

A Complexity Dichotomy for Semilinear Target Sets in Automata with One Counter

Henry Sinclair-Banks

Based on joint work with Yousef Shakiba and Georg Zetsche that has been accepted to LICS'25

BASICS Group Seminar

18th June 2025

Shanghai Jiao Tong University, Shanghai, China

“Automata with One Counter” is a strange turn of phrase...

Integer Semantics

Transitions have updates in \mathbb{Z} .

The counter value is in \mathbb{Z} .

$$p(5) \rightarrow q(-7)$$

Natural Semantics

Transitions have updates in \mathbb{N} .

The counter value is in \mathbb{N} .

$$p(5) \rightarrow q(17)$$

VASS Semantics

Transitions have updates in \mathbb{Z} .

The counter value is in \mathbb{N} .

$$p(15) \rightarrow q(3)$$

Integer Semantics

Transitions have updates in \mathbb{Z} .

The counter value is in \mathbb{Z} .

$$p(5) \rightarrow q(-7)$$

Natural Semantics

Transitions have updates in \mathbb{N} .

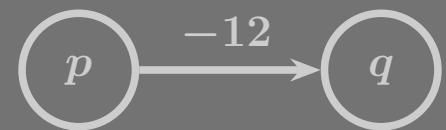
The counter value is in \mathbb{N} .

$$p(5) \rightarrow q(17)$$

VASS Semantics

Transitions have updates in \mathbb{Z} .

The counter value is in \mathbb{N} .



$$p(15) \rightarrow q(3)$$

Motivation

Reachability. From $p(x)$, can you reach $q(y)$?

Coverability. From $p(x)$, can you reach $q(y')$ such that $y' \geq y$?

Theorem. Reachability (with integer semantics) is NP-hard.

Theorem. Coverability (with integer semantics) is in $AC^1 \subseteq P$.

Motivation

Reachability. From $p(x)$, can you reach $q(y)$?

Coverability. From $p(x)$, can you reach $q(y')$ such that $y' \geq y$?

Theorem. Reachability (with integer semantics) is HARD

Theorem. Coverability (with integer semantics) is EASY

Motivation

Reachability. From $p(x)$, can you reach $q(y)$?

Coverability. From $p(x)$, can you reach $q(y')$ such that $y' \geq y$?

What makes reachability hard and coverability easy?

Theorem. Reachability (with integer semantics) is HARD

Theorem. Coverability (with integer semantics) is EASY

Generalising Reachability and Coverability

REACH(S)

Fixed: A semilinear set $S \subseteq \mathbb{Z}^p \times \mathbb{Z}$.

Input: An integer one-counter automaton \mathcal{A} , an initial configuration $p(x)$, and a vector $\vec{t} \in \mathbb{Z}^p$.

Question: Does there exist a reachable configuration $q(y)$ such that $(\vec{t}, y) \in S$?

Generalising Reachability and Coverability

REACH(S)

Fixed: A semilinear set $S \subseteq \mathbb{Z}^p \times \mathbb{Z}$.

Input: An integer one-counter automaton \mathcal{A} , an initial configuration $p(x)$, and a vector $\vec{t} \in \mathbb{Z}^p$.

Question: Does there exist a reachable configuration $q(y)$ such that $(\vec{t}, y) \in S$?

Examples

Reachability: $S = \{(t, y) : y = t\}$

Coverability: $S = \{(t, y) : y \geq t\}$

Cover and avoid: $S = \{(t_1, t_2, y) : y \geq t_1 \wedge y \neq t_2\}$

Reach an interval: $S = \{(t, y) : t \leq y \leq 2t\}$

Reach an interval or a negative value: $S = \{(t, y) : y \leq 0 \vee t \leq y \leq 2t\}$

Generalising Reachability and Coverability

REACH(S)

Fixed: A semilinear set $S \subseteq \mathbb{Z}^p \times \mathbb{Z}$.

Input: An integer one-counter automaton \mathcal{A} , an initial configuration $p(x)$, and a vector $\vec{t} \in \mathbb{Z}^p$.

Question: Does there exist a reachable configuration $q(y)$ such that $(\vec{t}, y) \in S$?

