our page ?

● What is the most popular post on our page within last 24 hours ?

● What is the average price of products bought by people under 30 ?

Easy answers
Those questions are fairly easy to answer. It’s only about executing filter, group by
queries and SUM, MAX functions

There exist popular implementations with parallelism like:

● SQL engines
● MapReduce with fe. Hadoop

MAX MapReduce example

10

5

9

1

4

53

-2

10

0

10

5

9

1

4

53

-2

10

0

MAX: 10

MAX: 53

MAX: 10

MAX: 53

Another example questions we would like to ask
● What is an time spent by user on our page between first entry and the

purchase ?

● How many times did user search for product review before the purchase ?

● How much time did user hesitate before ordering Uber with a surge ?

What is the median number of searches for review between first search for
the price and the purchase ?

Search for price

Search for review

Purchase

The parallel answer is not obvious.
Problem: Data dependencies
Answer which we would give at each point depends on what
has happened before!

System-supported associative aggregations, such as counting
or finding the maximum, are data-parallel and thus these
systems optimize their execution, leading in many cases to
orders-of-magnitude performance improvements. These
optimizations, however, are not possible on arbitrary UDAs

What is the median number of searches for review between first search for
the price and the purchase ?

Search for price

Search for review

Purchase

The parallel answer is not obvious.
Problem: Data dependencies
Answer which we would give at each point depends on what
has happened before!

Complex queries are neither commutative nor associative

What is the median number of searches for review between first search for
the price and the purchase ?

Search for price

Search for review

Purchase

The parallel answer is not obvious.
Problem: Data dependencies
Answer which we would give at each point depends on what
has happened before

To reach the answer we would have to consider a lot of
corner cases, the code could become buggy and hard to
maintain.

The solution is SYMPLE !

SYMPLE
SYMPLE is system for performing MapReduce-style groupby-aggregate queries
that automatically parallelizes UDAs.

It introduces own data types, similar to standard ones, with which automatically
parallelizes sequential code.

What is the median number of searches for review between first search for
the price and the purchase ? SEQUENTIAL

Search for price

Search for review

Purchase

bool price_searched = false; int review_searches = 0;
vector<int> results;

switch record.type:
case PRICE_SEARCH: price_searched = true; break;
case REVIEW_SEARCH:

if (price_searched)
review_searches++; break;

case PURCHASE:
if (price_searched) {

price_searched = false;
results.push_back(review_searches);
review_searches = 0;

}

What is the median number of searches for review between first search for
the price and the purchase ? SYMPLE

Search for price

Search for review

Purchase

SymBool price_searched = false; SymInt review_searches = 0;
SymVector<SymInt> results;

switch record.type:
case PRICE_SEARCH: price_searched = true; break;
case REVIEW_SEARCH:

if (price_searched)
review_searches++; break;

case PURCHASE:
if (price_searched) {

price_searched = false;
results.push_back(review_searches);
review_searches = 0;

}

SYMPLE - Idea

SYMPLE tries to break data dependencies and make use of symbolic execution.

initial state s’

U’(S) S

U’’(S) S (final state)

Final state = U’’(U’ (s’))
Note that now the U’ and U’’ is created not based on the input, but on the code!

SYMPLE
To benefit from computing functions U and U’, executing them as to be
significantly less expensive than processing the records itself. U and U’’ behave as
if they were standard UDAs, but starting from unknown state.

At the and, we call U and U’ sequentially in the reducer.

SYMPLE uses symbolic execution to achieve simple and easy to execute (and
obviously exacy) for of U and U’

SYMPLE: Symbolic Execution
In computer science, symbolic execution (also symbolic evaluation) is a means of
analyzing a program to determine what inputs cause each part of a program to
execute

SYMPLE with symbolic execution tries to cover all of code branches with simple
canonical form of function representation

There is introduced concept of path constraints (PC) and transfer functions (TF)
which are held in the SYMPLE state and represent function such as:

Symbolic Execution: Example
SymInt Max(K key, List<int> input) {
 SymInt max = INT_MIN;
 foreach(e in input)
 if(max < e)
 max = e;

 return max;
}

Input: [2, 9, 1, 5, 3, 10, 8, 2, 1]
Chunks:
 First = [2, 9, 1]
 Second = [5, 3, 10]
 Third = [8, 2, 1]

Symbolic Execution: Example
SymInt Max(K key, List<int> input) {
 SymInt max = INT_MIN;
 foreach(e in input)
 if(max < e)
 max = e;

 return max;
}

Input: [2, 9, 1, 5, 3, 10, 8, 2, 1]
Chunks:
 First = [2, 9, 1]
 Second = [5, 3, 10]
 Third = [8, 2, 1]

Result for first chunk is obvious.
How does symbolic execution looks like for the next chunks?

Symbolic Execution: Example Chunk = [5, 3, 10]

In first iteration, program splits into two branches. SYMPLE creates two path
constraints with transfer functions:

x < 5 ⇒ max = 5 ∧ x ≥ 5 ⇒ max = x
Note: in x < 5 constraint SymInt variable max is set to concrete value = 5, but in
the x ≥ 5 constraint, max is still symbolic, unknown value (but it has to be
greater than 5)

Symbolic Execution: Example Chunk = [5, 3, 10]

x < 5 ⇒ max = 5 ∧ x ≥ 5 ⇒ max = x

Symbolic Execution: Example Chunk = [5, 3, 10]

x < 5 ⇒ max = 5 ∧ x ≥ 5 ⇒ max = x

Left branch: nothing changes, no new constraints

Symbolic Execution: Example Chunk = [5, 3, 10]

x < 5 ⇒ max = 5 ∧ x ≥ 5 ⇒ max = x

Right branch: < 3 branch is not feasible, because of ≥
5 constraint. SYMPLE won’t explore < 3 any more.

