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“Automata with One Counter” is a strange turn of phrase...
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Integer Semantics VASS Semantics

Transitions have updates in Z. Transitions have updates in Z.

The counter value is in N.

p(15) — q(3)

The counter value is in Z.

p(5) — q(=7)
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Integer Semantics

Transitions have updates in Z.

The counter value is in Z.

p(5) — q(=T)
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Motivation

Reachability. From p(x), can you reach q(y)?

Coverability. From p(x), can you reach q(y’) such that y’ > y?

Theorem. Reachability (with integer semantics) is NP-hard.

Theorem. Coverability (with integer semantics) is in AC* C P.
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What makes reachability hard and coverability easy?
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Generalising Reachability and Coverability
REACH(S)

Fixed: A semilinear set S C ZP X Z.
Input: An integer one-counter automaton A, an initial configuration p(x), and a vector t € 7P.

Question: Does there exist a reachable configuation q(y) such that (£,y) € S7?
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Generalising Reachability and Coverability
REACH(S)

Fixed: A semilinear set S C ZP X Z.
Input: An integer one-counter automaton A, an initial configuration p(x), and a vector t € 7P.

Question: Does there exist a reachable configuation q(y) such that (£,y) € S7?

Examples
Reachability: S = {(t,y) : y =t}

Coverability: S = {(t,y) : y > t}
Cover and avoid: S = {(t1,t2,y) : y > t1 A y # t2}
Reach an interval: S = {(t,y) : t < y < 2t}

Reach an interval or a negative value: S = {(t,y) :y <0 VvV t <y < 2t}
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Main Contribution

Theorem. Let S C 7ZP X 7Z be a semilinear set.
(1) If S is dense, then REACH(S) is in AC!.
(2) Otherwise, REACH(S) is NP-hard.
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Main Contribution

Let A C Z be a semilinear set... Density(A) — innyA infneN AN [y—n,y+n]

2n+1
A={y:y>t} A= {t}
Yy—n (7] y+n Yy—mn (7] y+n
<€ --|---4---+0@ i > <€ — jr— e —r—————— F---= >
—0o0 0 t oo —00 0 t oo
Density = % Density = 0
A = [t, 2t] A = (—o0,0] U [t, 2t]
Yy—n (7] Yy+n y—mn Y Yy+n
<€ — — [m—]—————{e————— + > -—--4—e------ +4->
—0o0 0 t 2t oo —00 0 t 2t oo
Density = 0 Density = i

*simplified version ignoring modulo constraints.
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Density(A) = inf,c 4 inf,cy

AN [y_n, y+n]
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S has positive density = REACH(S) is in AC*

- Remove modulo constraints from S.
Preliminaries: _ _
Make the integer one-counter automaton acyclic.

|dentify building block cases (Ip U I; U I5) with positive density.

0 X% X
0 0 Xx°©

Entries in B[ X!, X 1]
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S has positive density => RrAcH(S) is in AC*

- Remove modulo constraints from S.
Preliminaries:

Make the integer one-counter automaton acyclic. S has zero density

|dentify building block cases (Ip U I; U I5) with positive density.

Reduction from subset sum

REACH(S) is NP-hard

0 XY Xx°
0 0 Xx°

Entries in B[ X!, X 1]
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Integer Semantics VASS Semantics

Transitions have updates in Z. Transitions have updates in Z.

The counter value is in N.

p(15) — q(3)

The counter value is in Z.

p(5) — q(=7)
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Which Target Sets Make Reachability in 1-VASS Easy?

Theorem. Let S C 7ZP X N be a semilinear set.
(1) If S is uniformly quasi-upwards closed, then REACHyass(S) is in AC.
(2) Otherwise, REACHyass(S) is NP-hard.
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Which Target Sets Make Reachability in 1-VASS Easy?

uniformly quasi-upwards closed

Upwards closed: {10,11,12,13,...}.

d-upwards closed: {10, 15,17, 20, 22,25, 27,...} is 5-upwards closed.
S s

15 25
(8, M )-upwards closed: {10,/\17, 20, 22, 27, 30, 32, 35, ... .} is (5, 2)-upwards closed.

Uniformly quasi-upwards closed
There exists 6, M € N such that, for all £ € ZP, {y : (t,y) € S} is (8, M )-upwards closed.
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“If S is uniformly quasi-upwards closed, then REACH\ss(S) is in AC'”

Theorem. Coverability in (binary encoded) 1-VASS is in NC?.
Almagor, Cohen, Pérez, Shirmohammadi, and Worrell 2020

Theorem. Coverability in (binary encoded) 1-VASS is in AC'. [Shakiba, S., and Zetzsche 25
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An Efficient Algorithm for Coverability in 1-VASS

STEP 0: Let Vy be the given 1-VASS. u—|—v
- v
STEP 1: Create V; from Vy by adding “shortcut transitions™: e e °
Scenario 1 Scenario 2 Scenario 3 Scenario 4
A ° A . A . A . u
v —
u e [ )
o/ ° \o ¢
. . P q r P q r

b q r b q r
U+ v ®u—|—v Do not add U+ U
@ shortcut transition
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An Efficient Algorithm for Coverability in 1-VASS

STEP 0: Let Vy be the given 1-VASS. u—|—’v
- v
STEP 1: Create V; from Vy by adding “shortcut transitions™: e e °
Scenario 1 Scenario 2 Scenario 3 Scenario 4
A ° A . A . A . u
v —
u e [ )
o/ ° \o ¢
. . P q r P q r

p q r p q r
.u—l—v. ®u—|—v Do not add .U+U.
Q 0 @ shortcut transition Q 0
STEP i: Repeat k = 2[logn| many times.

Claim. There is a covering run in Vy if and only if there is a covering run of length < 2 in V.
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Dichotomies for Reaching Semilinear Target Sets

Let S C ZP X 7 be a semilinear set.

Integer semantics: REACHZ(S) is ... in ACl if S is dense,
NP-hard otherwise.

Natural semantics: REACHN(S) is ...  in ACtif S'is + T for a subtly modified

) definiti f densit
NP-hard otherwise. erinition or density

VASS semantics: REACHvass(S) is ... in AC! if S is uniformly quasi-upward closed,

NP-hard otherwise.

Thank Youl!
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