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FULL ABSTRACTION

JM1K = JM2K if and only if M1
⇠= M2

Robin Milner (1977)
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ARENAS
An arena A = ⟨MA, IA, λA,⊢A⟩ is given by:

• a set of moves MA and a subset IA ⊆ MA of initial
ones,

• a labelling function λA : MA → {O, P}× {Q,A},

• an enabling relation ⊢A ⊆ MA × (MA \ IA);

satisfying, for each m,m′ ∈ MA, the conditions:

• m ∈ IA =⇒ λA(m) = (P,A),

• m ⊢A m′ ∧ λQA
A (m) = A =⇒ λQA

A (m′) = Q,

• m ⊢A m′ =⇒ λOP
A (m) ≠ λOP

A (m′).
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ARENA (INITIAL+REST)
226 Game Model

A B

(iA, iB)

A− B−

†
iA

A−
B

A + B A ⊗ B A ⇒ B

Figure 5.1: Arena constructions. The arena for A + B is simply the combination
of the arenas for A and B, seen as bipartite graphs. In the case of A ⊗ B, the arena
has as initial moves pairs of initial moves from A and B, from which the remainder
sub-arenas of A (denoted A−) and B (resp. B−) are justified — we write A− for A
with its initial moves removed. The function arena A ⇒ B has a unique initial move
(†) which justifies the initial moves of the input arena A, the latter justifying A−

but also the initial moves of the output arena B.

form ζ1 → ζ2. They translate to !ζ1" ⇒ !ζ2", which are generally given
by a diagram of the form:

†

v1

v2

where v1, v2 ∈ {⋆} ∪ Z ∪ A are moves from !ζ1" and !ζ2" respectively.
The † is initial, and justifies (all) questions v1, each of which justifies
(all) answers v2.

Games used to interpret terms are played between arenas, and in
particular between the arenas denoting the context/input and the re-
sult/output type respectively. The structures that encode such com-
binations of input and output arenas are called prearenas. They are
defined in the same way as arenas with the exception that initial moves
are O-questions.

Given arenas A and B, we define the prearena A → B by:

MA→B = MA + MB IA→B = IA
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ARENA EXAMPLES

!unit" = ⟨{⋆}, {⋆}, ∅, ∅⟩

!int" = ⟨Z,Z, ∅, ∅⟩

!θ → θ′" = !θ" ⇒ !θ′"

!refθ" = !unit → θ" ⊗ !θ → unit"

!refθ" = ⟨Aθ,Aθ, ∅, ∅⟩
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EXAMPLE (ARENA)
!(int → int) → int"

(int2 → int1) → int0

†

†′

i2 k0

j1

57



INTERPRETATION
• Although types are interpreted by arenas, the actual
games will be played in prearenas, which are defined
in the same way as arenas with the exception that
initial moves are O-questions.

• Typed terms

x1 : θ1, · · · , xn : θn ⊢ M : θ

are interpreted using the (pre)arena

!θ1" ⊗ · · ·⊗ !θn" → !θ"

where → is the same way as ⇒ but without †.
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EXAMPLE (PREARENA)

g : int → int ⊢ g(g(7) + 1) + 2 : int

† 72 81 92 101 120

O P O P O P

int2 → int1 ⊢ int0

O †

P 72

O 81

P 92

O 101

P 120

! ⊢ (int → int) → int"
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⋆

†
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i2 k0

j1
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JUSTIFIED SEQUENCES
A justified sequence on a prearena A is a sequence of
moves from MA such that

• the first move must be from IA,

• any other move n is equipped with a pointer to an
earlier move m such that m ⊢A n.

A play is a justified sequence satisfying

• alternation,

• bracketing.
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PLAYS

A justified sequence on a prearena A is a sequence of
moves from MA such that

• the first move must be from IA,

• any other move n is equipped with a pointer to an
earlier move m such that m ⊢A n.

