
Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
Room R4.20, steen@cs.vu.nl

Chapter 09: Security

Version: November 30, 2011

Contents

Chapter
01: Introduction
02: Architectures
03: Processes
04: Communication
05: Naming
06: Synchronization
07: Consistency & Replication
08: Fault Tolerance
09: Security
10: Distributed Object-Based Systems
11: Distributed File Systems
12: Distributed Web-Based Systems
13: Distributed Coordination-Based Systems

2 / 64

Security

Overview

Introduction
Secure channels
Access control
Security management

3 / 64

Security 9.1 Introduction

Security: Dependability revisited

Basics
A component provides services to clients. To provide services, the
component may require the services from other components⇒ a component
may depend on some other component.

Property Description
Availability Accessible and usable upon demand for

authorized entities
Reliability Continuity of service delivery
Safety Very low probability of catastrophes
Confidentiality No unauthorized disclosure of information
Integrity No accidental or malicious alterations of

information have been performed (even by
authorized entities)

4 / 64

Security 9.1 Introduction

Security: Dependability revisited

Observation
In distributed systems, security is the combination of availability,
integrity, and confidentiality. A dependable distributed system is thus
fault tolerant and secure.

5 / 64

Security 9.1 Introduction

Security threats

The players
Subject: Entity capable of issuing a request for a service as
provided by objects
Channel: The carrier of requests and replies for services offered
to subjects
Object: Entity providing services to subjects.

6 / 64

Security 9.1 Introduction

Security threats

The threats

Threat Channel Object
Interruption Preventing message

transfer
Denial of service

Inspection Reading the content
of transferred
messages

Reading the data
contained in an object

Modification Changing message
content

Changing an object’s
encapsulated data

Fabrication Inserting messages Spoofing an object

7 / 64

Security 9.1 Introduction

Security mechanisms

Issue
To protect against security threats, we have a number of security
mechanisms at our disposal:

Encryption: Transform data into something that an attacker cannot
understand (confidentiality). It is also used to check whether
something has been modified (integrity).
Authentication: Verify the claim that a subject says it is S: verifying
the identity of a subject.
Authorization: Determining whether a subject is permitted to make
use of certain services.
Auditing: Trace which subjects accessed what, and in which way.
Useful only if it can help catch an attacker.

8 / 64

Security 9.1 Introduction

Security policies

Policy
Prescribes how to use mechanisms to protect against attacks.
Requires that a model of possible attacks is described (i.e., security
architecture).

Example: Globus security architecture
There are multiple administrative domains
Local operations subject to local security policies
Global operations require requester to be globally known
Interdomain operations require mutual authentication
Global authentication replaces local authentication
Users can delegate privileges to processes
Credentials can be shared between processes in the same
domain

9 / 64

Security 9.1 Introduction

Security policies

Globus
Policy statements leads to the introduction of mechanisms for
cross-domain authentication and making users globally known⇒ user
proxies and resource proxies

10 / 64

Security 9.1 Introduction

Security policies: Globus

User

Local security
policy and

mechanisms

Local security
policy and

mechanisms

Global-to-local
mapping of IDs

Global-to-local
mapping of IDs

ProcessProcess

Process Process

Resource proxyResource proxy

User proxy

Domain Domain

Domain

Proxy creates
process

Process
spawns
child process

User must be
known in domain

Protocol 4:
Making user known
in remote domain

Protocol 1:
Creation of
user proxy

Protocol 3:
Allocation of a resource
by a process in remote domain

Protocol 2:
Allocation of a resource
by the user in a remote
domain

11 / 64

Security 9.1 Introduction

Design issue: Focus of control

Object

Method

State

Data is protected against
wrong or invalid operations

Invocation

Data is protected against
unauthorized invocations

Data is protected by
checking the role of invoker

(a) (b)

(c)

12 / 64

Security 9.1 Introduction

Design issue: Layering of mechanisms and TCB

Issue
At which logical level are we going to implement security mechanisms?

Application Application

Middleware Middleware

OS Services OS Services

Transport Transport
Network Network
Datalink Datalink
Physical PhysicalHardware Hardware

OS kernel OS kernel
Low-level protocols

High-level protocols

Network

13 / 64

Security 9.1 Introduction

Design issue: Layering of mechanisms and TCB

Important
Whether security mechanisms are actually used is related to the trust
a user has in those mechanisms. No trust⇒ implement your own
mechanisms.

Trusted Computing Base
What is the set of mechanisms needed to enforce a policy. The
smaller, the better.

14 / 64

Security 9.1 Introduction

Cryptography

Plaintext, P

Decryption
key, D

Encryption
key, E

Encryption
method

Decryption
method

Passive intruder
only listens to C

Active intruder
can alter messages

Active intruder
can insert messages

Plaintext

K K

Ciphertext
C = E (P)K

Sender Receiver

Symmetric system: Use a single key to (1) encrypt and (2) decrypt. Requires that
sender and receiver share the secret key.

Asymmetric system: Use different keys for encryption and decryption, of which one is
private, and the other public.

Hashing system: Only encrypt data and produce a fixed-length digest. There is no
decryption; only comparison is possible.

