The Tractability Border of Reachability in Simple Vector Addition Systems with States

Henry Sinclair-Banks

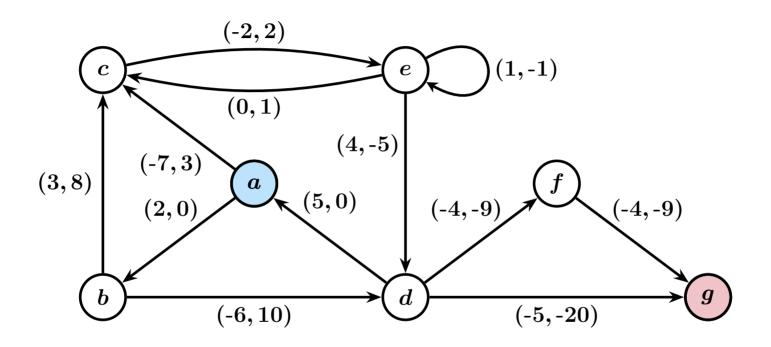
Based on work with Dmitry Chistikov, Wojciech Czerwiński, Filip Mazowiecki, Łukasz Orlikowski, and Karol Węgrzycki in FOCS'24.

Verification Seminar

13th February 2025

University of Liverpool, UK

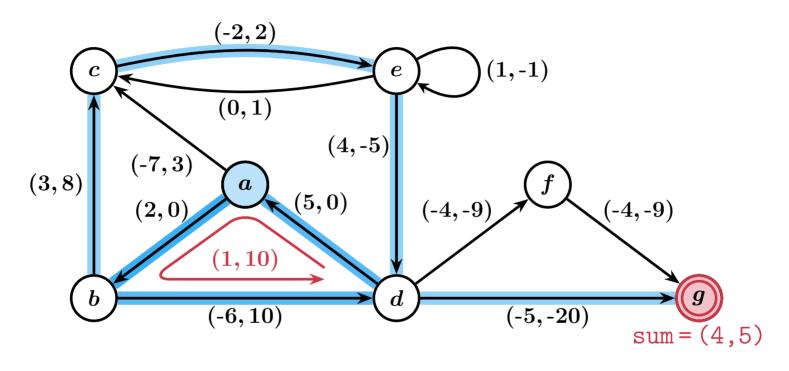
Reachability in 2-Dimensional VASS



Does there exist a run from a with counter values (0,0) to g with counter values (4,5) ?

(the counters must remain nonnegative at all times)

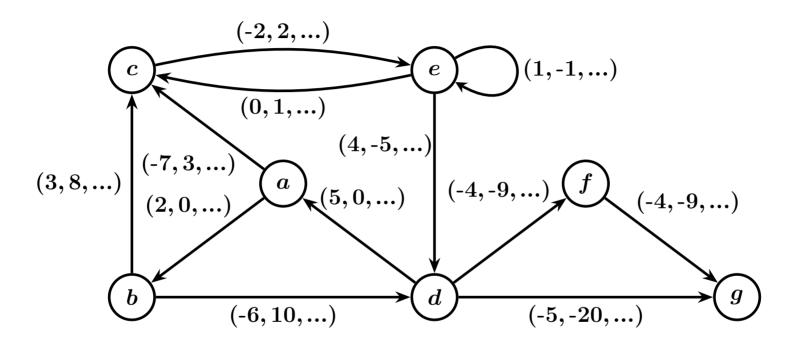
Reachability in 2-Dimensional VASS



Does there exist a run from a with counter values (0,0) to g with counter values (4,5)?

(the counters must remain nonnegative at all times)

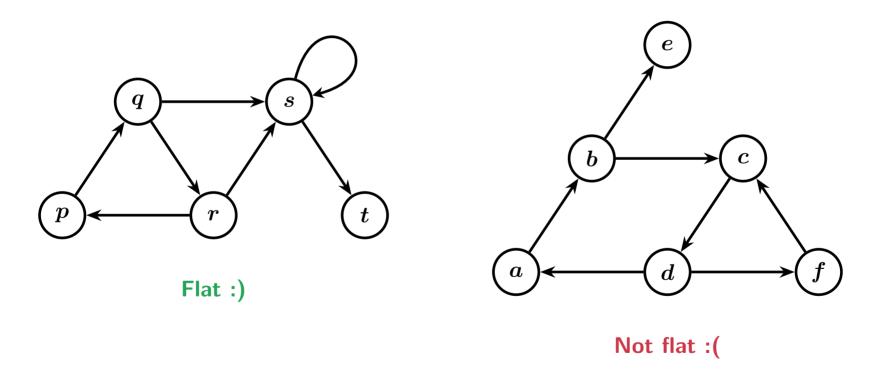
Reachability in VASS



Reachability problem: does there exist a run from p(u) to q(v)?

