
Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

StarTrack Next Generation: A Scalable
Infrastructure for Track-Based Applications

Maya Haridasan, Iqbal Mohomed, Doug Terry,
Chandramohan A. Thekkath, and Li Zhan

Presentation by Maciej Klimek

Department of Mathematics, Computer Science and Mechanics
University of Warsaw

October 26, 2011

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Outline

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Outline

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Outline

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Outline

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Outline

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Outline

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

Whats the problem?

Most of the mobile devices produced nowadays are equipped
with some kind of hardware that provides their physical
location.

We can use try to use this information to provide enhanced
functionality to these users.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

Whats the problem?

Most of the mobile devices produced nowadays are equipped
with some kind of hardware that provides their physical
location.

We can use try to use this information to provide enhanced
functionality to these users.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

What is a track?

Track is a time ordered sequence of GPS locations recorded by
mobile device, representing a route.

What is a track-based application?

Track-base applications uses tracks collected by users to provide
better user experience.

Introductory note

Instead of using “raw” tracks – sequence of coordinates reported
by GPS, StarTrack uses it’s canonical form. It represents a track as
a sequence of points drawn from a fixed set, such as road
intersections. More on canonicalization in the later part of the
presentation.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

What is StarTrack?

What is StarTrack?

StarTrack is the first service designed to manage tracks of GPS
location coordinates obtained from mobile devices and to facilitate
the construction of track-base applications.

StarTrack Next Generation vs. StarTrack

This presentation is about StartTrack Next Generation, this is
actually second version of StarTrack system. The first version was
essentially a single database server with a thin veneer of software
providing the API. Thanks to authors experience with the first
version many aspects such as API, performance were revised
resulting in StarTrack Next Generation.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

Ride-sharing service

Most of the time not all seats in a car are occupied.

We can try to utilize this empty seats. This can help to lower
the worldwide fuel consumption and transportation costs.

Every company could have their own ride-sharing service for
their employees.

We can also use existing social networks to establish trust
between drivers and passengers.

Working example – http://www.rideshareonline.com/

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

Ride-sharing service

Most of the time not all seats in a car are occupied.

We can try to utilize this empty seats. This can help to lower
the worldwide fuel consumption and transportation costs.

Every company could have their own ride-sharing service for
their employees.

We can also use existing social networks to establish trust
between drivers and passengers.

Working example – http://www.rideshareonline.com/

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

Ride-sharing service

Most of the time not all seats in a car are occupied.

We can try to utilize this empty seats. This can help to lower
the worldwide fuel consumption and transportation costs.

Every company could have their own ride-sharing service for
their employees.

We can also use existing social networks to establish trust
between drivers and passengers.

Working example – http://www.rideshareonline.com/

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

Ride-sharing service

Most of the time not all seats in a car are occupied.

We can try to utilize this empty seats. This can help to lower
the worldwide fuel consumption and transportation costs.

Every company could have their own ride-sharing service for
their employees.

We can also use existing social networks to establish trust
between drivers and passengers.

Working example – http://www.rideshareonline.com/

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

Ride-sharing service

Most of the time not all seats in a car are occupied.

We can try to utilize this empty seats. This can help to lower
the worldwide fuel consumption and transportation costs.

Every company could have their own ride-sharing service for
their employees.

We can also use existing social networks to establish trust
between drivers and passengers.

Working example – http://www.rideshareonline.com/

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

Personalized driving directions

Current navigation systems provide each user with detailed –
turn-by-turn directions of driving route.

It is often a case that a driver will know some parts of the
route almost by heart.

If we could know what the driver knows, we could try to
provide him with personalized driving directions.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

Personalized driving directions

Current navigation systems provide each user with detailed –
turn-by-turn directions of driving route.

It is often a case that a driver will know some parts of the
route almost by heart.

If we could know what the driver knows, we could try to
provide him with personalized driving directions.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

Personalized driving directions

Current navigation systems provide each user with detailed –
turn-by-turn directions of driving route.

It is often a case that a driver will know some parts of the
route almost by heart.

If we could know what the driver knows, we could try to
provide him with personalized driving directions.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

Other applications

These two previous applications were actually build by authors
using StarTrack for purpose of its evaluation.
Here are some other example applications:

Traffic jams forecasting.

Personalized advertising.

Social applications.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Foreword
Sample applications

How can StarTrack help?

StarTrack

As we will see later StarTrack facilitates the construction of such
applications by providing necessary framework for handling tracks.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Creating track collections
Manipulating track collections

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Creating track collections
Manipulating track collections

Track Collection

Track collection

Track collection is just a grouping of individual track. Most of the
StarTrack’s API take track collections as arguments.