15 / 64

Security 9.1 Introduction

Cryptographic functions

Essence
Make the encryption method E public, but let the encryption as a
whole be parameterized by means of a key S (Same for decryption)

One-way function: Given some output mout of ES, it is (analytically
or) computationally infeasible to find min : ES(min) = mout
Weak collision resistance: Given the pair 〈m,ES(m)〉, it is
computationally infeasible to find an m∗ 6= m such that
ES(m∗) = ES(m)
Strong collision resistance: It is computationally infeasible to find
any two different inputs m∗ and m such that ES(m∗) = ES(m)

16 / 64

Security 9.1 Introduction

Cryptographic functions

Essence (cnt’d)
One-way key: Given an encrypted message mout, message min,
and encryption function E , it is analytically and computationally
infeasible to find a key K such that mout = EK (min)
Weak key collision resistance: Given a triplet 〈m,K ,E〉, it is
computationally infeasible to find an K ∗ 6= K such that
EK ∗(m) = EK (m)
Strong key collision resistance: It is computationally infeasible to
find any two different keys K and K ∗ such that for all m:
EK (m∗) = EK (m)

17 / 64

Security 9.2Secure Channels

Secure channels

Authentication
Message Integrity and confidentiality
Secure group communication

18 / 64

Security 9.2Secure Channels

Secure channels

A

B

C

A

A

D

B

C

D

B

Confidential channel

Authenticated and

tamperproof channel

Secure channel

What’s a secure channel
Both parties know who is on the other side (authenticated).
Both parties know that messages cannot be tampered with (integrity).
Both parties know messages cannot leak away (confidentiality).

19 / 64

Security 9.2Secure Channels

Authentication versus integrity

Important
Authentication and data integrity rely on each other: Consider an
active attack by Trudy on the communication from Alice to Bob.

Authentication without integrity
Alice’s message is authenticated, and intercepted by Trudy, who
tampers with its content, but leaves the authentication part as is.
Authentication has become meaningless.

Integrity without authentication
Trudy intercepts a message from Alice, and then makes Bob believe
that the content was really sent by Trudy. Integrity has become
meaningless.

20 / 64

Security 9.2Secure Channels

Authentication: Secret keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)

A
lic

e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he is

talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is talking to

Bob.

21 / 64

Security 9.2Secure Channels

Authentication: Secret keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)

A
lic

e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he is

talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is talking to

Bob.

21 / 64

Security 9.2Secure Channels

Authentication: Secret keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)

A
lic

e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he is

talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is talking to

Bob.

21 / 64

Security 9.2Secure Channels

Authentication: Secret keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)

A
lic

e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he is

talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is talking to

Bob.

21 / 64

Security 9.2Secure Channels

Authentication: Secret keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)

A
lic

e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he is

talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is talking to

Bob.

21 / 64

Security 9.2Secure Channels

Authentication: Secret keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)

A
lic

e

B
ob

1

2

3

4

5

1: Alice sends ID to Bob
2: Bob sends challenge RB to Alice
3: Alice encrypts RB with shared key KA,B. Bob now knows he is

talking to Alice.
4: Alice sends challenge RA to Bob
5: Bob encrypts RA with KA,B. Alice now knows that she is talking to

Bob.

21 / 64

Security 9.2Secure Channels

Authentication: Secret keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)

A
lic

e

B
ob

1

2

3

4

5

Improvement
Combine steps 1&4, and 2&5. Price to pay: correctness.

22 / 64

Security 9.2Secure Channels

Authentication: Secret keys

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)

A
lic

e

B
ob

1

2

3

4

5

Improvement
Combine steps 1&4, and 2&5. Price to pay: correctness.

22 / 64

Security 9.2Secure Channels

Authentication: Secret keys reflection attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but uses

challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove he is

Alice.

23 / 64

Security 9.2Secure Channels

Authentication: Secret keys reflection attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but uses

challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove he is

Alice.

23 / 64

Security 9.2Secure Channels

Authentication: Secret keys reflection attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but uses

challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove he is

Alice.

23 / 64

Security 9.2Secure Channels

Authentication: Secret keys reflection attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but uses

challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove he is

Alice.

23 / 64

Security 9.2Secure Channels

Authentication: Secret keys reflection attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but uses

challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove he is

Alice.

23 / 64

Security 9.2Secure Channels

Authentication: Secret keys reflection attack

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

1: Chuck claims he’s Alice, and sends challenge RC
2: Bob returns a challenge RB and the encrypted RC
3: Chuck starts a second session, claiming he is Alice, but uses

challenge RB
4: Bob sends back a challenge, plus KA,B(RB)
5: Chuck sends back KA,B(RB) for the first session to prove he is

Alice.

