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“Automata with One Counter” is a strange turn of phrase...

Integer Semantics

Transitions have updates in Z.

p q
≠12

The counter value is in Z.

p(5) ≠æ q(≠7)

Natural Semantics

Transitions have updates in N.

p q12

The counter value is in N.

p(5) ≠æ q(17)

VASS Semantics

Transitions have updates in Z.

p q
≠12

The counter value is in N.

p(15) ≠æ q(3)

Natural Semantics

Transitions have updates in N.

p q12

The counter value is in N.

p(5) ≠æ q(17)

VASS Semantics

Transitions have updates in Z.
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≠12
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Motivation

Reachability. From p(x), can you reach q(y)?

Coverability. From p(x), can you reach q(yÕ) such that yÕ Ø y?

Theorem. Reachability (with integer semantics) is NP-hard.

Theorem. Coverability (with integer semantics) is in AC1 ™ P.

HARD

EASY

What makes reachability hard and coverability easy?
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Generalising Reachability and Coverability
Reach(S)
Fixed: A semilinear set S ™ Zp ◊ Z.

Input: An integer one-counter automaton A, an initial configuration p(x), and a vector t̨ œ Zp.

Question: Does there exist a reachable configuation q(y) such that (t̨, y) œ S ?

Examples
Reachability: S = {(t, y) : y = t}

Coverability: S = {(t, y) : y Ø t}

Cover and avoid: S = {(t1, t2, y) : y Ø t1 · y ”= t2}

Reach an interval: S = {(t, y) : t Æ y Æ 2t}

Reach an interval or a negative value: S = {(t, y) : y Æ 0 ‚ t Æ y Æ 2t}

HARD

EASY

EASY

HARD

EASY
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Main Contribution
Theorem. Let S ™ Zp ◊ Z be a semilinear set.
(1) If S is dense, then Reach(S) is in AC1.
(2) Otherwise, Reach(S) is NP-hard.

Let A ™ Z be a semilinear set... Density(A) = infyœA infnœN
A fl [y≠n, y+n]

2n+1

ú
simplified version ignoring modulo constraints.

A = {y : y Ø t}

≠Œ Œ0 t

yy≠n y+n

Density = 1
2

A = {t}

≠Œ Œ0 t

y y+ny≠n

Density = 0

A = [t, 2t]

≠Œ Œ0 t 2t

y y+ny≠n

Density = 0

A = (≠Œ, 0] fi [t, 2t]

≠Œ Œ0 t 2t

yy≠n y+n

Density = 1
4

EASY

EASY

HARD

HARD

S is dense if inf t̨œZp Density({y : (t̨, y) œ S}) > 0
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S has zero density

Reach(S) is NP-hard

Reduction from subset sum

S has positive density =∆ Reach(S) is in AC1

Preliminaries:
Remove modulo constraints from S.
Make the integer one-counter automaton acyclic.

Identify building block cases (I0 fi I1 fi I2) with positive density.

≠Œ Œ

I0 I1 I2

Æ C ·|I1| Æ C ·|I2|

Design an AC1 algorithm for reachability to building blocks.

q1

q2

q3

3 ≠6

4
(X0 X3 X4

0 X0 X -6

0 0 X0)
Entries in B[X1, X≠1]

S has zero density

Reach(S) is NP-hard

Reduction from subset sum
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Which Target Sets Make Reachability in 1-VASS Easy?
Theorem. Let S ™ Zp ◊ N be a semilinear set.
(1) If S is uniformly quasi-upwards closed, then ReachVASS(S) is in AC1.
(2) Otherwise, ReachVASS(S) is NP-hard.

Upwards closed: {10, 11, 12, 13, . . .}.

”-upwards closed: {10, 15, 17, 20, 22, 25, 27, . . .} is 5-upwards closed.
5 5 5

5 5

(”, M)-upwards closed: {10, 17, 20, 22, 27, 30, 32, 35, . . .} is (5, 2)-upwards closed.
15
·

25
·

Uniformly quasi-upwards closed
There exists ”, M œ N such that, for all t̨ œ Zp, {y : (t̨, y) œ S} is (”, M)-upwards closed.
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“If S is uniformly quasi-upwards closed, then ReachVASS(S) is in AC
1
”

Theorem. Coverability in (binary encoded) 1-VASS is in NC2.
[Almagor, Cohen, Pérez, Shirmohammadi, and Worrell 2020]

Theorem. Coverability in (binary encoded) 1-VASS is in AC1. [Shakiba, S., and Zetzsche ’25]
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An E�cient Algorithm for Coverability in 1-VASS
STEP 0: Let V0 be the given 1-VASS.

STEP 1: Create V1 from V0 by adding “shortcut transitions”: p q r
u v

u + v

Scenario 1

p q r

u

v

p r
u + v

X
Scenario 2

p q r

u v

p r
u + v

X
Scenario 3

p q r

u v

Do not add
shortcut transition

◊
Scenario 4

p q r

u
v

p r
u + v

X

STEP i: Repeat k = 2Álog nË many times.

Claim. There is a covering run in V0 if and only if there is a covering run of length Æ 2 in Vk.
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Dichotomies for Reaching Semilinear Target Sets
Let S ™ Zp ◊ Z be a semilinear set.

Integer semantics: ReachZ(S) is ... in AC1 if S is dense,
NP-hard otherwise.

Natural semantics: ReachN(S) is ... in AC1 if S is dense+,
NP-hard otherwise.

+
for a subtly modified

definition of density

VASS semantics: ReachVASS(S) is ... in AC1 if S is uniformly quasi-upward closed,
NP-hard otherwise.
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