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“Automata with One Counter” is a strange turn of phrase...

Integer Semantics

Transitions have updates in Z.

p q
→12

The counter value is in Z.

p(5) →↑ q(→7)

Natural Semantics

Transitions have updates in N.

p q12

The counter value is in N.

p(5) →↑ q(17)

VASS Semantics

Transitions have updates in Z.

p q
→12

The counter value is in N.

p(15) →↑ q(3)

Natural Semantics

Transitions have updates in N.

p q12

The counter value is in N.

p(5) →↑ q(17)

VASS Semantics

Transitions have updates in Z.

p q
→12

The counter value is in N.

p(15) →↑ q(3)
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Motivation

Reachability. From p(x), can you reach q(y)?

Coverability. From p(x), can you reach q(y↓) such that y↓ ↔ y?

Theorem. Reachability (with integer semantics) is NP-hard.

Theorem. Coverability (with integer semantics) is in AC1 → P.

HARD

EASY

What makes reachability hard and coverability easy?
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Generalising Reachability and Coverability
ω-Reachability
Fixed: A Presburger formula ω (with p + 1 variables).

Input: An integer one-counter automaton A, an initial configuration p(x), and a vector εt ↗ Zp.

Question: Does there exist a reachable configuation q(y) such that ω(εt, y) holds ?

Examples
Reachability: ω(t, y) ↘ y = t.

Coverability: ω(t, y) ↘ y ↔ t.

Cover and avoid: ω(t1, t2, y) ↘ (y ↔ t1) ≃ (y ⇐= t2).

Reach an interval: ω(t, y) ↘ y ↗ [t, 2t].

Reach an interval or a negative value: ω(t, y) ↘ y ↗ (→⇒, 0] ⇑ [t, 2t].

HARD

EASY

EASY

HARD

EASY

Henry Sinclair-Banks Semilinear Target Sets in Automata with One Counter 4 / 7



Generalising Reachability and Coverability
ω-Reachability
Fixed: A Presburger formula ω (with p + 1 variables).

Input: An integer one-counter automaton A, an initial configuration p(x), and a vector εt ↗ Zp.

Question: Does there exist a reachable configuation q(y) such that ω(εt, y) holds ?

Examples
Reachability: ω(t, y) ↘ y = t.

Coverability: ω(t, y) ↘ y ↔ t.

Cover and avoid: ω(t1, t2, y) ↘ (y ↔ t1) ≃ (y ⇐= t2).

Reach an interval: ω(t, y) ↘ y ↗ [t, 2t].

Reach an interval or a negative value: ω(t, y) ↘ y ↗ (→⇒, 0] ⇑ [t, 2t].

HARD

EASY

EASY

HARD

EASY

Henry Sinclair-Banks Semilinear Target Sets in Automata with One Counter 4 / 7



Generalising Reachability and Coverability
ω-Reachability
Fixed: A Presburger formula ω (with p + 1 variables).

Input: An integer one-counter automaton A, an initial configuration p(x), and a vector εt ↗ Zp.

Question: Does there exist a reachable configuation q(y) such that ω(εt, y) holds ?

Examples
Reachability: ω(t, y) ↘ y = t.

Coverability: ω(t, y) ↘ y ↔ t.

Cover and avoid: ω(t1, t2, y) ↘ (y ↔ t1) ≃ (y ⇐= t2).

Reach an interval: ω(t, y) ↘ y ↗ [t, 2t].

Reach an interval or a negative value: ω(t, y) ↘ y ↗ (→⇒, 0] ⇑ [t, 2t].

HARD

EASY

EASY

HARD

EASY

Henry Sinclair-Banks Semilinear Target Sets in Automata with One Counter 4 / 7



Main Contribution
Theorem. Let ω be a Presburger formula with p + 1 variables.
(1) If ω is dense, then ω-Reachability is in AC1.
(2) Otherwise, ω-Reachability is NP-hard.

Density↑↑: Let S → Z be a semilinear set... Density(S) = infy↗S infn↗N
S ⇓ [y→n, y+n]

2n+1

→→
simplified version ignoring modulo constraints.