23 / 64

Security 9.2Secure Channels

Authentication: Public key

A
lic

e

B
ob

1

2

3

K (A, R)B A
+

(R , R , KA B A,BK A
+)

K (R)A,B B

1: Alice sends a challenge RA to Bob, encrypted with Bob’s public
key K+

B .
2: Bob decrypts the message, generates a secret key KA,B (session

key), proves he’s Bob (by sending RA back), and sends a
challenge RB to Alice. Everything’s encrypted with Alice’s public
key K+

A .
3: Alice proves she’s Alice by sending back the decrypted challenge,

encrypted with generated secret key KA,B

24 / 64

Security 9.2Secure Channels

Authentication: Public key

A
lic

e

B
ob

1

2

3

K (A, R)B A
+

(R , R , KA B A,BK A
+)

K (R)A,B B

1: Alice sends a challenge RA to Bob, encrypted with Bob’s public
key K+

B .
2: Bob decrypts the message, generates a secret key KA,B (session

key), proves he’s Bob (by sending RA back), and sends a
challenge RB to Alice. Everything’s encrypted with Alice’s public
key K+

A .
3: Alice proves she’s Alice by sending back the decrypted challenge,

encrypted with generated secret key KA,B

24 / 64

Security 9.2Secure Channels

Authentication: Public key

A
lic

e

B
ob

1

2

3

K (A, R)B A
+

(R , R , KA B A,BK A
+)

K (R)A,B B

1: Alice sends a challenge RA to Bob, encrypted with Bob’s public
key K+

B .
2: Bob decrypts the message, generates a secret key KA,B (session

key), proves he’s Bob (by sending RA back), and sends a
challenge RB to Alice. Everything’s encrypted with Alice’s public
key K+

A .
3: Alice proves she’s Alice by sending back the decrypted challenge,

encrypted with generated secret key KA,B

24 / 64

Security 9.2Secure Channels

Authentication: Public key

A
lic

e

B
ob

1

2

3

K (A, R)B A
+

(R , R , KA B A,BK A
+)

K (R)A,B B

1: Alice sends a challenge RA to Bob, encrypted with Bob’s public
key K+

B .
2: Bob decrypts the message, generates a secret key KA,B (session

key), proves he’s Bob (by sending RA back), and sends a
challenge RB to Alice. Everything’s encrypted with Alice’s public
key K+

A .
3: Alice proves she’s Alice by sending back the decrypted challenge,

encrypted with generated secret key KA,B

24 / 64

Security 9.2Secure Channels

Authentication: KDC

Problem
With N subjects, we need to manage N(N−1)/2 keys, each subject
knowing N−1 keys⇒ use a trusted Key Distribution Center that
generates keys when necessary.

A
lic

e

B
ob

1

22 KA,BKA,KDC() KA,BKB,KDC()

A,B K
A

,B
K

D
C

, g
en

er
at

es

Question
How many keys do we need to manage?

25 / 64

Security 9.2Secure Channels

Authentication: KDC (Needham-Schroeder)

Inconvenient
We need to ensure that Bob knows about KA,B before Alice gets in
touch⇒ let Alice do the work and pass her a ticket to set up a secure
channel with Bob.

A
lic

e

B
ob

1

3

2

, A, B

K
D

C

RA1

KA,BKA,KDC KA,B, KB,KDC()RA1, B,()A,

(), KA,BB,KDC ()KA,B
A,KA2R

KA,B RBRA2 1,()

KA,B RB 1()

4

5

26 / 64

Security 9.2Secure Channels

Needham-Schroeder: Subtleties

A
lic

e

B
ob

1

3

2

, A, B

K
D

C

RA1

KA,BKA,KDC KA,B, KB,KDC()RA1, B,()A,

(), KA,BB,KDC ()KA,B
A,KA2R

KA,B RBRA2 1,()

KA,B RB 1()

4

5

Some issues
Q1: Why does the KDC put Bob into its reply message, and Alice into

the ticket?
Q2: The ticket sent back to Alice by the KDC is encrypted with Alice’s

key. Is this necessary?

27 / 64

Security 9.2Secure Channels

Needham-Schroeder: Subtleties

Security flaw
Suppose Trudy finds out Alice’s key⇒ she can use that key anytime to
impersonate Alice, even if Alice changes her private key at the KDC.

Reasoning
Once Trudy finds out Alice’s key, she can use it to decrypt a (possibly
old) ticket for a session with Bob, and convince Bob to talk to her using
the old session key.

Solution
Have Alice get an encrypted number from Bob first, and put that
number in the ticket provided by the KDC⇒ we’re now ensuring that
every session is known at the KDC.

28 / 64

Security 9.2Secure Channels

Confidentiality

Solutions

Secret key: Use a shared secret key to encrypt and decrypt all messages
sent between Alice and Bob

Public key: If Alice sends a message m to Bob, she encrypts it with Bob’s
public key: K+

B (m)

Problems with keys

Keys wear out: The more data is encrypted by a single key, the easier it
becomes to find that key⇒ don’t use keys too often
Danger of replay: Using the same key for different communication
sessions, permits old messages to be inserted in the current session⇒
don’t use keys for different sessions

29 / 64

Security 9.2Secure Channels

Confidentiality

Problems with keys

Compromised keys: If a key is compromised, you can never use it again.
Really bad if all communication between Alice and Bob is based on the
same key over and over again⇒ don’t use the same key for different
things.
Temporary keys: Untrusted components may play along perhaps just
once, but you would never want them to have knowledge about your
really good key for all times⇒ make keys disposable

30 / 64

Security 9.2Secure Channels

Confidentiality

Essence
Don’t use valuable and expensive keys for all communication, but only for
authentication purposes.

