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Abstract— We use synthetic data and a reinforcement learn-
ing algorithm to train a driving system controlling a full-size
real-world vehicle in a number of restricted driving scenarios.
The driving policy uses RGB images as input.

We show how design decisions about perception, control and
training impact the real-world performance.

I. Introduction

This work focuses on verification whether using synthetic
data from a simulator it is possible to obtain a driving system
which can be deployed in a real car. Our policies were trained
end-to-end using a reinforcement learning (RL) algorithm and
confirmed to be useful when tested on restricted scenarios with
a full-sized passenger vehicle with state-of-the-art equipment
required for Level 4 autonomy.

A number of design decisions were made, taking into
consideration the restriction of business environments. In
particular we use mostly synthetic data, with labelled real-
world data appearing only in the training of the segmentation
network. We also decided to use only the RGB input provided
by a single camera.

The driving policy is evaluated only concerning its real-
world performance on multiple scenarios outlined in Section
[l To complete a scenario, the driving agent needs to
execute from approximately 250 to 700 actions at 10 Hz
at speed varying from 15 to 30 km/h (4 to 8 m/s). In some of
our experiments, the learned controller outputs the steering
command directly. In other, the controller outputs waypoint
which is processed to steering using a proprietary control
system. In this work, we decided to limit intermediate human-
designed or learned representations of the real world only to
semantic segmentation. The semantic segmentator used in our
system is the only component trained using the real-world
data — its training process mixes real-world and synthetic
images. Our driving policies are trained only in simulation
and directly on visual inputs, understood as RGB images
along with their segmentation masks, except experiment R6
where we use only segmented images. The input contains
also selected car metrics and a high-level command inspired
by [1].

Using reinforcement learning and RGB inputs was a
conscious decision. The goal behind this choice was to answer
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the following research question: Is the system backed by the
state-of-the-art RL methods able to learn driving in the end-
to-end fashion?

In particular, is it able to acquire an intermediate represen-
tation of a scene, which is transferable from simulation to
the real world? We note that being able to train end-to-end is
desirable as it reduces human engineering effort. Even more
importantly, it also eliminates errors arising when gluing
a heterogeneous system consisting in particular of separate
perception and control modules.

A major difficulty related to learning in simulation was
stated in Section 5 of [2]: “when using a realistic simulator,
an extensive hyperparameters search becomes infeasible”. We
are using the same realistic simulator as in [2] — CARLA,
based on Unreal Engine 4. In order to alleviate the difficulty
related to the time consuming training we implemented a
parallelized training architecture inspired by IMPALA [3],
Ape-X [4], OpenAl Five [5], Horovod [6], DBA3C [7], see
also recent work [8]. Details of our parallelisation approach
are presented at the project webpage http://bit.ly/
2magbJj. With our current infrastructure and parallelization
methods, we generated as much as 100 years of simulated
driving experience — in our view enough for the limited
scenarios considered in this work. To verify whether synthetic
data from a simulator helps in improving driving skills we
conducted the following experiments which constitute the
main contribution of this work:

1. In simulation: we verify the influence of visual random-
izations on transfer between different scenarios in simulation;
results are summarized in section [V-Al

2. In real-world scenarios: we deploy 9 models listed in
Table [Ilin 9 scenarios. In total we report results gathered over
more than 400 test drives. See Section [V-B] for a detailed
description.

model description
R1 standard randomizations
R1-reg as R1 but lower entropy and L2-regularization
R2 standard randomizations and waypoint
R3 as R1 but also dynamics randomizations and policy with memory
R4 standard randomizations and continuous actions
RS as R1, but with auxiliary task: depth prediction
R6 as R1, but just segmentation input without RGB
R1-baseline as R1 but low randomizations
R3-baseline as R3 but feed-forward network

TABLE I

In Section [V=C] we describe two failure cases and in
Section [IV-D] we assess a proxy metric potentially useful
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for offline evaluation of models. To facilitate the review
process, we provide recordings from 9 autonomous test drives
https://bit.1ly/2k8syvh. The videos should not be
distributed. The test drives are in correspondence with the
scenarios listed in Figures 2]