Examples

Reachability: $S = \{(t, y) : y = t\}$ HARD

Coverability: $S = \{(t, y) : y \geq t\}$ EASY

Cover and avoid: $S = \{(t_1, t_2, y) : y \geq t_1 \wedge y \neq t_2\}$ EASY

Reach an interval: $S = \{(t, y) : t \leq y \leq 2t\}$ HARD

Reach an interval or a negative value: $S = \{(t, y) : y \leq 0 \vee t \leq y \leq 2t\}$ EASY

Main Contribution

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{Z}$ be a semilinear set.

- (1) If S is **dense**, then $\text{REACH}(S)$ is in AC^1 .
- (2) Otherwise, $\text{REACH}(S)$ is NP-hard.

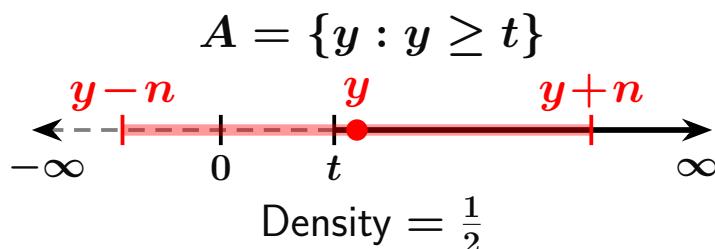
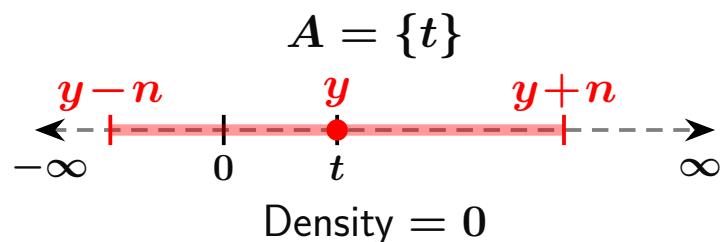
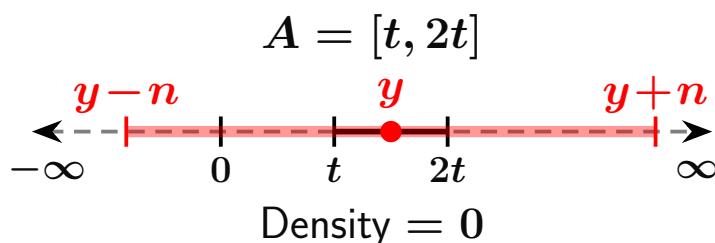
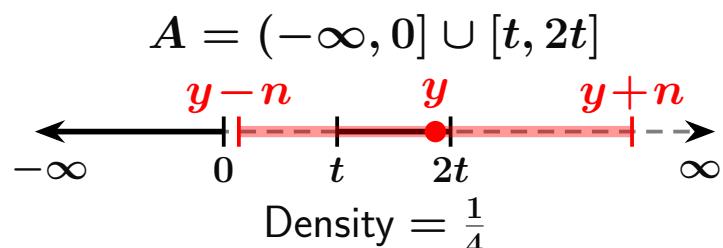
Main Contribution

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{Z}$ be a semilinear set.

- (1) If S is dense, then $\text{REACH}(S)$ is in AC^1 .
- (2) Otherwise, $\text{REACH}(S)$ is NP-hard.

Let $A \subseteq \mathbb{Z}$ be a semilinear set...

$$\text{Density}(A) = \inf_{y \in A} \inf_{n \in \mathbb{N}} \frac{A \cap [y-n, y+n]}{2n+1}$$



*simplified version ignoring modulo constraints.