A play is a justified sequence satisfying

• alternation,

• bracketing.
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STRATEGIES
A (deterministic) strategy σ on a prearena A, written
σ : A, is a set of even-length plays of A satisfying

• even-prefix closure: if sop ∈ σ then s ∈ σ,

• determinacy: if sp1, sp2 ∈ σ then p1 = p2.

60
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⊢ (int2 → int1) → int0
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even-length
prefixes of



STRATEGY COMPOSITION

⊢ int2 → int1

O ⋆

P †

O 72

P 81

O 102

P 111

63

x : ref (int → int) ⊢ !x : int → int

n(n,†) †(n,†) 1(n,†) 1(n,†) 3(n,†) 3(n,†)

x : ref (int → int) ⊢ λhint.(!x)h : int → int

n(n,†) ⋆(n,†) 1(n,†) 1(n,†) 3(n,†) 3(n,†)

ref int ref (ref int) ref (ref (ref int)) · · ·

C[M ] ⇓?

• For any nominal set X, any x ∈ X and any S ⊆ A,
S strongly supports x if, for any permutation π,

(∀a ∈ S. π(a) = a) ⇐⇒ πx = x.

• {a, b} strongly supports (a, b) but not {a, b}.

• If one makes [(a, b){a, b}] interact with [{a, b} a] =
[{a, b} b] via {a, b} one gets

both (a, b) a and (a, b) b.

• Strong support is necessary/sufficient to preserve de-
terminacy [Tzevelekos, LMCS’09].

σ : A → B τ : B → C
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TOWARDS STRATEGY 
COMPOSITION

int2 → int1 ⊢ int0
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INTERACTION

int2 → int1 ⊢ int0
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INTERACTION SEQUENCE
⊢ int2 → int1 ⊢ int0

O ⋆

P † O

O 72 P

P 81 O

O 102 P

P 111 O

140 P
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HIDING

⊢ int0

O ⋆

140 P

64



• Composition = synchronised parallel 
composition (interaction sequence) followed 
by hiding

• It is non-trivial to establish associativity.

STRATEGY COMPOSITION



COMPOSITIONAL 
INTERPRETATION

• Types interpreted by games between O and P.

• Terms interpreted by strategies for P.

• Each syntactic construct interpreted through 
special strategies, constructions on strategies 
and composition.

• Categories of games (arenas) and strategies.
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REFERENCES
• Operational semantics uses names to 

manage resources via references.

• They come from an infinite set, can be 
compared for equality and generated afresh.

• Game models of references from the 1990s 
were name-free, though, e.g. Abramsky, 
Honda, McCusker [LICS’98].

!unit" = ⟨{⋆}, {⋆}, ∅, ∅⟩

!int" = ⟨Z,Z, ∅, ∅⟩

!θ → θ′" = !θ" ⇒ !θ′"

!refθ" = !unit → θ" ⊗ !θ → unit"

!refθ" = ⟨Aθ,Aθ, ∅, ∅⟩
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NAME-FREE GAMES

⊢ ref int(0) : ref int

!ref int" = !unit → int" ⊗ !int → unit"

⋆

(†1, †2)

⋆1 j2

i1 ⋆2

⋆ (†1, †2) ⋆1 01 12 ⋆2 ⋆1 11

65
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BAD VARIABLES
• The model can detect the act of reading and 

writing.

• Full abstraction results from 1990s had to rely on  
syntax augmented with bad variables (and no 
name equality).