Consequnce

Introduce a “cheap” session key that is used only during one single
conversation or connection (“cheap” also means efficient in encryption and
decryption).

31 / 64

Security 9.2Secure Channels

Digital signatures

Harder requirements
Authentication: Receiver can verify the claimed identity of the
sender
Nonrepudiation: The sender can later not deny that he/she sent
the message
Integrity: The message cannot be maliciously altered during, or
after receipt

Solution
Let a sender sign all transmitted messages, in such a way that (1) the
signature can be verified and (2) message and signature are uniquely
associated

32 / 64

Security 9.2Secure Channels

Public key signatures

KA (m) KA (m)

KA

Alice's
private key,

KB
+

Bob's
public key,

KA
+

Alice's
public key,

KB

Bob's
private key,m m

m

Alice's computer Bob's computer

(m))KAKB
+(m,

1: Alice encrypts her message m with her private key K−A ⇒m′ = K−A (m)

2: She then encrypts m′ with Bob’s public key, along with the original
message m⇒m′′ = K+

B (m,K−A (m)), and sends m′′ to Bob.
3: Bob decrypts the incoming message with his private key K−B . We know

for sure that no one else has been able to read m, nor m′ during their
transmission.

4: Bob decrypts m′ with Alice’s public key K+
A . Bob now knows the

message came from Alice.

33 / 64

Security 9.2Secure Channels

Public key signatures

KA (m) KA (m)

KA

Alice's
private key,

KB
+

Bob's
public key,

KA
+

Alice's
public key,

KB

Bob's
private key,m m

m

Alice's computer Bob's computer

(m))KAKB
+(m,

1: Alice encrypts her message m with her private key K−A ⇒m′ = K−A (m)

2: She then encrypts m′ with Bob’s public key, along with the original
message m⇒m′′ = K+

B (m,K−A (m)), and sends m′′ to Bob.
3: Bob decrypts the incoming message with his private key K−B . We know

for sure that no one else has been able to read m, nor m′ during their
transmission.

4: Bob decrypts m′ with Alice’s public key K+
A . Bob now knows the

message came from Alice.

33 / 64

Security 9.2Secure Channels

Public key signatures

KA (m) KA (m)

KA

Alice's
private key,

KB
+

Bob's
public key,

KA
+

Alice's
public key,

KB

Bob's
private key,m m

m

Alice's computer Bob's computer

(m))KAKB
+(m,

1: Alice encrypts her message m with her private key K−A ⇒m′ = K−A (m)

2: She then encrypts m′ with Bob’s public key, along with the original
message m⇒m′′ = K+

B (m,K−A (m)), and sends m′′ to Bob.
3: Bob decrypts the incoming message with his private key K−B . We know

for sure that no one else has been able to read m, nor m′ during their
transmission.

4: Bob decrypts m′ with Alice’s public key K+
A . Bob now knows the

message came from Alice.

33 / 64

Security 9.2Secure Channels

Public key signatures

KA (m) KA (m)

KA

Alice's
private key,

KB
+

Bob's
public key,

KA
+

Alice's
public key,

KB

Bob's
private key,m m

m

Alice's computer Bob's computer

(m))KAKB
+(m,

1: Alice encrypts her message m with her private key K−A ⇒m′ = K−A (m)

2: She then encrypts m′ with Bob’s public key, along with the original
message m⇒m′′ = K+

B (m,K−A (m)), and sends m′′ to Bob.
3: Bob decrypts the incoming message with his private key K−B . We know

for sure that no one else has been able to read m, nor m′ during their
transmission.

4: Bob decrypts m′ with Alice’s public key K+
A . Bob now knows the

message came from Alice.

33 / 64

Security 9.2Secure Channels

Public key signatures

KA (m) KA (m)

KA

Alice's
private key,

KB
+

Bob's
public key,

KA
+

Alice's
public key,

KB

Bob's
private key,m m

m

Alice's computer Bob's computer

(m))KAKB
+(m,

1: Alice encrypts her message m with her private key K−A ⇒m′ = K−A (m)

2: She then encrypts m′ with Bob’s public key, along with the original
message m⇒m′′ = K+

B (m,K−A (m)), and sends m′′ to Bob.
3: Bob decrypts the incoming message with his private key K−B . We know

for sure that no one else has been able to read m, nor m′ during their
transmission.

4: Bob decrypts m′ with Alice’s public key K+
A . Bob now knows the

message came from Alice.

33 / 64

Security 9.2Secure Channels

Message digests

Basic idea
Don’t mix authentication and secrecy. Instead, it should also be
possible to send a message in the clear, but have it signed as well⇒
take a message digest, and sign that.