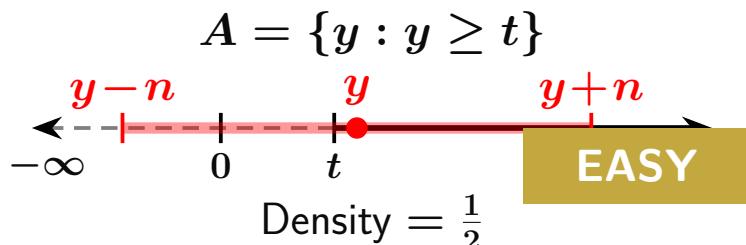
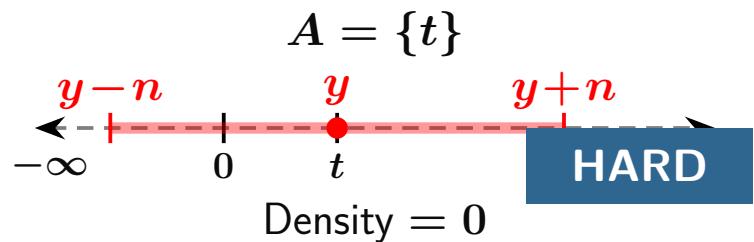
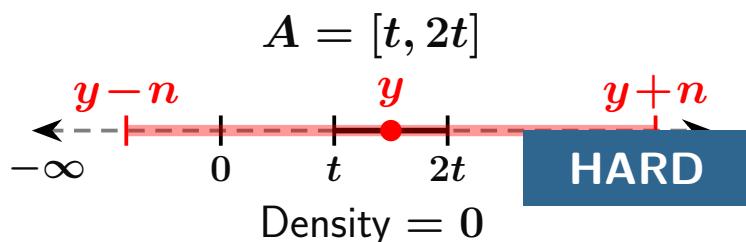
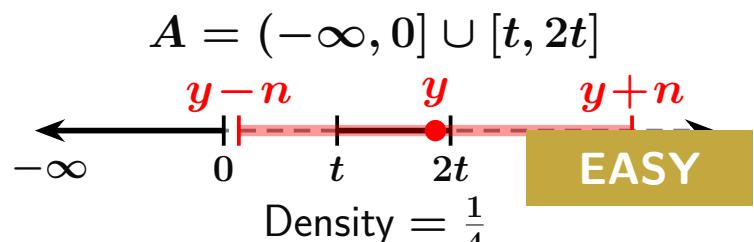
Main Contribution

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{Z}$ be a semilinear set.

- (1) If S is **dense**, then $\text{REACH}(S)$ is in AC^1 .
- (2) Otherwise, $\text{REACH}(S)$ is NP-hard.

Let $A \subseteq \mathbb{Z}$ be a semilinear set...

$$\text{Density}(A) = \inf_{y \in A} \inf_{n \in \mathbb{N}} \frac{A \cap [y-n, y+n]}{2n+1}$$



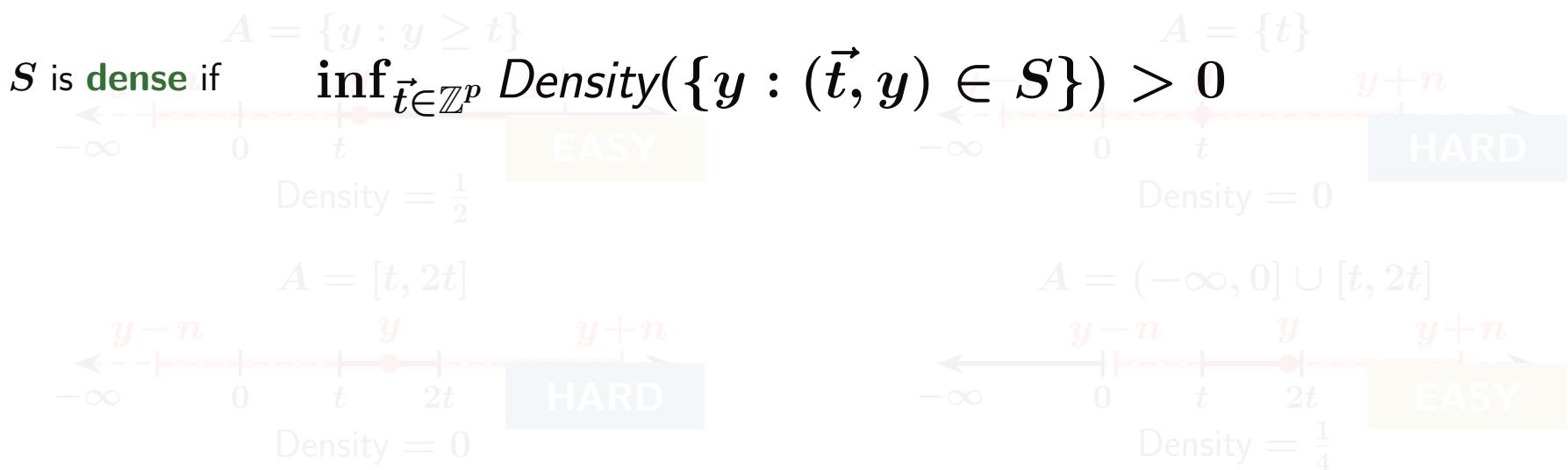
*simplified version ignoring modulo constraints.