⊢ ref int(0) : ref int

!ref int" = !unit → int" ⊗ !int → unit"

⋆

(†1, †2)

⋆1 j2

i1 ⋆2

⋆ (†1, †2) ⋆1 01 12 ⋆2 ⋆1 11

Γ ⊢ M : unit → θ Γ ⊢ M : θ → unit

Γ ⊢ mkvar(M,N) : ref θ

65



CONSEQUENCES
Γ ⊢ M : unit → θ Γ ⊢ N : θ → unit

Γ ⊢ mkvar(M,N) : θ ref

x := 1 ≁= x := 1;x := 1

!x : int ref ⊢ x := 1 : unit" !x : int ref ⊢ x := 1;x := 1 : unit"

run write(1) ok done run write(1) ok write(1) ok done

2

⊢ ref int(0) : ref int

!ref int" = !unit → int" ⊗ !int → unit"

⋆

(†1, †2)

⋆1 j2

i1 ⋆2

⋆ (†1, †2) ⋆1 01 12 ⋆2 ⋆1 11

Γ ⊢ M : unit → θ Γ ⊢ M : θ → unit

Γ ⊢ mkvar(M,N) : ref θ

⋆ (†1, †2) ⋆1 01 12 ⋆2 ⋆1 11

x : ref int ⊢ x := 1; x := 1 : unit

(†1, †2) 12 ⋆2 12 ⋆2

x : ref int ⊢ x := 1 : unit

(†1, †2) 12 ⋆2
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⊢ ref int(0) : ref int
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Γ ⊢ M : unit → θ Γ ⊢ M : θ → unit

Γ ⊢ mkvar(M,N) : ref θ

⋆ (†1, †2) ⋆1 01 12 ⋆2 ⋆1 11

x : ref int ⊢ x := 1; x := 1 : unit

(†1, †2) 12 ⋆2 12 ⋆2

x : ref int ⊢ x := 1 : unit

(†1, †2) 12 ⋆2
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FULL ABSTRACTION BY 
COMPLETE PLAYS

• A play is complete if all questions have been an-
swered.

• Let comp(σ) be the set of complete plays in σ.

• Full Abstraction:

Γ ⊢ M1
∼= M2

if and only if

comp(!Γ ⊢ M1") = comp(!Γ ⊢ M2")

66



VISIBILITY
• Without higher-order references, the patterns 

created by justification pointers are more restrictive.

• The target of a pointer must be present in the view 
of a play (visibility).

• A play is complete if all questions have been an-
swered.

• Let comp(σ) be the set of complete plays in σ.

• Full Abstraction:

Γ ⊢ M1
∼= M2

if and only if

comp(!Γ ⊢ M1") = comp(!Γ ⊢ M2")

The view !s" of a justified sequence s is defined by:

!ε" = ε

!smt n" = !s"m n

⋆ † 31 40 31 40

O P O P O P

66



INNOCENCE
• Without references, strategies turn out to 

depend only on a fragment of play.

• Innocence: P’s responses are determined 
by the view.

• A play is complete if all questions have been an-
swered.

• Let comp(σ) be the set of complete plays in σ.

• Full Abstraction:

Γ ⊢ M1
∼= M2

if and only if

comp(!Γ ⊢ M1") = comp(!Γ ⊢ M2")

The view !s" of a justified sequence s is defined by:

!ε" = ε

!smSt nS′

" = !s"mSnS′

.

⋆ † 31 40 31 40

O P O P O P

66



OTHER PROPERTIES

• Lack of alternation (concurrency)

• Lack of bracketing (control)

• General theme in game semantics: capture 
programming language features by conditions 
on plays/strategies!



NOMINAL GAMES
•Dialogue between the environment (O) and 
the program (P).

•Technically, plays are moves that involve 
names drawn from an infinite set (stable 
under name invariance, i.e. nominal sets).

•Moves are accompanied by evolving stores.

main challenge is to identify conditions ensuring that higher-
order values not accessible to one of the strategies will not be
covertly modified during composition.

On the structural level, our proof of full abstraction follows
the well-established pattern of proving such results. Soundness
(Section ??) is obtained by showing conformance with a
categorical framework [?], already known to guarantee sound-
ness. Completeness (Section ??) follows from a definability
result, which is interesting in its own right, as the new
structure of plays enables one to perform rather unexpected
transformations on plays to reduce the problem to simpler
and smaller instances. Altogether we obtain a model in which
program approximation (contextual preorder) corresponds to
inclusion of the induced complete3 plays. This immediately
implies effective presentability, i.e. a decidable presentation
of the compact elements of the model. We believe our model
to provide a definitive game semantics for general references
in absence of polymorphism and recursive types.