How do we create a track collection?

TrackCollxn MakeCollection(GrpCriteria[] gCrit,

bool unique)

There are three types of criteria available: geographic, time, user.
The unique parameter specifies if the tracks that are “highly
similar” should be reported once or multiple times.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Creating track collections
Manipulating track collections

GetSimilarTracks

Many track-base applications need to find track similar to a
particular track.

Give two tracks we define their similarity as the ratio of the
length of all the common segments and the union of the
segments present in either of them.

TrackCollxn GetSimilarTracks(TrkCollxn tC,

Trk refTrk, float simThresh)

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Creating track collections
Manipulating track collections

GetSimilarTracks

Many track-base applications need to find track similar to a
particular track.

Give two tracks we define their similarity as the ratio of the
length of all the common segments and the union of the
segments present in either of them.

TrackCollxn GetSimilarTracks(TrkCollxn tC,

Trk refTrk, float simThresh)

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Creating track collections
Manipulating track collections

GetCommonSegments

GetCommonSegments takes a track collection and frequency
threshold and returns the road segments shared by at least that
fraction of tracks in the collection, merged in the smallest number
of contiguous routes possible.

Segment

Segment is a part of the track between two points, with no other
points inbetween.

TrackCollxn GetCommonSegments(TrkCollxn tC,

float freqThresh)

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Creating track collections
Manipulating track collections

GetPassByTracks

GetPassByTracks is give a track collection and an array of Area
objects and returns all tracks in the collection that pass through all
the areas.

TrackCollxn GetPassByTracks(TrkCollxn tC,

Area[] areas);

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Creating track collections
Manipulating track collections

How to retrieve tracks from track collection?

int GetTrackCount(TrkCollxn tC);

Track[] GetTracks(TrkCollxn tC, int start, int count);

It’s obvious what their semantics is.

GetCommonSegments, GetSimilarTracks, GetCommonSegments
and GetTracks are only a part of the API, but they are important
because they help to illustrate some of the concepts in the design
of StarTrack.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Creating track collections
Manipulating track collections

API continued

TrackCollxn JoinTrkCollections(TrkCollxn tCs[],

bool unique);

TrackCollxn SortTracks(TrkCollxn tC,

SortAttribute attr);

Note about API

Apart from presented API calls there are also some others
functions, such as adding tracks to the system. But We will omit
them.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Overview of StarTrack architecture

StarTrack platform consists of:

Database servers – stores persistent data, uses Microsoft’s
SQL Server 2008. Data is partitioned across multiple
machines, partitions are replicated.

StarTrack servers – handles requests to operate on tracks,
builds and maintains in-memory structures, such as Track
Tree.

StarTrack Clerk – handles requests from users and sends them
to StartTrack servers. Deals with server failures and balancing
the load among servers.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Why is the “raw” track representation bad?

We could store a track just a sequence of coordinates that we got
from GPS device, but there are some problems:

Two GPS samples collected on the same route will be
different.

Comparing such two track is difficult.

Sampling is error-prone.

How do we solve the problem?

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Why is the “raw” track representation bad?

We could store a track just a sequence of coordinates that we got
from GPS device, but there are some problems:

Two GPS samples collected on the same route will be
different.

Comparing such two track is difficult.

Sampling is error-prone.

How do we solve the problem?

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Why is the “raw” track representation bad?

We could store a track just a sequence of coordinates that we got
from GPS device, but there are some problems:

Two GPS samples collected on the same route will be
different.

Comparing such two track is difficult.

Sampling is error-prone.

How do we solve the problem?

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Why is the “raw” track representation bad?

We could store a track just a sequence of coordinates that we got
from GPS device, but there are some problems:

Two GPS samples collected on the same route will be
different.

Comparing such two track is difficult.

Sampling is error-prone.

How do we solve the problem?

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Solution: Canonicalization

Canonicalization

Canonicalization of a “raw” track transforms it to track that only
passes through some points drawn from a large fixed set.

How do we choose this large fixed set of points?

We could choose some artificially create set of points, but instead
of doing it, we use road intersections as the set. The process of
canonicalization to such set of points is called map matching.

StarTrack performs map matching using hidden Markov models. It
takes under 250ms to canonicalize a track of length 20km with 400
GPS samples.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Map construction

It might be the case that we don’t have access to the map of the
region. Then we can use technologies for constructing road maps
from users tracks(StarTrack doesn’t do it, but it could in the
future).

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

What is delayed evaluation?

Experimental observation

Typical application makes several API calls to narrow down the set
of tracks they want to retrieve.