Main Contribution

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{Z}$ be a semilinear set.

- (1) If S is **dense**, then $\text{REACH}(S)$ is in AC^1 .
- (2) Otherwise, $\text{REACH}(S)$ is NP-hard.

Let $A \subseteq \mathbb{Z}$ be a semilinear set... $\text{Density}(A) = \inf_{y \in A} \inf_{n \in \mathbb{N}} \frac{A \cap [y-n, y+n]}{2n+1}$



*simplified version ignoring modulo constraints.

S has **zero density**

Reduction from subset sum

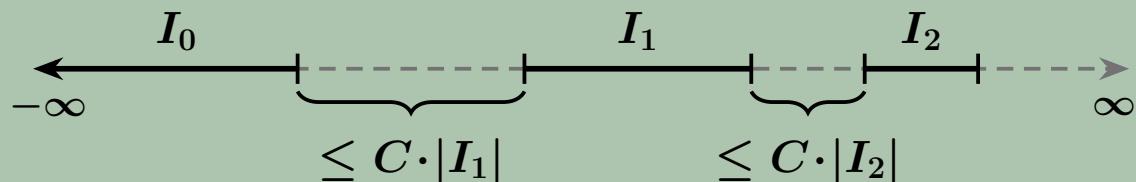
$\text{REACH}(S)$ is NP-hard

S has **positive density** $\implies \text{REACH}(S)$ is in AC^1

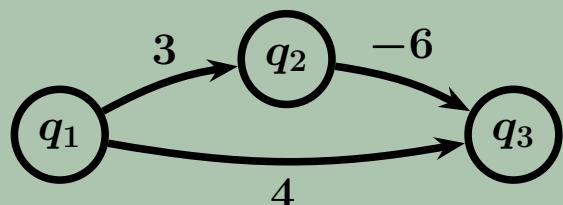
Preliminaries:

- Remove modulo constraints from S .
- Make the integer one-counter automaton acyclic.

Identify *building block* cases $(I_0 \cup I_1 \cup I_2)$ with **positive density**.



Design an AC^1 algorithm for reachability to *building blocks*.



$$\begin{pmatrix} X^0 & X^3 & X^4 \\ 0 & X^0 & X^{-6} \\ 0 & 0 & X^0 \end{pmatrix}$$

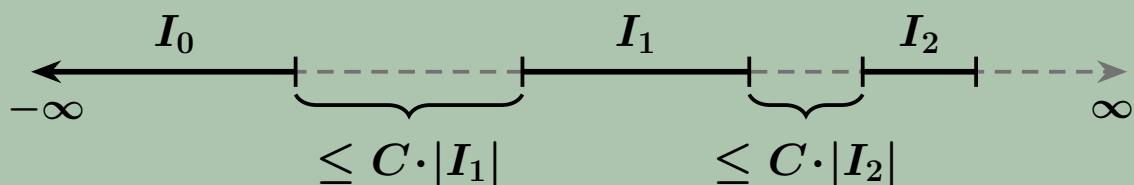
Entries in $\mathbb{B}[X^1, X^{-1}]$

S has **positive density** $\implies \text{REACH}(S)$ is in AC^1

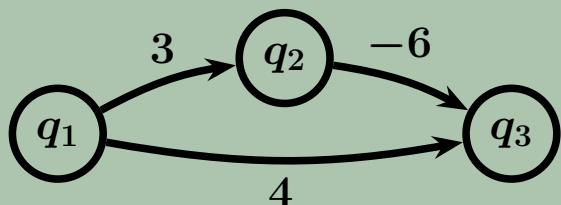
Preliminaries:

- Remove modulo constraints from S .
- Make the integer one-counter automaton acyclic.

Identify *building block* cases $(I_0 \cup I_1 \cup I_2)$ with **positive density**.



Design an AC^1 algorithm for reachability to *building blocks*.



$$\begin{pmatrix} X^0 & X^3 & X^4 \\ 0 & X^0 & X^{-6} \\ 0 & 0 & X^0 \end{pmatrix}$$

Entries in $\mathbb{B}[X^1, X^{-1}]$

S has **zero density**

Reduction from subset sum

$\text{REACH}(S)$ is NP-hard

Integer Semantics

Transitions have updates in \mathbb{Z} .

The counter value is in \mathbb{Z} .



$$p(5) \rightarrow q(-7)$$

Natural Semantics

Transitions have updates in \mathbb{N} .