Related and future work. As already described, our model
rectifies problems present in a previous game model due to
Abramsky, Honda and McCusker [?]. The structure of their
model was subsequently studied by Levy [?] and Melliès [?]
with the aim of understanding its structure in more abstract
terms.

Otherwise the most closely related work is Laird’s fully
abstract trace semantics of essentially the same language [?].
Our model can be viewed as a game-semantic counterpart
of his work: traces are derived from terms through an op-
erational semantics, whereas our strategies are defined in
a compositional and syntax-free manner. This illustrates a
recent convergence of complementary results in the two fields
(cf. [?] and [?]) that promises to lead, in the long run, to an
operational account of game semantics, which will ultimately
make it possible to move smoothly between (syntax-directed,
non-compositional) labelled transition system semantics and
(syntax-independent, compositional) game semantics.

Another compositional game model for the language consid-
ered in this paper has already been presented by one of us [?].
Grounded in monadic semantics for store, it did not however
offer an explicit characterization of program equivalence due
to reliance on innocent strategies (which had to be quotiented
for full abstraction). The present work can thus also be seen
as a refinement of that work towards a model that captures the
behaviour of the environment more faithfully.

In the wide spectrum of methodologies for references our
work offers a new foundation for compositional analysis of
general references. Modular verification of programs with
general references is a topical problem, which was already
attacked through a variety of approaches, e.g. separation
logic [?]. In future, we hope to apply our model to model-
checking and control-flow analysis in the spirit of algorithmic
game semantics [?, ?]. Although higher-order references are
an expressive paradigm, quickly resulting in undecidability,
decidable properties can sometimes be identified [?] and

3A play is complete if any questions occurring in it has been answered.

u,Γ ⊢ () : unit
i ∈ Z

u,Γ ⊢ i : int
a ∈ (u ∩ Aθ)
u,Γ ⊢ a : ref θ

(x : θ) ∈ Γ
u,Γ ⊢ x : θ

u,Γ ⊢ M1 : int u,Γ ⊢ M2 : int
u,Γ ⊢ M1 ⊕M2 : int

u,Γ ⊢ M : int u,Γ ⊢ N0 : θ u,Γ ⊢ N1 : θ
u,Γ ⊢ ifM thenN1 elseN0 : θ

u,Γ ⊢ M : ref θ
u,Γ ⊢ !M : θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : θ
u,Γ ⊢ M :=N : unit

u,Γ ⊢ M : θ
u,Γ ⊢ refθ(M) : ref θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : ref θ
u,Γ ⊢ M = N : int

u,Γ ⊢ M : θ → θ′ u,Γ ⊢ N : θ
u,Γ ⊢ MN : θ′

u,Γ ∪ {x : θ} ⊢ M : θ′

u,Γ ⊢ λxθ .M : θ → θ′

Fig. 1. Syntax of RefML.

we will be in a good position to approach such from a
new perspective. We would also like to make an impact on
the automated or machine-checkable verification of program
equivalences and understand the relationship between game
semantics and other methods used to the same end, such as
step-indexing [?] and bisimulation-based techniques [?]. On
the semantic front, as a next step, we would like to extend
our work to polymorphism, so as to eliminate the bad-variable
problem in [?].

II. THE LANGUAGE REFML

We shall work with types defined by the grammar below.