II. Related work

a) Synthetic data and real-world robotics: Synthetic
images were used in the ALVINN experiment [9]. In [10]
was proposed a training procedure for drones and in [11],
[12], [13], [14], [5] were proposed experiments with robotic
manipulators where training was performed using only
synthetic data. Progressive nets and data generated using
the MuJoCo engine [15] were used in [16] to learn policies
in the domain of robot manipulation. A driving policy for a
one-person vehicle was trained in [17]. The policy in [17]
is reported to show good performance on a rural road and
the training used mostly synthetic data generated by Unreal
Engine 4. Our inclusion of segmentation as described in
Section [[II-.0.f] is inspired by sim2real experiments presented
in [18]. Visual steering systems inspired by [10] and trained
using synthetic data were presented in [19], [20].

b) Synthetic data and simulated robotics: Emergence of
high-quality general purpose physics engines such as MuJoCo
[15], along with game engines such as Unreal Engine 4 and
Unity, and their specialized extensions such as CARLA [2]
or AirSim [21], allowed for creation of sophisticated photo-
realistic environments which can be used for training and
testing of autonomous vehicles. A deep RL framework for
autonomous driving was proposed in [22] and tested using
the racing car simulator TORCS.

Reinforcement learning methods led to very good per-
formance in simulated robotics, see for example solutions
to complicated walking tasks in [23], [24]. In the context
of CARLA, impressive driving policies were trained using
imitation learning [1], [25], affordance learning [26], rein-
forcement learning [27], and a combination of model-based
and imitation learning methods proposed in [28]. However,
as stated in [17]: “training and evaluating methods purely
in simulation is often ‘doomed to succeed‘ at the desired
task in a simulated environment” and indeed, in our suite of
experiments described in Section [[II] most of the simulated
tasks can be relatively easily solved, in particular when a
given environment is deterministic and simulated observations
are not perturbed.

¢) Reinforcement learning and real-world robotics: An
extensive survey of various applications of RL in robotics
can be found in [29, Section 2.5]. The role of simulators and
RL in robotics is discussed in [30] in Section IV. In [10],
[12], [13], [14], [5], [18], [17], [16] policies are deployed
on real-world robots and training is performed mostly using
data generated by simulators. [31] proposes a system with
dynamics trained using real-world data and perception trained
using synthetic data. Training of an RL policy in the TORCS
engine with a real-world deployment is presented in [32].

III. Environment and learning algorithm

a) Simulator: We use CARLA ver. 0.9.5 [2], an open-
source simulator for autonomous driving research, based on
Unreal Engine 4. CARLA features open assets, including
seven built-in maps, 14 predefined weather settings, semantic
segmentation, as well as camera and LIDAR sensors (in our
experiments we only use RGB information). Camera position,
orientation, and settings are customizable. CARLA also
features multiple vehicles with different physical parameters.
Two visual quality levels (LOW and EPIC) are supported; the
latter implements visual features including shadows, water
reflections, sun flare effect, and antialiasing.

b) Simulated and real-world scenarios: The real-world
deployments consist of 9 scenarios, see Figure [2] The
scenarios include turns and an overpass. In training, we
assume that the simulated environment is static, without any
moving cars or pedestrians, hence a number of a human
driver interventions during test deployments in real traffic is
unavoidable. We developed new CARLA-compatible maps
which cover approximately 50% of the testing grounds used
in real-world deployments. We use these maps along with
maps provided in CARLA for training, with some scenarios
reserved for validation only.

In all scenarios agent’s goal is to follow a predefined route
from start to finish. A route is a list of checkpoints on the
map. The number of timesteps for a given scenario ranges
from 250 to 700. Agents are expected to drive in their own
lanes, but other traffic rules are ignored.

¢) Rewards in simulation and metrics of the real-world
performance: In simulation, the agent is rewarded for
following the reference trajectory (within some margin). The
episode fails if the agent diverges more than 5 meters or
collides with an obstacle. In the real world, for each scenario,
we measure the percentage of distance driven autonomously
(i.e. without human intervention); results are presented in
Figures [T] and [6] Since tests were made in an uncontrolled
environment with other vehicles and pedestrians, the human
driver was instructed to take over in all situations which were
potentially risky. We measure also divergence from expert
trajectories (Figure [).

d) Actions: Vehicles are controlled by two values:
throttle and steering. The throttle is controlled by a PID
controller with speed set to a constant, and thus our neural
network policies only command the steering. We explore
various possibilities for actions spaces. Typically, the policy
is modeled as a probability distribution over the angle of the
steering wheel. Unless stated otherwise, we used discretized
angles. Their values are not distributed evenly - with more
of them around 0 to improve smoothness of driving without
increasing the action space too much (viz. [0., £0.01, £0.02,
+0.03, £0.05, +£0.08, £0.12, £0.15, +0.2, £0.25, 0.3,
40.4], values are in radians). In experiment R4 we use
continuous values for the angle modeled with Gaussian
distributions, and in RS the policy outputs waypoints.