"Simple" Vector Addition Systems with States

Definition (Flat). For every state q, there is at most one simple cycle that contains q.



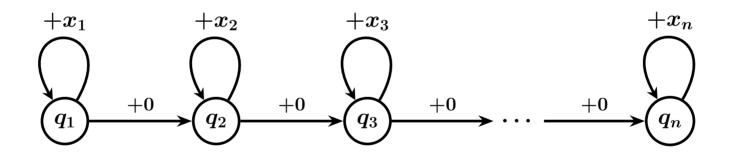
Reachability in Flat VASS

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97] [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard.

[Rosier and Yen '85]

Proof sketch. Let $(\{x_1,\ldots,x_n\},t)$ be an instance of subset sum (with multiplicities).



There exist k_1,\ldots,k_n such that $\Sigma k_i\cdot x_i=t \implies$ there is a run from $q_1(0)$ to $q_n(t)$.

There is a run from $q_1(0)$ to $q_n(t) \implies$ there exist k_1,\ldots,k_n such that $\Sigma k_i \cdot x_i = t$.

Reachability in Flat VASS

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97]

[Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard.

[Rosier and Yen '85]

Theorem. Reachability in unary (flat) 1-VASS and 2-VASS is in NL.

[Valiant and Paterson '73]

[Englert, Lazić, and Totzke '16]

Theorem. Reachability in unary flat d-VASS is NP-hard for d=7.

[Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20]

... for
$$d=5$$
. [Dubiak '20]

... for
$$d=4$$
. [Czerwiński and Orlikowski '22]

Reachability in Flat VASS

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97 [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20

Theorem. Reachability in binary flat 1-VASS is NP-hard

Rosier and Yen '85

What is the complexity of reachability in unary flat 3-VASS?

Theorem. Reachability in unary (flat) 1-VASS and 2-VAS [Blondin, Einkel, Göller, Haase, and McKenzie '15] [Englert, Lazić, and Totzke '16]

Theorem. Reachability in unary flat d-VASS is NP-hard for d=7.

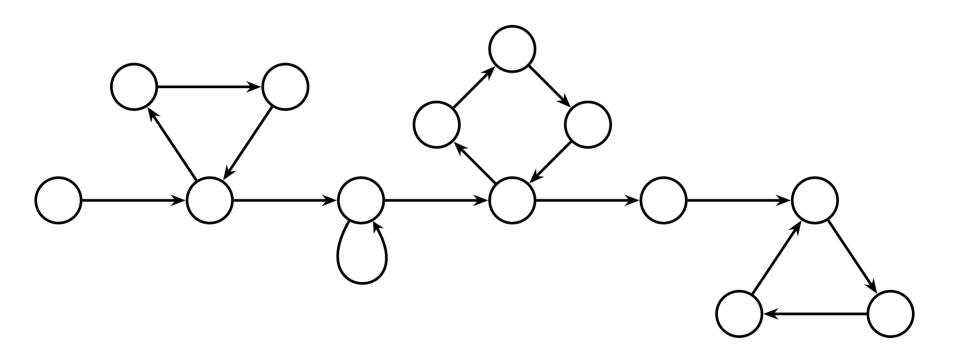
[Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '20

 \ldots for d=5. [Dubiak '20'

... for d=4. [Czerwiński and Orlikowski '22

Flat VASS Linear Path Schemes

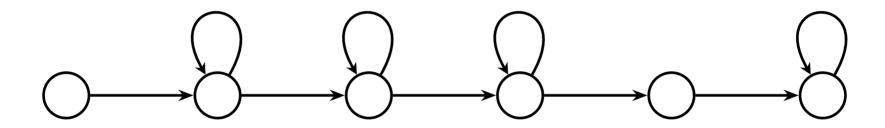
Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.



Flat VASS Linear Path Schemes

Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (SLPS). A *Simple* LPS has cycles of length one ("self-loops").



For $d \geq 3$, is reachability in unary d-dimensional linear path schemes in P?