Implementation of the StarTrack API uses this fact, and
delays the evaluation of the tracks until either GetTrackCount,
or GetTracks is called.

This technique increases performance, because it reduces the
amount of data that has to be send between the server and
the client.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

What is delayed evaluation?

Experimental observation

Typical application makes several API calls to narrow down the set
of tracks they want to retrieve.

Implementation of the StarTrack API uses this fact, and
delays the evaluation of the tracks until either GetTrackCount,
or GetTracks is called.

This technique increases performance, because it reduces the
amount of data that has to be send between the server and
the client.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

How to implement delayed evaluation?

Descriptor

When a MakeCollection is called, client-side stub creates a
descriptor describing the call, send it to the server. The server
stamps the descriptor with the current time and returns it to the
caller. Assuming that the tracks are not deleted from the database,
this descriptor can be interpreted as a logical view of the database.

Compound descriptors

Operations such as GetSimilarTracks, GetPassByTracks,
JoinTrkCollections, ... create composition of these descriptors with
no communication to the server. Note that the these descriptors
create a tree, with leaves being the descriptors from
MakeCollection operation.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Evaluation of a descriptor

When user calls one of the track retrieval functions(GetTracks,
GetTrackCount) on a track collection(descriptor of the track
collection), system will evaluate the descriptor.

Evaluation of different types of descriptors might trigger
construction of various in-memory structures.

Evaluation of a GetSimilarTracks might trigger the
construction of Track Tree(more about Track Tree in a
second).

While the evaluation of GetPassByTracks will trigger the
construction of a quad tree.

These in-memory structures are cached with the hope that
they will be reused in the future.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Evaluation of a descriptor

When user calls one of the track retrieval functions(GetTracks,
GetTrackCount) on a track collection(descriptor of the track
collection), system will evaluate the descriptor.

Evaluation of different types of descriptors might trigger
construction of various in-memory structures.

Evaluation of a GetSimilarTracks might trigger the
construction of Track Tree(more about Track Tree in a
second).

While the evaluation of GetPassByTracks will trigger the
construction of a quad tree.

These in-memory structures are cached with the hope that
they will be reused in the future.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Evaluation of a descriptor

When user calls one of the track retrieval functions(GetTracks,
GetTrackCount) on a track collection(descriptor of the track
collection), system will evaluate the descriptor.

Evaluation of different types of descriptors might trigger
construction of various in-memory structures.

Evaluation of a GetSimilarTracks might trigger the
construction of Track Tree(more about Track Tree in a
second).

While the evaluation of GetPassByTracks will trigger the
construction of a quad tree.

These in-memory structures are cached with the hope that
they will be reused in the future.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Evaluation of a descriptor

When user calls one of the track retrieval functions(GetTracks,
GetTrackCount) on a track collection(descriptor of the track
collection), system will evaluate the descriptor.

Evaluation of different types of descriptors might trigger
construction of various in-memory structures.

Evaluation of a GetSimilarTracks might trigger the
construction of Track Tree(more about Track Tree in a
second).

While the evaluation of GetPassByTracks will trigger the
construction of a quad tree.

These in-memory structures are cached with the hope that
they will be reused in the future.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Evaluation of a descriptor

When user calls one of the track retrieval functions(GetTracks,
GetTrackCount) on a track collection(descriptor of the track
collection), system will evaluate the descriptor.

Evaluation of different types of descriptors might trigger
construction of various in-memory structures.

Evaluation of a GetSimilarTracks might trigger the
construction of Track Tree(more about Track Tree in a
second).

While the evaluation of GetPassByTracks will trigger the
construction of a quad tree.

These in-memory structures are cached with the hope that
they will be reused in the future.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Track Tree construction

Track Tree is constructed for a track collection.

A node in a Track Tree represents a contiguous sequence of
segments.

A node stores information about tracks that contain it.

Each road segment from the track collection is represented by
a leaf in the Track Tree.

Repeat this step: join geographically adjacent nodes.

If there is a choice in the previous step, then join such nodes
that have most tracks in common.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Track Tree construction

Track Tree is constructed for a track collection.

A node in a Track Tree represents a contiguous sequence of
segments.

A node stores information about tracks that contain it.

Each road segment from the track collection is represented by
a leaf in the Track Tree.

Repeat this step: join geographically adjacent nodes.

If there is a choice in the previous step, then join such nodes
that have most tracks in common.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Track Tree construction

Track Tree is constructed for a track collection.

A node in a Track Tree represents a contiguous sequence of
segments.

A node stores information about tracks that contain it.

Each road segment from the track collection is represented by
a leaf in the Track Tree.

Repeat this step: join geographically adjacent nodes.