e) Observations: The observation of the agent consists
of an RGB image from a single front camera which is
downscaled to the resolution 134 x 84 pixels. The RGB
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Fig. 1: Summary of experiments R1-R6 with baselines across nine scenarios. The columns to the right show the mean and max of autonomy (the percentage
of distance driven autonomously). Models are sorted according to their mean performance. Print in color for better readability.

5\0 0SM (OpensStreetMap.org) ¥ | = (OSM (OpenStreetMap.org) ¥ | = o ielsurabe L pirelstrate 0OSM (OpenStreetMap.org) ¥ | =
««*“}Q&‘\ 2,
s : "
:
Hermann- = e,
Park
Fig. 2: All real-world scenarios used in our experiments. Left map: (a) autouni-arc, (b) autouni-straight. Center map:
(c) factory_city-overpass®*, (d) factory_city-overpass_exit. Right map: (e) factory_city-tunnel-btl0%*,
(f) factory_city-btl0-u_turn, (g) factory_city-u_turn-sud_strasse, (h) factory_city-sud_strasse_u_turn®,

(i) factory_city-u_turn-bt10*. Scenarios marked with asterisk were used for training in simulation.

observation is concatenated with its semantic segmentation
and two car metrics: speed and acceleration. There are two
exceptions: in experiment R2 we also provide steering and
in experiment R6 we do not include the RGB image. The
camera position and orientation in simulation was configured
to reflect the real-world setup. The agent is also provided with
a high-level navigation command: lane follow, turn right/left
or go straight.

f) Semantic segmentation: The semantic segmentation
model is trained in a supervised way separately from
the reinforcement learning loop. We used the U-Net [33]
architecture and synthetic data from CARLA, the Mapillary
dataset [34] as well as real-world labeled data from an
environment similar to the one used in test drives.

g) Network architecture: RL policy is implemented
using a neural network, see its simplified architecture in
Fig. B] As the feature extractor for the visual input (RGB
and semantic segmentation) we use the network from [3].
Our choice was influenced by [35], where this network was
shown to generalize well between different RL environments.
Note that policy transfer between simulation and reality can
be seen as a generalization challenge.

h) Learning algorithm: We used OpenAl Baselines
[36] ppo2 (see the project webpage http://bit.ly/
2magbJj for training hyperparameters). Thanks to dense
rewards the training in simulation was quite stable across
models and hyperparameters. For deployments we have
decided to use 1-4 models per experiment type, using roughly
100M synthetic frames per training (equivalent to about 115
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Fig. 3: Network architecture.

days of simulated time).

i) System identification: Inspired by the importance of
system identification for sim-to-real transfer demonstrated in
[37], we configured the CARLA simulator to mimic some
values measured in the car used for deployment. These
were the maximal steering angle and the time for a steering
command to take effect.

IV. Experiments

Figure [I] summarizes the performance of our models in
terms of the percentage of distance driven autonomously in all
scenarios. See Figure [] for a more fine-grained presentation.

Our best models are R1-Reg (regularized version of
randomizations) and R4 (continuous actions) followed by
R2 (control via waypoint instead of direct steering).

A. Experiment in simulation

Normalized training score Normalized holdout score

1.0 1 More randomizations
Less randomization
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Fig. 5: Left: Episode scores obtained during training. Less randomization
variant is easier and faster to train. Right: On a holdout town with holdout
weather better results hold for a model trained with more randomization.

Experiment S1: In this experiment, we measure in
simulation how randomizations affect performance. To this
end, we apply fewer randomizations then the set used
throughout all other experiments. We conclude that the model
trained with this standard set generalizes better to drive in a
holdout town and with a holdout weather setting, see Figure [5]

feature Few randomizations Standard randomizations

Weathers One weather 10 weather settings
Unreal engine quality [LOW] [LOW, EPIC]
Visual randomizations <NONE> [Noise, Cutout, Brightness, Blur]

Towns 6 different towns 6 different towns

TABLE 11
B. Experiments in the real world
See Figures [I] and [] for an overview of performance of
our models on nine real-world scenarios. Below we describe
in more details our all real-world experiments.