[Englert, Lazić, and Totzke '16]

[Leroux '21]

Main Contribution

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Recall that reachability in (binary encoded) flat VASS is in NP.

For NP-hardness, reduce from 3-SAT.

- 1) Use "Chinese remainder encoding" for SAT.
- 2) Encode satisfiability as a conjunction of non-divisibility assertions.

Next slide

- 3) Design a 2-SLPS with zero tests for asserting non-divisibility.
- 4) Concatenate these 2-SLPSs with zero tests so that reachability coincides with the conjunction of non-divisibility assertions.
- 5) Use an additional third counter to simulate the zero tests.

Encoding SAT as a Conjunction of Non-Divisibility Assertions

Chinese remainder encoding for SAT with k variables x_1, \ldots, x_k .

- Let p_1, \ldots, p_k be the first k primes.
- Let $n \in \mathbb{N}$ such that $n \equiv 0 mod p_i \iff x_i$ is false and $n \equiv 1 mod p_i \iff x_i$ is true.

First, enforce assignment validity.

- Want to verify that $n \equiv 0 mod p_i$ OR $n \equiv 1 mod p_i$ (for every i).
- Instead, check $p_i \not\mid n-2$ AND $p_i \not\mid n-3$ AND \cdots AND $p_i \not\mid n-(p_i-1)$.

Second, enforce satisfiability.

- A clause $x_1 \vee \neg x_2 \vee x_3$ is satisfied if $n \equiv 1 \bmod 2$ OR $n \equiv 0 \bmod 3$ OR $n \equiv 1 \bmod 5$.
- This is only falsified when $n \equiv 10 \bmod 2 \cdot 3 \cdot 5$.
- Therefore, check $2 \cdot 3 \cdot 5 \not\mid n-10$.

Encoding SAT as a Conjunction of Non-Divisibility Assertions

Chinese remainder encoding for SAT with k variables x_1, \ldots, x_k .

- Let p_1, \ldots, p_k be the first k primes.
- Let $n \in \mathbb{N}$ such that $n \equiv 0 mod p_i \iff x_i$ is false and $n \equiv 1 mod p_i \iff x_i$ is true.

First, enforce assignment validity.

- Want to verify that $n \equiv 0 mod p_i$ OR $n \equiv 1 mod p_i$ (for every i).
- Instead, check $p_i
 neq n-2$ AND $p_i
 neq n-3$ AND \cdots AND $p_i
 neq n-1$.

Second, enforce satisfiability.

- A clause $x_1 \vee \neg x_2 \vee x_3$ is satisfied if $n \equiv 1 \bmod 2$ OR $n \equiv 0 \bmod 3$ OR $n \equiv 1 \bmod 5$.
- This is only falsified when $n \equiv 10 \bmod 2 \cdot 3 \cdot 5$.
- Therefore, check $2 \cdot 3 \cdot 5
 mid n 10$.

Main Contribution

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Recall that reachability in (binary encoded) flat VASS is in NP.

For NP-hardness, reduce from 3-SAT.

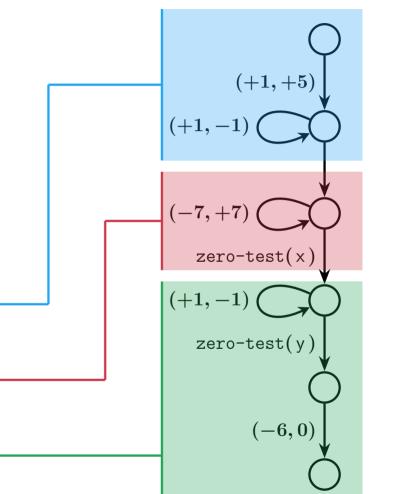
- √ 1) Use "Chinese remainder encoding" for SAT.
- √ 2) Encode satisfiability as a conjunction of non-divisibility assertions.
 - 3) Design a 2-SLPS with zero tests for asserting non-divisibility. Next slide
 - 4) Concatenate these 2-SLPSs with zero tests so that reachability coincides with the conjunction of non-divisibility assertions.
 - 5) Use an additional third counter to simulate the zero tests.

Simple Linear Path Schemes Asserting Non-Divisibility

Suppose we want to assert 7
mid v.