If there is a choice in the previous step, then join such nodes
that have most tracks in common.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Track Tree construction

Track Tree is constructed for a track collection.

A node in a Track Tree represents a contiguous sequence of
segments.

A node stores information about tracks that contain it.

Each road segment from the track collection is represented by
a leaf in the Track Tree.

Repeat this step: join geographically adjacent nodes.

If there is a choice in the previous step, then join such nodes
that have most tracks in common.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Track Tree construction

Track Tree is constructed for a track collection.

A node in a Track Tree represents a contiguous sequence of
segments.

A node stores information about tracks that contain it.

Each road segment from the track collection is represented by
a leaf in the Track Tree.

Repeat this step: join geographically adjacent nodes.

If there is a choice in the previous step, then join such nodes
that have most tracks in common.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Track Tree construction

Track Tree is constructed for a track collection.

A node in a Track Tree represents a contiguous sequence of
segments.

A node stores information about tracks that contain it.

Each road segment from the track collection is represented by
a leaf in the Track Tree.

Repeat this step: join geographically adjacent nodes.

If there is a choice in the previous step, then join such nodes
that have most tracks in common.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Sample Track Tree

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Where do we use it?

Implement GetSimilarTracks. Not always accurate, produces
false-negatives, but good enough.

In GetCommonSegments merge segments into small number
of tracks.

StarTrack tries to cache Track Tree(at StarTrack Server). A
typical scenario for a ride-sharing application would be to
create a track collection for some group of people. And then
members of this group would call GetSimilarTrack, trying to
find a ride-partner. Thus caching would provide significant
performance improvements.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Where do we use it?

Implement GetSimilarTracks. Not always accurate, produces
false-negatives, but good enough.

In GetCommonSegments merge segments into small number
of tracks.

StarTrack tries to cache Track Tree(at StarTrack Server). A
typical scenario for a ride-sharing application would be to
create a track collection for some group of people. And then
members of this group would call GetSimilarTrack, trying to
find a ride-partner. Thus caching would provide significant
performance improvements.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Overview of StarTrack architecture
Canonicalization of Tracks
Delayed evaluation
Track Tree

Where do we use it?

Implement GetSimilarTracks. Not always accurate, produces
false-negatives, but good enough.

In GetCommonSegments merge segments into small number
of tracks.

StarTrack tries to cache Track Tree(at StarTrack Server). A
typical scenario for a ride-sharing application would be to
create a track collection for some group of people. And then
members of this group would call GetSimilarTrack, trying to
find a ride-partner. Thus caching would provide significant
performance improvements.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Database tables

StarTrack uses 5 tables.

User table – contains necessary information about users.

Track table – stores all tracks in both “raw” and canonical
form.

Representative Track table – for each user it stores
representative set of tracks. Allows to speed up some
operations.

Coordinate table – points used in canonicalization process.

Coordinate To Track table – maps coordinates to tracks going
though them. Allows to speed up some operations.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Database tables

StarTrack uses 5 tables.

User table – contains necessary information about users.

Track table – stores all tracks in both “raw” and canonical
form.

Representative Track table – for each user it stores
representative set of tracks. Allows to speed up some
operations.

Coordinate table – points used in canonicalization process.

Coordinate To Track table – maps coordinates to tracks going
though them. Allows to speed up some operations.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Database tables

StarTrack uses 5 tables.

User table – contains necessary information about users.

Track table – stores all tracks in both “raw” and canonical
form.

Representative Track table – for each user it stores
representative set of tracks. Allows to speed up some
operations.

Coordinate table – points used in canonicalization process.

Coordinate To Track table – maps coordinates to tracks going
though them. Allows to speed up some operations.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Database tables

StarTrack uses 5 tables.

User table – contains necessary information about users.

Track table – stores all tracks in both “raw” and canonical
form.

Representative Track table – for each user it stores
representative set of tracks. Allows to speed up some
operations.

Coordinate table – points used in canonicalization process.

Coordinate To Track table – maps coordinates to tracks going
though them. Allows to speed up some operations.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Database tables

StarTrack uses 5 tables.

User table – contains necessary information about users.

Track table – stores all tracks in both “raw” and canonical
form.

Representative Track table – for each user it stores
representative set of tracks. Allows to speed up some
operations.

Coordinate table – points used in canonicalization process.

Coordinate To Track table – maps coordinates to tracks going
though them. Allows to speed up some operations.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Database server organization

Track data is partitioned among database servers.

Partitioning is done with the respect to user identifier – all the
user’s tracks are stored together.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

How to get data to test?

During the experiments synthetic data were used.

Important features of real life(16,000 tracks collected in
Seattle, WA) tracks were reflected in the synthetic data.