Experiment RI - base: This experiment provides base-
lines for comparisons with experiments R2-R6. To this end,
we prepared three models. First two: R1 and baseline for R1
were trained respectively with standard and few randomiza-
tions settings, see Table [7] (analogously to S1). They were
evaluated in the real world and performed disappointingly,
mostly due to severe wobbling.

To address this issue we fine-tuned R1 by further training:
reducing policy’s entropy and including L2-regularization.
The resulting model - R1-reg - was behaving significantly
better. Improved performance in RL generalization when
using L2-regularization was previously reported in [35].

Experiment R2 - waypoints: Following the approach
presented in [38], we train model R2 to predict the next
waypoint using branched neural network architecture with
separate heads for each of the high-level command (such as
turn left or lane follow).

Given a waypoint, low-level steering of the driving wheel
is executed in order to reach this point. In simulation, it is
realized by a PID controller while in the case of the real
car, we use a proprietary control system. To ensure similar
performance in simulation and reality, we limit the action
space of the RL agent to waypoints reachable by both of the
controllers. It consists of points within a radius of 5 meters
of the car. The action space is discrete - potential waypoints
are located every 5 degrees between —30 and 30, where 0 is
the current orientation of the vehicle.

Experiment R3 — dynamics randomizations: In [39], [5]
dynamics randomization is pointed as an important ingredient
of the sim-to-real transfer. In our training of model R3
dynamic randomization parameters are sampled for each
episode. Intuitively, an agent is expected to infer the dynamics
parameters at the beginning of the episode and utilize it until
its end for smooth driving. To this end, it needs to be endowed
with memory, which in our case is a GRU memory cell [40].

We introduced randomization to the following aspects of
the environment: target speed, steering response (including
random multiplicative factor and bias), latency (the delay
between observation and applying policy’s response to it),
and noise in car metrics observation (speed, acceleration,
wheel angle).

R3 model exhibits inferior performance, somewhat surpris-
ingly, even when compared with a baseline, for which we
trained a feed-forward network (i.e., without memory) under
dynamics randomization. We speculate that this is due to
overfitting when using high-capacity models with memory.
We intend to investigate this in future work.

Experiment R4 — continuous actions: In model R4, we
use a continuous action space. In training, steering is sampled
from a Gaussian distribution. Its mean is outputted by a neural
network based on observations while its standard deviation
is learnable and shared across observations. In evaluation,
we use a deterministic policy by taking the mean of the
distribution.

Experiment R5 — auxiliary depth: Auxiliary tasks are
an established method of improving RL training, see e.g.
[41]. Following that, in experiment RS, apart for the policy,



scenario_name = autouni-straight scenario_name = autouni-arc scenario_name = factory_city-from_tunnel_to_btl0 scenario_name = factory_city-from_bt10_to_u_arc

e o ) " — - HEl

w Wy - -l —

o b . - - .
L & - - -
2 baseline for R1 L]

w . Hll ]

S - - -

025 050 075 100 125 150 175 025 050 075 100 125 150 175 025 050 075 100 125 150 175 025 050 075 100 125 150 175
deviation_mean deviation_mean deviation_mean deviation_mean

Fig. 4: Average deviation of models from expert trajectories. Measurements based on GPS. The project website http://bit.ly/2magbJj| contains
information on all scenarios.

scenario_name = autouni-straight scenario_name = autouni-arc scenario_name = factory_city-overpass

R4 " Bee . e v B T et o e

baseline for R3 - . . L} . -

RS . ., e I ee 2* e st , 0

model_name

baseline for R1 - e “ s se .

RE e * Vo, T et e .. - e . Wed - e .
scenario_name = factory_city-from_tunnel_to_bt10 scenario_name = factory_city-from_btl0_to_u_arc  scenario_name = factory_city-from_u_arc_to_sud_strasse
Rl-reg . -~ . . e o=
R4 T ™ o0 Gy, LIC
R2 . e . . 0, e 8, 0 ee 3 . .
o baseline for R3 . .
g
E, =13 ., . . " rr e s " an,f s - ., -
%
g baseline for R1 - . .
R1 L] L] .. - .
R3 . L] * . . 4 .