Let's construct a 2-SLPS with zero tests that:

- starts with $\mathsf{x} \! = v$, $\mathsf{y} \! = 0$,
- can only be passed if $7 \not\mid v$, and
- ends with x = v, y = 0.
- (i) Choose $r \in \{1,2,3,4,5,6\}$...
- (ii) ... such that $7 \mid v + r$. –
- (iii) Restore x = v, y = 0.



Main Contribution

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Recall that reachability in (binary encoded) flat VASS is in NP.

For NP-hardness, reduce from 3-SAT.

- √ 1) Use "Chinese remainder encoding" for SAT.
- √ 2) Encode satisfiability as a conjunction of non-divisibility assertions.
- √ 3) Design a 2-SLPS with zero tests for asserting non-divisibility.
 - 4) Concatenate these 2-SLPSs with zero tests so that reachability coincides with the conjunction of non-divisibility assertions. And add an x + 1 loop for guessing an assignment x = v.
 - 5) Use an additional third counter to simulate the zero tests.

Main Contribution

Theorem. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Recall that reachability in (binary encoded) flat VASS is in NP.

For NP-hardness, reduce from 3-SAT.

- √ 1) Use "Chinese remainder encoding" for SAT.
- √ 2) Encode satisfiability as a conjunction of non-divisibility assertions.
- √ 3) Design a 2-SLPS with zero tests for asserting non-divisibility.
- \checkmark 4) Concatenate these 2-SLPSs with zero tests so that reachability coincides with the conjunction of non-divisibility assertions. And add an x+1 loop for guessing an assignment x=v.
 - 5) Use an additional third counter to simulate the zero tests. Next slide

Simulating Zero Tests

Lemma 2.2 (Controlling Counter Technique). Let \mathcal{Z} be a d-VASS with zero tests and let $s(\mathbf{x}), t(\mathbf{y})$ be two configurations. Suppose \mathcal{Z} has the property that on any accepting run from $s(\mathbf{x})$ to $t(\mathbf{y})$, at most m zero tests are performed on each counter. Then there exists a (d+1)-VASS \mathcal{V} and two configurations $s'(\mathbf{0}), t'(\mathbf{y}')$ such that:

- (1) $s(\mathbf{x}) \xrightarrow{*}_{\mathcal{Z}} t(\mathbf{y})$ if and only if $s'(\mathbf{0}) \xrightarrow{*}_{\mathcal{V}} t'(\mathbf{y}')$,
- (2) V can be constructed in $\mathcal{O}((size(\mathcal{Z}) + ||x||) \cdot (m+1)^d)$ time, and
- (3) $\|\mathbf{y}'\| \le \|\mathbf{y}\|.$

Moreover, if Z is a flat VASS or a (simple) linear path scheme in which no zero-testing transition lies on a cycle, then V can be assumed to be a flat VASS or a (simple) linear path scheme, respectively.

First developed in [Czerwiński, Lasota, Lazić, Leroux, and Mazowiecki '19]

First formalised in [Czerwiński and Orlikowski '21]

Reformulated in [this paper]

Takeway message: A "small" number of zero tests can be simulated by an additional counter.

Main Contribution

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Proof approach. Recall that reachability in (binary encoded) flat VASS is in NP.

For NP-hardness, reduce from 3-SAT.

- √ 1) Use "Chinese remainder encoding" for SAT.
- 2) Encode satisfiability as a conjunction of non-divisibility assertions.
- √ 3) Design a 2-SLPS with zero tests for asserting non-divisibility.
- \checkmark 4) Concatenate these 2-SLPSs with zero tests so that reachability coincides with the conjunction of non-divisibility assertions. And add an x+1 loop for guessing an assignment x=v.
- \checkmark 5) Use an additional third counter to simulate the zero tests.

Main Results

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Theorem 2. Reachability in unary *ultraflat* 4-VASS is NP-complete.

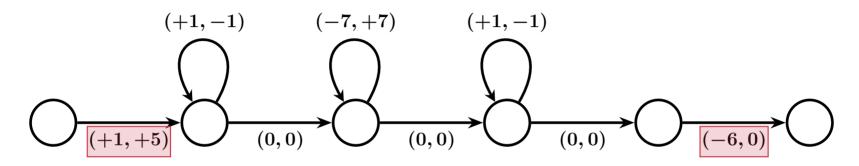
Next slides

Theorem 3. Reachability in *unitary* inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Elat VASS Linear Path Schemes Ultraflat VASS

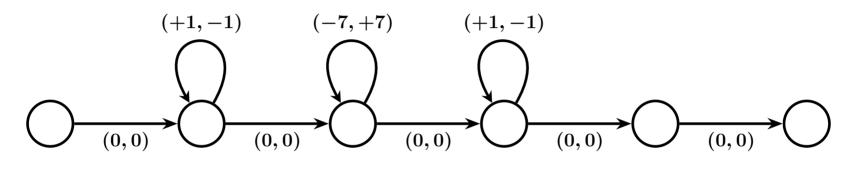
Definition (Ultraflat VASS). An SLPS where the transitions between states have zero effect.