The counter value is in \mathbb{N} .

$$p(5) \rightarrow q(17)$$

VASS Semantics

Transitions have updates in \mathbb{Z} .

The counter value is in \mathbb{N} .

$$p(15) \rightarrow q(3)$$

Integer Semantics

Transitions have updates in \mathbb{Z} .

The counter value is in \mathbb{Z} .

$$p(5) \rightarrow q(-7)$$

Natural Semantics

Transitions have updates in \mathbb{N} .

The counter value is in \mathbb{N} .

$$p(5) \rightarrow q(17)$$

VASS Semantics

Transitions have updates in \mathbb{Z} .

The counter value is in \mathbb{N} .

$$p(15) \rightarrow q(3)$$

Which Target Sets Make Reachability in 1-VASS Easy?

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{N}$ be a semilinear set.

- (1) If S is **uniformly quasi-upwards closed**, then $\text{REACH}_{\text{VASS}}(S)$ is in AC^1 .
- (2) Otherwise, $\text{REACH}_{\text{VASS}}(S)$ is NP-hard.

Which Target Sets Make Reachability in 1-VASS Easy?

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{N}$ be a semilinear set.

- (1) If S is **uniformly quasi-upwards closed**, then $\text{REACH}_{\text{VASS}}(S)$ is in AC^1 .
- (2) Otherwise, $\text{REACH}_{\text{VASS}}(S)$ is NP-hard.

Upwards closed: $\{10, 11, 12, 13, \dots\}$.

δ -upwards closed: $\{10, 15, 17, 20, 22, 25, 27, \dots\}$ is 5-upwards closed.

(δ, M) -upwards closed: $\{10, \textcolor{red}{15}, 17, 20, 22, \textcolor{red}{25}, 27, 30, 32, 35, \dots\}$ is $(5, 2)$ -upwards closed.

Uniformly quasi-upwards closed

There exists $\delta, M \in \mathbb{N}$ such that, for all $\vec{t} \in \mathbb{Z}^p$, $\{y : (\vec{t}, y) \in S\}$ is (δ, M) -upwards closed.

“If S is uniformly quasi-upwards closed, then $\text{REACH}_{\text{VASS}}(S)$ is in AC^1 ”

Theorem. Coverability in (binary encoded) 1-VASS is in NC^2 .

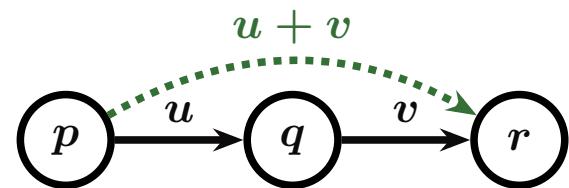
[Almagor, Cohen, Pérez, Shirmohammadi, and Worrell 2020]

Theorem. Coverability in (binary encoded) 1-VASS is in AC^1 . [Shakiba, S., and Zetsche '25]

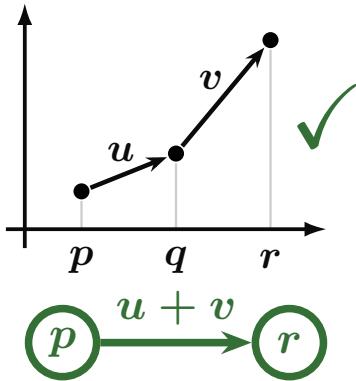
An Efficient Algorithm for Coverability in 1-VASS

STEP 0: Let \mathcal{V}_0 be the given 1-VASS.

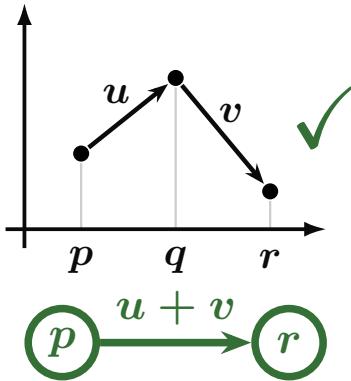
STEP 1: Create \mathcal{V}_1 from \mathcal{V}_0 by adding “shortcut transitions”:



