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“Automata with One Counter” is a strange turn of phrase...
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Integer Semantics

Transitions have updates in Z.

The counter value is in Z.

p(5) — q(=7)
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VASS Semantics

The counter value is in N.

p(15) — q(3)

Transitions have updates in Z.
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Integer Semantics

Transitions have updates in Z.

The counter value is in Z.

p(5) = q(=7)
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Motivation

Reachability. From p(x), can you reach q(y)?

Coverability. From p(x), can you reach q(y’) such that y’ > y?
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Motivation
Reachability. From p(x), can you reach q(y)?
Coverability. From p(x), can you reach q(y’) such that y’ > y?
Theorem. Reachability (with integer semantics) is NP-hard.

Theorem. Coverability (with integer semantics) is in AC* C P.
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Motivation
Reachability. From p(x), can you reach q(y)?

Coverability. From p(x), can you reach q(y’) such that y’ > y?

Theorem. Reachability (with integer semantics) is m

Theorem. Coverability (with integer semantics) is

What makes reachability hard and coverability easy?
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Generalising Reachability and Coverability

p-REACHABILITY

Fixed: A Presburger formula ¢ (with p + 1 variables).

Input: An integer one-counter automaton A, an initial configuration p(x), and a vector t € 7P.

Question: Does there exist a reachable configuation q(y) such that (%, y) holds?
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Generalising Reachability and Coverability

p-REACHABILITY

Fixed: A Presburger formula ¢ (with p + 1 variables).

Input: An integer one-counter automaton A, an initial configuration p(x), and a vector t € 7P.
Question: Does there exist a reachable configuation q(y) such that (%, y) holds?

Examples

Reachability: p(t,y) < y =t.

Coverability: ¢(t,y) < y > t.

Cover and avoid: @ (t1,t2,y) < (y 2> t1) A (y # t2).

Reach an interval: p(t,y) < y € [t, 2t].

Reach an interval or a negative value: ¢(t,y) < y € (—o0, 0] U [t, 2t].
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Main Contribution

Theorem. Let ¢ be a Presburger formula with p + 1 variables.
(1) If ¢ is dense, then ¢o-REACHABILITY is in AC!.
(2) Otherwise, p-REACHABILITY is NP-hard.

SN [y_n’y+n]
2n+1

Density**: Let S C Z be a semilinear set...  Density(S) = inf,cg inf, ey

“*simplified version ignoring modulo constraints.
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Density(S) = inf,cg inf, ey
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(2) Otherwise, p-REACHABILITY is NP-hard.

SN [y_n’y+n]
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Density**: Let S C Z be a semilinear set...  Density(S) = inf,cg inf, ey

@ is dense if inf;_,» Density({y : cp(f; y) holds}) > 0

“*simplified version ignoring modulo constraints.
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@ has zero density

Reduction to subset sum

p-REACHABILITY is NP-hard

Henry Sinclair-Banks Semilinear Target Sets in Automata with One Counter



@ has zero density

Reduction to subset sum

p-REACHABILITY is NP-hard

Henry Sinclair-Banks Semilinear Target Sets in Automata with One Counter



@ has zero density

Reduction to subset sum

p-REACHABILITY is NP-hard

Henry Sinclair-Banks Semilinear Target Sets in Automata with One Counter



Further Results

Let o be a Presburger formula with p + 1 variables.

. _ in AC? if  is dense,
Integer semantics: -REACHABILITY is ...
NP-hard otherwise.

in AC! if P is + T for a subtly modified

Natural semantics: p-REACHABILITY is ... definition of density

NP-hard otherwise.

in AC! if ¢ is uniformly quasi-upward closed,
VASS semantics: ¢-REACHABILITY is ... " TP yq p

NP-hard otherwise.
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