KA (H(m))

KA

Alice's
private key,

KA
+

Alice's
public key,

Alice's computer Bob's computer

H(m) H(m)

Hash
function,

H

Hash
function,

H

m

m

Compare OK

m

34 / 64

Security 9.2Secure Channels

Secure group communication

Design issue
How can you share secret information between multiple members
without losing everything when one member turns bad.

Confidentiality
Follow a simple (hard-to-scale) approach by maintaining a separate
secret key between each pair of members.

35 / 64

Security 9.2Secure Channels

Secure group communication

Replication
You also want to provide replication transparency. Apply secret
sharing:

No process knows the entire secret; it can be revealed only
through joint cooperation
Assumption: at most k out of N processes can produce an
incorrect answer
At most c ≤ k processes have been corrupted

Note
We are dealing with a k fault tolerant process group.

36 / 64

Security 9.2Secure Channels

Secure group communication

Replication
You also want to provide replication transparency. Apply secret
sharing:

No process knows the entire secret; it can be revealed only
through joint cooperation
Assumption: at most k out of N processes can produce an
incorrect answer
At most c ≤ k processes have been corrupted

Note
We are dealing with a k fault tolerant process group.

36 / 64

Security 9.2Secure Channels

Secure replicated group

md(r) = H(r)

Decryption
function,

D(V)

Hash
function,

H

r

d
d = md(r)?

Select other (r,V) combination

NO

YES
r is OK

Server
S1

Server
S2

Server
S3

Server
S4

Server
S5

sig(S1,r1)
sig(S2,r2)
sig(S3,r3)
sig(S4,r4)
sig(S5,r5)

r1
r2
r3
r4
r5

Client's computer

Server group

r1,sig(S1,r1)r2,sig(S2,r2)

r3,sig(S3,r3)

r4,sig(S4,r4)

r5,si
g(S

5,r5
)

Set of three
signatures, V

N=5, c=2
Each server Si sees each request and responds with ri

ri is sent with digest md(ri), and signed with private key K−i .

37 / 64

Security 9.2Secure Channels

Secure replicated group

md(r) = H(r)

Decryption
function,

D(V)

Hash
function,

H

r

d
d = md(r)?

Select other (r,V) combination

NO

YES
r is OK

Server
S1

Server
S2

Server
S3

Server
S4

Server
S5

sig(S1,r1)
sig(S2,r2)
sig(S3,r3)
sig(S4,r4)
sig(S5,r5)

r1
r2
r3
r4
r5

Client's computer

Server group

r1,sig(S1,r1)r2,sig(S2,r2)

r3,sig(S3,r3)

r4,sig(S4,r4)

r5,si
g(S

5,r5
)

Set of three
signatures, V

Client uses special decryption function D that computes a single digest
d from three signatures:

d = D(sig(S, r),sig(S′, r ′),sig(S′′, r ′′))

38 / 64

Security 9.2Secure Channels

Secure replicated group

md(r) = H(r)

Decryption
function,

D(V)

Hash
function,

H

r

d
d = md(r)?

Select other (r,V) combination

NO

YES
r is OK

Server
S1

Server
S2

Server
S3

Server
S4

Server
S5

sig(S1,r1)
sig(S2,r2)
sig(S3,r3)
sig(S4,r4)
sig(S5,r5)

r1
r2
r3
r4
r5

Client's computer

Server group

r1,sig(S1,r1)r2,sig(S2,r2)

r3,sig(S3,r3)

r4,sig(S4,r4)

r5,si
g(S

5,r5
)

Set of three
signatures, V

If d = md(ri) for some ri , ri is considered correct
Also known as (m,n)-threshold scheme (with m = c+1,n = N)

39 / 64

Security 9.3 Access Control

Access control

General issues
Firewalls
Secure mobile code

40 / 64

Security 9.3 Access Control

Authorization versus authentication

Definition
Authentication: Verify the claim that a subject says it is S: verifying
the identity of a subject.
Authorization: Determining whether a subject is permitted certain
services from an object.

Note
Authorization makes sense only if the requesting subject has been
authenticated

Subject Reference
monitor

Object

Request for
operation

Authorized
request

41 / 64

Security 9.3 Access Control

Access Control Matrix (ACM)

Essence
Maintain an access control matrix ACM in which entry ACM[S,O]
contains the permissible operations that subject S can perform on
object O.

if (s appears in ACL)
if (r appears in ACL[s])

grant access;

(o, r)
if (r appears in C)

grant access;

Server

Server

Client

Client

Create access request r
for object o. Pass
capability C

Create access request r
as subject s

(s,r)

ACL Object

Object

(a)

(b)

C

42 / 64

Security 9.3 Access Control

Access Control Matrix (ACM)

if (s appears in ACL)
if (r appears in ACL[s])
grant access;

ServerClient

Create access request r
as subject s

(s,r)

ACL Object

(a)

Access Control List (ACL)
Each object O maintains an access control list (ACL): ACM[*,O]
describing the permissible operations per subject (or group of
subjects).

43 / 64

Security 9.3 Access Control

Access Control Matrix (ACM)

(o, r)

if (r appears in C)
grant access;

ServerClient

Create access request r
for object o. Pass
capability C

Object

(b)

C

Capabilities
Each subject S has a capability: ACM[S,*] describing the permissible
operations per object (or category of objects).