θ, θ′ ::= unit | int | ref θ | θ → θ′

The language considered, which we shall call RefML, is best
described as the call-by-value λ-calculus over the ground types
unit, int, ref θ augmented with basic commands (termination),
primitives for integer arithmetic (constants, zero-test, binary
integer functions) and higher-order reference manipulation
(reference names, dereferencing, assignment, memory alloca-
tion, reference equality testing). The typing rules are given
in Figure ??, where A =

⊎

θ Aθ stands for a countable set of
reference names (one such set for each type θ), or just names, u
for a finite subset of A, and ⊕ for binary integer functions (e.g.
+, −, ∗, =). Their precise choice is to some extent immaterial:
for the full abstraction argument to hold it suffices to be able
to compare integer variables with integer constants and act
on the result. In the above and in what follows, we write
M ;N for the term (λzθ.N)M , where z does not occur in N
and θ matches the type of M . letx = M inN will stand for
(λxθ .N)M in general. The values of the language are given
by the syntax:

V ::= () | i | a | x | λxθ.M.

To define the operational semantics of RefML, we need to
introduce a notion of store. A store will simply be a function
from a finite set of names to values such that the type of

2



NOMINAL GAMES

• Moves may contain names.
• Moves carry a store: once a new name is 

played, it is added to the domain of the 
store.

x :=1 /≅ x :=1;x :=1

!x ∶ int ref ⊢ x :=1 ∶ unit" !x ∶ int ref ⊢ x :=1;x :=1 ∶ unit"

run write(1) ok done run write(1) ok write(1) ok done

• Moves contain names.

• Moves carry a store: once a new name is played, it is added to the domain
of the store.

⋆ n(n,0) n(n,i) ⋆
(n,1)

!θ ref" =Aθ

2

the OP-complement of λA. Note that if i ⊢A m then λA(m) =
(O,Q). We call such moves m the initial questions of the
arena A. Given arenas A,B, the arenas A⊗B and A ⇒ B are
constructed as follows, where ĪA = MA\IA, ⊢̄A = (⊢A! ĪA2)
(and similarly for B).

MA⊗B = (IA × IB) % ĪA % ĪB IA⊗B = IA × IB

λA⊗B = [(iA, iB) &→ PA, λA ! ĪA, λB ! ĪB]

⊢A⊗B = {((iA, iB),m) | iA ⊢A m ∨ iB ⊢B m} ∪ ⊢̄A ∪ ⊢̄B

MA⇒B = {⋆} %MA %MB IA⇒B = {⋆}

λA⇒B = [ ⋆ &→ PA, λA[iA &→ OQ], λB ]

⊢A⇒B = {(⋆, iA)} ∪ {(iA, iB)}∪ ⊢A ∪ ⊢B

Now for each type θ we define the corresponding arena !θ".

!unit" = ⟨{⋆}, {⋆}, ∅, ∅⟩ !int" = ⟨Z,Z, ∅, ∅⟩

!ref θ" = ⟨Aθ,Aθ, ∅, ∅⟩ !θ → θ′" = !θ" ⇒ !θ′"

We write 1 for !unit", Z for !int", and Aθ for !ref θ".
Moreover, we set Mφ =

⊎

θ,θ′ M!θ→θ′". Although types are
interpreted by arenas, the actual games will be played in
prearenas, which are defined in the same way as arenas with
the exception that initial moves are O-questions. Given arenas
A,B we define the prearena A → B as follows.

MA→B = MA %MB λA→B = [λA[iA &→ OQ],λB]

IA→B = IA ⊢A→B = {(iA, iB)}∪ ⊢A ∪ ⊢B

We write Valθ for the set I!θ", that is,

Valunit = Valθ→θ′ = ⋆, Valint = Z, Valref θ = Aθ.

Let Val =
⊎

θ Valθ . A store Σ is a type-preserving finite partial
function from A to Val, that is, Σ : A ⇀ Val and

|Σ| finite ∧ (a ∈ dom(Σ) ∩ Aθ =⇒ Σ(a) ∈ Valθ) .

We write Sto for the set of all stores. A move-with-store on
a (pre)arena A is a pair mΣ with m ∈ MA and Σ ∈ Sto.

Definition 5: A justified sequence on a prearena A is a
sequence of moves-with-store from MA%Mφ such that, apart
from the first move which must be of the form iΣ with i ∈ IA,
every move in s is equipped with a pointer to an earlier move,
or to a name inside the store of an earlier move. These pointers
are called justification pointers and are subject to the following
constraints.