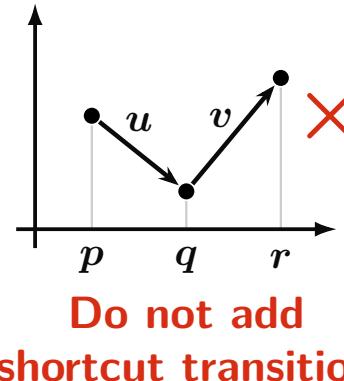
Scenario 1



Scenario 2

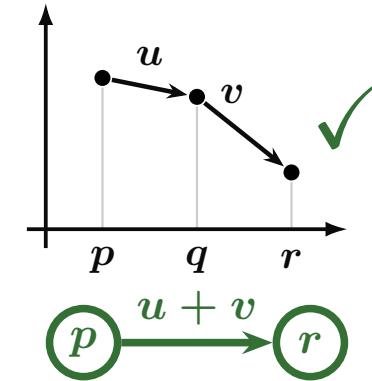


Scenario 3



**Do not add
shortcut transition**

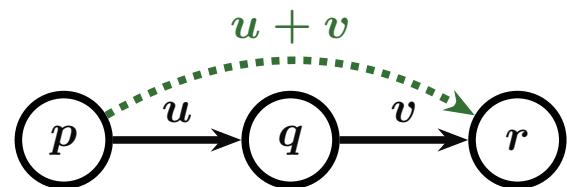
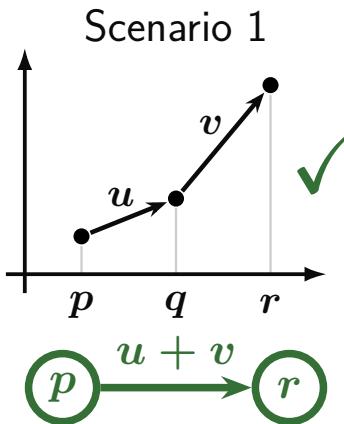
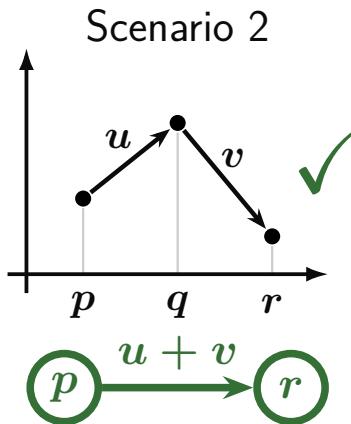
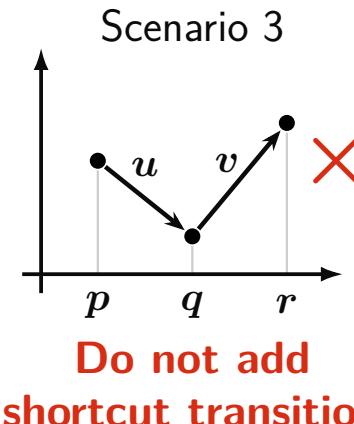
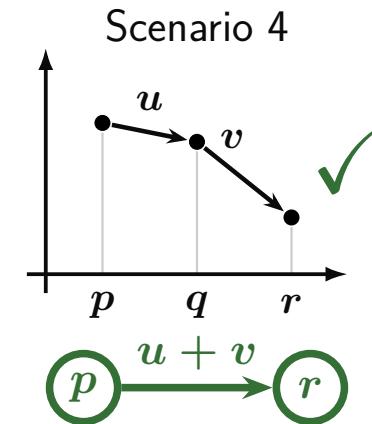
Scenario 4



An Efficient Algorithm for Coverability in 1-VASS

STEP 0: Let \mathcal{V}_0 be the given 1-VASS.

STEP 1: Create \mathcal{V}_1 from \mathcal{V}_0 by adding “shortcut transitions”:



STEP i : Repeat $k = 2 \lceil \log n \rceil$ many times.

Claim. There is a covering run in \mathcal{V}_0 if and only if there is a covering run of **length ≤ 2** in \mathcal{V}_k .

Dichotomies for Reaching Semilinear Target Sets

Let $S \subseteq \mathbb{Z}^p \times \mathbb{Z}$ be a semilinear set.

Natural semantics: $\text{REACH}_{\mathbb{N}}(S)$ is ... in AC^1 if S is **dense**⁺,
NP-hard otherwise. ⁺for a subtly modified definition of density

Thank You!

Presented by Henry Sinclair-Banks, University of Warsaw, Poland
BASICS Group Seminar in Shanghai Jiao Tong University, Shanghai, China

Presentation made with
BeamerikZ