RE ey * LY . . . e .

scenario_name = factory_city-from_sud_strasse to u_arc  scenario_name = factory_city-from_u_arc_to_bt10 scenario_name = factory_city-overpass_exit

Rl-reg P Ae U L . sslds
R4 . . LI o s 8 * ®mjeew .., . "0 ey
R2 * . .. .=, . . e -, . %% .
baseline for R3 . -

RS . e * . . " ‘ol * L - - * .

model_name

baseline for R1
R1 - - . . . .
R3 . - o - L
RE - " Y N . ’ o™ . st = -

00 0z 0.4 06 0.8 10 0.0 0z 0.4 06 0.8 10 0.0 0z 04 06 0.8 10
driven_autonomously driven_autonomously driven_autonomously

Fig. 6: Summary of experiments R1-R6 across 9 scenarios with baselines. Each subfigure represents performance for a given deployment scenario.

our neural network predicts depth. The depth prediction is  over R1 and baseline R1 experiments.
learned in a supervised way, along with the RL training. This
auxiliary task slightly speeds the training in simulation. In
real-world evaluations, model RS showed slight improvement

Experiment R6 — segmentation-only: Similarly to [38]
we test hypothesis that segmentation is a useful common
representation space for the simulation to real transfer. In our
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between blue (full autonomy in all experiments) and red (human assistance in all experiments). Graphs for other models and other routes are available via

the project webpage http://bit.ly/2magbJj.

R6 experiment we trained models taking only segmentation
as input, for which we recorded overall weak performance.
We speculate that in our case, the RGB input carries crucial
information, not present in segmentation (e.g. about depth).

C. Selected failure cases

1) Single-line versus double-line road markings : In
initial experiments we have used CARLA’s TOWNI1 and
TOWN?2 maps which feature only double-line road markings.
When evaluated on real-world footage, such a policy was
not sensitive to single-line road markings, whereas it was
sensitive to double-line road markings in simulation.

This problem was fixed after introducing our custom
CARLA maps which feature a single-line road markings.

2) Bug in reward function resulting in driving over the curb:
Our reward functions includes a term that penalizes for not
sticking to the center of a lane. In our initial implementation
distance used for calculating the penalty was using all X,
Y and Z spatial coordinates. Due to technical reasons our
list of lane-center positions was actually placed above the
road in the Z axis. This resulted in a policy that drives with
two right side wheels placed on a high curb so its elevation
is increased and distance to the center-line point above the
ground is decreased. The fix was to calculate penalty using
only X and Y coordinates.

D. Offline models evaluation

A fundamental issue in sim-to-real experiments is that
good performance in simulation does not necessarily transfer
to real-world. It is aggravated by the fact that real-world
testing is costly both in time and resources. Inspired by
[42] we introduced a proxy metric, which can be calculated
offline and correlates with real-world evaluations. Namely, for
seven scenarios with prefix factory_city we obtained
a human reference drive. Frame by frame, we compared
the reference steering with the one given by our models
calculating the mean square error, mae. We observe a clear
trend, see Figure [§] While this result is still statistically
rather weak, we consider it to be a promising future research
direction. We present an additional F metric and more details
on the project webpage http://bit.ly/2magbJj.
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Fig. 8: Dependence of mean driven_autonomously metric (for all models
with exception of R2 and RS) on their mae with the reference drives. Model
R2 is not included due to the different action space and we were unable to
process all data for model R5 — new figure with 8 reference dots will be
available later via the project webpage http://bit.ly/2magbJjl

V. Conclusions and future work

We presented a comprehensive overview of a series of
experiments intended to train an end-to-end driving policy
using the CARLA simulator. Our policies were deployed
and tested on a full-size car exhibiting substantial level of
autonomy in a number of restricted driving scenarios.

The current results let us to speculate about the following
promising directions: using more regularization, utilizing
continuous action spaces and waypoints and using off-line
proxy metric. While we obtained poor results with memory-
augmented architectures, we plan to investigate the topic
further.

We also consider other training algorithms which use
a replay buffer such as V-trace [3] and SAC [43]. The
asymmetric actor-critic architecture presented in [12] and
a generator-discriminator pair similar to the one in [44] can
be also beneficial for training of driving polices. Another
interesting and challenging direction is integration of an
intermediate representation layer — for example a 2D-map
or a bird’s-eye view, as proposed in [27], [28], [45], [46].
Focusing RL training on fragments of scenarios with the
highest uncertainty, see, e.g., [47] might improve driving
stability. Integration of model-based methods similar to [48]
would be a desirable step towards better sample efficiency.
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