• If nT points to mΣ then either m,n ∈ MA and m ⊢A n,
or m,n ∈ Mθ→θ′ for some θ, θ′ and m ⊢!θ→θ′" n. We
say that mΣ justifies nT .

• If nT points to a ∈ dom(Σ) of mΣ then a ∈ Aθ→θ′ for
some θ, θ′, and n must be an initial question in M!θ→θ′".
We say that mΣ a-justifies nT .

An intuitive way to comprehend pointers to a name a ∈
dom(Σ) ∩Aθ→θ′ is to think of them as pointing to the value
⋆ of a stored in Σ. Since the value of a is of function type,
its structure is not revealed at once, but it can be explored

by players by invoking the function, that is, by playing in
!θ → θ′" from that initial ⋆.

Note that a justified sequence on A contains moves from
MA, called A-moves, and moves from Mφ, which hereditarily
point inside stores of other moves. The latter are called φ-
moves. We shall say that mΣ is an ancestor of nT (or that nT

is a descendant of mΣ) if there is a chain of pointers from nT

to m, possibly passing through stores on the way. Similarly,
we say that mΣ is an a-ancestor of nT (or that nT is an a-
descendant of mΣ) if there is a chain of pointers from nT to
a in Σ (the chain may also be visiting other stores). Note that
each φ-move has a unique a-ancestor, which is an A-move.

For each S ⊆ A and Σ we define:

Σ0(S) = S, Σi+1(S) = Σ(Σi(S))∩A, Σ∗(S) =
⋃

i
Σi(S).

The set of available names of a justified sequence is defined
inductively by Av(ϵ) = ∅ and

Av(snT ) =

⎧

⎪

⎨

⎪

⎩

Av(s) if there is an a-ancestor mΣ

of nT and a /∈ Av(s≤mΣ )

Σ∗(Av(s) ∪ ν(n)) otherwise

where s≤mΣ is the subsequence of s up to mΣ . We shall be
writing s ⊑ s′ to mean that s is a subsequence of s′.

Definition 6: Let A be a prearena. A justified sequence s
on A is called a legal sequence, written s ∈ LA, if it satisfies
the conditions below.

• No adjacent moves belong to the same player, and no
move points to a move (or the store of a move) of the
same player (Alternation).

• The justifier of each answer is the most recent unan-
swered question (Bracketing).

We call s a play if it additionally satisfies:

• For any s′mΣ ⊑ s, dom(Σ) = Av(s′mΣ) (Frugality).

We write PA for the set of plays on A.

Example 7: Here are two plays on !ref (int → int)" →
!int → int" (for the sake of clarity, we omit pointers that would
just point at preceding moves). We use double-line pointers to
highlight the justification pointers pointing at stores.

a(a,⋆) ⋆(a,⋆) 1(a,⋆) 1(a,⋆) 3(a,⋆) 3(a,⋆)

a(a,⋆) ⋆(a,⋆) 1(a,⋆) 1(a,⋆) 3(a,⋆) 3(a,⋆)

The plays will be among those used to interpret the terms

x : ref (int → int) ⊢ !x : int → int

x : ref (int → int) ⊢ λhint.(!x)h : int → int

respectively. Note that these terms can be distinguished by the
context

letx = newint→int in (λf
int→int.f(x := λhint.0 ; 0)) [ ].

Each name appearing in a legal sequence s, i.e. such that
a ∈ ν(s), is called a P-name of s, written a ∈ P (s), if it is

4



EXAMPLE

⊢ letn = ref int(0) inλx
unit.n : unit → ref int

⋆ † ⋆1 n(n,0) ⋆(n,5)1 n(n,5) ⋆(n,12)1 n(n,12)

O P O P O P O P
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EXAMPLE

• A play is complete if all questions have been an-
swered.

• Let comp(σ) be the set of complete plays in σ.

