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Reachability in 2-Dimensional VASS
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Does there exist a run from @ with counter values (0,0) to @ with counter values (4,5) ?

(the counters must remain nonnegative at all times)
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Reachability in VASS

Reachability problem: does there exist a run from p(u) to g(v) ?
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“Simple” Vector Addition Systems with States

Definition (Flat). For every state g, there is at most one simple cycle that contains q.

CNVAVAN

Not flat :(
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Reachability in Flat VASS

Theorem. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén '97]

[Czerwinski, Lasota, Lazi¢, Leroux, and Mazowiecki '20]

Theorem. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen '85]

Proof sketch. Let ({x1,...,x,},t) be an instance of subset sum (with multiplicities).

+x,

There exist kq, . .., ky, such that Xk; - x; =t = thereis a run from g1(0) to g, (t).
There is a run from q1(0) to g,(t) = there exist kq, ..., k, such that Xk; - x; = t. (]
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Reachability in Flat VASS

. Reachability in flat VASS is in NP (even with binary encoding). [Fribourg and Olsén

[Czerwinski, Lasota, Lazi¢, Leroux, and Mazowiecki
. Reachability in binary flat 1-VASS is NP-hard. [Rosier and Yen
. Reachability in unary (flat) 1-VASS and 2-VASS is in NL. [Valiant and Paterson

[Englert, Lazi¢, and Totzke

. Reachability in unary flat d-VASS is NP-hard for d = 7.

Henry Sinclair-Banks

[Czerwinski, Lasota, Lazi¢, Leroux, and Mazowiecki
... ford = 5. [Dubiak
... ford = 4. [Czerwinski and Orlikowski
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What is the complexity of reachability in unary flat 3-VASS?

[Blondin, Finkel, Goller, Haase, and McKenzie '15]
[Englert, Lazi¢, and Totzke '16]
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Flat-\VASS Linear Path Schemes

Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.
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Flat-\VASS Linear Path Schemes

Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (SLPS). A Simple LPS has cycles of length one (“self-loops”).

o380
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Flat-\VASS Linear Path Schemes

Definition (LPS). A VASS where the states and transitions form a simple path between disjoint cycles.

Definition (SLPS). A Simple LPS has cycles of length one (“self-loops”).

o380

For d > 3, is reachability in unary d-dimensional linear path schemes in P?

[Englert, Lazi¢, and Totzke '16]
[Leroux '21]
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Main Contribution

Theorem 1. Reachability in unary 3-SLPS is NP-complete.
Proof approach. Recall that reachability in (binary encoded) flat VASS is in NP.

For NP-hardness, reduce from 3-SAT.
1) Use “Chinese remainder encoding” for SAT.
2) Encode satisfiability as a conjunction of non-divisibility assertions.
3) Design a 2-SLPS with zero tests for asserting non-divisibility.

4) Concatenate these 2-SLPSs with zero tests so that reachability coincides with the conjunction

of non-divisibility assertions.

5) Use an additional third counter to simulate the zero tests.
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Encoding SAT as a Conjunction of Non-Divisibility Assertions

Chinese remainder encoding for SAT with k variables @1, ..., xk.
- Let p1,...,pr be the first k primes.

- Let n € N such that n = 0 mod p; <= x; is false and n = 1 mod p; <= x; is true.

First, enforce assignment validity.
- Want to verify that n = 0 mod p; OR mn = 1 mod p; (for every 7).
- Instead, check p; fn—2 AND p; fn—3 AND -.-- AND p; fn— (p; —1).

Second, enforce satisfiability.

- A clause 1 V —x3 V a3 is satisfiedif n =1 mod 2 OR n=0mod 3 OR n =1 mod 5.
- This is only falsified when n = 10 mod 2 - 3 - 5.

- Therefore, check 235 fn — 10.
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Encoding SAT as a Conjunction of Non-Divisibility Assertions

Chinese remainder encoding for SAT with k variables @1, ..., xk.
- Let p1,...,pr be the first k primes.

- Let n € N such that n = 0 mod p; <= x; is false and n = 1 mod p; <= x; is true.

First, enforce assignment validity.
- Want to verify that n = 0 mod p; OR mn = 1 mod p; (for every 7).
- Instead,|check p; fn —2 AND p; fn—3 AND -.- AND p; fn — (p; — 1))

Second, enforce satisfiability.
- A clause 1 V —x3 V a3 is satisfiedif n =1 mod 2 OR n=0mod 3 OR n =1 mod 5.
- This is only falsified when n = 10 mod 2 - 3 - 5.