Not ultraflat :(

Flat VASS Linear Path Schemes Ultraflat VASS

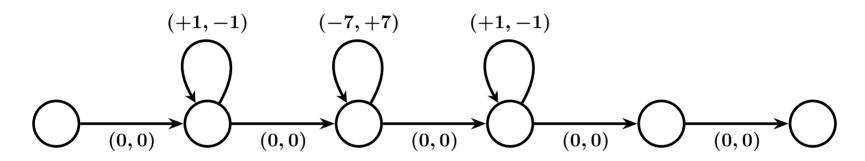
Definition (Ultraflat VASS). An SLPS where the transitions between states have zero effect.



Ultraflat:)

Flat VASS Linear Path Schemes Ultraflat VASS

Definition (Ultraflat VASS). An SLPS where the transitions between states have zero effect.



Ultraflat:)

Counter program notation:

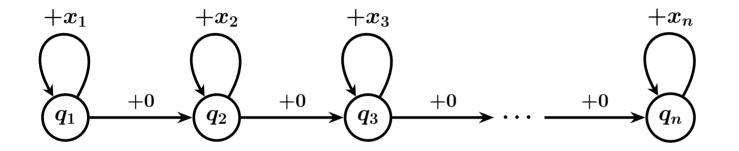
- 1. LOOP: x += 1, y -= 1
- 2. LOOP: x = 7, y + = 7
- 3. LOOP: x += 1, y -= 1

Reachability in Ultraflat VASS

Theorem. Reachability in binary ultraflat 1-VASS is NP-hard.

[Rosier and Yen '85] [Leroux '21]

Proof idea.



1. LOOP:
$$z += x_1$$

2. LOOP:
$$z += x_2$$

3. LOOP:
$$z += x_3$$

$$n$$
. LOOP: $z \mathrel{+}= x_n$

Reachability in Ultraflat VASS

Theorem. Reachability in binary ultraflat 1-VASS is NP-hard.

[Rosier and Yen '85] [Leroux '21]

Theorem. Reachability in unary ((ultra)flat) 1-VASS and 2-VASS is in NL. [Valiant and Paterson [73] $+x_1$ [Englert, Lazić, and Totzke [16]

For $d \geq 3$, is reachability in unary ultraflat d-VASS in P? [Leroux '21]

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Proof ingredients. 3-SAT reduction.

Chinese remainder encoding for SAT.

Conjunction of non-divisibility assertions.

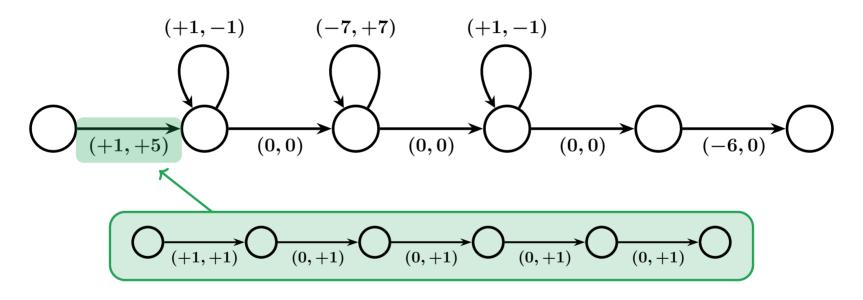
Ultraflat 3-VASS with zero tests for asserting non-divisibility.

Concatenate non-divisibility asserting ultraflat VASS.

Simulate zero tests with a controlling counter.