Each person has fixed home and workplace location.
On weekdays a person travels between home and workplace.
He also travels to some other locations, although more on
weekends than on weekdays.

Data was generated for 3-month period for 18,000 users
resulting in 4.5 million tracks.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

How to get data to test?

During the experiments synthetic data were used.

Important features of real life(16,000 tracks collected in
Seattle, WA) tracks were reflected in the synthetic data.

Each person has fixed home and workplace location.
On weekdays a person travels between home and workplace.
He also travels to some other locations, although more on
weekends than on weekdays.

Data was generated for 3-month period for 18,000 users
resulting in 4.5 million tracks.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

How to get data to test?

During the experiments synthetic data were used.

Important features of real life(16,000 tracks collected in
Seattle, WA) tracks were reflected in the synthetic data.

Each person has fixed home and workplace location.
On weekdays a person travels between home and workplace.
He also travels to some other locations, although more on
weekends than on weekdays.

Data was generated for 3-month period for 18,000 users
resulting in 4.5 million tracks.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

How to get data to test?

During the experiments synthetic data were used.

Important features of real life(16,000 tracks collected in
Seattle, WA) tracks were reflected in the synthetic data.

Each person has fixed home and workplace location.
On weekdays a person travels between home and workplace.
He also travels to some other locations, although more on
weekends than on weekdays.

Data was generated for 3-month period for 18,000 users
resulting in 4.5 million tracks.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

How to get data to test?

During the experiments synthetic data were used.

Important features of real life(16,000 tracks collected in
Seattle, WA) tracks were reflected in the synthetic data.

Each person has fixed home and workplace location.
On weekdays a person travels between home and workplace.
He also travels to some other locations, although more on
weekends than on weekdays.

Data was generated for 3-month period for 18,000 users
resulting in 4.5 million tracks.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

How to get data to test?

During the experiments synthetic data were used.

Important features of real life(16,000 tracks collected in
Seattle, WA) tracks were reflected in the synthetic data.

Each person has fixed home and workplace location.
On weekdays a person travels between home and workplace.
He also travels to some other locations, although more on
weekends than on weekdays.

Data was generated for 3-month period for 18,000 users
resulting in 4.5 million tracks.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

Performance of track comparison(GetSimilarTracks)

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

Cost of building Track Tree

As we see the cost of building a track tree is quite high, how many
times do we have to use such tree to make it cost effective?

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

Break-even numbers

With track collection of size 100K we have to perform at least 70
queries to amortize the cost of track tree construction.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

Accuracy of Track Trees

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

Geographic queries to the database

In the implementation of GetPassByTracks we use “Coordinate
Table” and “Coordinate To Track Table” to speed up the process.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

Quad tree construction performance

As we said earlier evaluation of GetPassByTracks can yield the
construction of quad tree. Here is the performance of constructing
it.

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Test preparation
Performance of track comparison
Performance of geographic queries

Quad tree query time

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

1 Introduction
Foreword
Sample applications

2 Application Programming
Interface

Creating track collections
Manipulating track
collections

3 StarTrack Server Design
Overview of StarTrack
architecture

Canonicalization of Tracks
Delayed evaluation
Track Tree

4 Storage Platform Design
5 Evaluation

Test preparation
Performance of track
comparison
Performance of geographic
queries

6 Conclusion

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

StarTrack facilitates the construction of a broad class of
track-based applications

Provides significant performance and API improvements over
the previous version of StarTrack

Uses some innovative structures(Track Tree) and interesting
techniques(delayed execution, canonicalization)

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

StarTrack facilitates the construction of a broad class of
track-based applications

Provides significant performance and API improvements over
the previous version of StarTrack

Uses some innovative structures(Track Tree) and interesting
techniques(delayed execution, canonicalization)

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

StarTrack facilitates the construction of a broad class of
track-based applications

Provides significant performance and API improvements over
the previous version of StarTrack

Uses some innovative structures(Track Tree) and interesting
techniques(delayed execution, canonicalization)

Maciej Klimek StarTrack Next Generation



Introduction
Application Programming Interface

StarTrack Server Design
Storage Platform Design

Evaluation
Conclusion

Thank

You!
Maciej Klimek StarTrack Next Generation


	Introduction
	Foreword
	Sample applications

	Application Programming Interface
	Creating track collections
	Manipulating track collections

	StarTrack Server Design
	Overview of StarTrack architecture
	Canonicalization of Tracks
	Delayed evaluation
	Track Tree

	Storage Platform Design
	Evaluation
	Test preparation
	Performance of track comparison
	Performance of geographic queries

	Conclusion