- Therefore,(check 2:3:-5fn— 10.) We were inspired by [Schéning '97]
|dea first appears in [Stockmeyer and Meyer '73]
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Simple Linear Path Schemes Asserting Non-Divisibility

Suppose we want to assert 7 f v. O
(+1,+5)
' - . v
Let's construct a 2-SLPS with zero tests that: (41, -1) GC)
- starts with x= v, y= 0,

- can only be passed if 7 f v, and Y
—7,4+7
- ends with x= v, y= 0. (=7 + )G<)

zero-test(x)

(+17 _1)

zero-test(y)

(_69 0)

O
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Simple Linear Path Schemes Asserting Non-Divisibility

Suppose we want to assert 7 f v. O
(+1,+5)
: . _ Y
Let's construct a 2-SLPS with zero tests that: (+1,-1) GC)
- starts with x= v, y= 0,

- can only be passed if 7 f v, and

Y
7,47
- ends with x= v, y= 0. (=7, + )G<)

zero-test(x)

(i) Choose r € {1,2,3,4,5,6} ... (+1,-1)

zero-test(y)

(ii) ... such that 7 | v + 7.

(_67 0)

O
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(iii) Restore x= v, y= 0.




Main Contribution

Theorem. Reachability in unary 3-SLPS is NP-complete.
Proof approach. Recall that reachability in (binary encoded) flat VASS is in NP.

For NP-hardness, reduce from 3-SAT.
\/ 1) Use “Chinese remainder encoding” for SAT.
\/ 2) Encode satisfiability as a conjunction of non-divisibility assertions.

\/ 3) Design a 2-SLPS with zero tests for asserting non-divisibility.

4) Concatenate these 2-SLPSs with zero tests so that reachability coincides with the conjunction

of non-divisibility assertions. And add an x + 1 loop for guessing an assignment x = v.

5) Use an additional third counter to simulate the zero tests.
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Simulating Zero Tests

Lemma 2.2 (Controlling Counter Technique). Let Z be a d-VASS with zero tests and let s(x),t(y)
be two configurations. Suppose Z has the property that on any accepting run from s(x) to t(y), at

most m zero tests are performed on each counter. Then there exists a (d+ 1)-VASS V and two
configurations s'(0),t' (y’) such that:

(1) s(x) Sz t(y) if and only if s'(0) Sy t'(y),
(2) V can be constructed in O((size(Z) + ||z||) - (m + 1)9) time, and
(3) 1yl < llyll-

Moreover, if Z is a flat VASS or a (simple) linear path scheme in which no zero-testing transition lies
on a cycle, then V can be assumed to be a flat VASS or a (simple) linear path scheme, respectively.

First developed in [Czerwinski, Lasota, Lazi¢, Leroux, and Mazowiecki '19]
First formalised in [Czerwinski and Orlikowski '21]

Reformulated in [this paper]
Takeway message: A “small” number of zero tests can be simulated by an additional counter.
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Main Contribution

Theorem 1. Reachability in unary 3-SLPS is NP-complete.
Proof approach. Recall that reachability in (binary encoded) flat VASS is in NP.

For NP-hardness, reduce from 3-SAT.

\/ 1) Use “Chinese remainder encoding” for SAT.

\/ 2) Encode satisfiability as a conjunction of non-divisibility assertions.
\/ 3) Design a 2-SLPS with zero tests for asserting non-divisibility.

\/ 4) Concatenate these 2-SLPSs with zero tests so that reachability coincides with the conjunction

of non-divisibility assertions. And add an x + 1 loop for guessing an assignment x = v.

\/ 5) Use an additional third counter to simulate the zero tests.
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Main Results

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.
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Flat-VASS  linearPath-Schemes  Ultraflat VASS
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Flat-VASS  linearPath-Schemes

Ultraflat VASS

Definition (Ultraflat VASS). An SLPS where the transitions between states have zero effect.

("‘]—9 _1)

(+1,+5)

(0,0)

(_79 +7)

(+]—9 _1)

(0’ O) (07 0) O (_67 0)

Not ultraflat :(
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Flat-VASS  linearPath-Schemes  Ultraflat VASS

Definition (Ultraflat VASS). An SLPS where the transitions between states have zero effect.

(+1a_1) (_77 +7) (+1a_1)

O (0,0) 8 (0,0) (0,0) (0,0) O (0,0) O

Ultraflat :)
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Flat-VASS  linearPath-Schemes  Ultraflat VASS

Definition (Ultraflat VASS). An SLPS where the transitions between states have zero effect.

(+1a_1) (_77 ‘|'7) (+1a_1)

O (0,0) 8 (0,0) (0,0) (0,0) O (0,0) O

Ultraflat :)
Counter program notation:
1. LOOP: x4+=1,y—=1
2. LOOP: x —=T7,y+=7
3. LOOP: x4+=1,y—=1
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Reachability in Ultraflat VASS

Theorem. Reachability in binary ultraflat 1-VASS is NP-hard. [Rosier and Yen '85] [Leroux '21]
Proof idea.

. LOOP: z+= o,

. LOOP: z += x>

. LOOP: z+= x3

. LOOP: z4= x,,
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Reachability in Ultraflat VASS

Theorem. Reachability in binary ultraflat 1-VASS is NP-hard. [Rosier and Yen '85] [Leroux '21]

Theorem. Reachability in unary ((ultra)flat) 1-VASS and 2-VASS is in NL. [Valiant and Paterson '73]
[Englert, Lazi¢, and Totzke '16]

For d > 3, is reachability in unary ultraflat d-VASS in P? [Leroux "21]

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Proof ingredients. 3-SAT reduction.