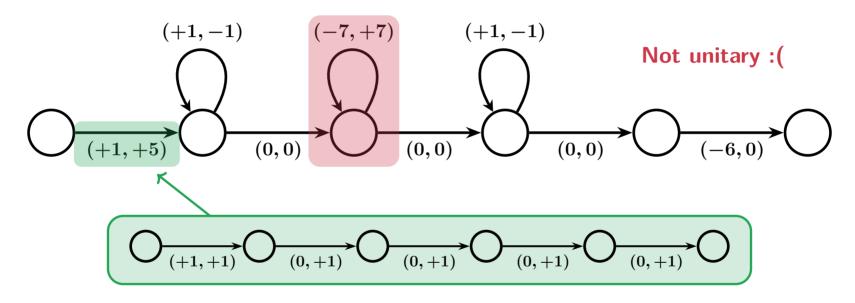
Unitary Simple Linear Path Schemes

Definition (Unitary SLPS). An SLPS where the counter updates are restricted to $\{-1,0,+1\}$.



Unitary Simple Linear Path Schemes

Definition (Unitary SLPS). An SLPS where the counter updates are restricted to $\{-1,0,+1\}$.



Reachability in Unitary SLPS

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

UnitaryInverseAckermannDimensionalSimpleLinearPathSchemeReachability

Input: a natural number k encoded in unary,

a unitary SLPS ${\cal V}$ of dimension ${\cal O}(lpha(k))$ and size ${\it poly}(k)$,

an initial configuration p(u) encoded in unary, and

a target configuration $oldsymbol{q}(oldsymbol{v})$ encoded in unary.

Question: is there a run from p(u) to q(v) in ${\cal V}$?

Notation: $\alpha: \mathbb{N} \to \mathbb{N}$ is the inverse Ackermann function.

Reachability in Unitary SLPS

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

UnitaryInverseAckermannDimensionalSimpleLinearPathSchemeReachability

Input: a natural number k encoded in unary,

a unitary SLPS ${\cal V}$ of dimension ${\cal O}(lpha(k))$ and size ${\it poly}(k)$,

an initial configuration p(u) encoded in unary, and

a target configuration q(v) encoded in unary.

Question: is there a run from p(u) to q(v) in ${\cal V}$?

Proof ingredients. 3-SAT reduction. Chinese remainder encoding for SAT. Conjunction of non-divisibility assertions.

Unitary 5-SLPS with zero tests for asserting non-divisibility.

Concatenate non-divisibility asserting unitary SLPSs. Simulate zero tests with a different technique.

Notation: $\alpha: \mathbb{N} \to \mathbb{N}$ is the inverse Ackermann function.

Recap of Main Results

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Open problem. Is reachability in unary ultraflat 3-VASS NP-complete?

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

Open problem. Does there exist $d \in \mathbb{N}$ such that reachability in unitary d-SLPS is NP-complete?

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Recap of Main Results

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Open problem. Is reachability in unary ultraflat 3-VASS NP-complete?

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

Open problem. Does there exist $d \in \mathbb{N}$ such that reachability in unitary d-SLPS is NP-complete?

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Reachability in Unary Encoded 2-SLPS with Binary Encoded Initial and Target Configurations

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

```
Input: a natural number k encoded in unary,  \text{a (unary) 2-SLPS } \mathcal{V} \text{ of size } \textit{poly}(k),  an initial configuration p(u) such that |u[1]|, |u[2]| \leq 2^k, and a target configuration q(v) such that |v[1]|, |v[2]| \leq 2^k.
```

Question: is there a run from p(u) to q(v) in ${\cal V}$?

Reachability in Unary Encoded 2-SLPS with Binary Encoded Initial and Target Configurations

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Input: a natural number k encoded in unary,

a (unary) 2-SLPS ${oldsymbol{\mathcal{V}}}$ of size ${oldsymbol{\it poly}}(k)$,

an initial configuration p(u) such that $|u[1]|, |u[2]| \leq 2^k$, and

a target configuration q(v) such that $|v[1]|, |v[2]| \leq 2^k$.

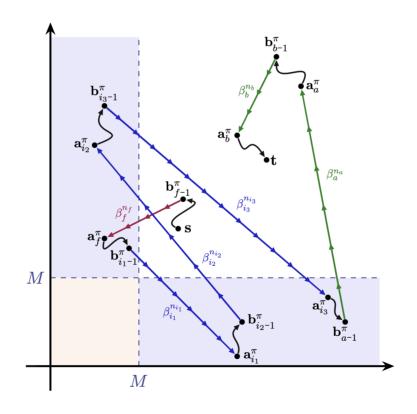
Question: is there a run from p(u) to q(v) in ${\cal V}$?