44 / 64

Security 9.3 Access Control

Protection domains

Issue
ACLs or capability lists can be very large. Reduce information by means of
protection domains:

Set of (object, access rights) pairs
Each pair is associated with a protection domain
For each incoming request the reference monitor first looks up the
appropriate protection domain

Common implementation of protection domains

Groups: Users belong to a specific group; each group has associated
access rights
Roles: Don’t differentiate between users, but only the roles they can
play. Your role is determined at login time. Role changes are allowed.

45 / 64

Security 9.3 Access Control

Firewalls

Essence
Sometimes it’s better to select service requests at the lowest level: network
packets. Packets that do not fit certain requirements are simply removed from
the channel⇒ protect by a firewall: it implements access control.

Application
gateway

Packet
filtering
router

Packet
filtering
router

Connections
to outside
networks

Connections
to internal
networks

Firewall

Outside LANInside LAN

Question
What do you think would be the biggest breach in firewalls?

46 / 64

Security 9.3 Access Control

Secure mobile code

Problem
Mobile code is great for balancing communication and computation,
but:

it is hard to implement a general-purpose mechanism that allows
different security policies for local-resource access
we may need to protect the mobile code (e.g., agents) against
malicious hosts.

47 / 64

Security 9.3 Access Control

Protecting an agent

Ajanta

Detect that an agent has been tampered with while it was on the move. Most
important: append-only logs:

Data can only be appended, not removed
There is always an associated checksum. Initially, Cinit = K+

owner(N), with
N a nonce.
Adding data X by server S:

Cnew = K+
owner(Cold,sig(S,X),S)

Removing data from the log:

K−owner(C)→ Cprev,sig(S,X),S

allowing the owner to check integrity of X

48 / 64

Security 9.3 Access Control

Protecting an agent

Ajanta

Detect that an agent has been tampered with while it was on the move. Most
important: append-only logs:

Data can only be appended, not removed
There is always an associated checksum. Initially, Cinit = K+

owner(N), with
N a nonce.
Adding data X by server S:

Cnew = K+
owner(Cold,sig(S,X),S)

Removing data from the log:

K−owner(C)→ Cprev,sig(S,X),S

allowing the owner to check integrity of X

48 / 64

Security 9.3 Access Control

Protecting an agent

Ajanta

Detect that an agent has been tampered with while it was on the move. Most
important: append-only logs:

Data can only be appended, not removed
There is always an associated checksum. Initially, Cinit = K+

owner(N), with
N a nonce.
Adding data X by server S:

Cnew = K+
owner(Cold,sig(S,X),S)

Removing data from the log:

K−owner(C)→ Cprev,sig(S,X),S

allowing the owner to check integrity of X

48 / 64

Security 9.3 Access Control

Protecting an agent

Ajanta

Detect that an agent has been tampered with while it was on the move. Most
important: append-only logs:

Data can only be appended, not removed
There is always an associated checksum. Initially, Cinit = K+

owner(N), with
N a nonce.
Adding data X by server S:

Cnew = K+
owner(Cold,sig(S,X),S)

Removing data from the log:

K−owner(C)→ Cprev,sig(S,X),S

allowing the owner to check integrity of X

48 / 64

Security 9.3 Access Control

Protecting an agent

Ajanta

Detect that an agent has been tampered with while it was on the move. Most
important: append-only logs:

Data can only be appended, not removed
There is always an associated checksum. Initially, Cinit = K+

owner(N), with
N a nonce.
Adding data X by server S:

Cnew = K+
owner(Cold,sig(S,X),S)

Removing data from the log:

K−owner(C)→ Cprev,sig(S,X),S

allowing the owner to check integrity of X

48 / 64

Security 9.3 Access Control

Protecting a host

Simple solution

Enforce a (very strict) single policy, and implement that by means of a few
simple mechanisms:

Sandbox model: Policy: Remote code is allowed access to only a
pre-defined collection of resources and services. Mechanism: Check
instructions for illegal memory access and service access
Playground model: Same policy, but mechanism is to run code on
separate “unprotected” machine.

Sandbox

Trusted code Untrusted code

Local network Local network

Untrusted code
Only trusted code

Playground

(a) (b)

49 / 64

Security 9.3 Access Control

Protecting a host

Observation
We need to be able to distinguish local from remote code before being
able to do anything.

Refinement 1
We need to be able to assign a set of permissions to mobile code
before its execution and check operations against those permissions at
all times

50 / 64

Security 9.3 Access Control

Protecting a host

Observation
We need to be able to distinguish local from remote code before being
able to do anything.

Refinement 2
We need to be able to assign different sets of permissions to different
units of mobile code⇒ authenticate mobile code (e.g. through
signatures)

Question
What would be a very simple policy to follow (Microsoft’s approach)?