Chinese remainder encoding for SAT.
Conjunction of non-divisibility assertions.

Ultraflat 3-VASS with zero tests for asserting non-divisibility.

Concatenate non-divisibility asserting ultraflat VASS. _ _ _
Simulate zero tests with a controlling counter.
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Recap of Main Results

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Open problem. Is reachability in unary ultraflat 3-VASS NP-complete?

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.
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Unitary Simple Linear Path Schemes
Definition (Unitary SLPS). An SLPS where the counter updates are restricted to {—1,0, +1}.

(+1a_1) (_77 ‘|'7) (+1a_1)

: (+19 +5) E (07 0) (Oa O) (07 0) : (_67 O) :
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Unitary Simple Linear Path Schemes
Definition (Unitary SLPS). An SLPS where the counter updates are restricted to {—1,0, +1}.

(+1a_1) (_73 +7) (+1a_1)

: (+la +5) E (07 0) (Oa O) (07 0) : (_67 O) :

O e O e e ’O
(+1,+1) ~ (0,+1) ~ (0,+41) ~ (0,+1) ~ (0,+1)
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Unitary Simple Linear Path Schemes
Definition (Unitary SLPS). An SLPS where the counter updates are restricted to {—1,0, +1}.

(+19_1) (_77 +7) (+1a_1)

g; Not unitary :(
(‘|‘1a +5) (07 0) (Oa O) (07 0) : (_67 O) :

AN

O e O e e ’O
(+1,+1) ~ (0,+1) ~ (0,+41) ~ (0,+1) ~ (0,+1)
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Reachability in Unitary SLPS

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

UNITARYINVERSEACKERMANNDIMENSIONALSIMPLELINEARPATHSCHEMEREACHABILITY

Input: a natural number k encoded in unary,
a unitary O(a(k))-SLPS V of size poly(k),
an initial configuration p(u) encoded in unary, and

a target configuration q(v) encoded in unary.

Question: s there a run from p(u) to g(v) in V7?

Notation: ¢ : N — N is the inverse Ackermann function.
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Reachability in Unitary SLPS

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

UNITARYINVERSEACKERMANNDIMENSIONALSIMPLELINEARPATHSCHEMEREACHABILITY

Input: a natural number k encoded in unary,
a unitary O(a(k))-SLPS V of size poly(k),
an initial configuration p(u) encoded in unary, and

a target configuration q(v) encoded in unary.

Question: s there a run from p(u) to g(v) in V7?

Proof ingredients. 3-SAT reduction.

Chinese remainder encoding for SAT.
Conjunction of non-divisibility assertions.

Unitary 5-SLPS with zero tests for asserting non-divisibility.

Concatenate non-divisibility asserting unitary SLPSs.  Simulate zero tests with a different technique.

Notation: ¢ : N — N is the inverse Ackermann function.
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The Tractability Border of Reachability in
Simple Vector Addition Systems with States

Theorem 1. Reachability in unary 3-SLPS is NP-complete.

Theorem 2. Reachability in unary ultraflat 4-VASS is NP-complete.

Open problem. Is reachability in unary ultraflat 3-VASS NP-complete?

Theorem 3. Reachability in unitary inverse-Ackermann-dimensional SLPS is NP-complete.

Open problem. Does there exist d € N such that reachability in unitary d-SLPS is NP-complete?

Theorem 4. Reachability in unary 2-SLPS with binary encoded initial and target configurations is in P.

Thank You!

Presented by Henry Sinclair-Banks, University of Warsaw, Poland sl
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Ultraflat 3-VASS with Zero Tests for Asserting Non-Divisibility

1. LOOP: x4+=1,y4+=56,z—=1 Suppose we want to assert 5 f v.
2. LOOP: x+=2,y+=6,z—=1
3. LOOP: = 3, =7 z—=1 _ _
X+ Y+ ‘ This ultraflat 3-VASS with zero tests:

4. LOOP: x+=4,y+=8,z—=1
5. zero-test(z) - starts with x=v,y= 0, z= 1,
6. LOOP: x—=5,z+=5 - can only be passed if 5 / v, and
7. zero-test(x) - ends withx=v,y=0, z= 1.
8. LOOP: x4+=1,z—=1
9. zero-test(z)

10. LOOP: x —= 1’ y —= 5' Z—|—: 1 (l) Choose r - {1, 2, 3, 4}

11. LOOP: x —=2,y—=6,z4+=1

12. LOOP: x—=3,y—="7,z+=1 (if) ... such that 5 | v 4+ r.

13. LOOP: x —=4,y—=8,z4=1

14. zero-test(y) (iii) Restore x= v, y= 0.
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