Two proof parts:

- (1) Identify a sufficient and "nice" collection of reachability witnessing runs.
- (2) Explore configurations reachable along such runs using a dynamic programming algorithm.

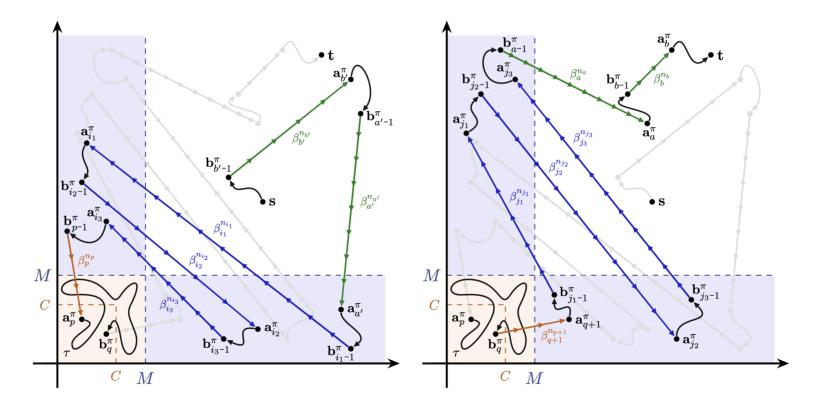
Structural Theorem for Reachability in 2-SLPS

Thm. Let $\mathcal V$ be a unary 2-SLPS. There exists $M \leq \operatorname{poly}(\operatorname{size}(\mathcal V))$ such that whenever $p(s) \stackrel{*}{\to} q(t)$, there is a path π such that $p(s) \stackrel{\pi}{\to} q(t)$ and π has flavour A or flavour B



Structural Theorem for Reachability in 2-SLPS

Thm. Let \mathcal{V} be a unary 2-SLPS. There exists $M \leq poly(size(\mathcal{V}))$ such that whenever $p(s) \stackrel{*}{\to} q(t)$, there is a path π such that $p(s) \stackrel{\pi}{\to} q(t)$ and π has flavour A or flavour B.



The Tractability Border of Reachability in Simple Vector Addition Systems with States

- **Theorem 1.** Reachability in unary 3-SLPS is NP-complete.
- **Theorem 2.** Reachability in unary ultraflat 4-VASS is NP-complete.
- **Open problem.** Is reachability in unary ultraflat 3-VASS NP-complete?
- **Theorem 3.** Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.
- **Open problem.** Does there exist $d \in \mathbb{N}$ such that reachability in unitary d-SLPS is NP-complete?
- **Theorem 4.** Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

The Tractability Border of Reachability in Simple Vector Addition Systems with States

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Open problem. Is reachability in unary ultraflat 3-VASS NP-complete?

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

Open problem. Does there exist $d \in \mathbb{N}$ such that reachability in unitary d-SLPS is NP-complete?

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Thank You!

Presented by Henry Sinclair-Banks, University of Warsaw, Poland

Verification Seminar, University of Liverpool, UK

Presentation made with Beamerik Z

Ultraflat 3-VASS with Zero Tests for Asserting Non-Divisibility

1. LOOP:
$$x += 1$$
, $y += 5$, $z -= 1$

2. LOOP:
$$x += 2$$
, $y += 6$, $z -= 1$

3. LOOP:
$$x += 3$$
, $y += 7$, $z -= 1$

4. LOOP:
$$x += 4$$
, $y += 8$, $z -= 1$

6. LOOP:
$$x = 5$$
, $z + = 5$

7.
$$zero-test(x)$$

8. LOOP:
$$x += 1$$
, $z -= 1$

10. LOOP:
$$x = 1$$
, $y = 5$, $z + = 1$

11. LOOP:
$$x = 2$$
, $y = 6$, $z + = 1$

12. LOOP:
$$x = 3$$
, $y = 7$, $z + = 1$

13. LOOP:
$$x = 4$$
, $y = 8$, $z + 1$

Suppose we want to assert $5 \not\mid v$.

This ultraflat 3-VASS with zero tests:

- starts with
$$x = v$$
, $y = 0$, $z = 1$,

- can only be passed if
$$5 \not\mid v$$
, and

- ends with
$$x = v$$
, $y = 0$, $z = 1$.

(i) Choose
$$r \in \{1,2,3,4\}$$
 ...

-(ii) ... such that
$$5\mid v+r$$
 .

(iii) Restore
$$x = v$$
, $y = 0$.