51 / 64

Security 9.4 Security Management

Security management

Key establishment and distribution
Secure group management
Authorization management

52 / 64

Security 9.4 Security Management

Key establishment: Diffie-Hellman

Observation
We can construct secret keys in a safe way without having to trust a
third party (i.e. a KDC):

Alice and Bob have to agree on two large numbers, n (prime) and
g. Both numbers may be public.
Alice chooses large number x , and keeps it to herself. Bob does
the same, say y .

53 / 64

Security 9.4 Security Management

Key establishment: Diffie-Hellman

A
lic

e

B
ob

1

2

Alice
picks x

Bob
picks y

Alice computes
(g xmod n)y

= g mod nxy

Bob computes
(g ymod n)x

= g mod nxy

g mod nx

g mod ny

n, g,

1: Alice sends (n,g,gx mod n) to Bob
2: Bob sends (gy mod n) to Alice
3: Alice computes KA,B = (gy mod n)x = gxy mod n
4: Bob computes KA,B = (gx mod n)y = gxy mod n

Note

n = kq+1, with q being prime > 160 bits. In practice, n,g ¿ 512 bits.

54 / 64

Security 9.4 Security Management

Key establishment: Diffie-Hellman

A
lic

e

B
ob

1

2

Alice
picks x

Bob
picks y

Alice computes
(g xmod n)y

= g mod nxy

Bob computes
(g ymod n)x

= g mod nxy

g mod nx

g mod ny

n, g,

1: Alice sends (n,g,gx mod n) to Bob
2: Bob sends (gy mod n) to Alice
3: Alice computes KA,B = (gy mod n)x = gxy mod n
4: Bob computes KA,B = (gx mod n)y = gxy mod n

Note

n = kq+1, with q being prime > 160 bits. In practice, n,g ¿ 512 bits.

54 / 64

Security 9.4 Security Management

Key establishment: Diffie-Hellman

A
lic

e

B
ob

1

2

Alice
picks x

Bob
picks y

Alice computes
(g xmod n)y

= g mod nxy

Bob computes
(g ymod n)x

= g mod nxy

g mod nx

g mod ny

n, g,

1: Alice sends (n,g,gx mod n) to Bob
2: Bob sends (gy mod n) to Alice
3: Alice computes KA,B = (gy mod n)x = gxy mod n
4: Bob computes KA,B = (gx mod n)y = gxy mod n

Note

n = kq+1, with q being prime > 160 bits. In practice, n,g ¿ 512 bits.

54 / 64

Security 9.4 Security Management

Key establishment: Diffie-Hellman

A
lic

e

B
ob

1

2

Alice
picks x

Bob
picks y

Alice computes
(g xmod n)y

= g mod nxy

Bob computes
(g ymod n)x

= g mod nxy

g mod nx

g mod ny

n, g,

1: Alice sends (n,g,gx mod n) to Bob
2: Bob sends (gy mod n) to Alice
3: Alice computes KA,B = (gy mod n)x = gxy mod n
4: Bob computes KA,B = (gx mod n)y = gxy mod n

Note

n = kq+1, with q being prime > 160 bits. In practice, n,g ¿ 512 bits.

54 / 64

Security 9.4 Security Management

Key establishment: Diffie-Hellman

A
lic

e

B
ob

1

2

Alice
picks x

Bob
picks y

Alice computes
(g xmod n)y

= g mod nxy

Bob computes
(g ymod n)x

= g mod nxy

g mod nx

g mod ny

n, g,

1: Alice sends (n,g,gx mod n) to Bob
2: Bob sends (gy mod n) to Alice
3: Alice computes KA,B = (gy mod n)x = gxy mod n
4: Bob computes KA,B = (gx mod n)y = gxy mod n

Note

n = kq+1, with q being prime > 160 bits. In practice, n,g ¿ 512 bits.

54 / 64

Security 9.4 Security Management

Key distribution

Essence
If authentication is based on cryptographic protocols, and we need session
keys to establish secure channels, who’s responsible for handing out keys?

Secret keys: Alice and Bob will have to get a shared key. They can
invent their own and use it for data exchange. Alternatively, they can
trust a key distribution center (KDC) and ask it for a key.
Public keys: Alice will need Bob’s public key to decrypt (signed)
messages from Bob, or to send private messages to Bob. But she’ll have
to be sure about actually having Bob’s public key, or she may be in big
trouble. Use a trusted certification authority (CA) to hand out public keys.
A public key is put in a certificate, signed by a CA.

55 / 64

Security 9.4 Security Management

Key distribution: getting keys to owners
Plaintext, P

Plaintext, P

Decryption
key, K

Private
key, K

Encryption
key, K

Public
key, K

Encryption
method

Encryption
method

Decryption
method

Decryption
method

Ciphertext

Ciphertext

Plaintext

Plaintext

Symmetric
key generator

Asymmetric
key generator

Secure channels with
confidentiality and authentication

Secure channel with
confidentiality and

authentication

Secure channel with
authentication only

(a)

(b)

+

56 / 64

Security 9.4 Security Management

Secure group management

Organization

Group uses a key pair (K+
G ,K−G) for communication with nongroup

members. There is a separate shared secret key CKG for internal
communication. Assume process P wants to join the group and
contacts Q.