S = {y : y ↔ t}

→⇒ ⇒0 t

yy→n y+n

Density = 1
2

S = {t}

→⇒ ⇒0 t

y y+ny→n

Density = 0

S = [t, 2t]

→⇒ ⇒0 t 2t

y y+ny→n

Density = 0

S = (→⇒, 0] ⇑ [t, 2t]

→⇒ ⇒0 t 2t

yy→n y+n

Density = 1
4

EASY HARD

HARD EASY

ω is dense if infεt↗Zp Density({y : ω(εt, y) holds}) > 0
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ω has zero density

ω-Reachability is NP-hard

Reduction to subset sum

ω has positive density =⇔ ω-Reachability is in AC1

Preliminaries:
Remove modulo constraints from ω.
Make the integer one-counter automaton acyclic.

Identify building block cases (I0 ⇑ I1 ⇑ I2) with positive density.

→⇒ ⇒

I0 I1 I2

↖ C ·|I1| ↖ C ·|I2|

Design an AC1 algorithm for reachability to building blocks.

View reachability in integer OCA as a semiring problem.

Use the Laurent polynomials with Boolean coe!cients B[X, X→1].

Relies on the technique of repeated squaring.

Henry Sinclair-Banks Semilinear Target Sets in Automata with One Counter 6 / 7



ω has zero density

ω-Reachability is NP-hard

Reduction to subset sum

ω has positive density =⇔ ω-Reachability is in AC1

Preliminaries:
Remove modulo constraints from ω.
Make the integer one-counter automaton acyclic.

Identify building block cases (I0 ⇑ I1 ⇑ I2) with positive density.

→⇒ ⇒

I0 I1 I2

↖ C ·|I1| ↖ C ·|I2|

Design an AC1 algorithm for reachability to building blocks.

View reachability in integer OCA as a semiring problem.

Use the Laurent polynomials with Boolean coe!cients B[X, X→1].

Relies on the technique of repeated squaring.

Henry Sinclair-Banks Semilinear Target Sets in Automata with One Counter 6 / 7



ω has zero density

ω-Reachability is NP-hard

Reduction to subset sum

ω has positive density =⇔ ω-Reachability is in AC1

Preliminaries:
Remove modulo constraints from ω.
Make the integer one-counter automaton acyclic.

Identify building block cases (I0 ⇑ I1 ⇑ I2) with positive density.

→⇒ ⇒

I0 I1 I2

↖ C ·|I1| ↖ C ·|I2|

Design an AC1 algorithm for reachability to building blocks.

View reachability in integer OCA as a semiring problem.

Use the Laurent polynomials with Boolean coe!cients B[X, X→1].

Relies on the technique of repeated squaring.

Henry Sinclair-Banks Semilinear Target Sets in Automata with One Counter 6 / 7



ω has zero density

ω-Reachability is NP-hard

Reduction to subset sum

ω has positive density =⇔ ω-Reachability is in AC1

Preliminaries:
Remove modulo constraints from ω.
Make the integer one-counter automaton acyclic.

Identify building block cases (I0 ⇑ I1 ⇑ I2) with positive density.

→⇒ ⇒

I0 I1 I2

↖ C ·|I1| ↖ C ·|I2|

Design an AC1 algorithm for reachability to building blocks.

View reachability in integer OCA as a semiring problem.

Use the Laurent polynomials with Boolean coe!cients B[X, X→1].

Relies on the technique of repeated squaring.

Henry Sinclair-Banks Semilinear Target Sets in Automata with One Counter 6 / 7



Further Results
Let ω be a Presburger formula with p + 1 variables.

Integer semantics: ω-Reachability is ...
in AC1 if ω is dense,
NP-hard otherwise.

Natural semantics: ω-Reachability is ...
in AC1 if ω is dense+,
NP-hard otherwise.

+
for a subtly modified

definition of density

VASS semantics: ω-Reachability is ...
in AC1 if ω is uniformly quasi-upward closed,
NP-hard otherwise.

Thank You!
Presented by Henry Sinclair-Banks, University of Warsaw, Poland

Automata in the Wild 2025, University of Warwick, UK

Presentation made with
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