Symbolic Execution: Example Chunk = [5, 3, 10]

x < 5 ⇒ max = 10 ∧ x ≥ 5 ⇒ max =
x

Left branch: SYMLINK recognizes that from the first
condition x < 5 so it sees that x < 10 as well. Max
gets updated to 10 in left branch constraint

Symbolic Execution: Example Chunk = [5, 3, 10]

x < 5 ⇒ max = 10 ∧
10 > x ≥ 5 ⇒ max = 10 ∧
x ≥ 10 ⇒ max = x

Right branch: SYMLINK brakes right branch
constraint into two.

Symbolic Execution: Example Chunk = [5, 3, 10]

x < 5 ⇒ max = 10 ∧
10 > x ≥ 5 ⇒ max = 10 ∧
x ≥ 10 ⇒ max = x

Right branch: SYMLINK brakes right branch
constraint into two.
It recognizes as well that two first constraints can be
merged into one

Symbolic Execution: Example Chunk = [5, 3, 10]

10 > x ⇒ max = 10 ∧
x ≥ 10 ⇒ max = x

Right branch: SYMLINK brakes right branch
constraint into two.
It recognizes as well that two first constraints can be
merged into one

Symbolic Execution: Example Chunk = [5, 3, 10]

Final representation of function:
10 > x ⇒ max = 10 ∧
x ≥ 10 ⇒ max = x

The get the result:

● Repeat the action for the last chunk (parallel)
● Reduce the outcome by function composition

How does SYMPLE know whether it can merge
paths or when the path is not feasible?

Symbolic Data Types

● SymInt
● SymEnum
● SymBool
● SymVect
● SymPred<T>

SymInt
● Symbolic (doesn’t always hold specific value) version of C++ int
● Supports only operations with concrete values, not with another SymInt (could

be possible, but would require to much computations to be fast enough)

SymInt
Canonical form: s = (lb, ub, a, b)
Under path constraint lb ≤ x ≤ ub, the value of SymInt is ax * b
It allows us to operate on the variable, even if it’s not defined yet (symbolic) and explains why only
operations with concrete values are allowed

Decision Procedures
When comparing a SymInt with another constant, the two outcomes split the interval [lb, ub] into two
(possibly empty) intervals.
Condition like s ≤ c holds when a*x + b ≤ c does

This decision creates two new paths in our program:

● [lb, (c - b) / a] when s ≤ c holds

● ((c - b) / a, ub] when s ≤ c doesn’t hold

A path is not feasible when condition creates SymInt which an empty interval

SymInt
Merging Path Constraints:

If SYMPLE tries to merge two path constraints, it checks whether merging can take place.
It’s possible when intervals intersect, the new boundaries are extreme points

SymEnum
Canonical Form: (S, bound, c): x ∈ S ⇒ v = bound ? c : x

● S - bit vector of any values (options of enum)
● bound - true if enum has concrete value
● c - concrete value of enum (gained from an assignment)

When bound is true SymEnum is as fast as C++ enum type.

Decision Procedures

When a symbolic SymEnum which can take any value from a set S is compared with a constant c, there
are two possible paths corresponding to the two sets S ∩ {c} and S/{c}. If either of these sets is empty the
corresponding path is not feasible.

SymEnum
Merging Path Constraints

Two path constraints x ∈ S1 and x ∈ S2 can be merged into x ∈ S1 ∪ S2

SymBool
● SymEnum with true and false possibilities
● Overloaded operators

SymVector<T>
● Similar to C++ vector
● Concretizes its elements whenever variable which those elements rely on

gets concrete value

Additional data types
Users can create structs from other Sym data types

Additionally there exists ability to create own data types, but the authors haven’t
found use case for using it yet

How does SYMPLE track the paths?
It records the vector of paths taken, keeping them it lexicographic order.

For example: record 01 in vector means that path took then branch in the first if
and else branch in the second conditional statement

Paths Explosion
SYMPLE tries to cover all paths of the program and create versatile function describing all of them.
However, there could exist code with number of paths grows too fast to keep the path constraints and
transfer functions concise.

Solutions:

● Paths merging
● Exclusion of infeasible paths
● Detecting possible paths explosions
● Fallback to sequential computation in case of paths explosion

SYMPLE & MapReduce
SYMPLE doesn’t rely on the way in which data input is splitted, it can be easily
plugged into existing implementations of MapReduce. It just has to keep track of
data shuffling which takes place in mapper, as we have to keep track of the
records order.

SYMPLE moves a lot of work to mappers from the reducers. It increases efficiency
as sequential part in reducers is limited to simple and small functions calls

Results

Data sets
● github repository operations (419 GB)
● Amazon Redshift benchmark data (1.2 TB)
● Bing search engine (300 GB)
● All tweets from 24 hours period (1.23 TB)

Queries

Multi-core local machine (github + redshift)

Size of data limited to 4 GB at time to avoid I/O dist limitations

Amazon 4 CPUs machine

Amazon 4 CPUs machine (shuffle data size)

380-nodes Hadoop cluster

 ‘In [15], a symbolic parallel engine (SYMPLE) is proposed in order to automatically parallelize User Defined Aggregations
(UDAs) that are not necessarily commutative. Although interesting, the proposed framework lacks guarantees for efficiency
and accuracy in the sense that it is up to users to encode a function as SYMPLE UDA. Moreover, symbolic execution may
have path explosion problem.’

Symmetric and Asymmetric Aggregate Function in Massively Parallel Computing

Q & A

Thank you