[G, P, T, K (RP, K)]+
G P,G P

[P, N, CK RP, CK (K)]G G G Q

[P, K+
P]CA,

(N)K P,G

P Q

1

2

3

57 / 64

Security 9.4 Security Management

Secure group management

[G, P, T, K (RP, K)]+
G P,G P

[P, N, CK RP, CK (K)]G G G Q

[P, K+
P]CA,

(N)K P,G

P Q

1

2

3

1: P generates a one-time reply pad RP, and a secret key KP,G. It
sends a join request to Q, signed by itself (notation: [JR]P), along
with a certificate containing its public key K+

P .
2: Q authenticates P, checks whether it can be allowed as member.

It returns the group key CKG, encrypted with the one-time pad, as
well as the group’s private key, encrypted as CKG(K−G).

3: Q authenticates P and sends back KP,G(N) letting Q know that it
has all the necessary keys.

58 / 64

Security 9.4 Security Management

Secure group management

[G, P, T, K (RP, K)]+
G P,G P

[P, N, CK RP, CK (K)]G G G Q

[P, K+
P]CA,

(N)K P,G

P Q

1

2

3

1: P generates a one-time reply pad RP, and a secret key KP,G. It
sends a join request to Q, signed by itself (notation: [JR]P), along
with a certificate containing its public key K+

P .
2: Q authenticates P, checks whether it can be allowed as member.

It returns the group key CKG, encrypted with the one-time pad, as
well as the group’s private key, encrypted as CKG(K−G).

3: Q authenticates P and sends back KP,G(N) letting Q know that it
has all the necessary keys.

58 / 64

Security 9.4 Security Management

Secure group management

[G, P, T, K (RP, K)]+
G P,G P

[P, N, CK RP, CK (K)]G G G Q

[P, K+
P]CA,

(N)K P,G

P Q

1

2

3

1: P generates a one-time reply pad RP, and a secret key KP,G. It
sends a join request to Q, signed by itself (notation: [JR]P), along
with a certificate containing its public key K+

P .
2: Q authenticates P, checks whether it can be allowed as member.

It returns the group key CKG, encrypted with the one-time pad, as
well as the group’s private key, encrypted as CKG(K−G).

3: Q authenticates P and sends back KP,G(N) letting Q know that it
has all the necessary keys.

58 / 64

Security 9.4 Security Management

Secure group management

[G, P, T, K (RP, K)]+
G P,G P

[P, N, CK RP, CK (K)]G G G Q

[P, K+
P]CA,

(N)K P,G

P Q

1

2

3

1: P generates a one-time reply pad RP, and a secret key KP,G. It
sends a join request to Q, signed by itself (notation: [JR]P), along
with a certificate containing its public key K+

P .
2: Q authenticates P, checks whether it can be allowed as member.

It returns the group key CKG, encrypted with the one-time pad, as
well as the group’s private key, encrypted as CKG(K−G).

3: Q authenticates P and sends back KP,G(N) letting Q know that it
has all the necessary keys.

58 / 64

Security 9.4 Security Management

Secure group management

[G, P, T, K (RP, K)]+
G P,G P

[P, N, CK RP, CK (K)]G G G Q

[P, K+
P]CA,

(N)K P,G

P Q

1

2

3

Question

Why didn’t we send K+
P (CKG) instead of using RP?

59 / 64

Security 9.4 Security Management

Authorization management

Issue
To avoid that each machine needs to know about all users, we use
capabilities and attribute certificates to express the access rights that
the holder has.

60 / 64

Security 9.4 Security Management

Authorization management

Amoeba
Restricted access rights are encoded in a capability, along with data
for an integrity check to protect against tampering

Port

Port

Object

Object

11111111

00000001

C

Capability

Restricted capability

f One-way function

00000001)f(C

Exclusive or

00000001

Proposed
new rights

61 / 64

Security 9.4 Security Management

Delegation

Observation
A subject sometimes wants to delegate its privileges to an object O1,
to allow that object to request services from another object O2.

Example
A client tells the print server PS to fetch a file F from the file server FS
to make a hard copy⇒ the client delegates its read privileges on F to
PS

Nonsolution
Simply hand over your attribute certificate to a delegate (which may
pass it on to the next one, etc.)

62 / 64

Security 9.4 Security Management

Delegate privileges

Problem
To what extent can the object trust a certificate to have originated at
the initiator of the service request, without forcing the initiator to sign
every certificate?

Solution
Ensure that delegation proceeds through a secure channel, and let a
delegate prove it got the certificate through such a path of channels
originating at the initiator.

63 / 64

Security 9.4 Security Management

Delegate privileges

access rights public part of secret

Sproxy
+ proxy

+sig(A, {R, S })R Sproxy

signature private part of secret

Certificate
A

lic
e

B
ob

S
er

ve
r

R, S

R, S

proxy

proxy

proxy
+

+

KA,B(S)

Sproxy
+ (N)

N

1

2

3

4

[

[

]

]

A

A

,

64 / 64

	Security
	9.1 Introduction
	9.2Secure Channels
	9.3 Access Control
	9.4 Security Management