• Full Abstraction:

Γ ⊢ M1
∼= M2

if and only if

comp(!Γ ⊢ M1") = comp(!Γ ⊢ M2")

The view !s" of a justified sequence s is defined by:

!ε" = ε

!smt n" = !s"m n

⋆ † 31 40 31 40

O P O P O P

!ref θ" = Aθ

⊢ λxunit.ref int(0) : unit → ref int

⋆ † ⋆1 n(n1,0)
1 ⋆(n1,5)

1 n(n1,5)(n2,0)
2 ⋆(n1,7)(n2,12)

1 n(n1,7)(n2,12)(n3,0)
3

O P O P O P O P
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NOMINAL ARENAS
An arena A = (MA, IA,`A,�A) is given by:

• a set MA of moves,

• a subset IA ✓ MA of initial moves,

• a relation `A ✓ MA ⇥ (MA \ IA),

• a function �A : MA ! {O,P}⇥ {Q,A},

satisfying, for each m,m
0 2 MA, the conditions:

• m 2 IA =) �A(m) = (P,A) ,

• m `A m
0 ^ �

QA

A
(m) = A =) �

QA

A
(m0) = Q ,

• m `A m
0 =) �

OP

A
(m) 6= �

OP

A
(m0) .

We call `A the justification relation of A, and �A its
labelling function.

29

nominal

nominal
nominal

strong
nominal



STRATEGIES

A strategy σ on a prearena A is a non-empty set of
even-length plays of A satisfying:

• If soSpS
′

∈ σ then s ∈ σ (Even-prefix closure).

• If s ∈ σ then, for all permutations π, π · s ∈ σ
(Equivariance).

• If spS1

1 , spS2

2 ∈ σ then spS1

1 = π ·spS2

2 for some permu-
tation π (Determinacy).

We write σ : A to declare that σ is a strategy on A.
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STRONG SUPPORT

x : ref (int → int) ⊢ !x : int → int

n(n,⋆) †(n,⋆) 1(n,⋆) 1(n,⋆) 3(n,⋆) 3(n,⋆)

x : ref (int → int) ⊢ λhint.(!x)h : int → int

n(n,⋆) ⋆(n,⋆) 1(n,⋆) 1(n,⋆) 3(n,⋆) 3(n,⋆)

ref int ref (ref int) ref (ref (ref int)) · · ·

C[M ] ⇓?

• For any nominal set X, any x ∈ X and any S ⊆ A,
S strongly supports x if, for any permutation π,

(∀a ∈ S. π(a) = a) ⇐⇒ πx = x.

• {a, b} strongly supports (a, b) but not {a, b}.

• If one makes [(a, b){a, b}] interact with [{a, b} a] =
[{a, b} b] via {a, b} one gets

both (a, b) a and (a, b) b.

• Strong support is necessary/sufficient to preserve de-
terminacy [Tzevelekos, LMCS’09].
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HIGHER-ORDER STATE
•  We cannot reveal higher-order values in the store.  

This would jeopardize full abstraction!

• The properties of stored values will be revealed 
during play thanks to the use of special pointers to 
the store (in previous game models, pointers could 
only point at other moves).

m(a,†) · · · n(··· )
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EXAMPLE
x : ref (int → int) ⊢ !x : int → int

n(n,†) †(n,†) 1(n,†) 1(n,†) 3(n,†) 3(n,†)

x : ref (int → int) ⊢ λhint.(!x)h : int → int

n(n,†) ⋆(n,†) 1(n,†) 1(n,†) 3(n,†) 3(n,†)

ref int ref (ref int) ref (ref (ref int)) · · ·

C[M ] ⇓?

• For any nominal set X, any x ∈ X and any S ⊆ A,
S strongly supports x if, for any permutation π,

(∀a ∈ S. π(a) = a) ⇐⇒ πx = x.

• {a, b} strongly supports (a, b) but not {a, b}.

• If one makes [(a, b){a, b}] interact with [{a, b} a] =
[{a, b} b] via {a, b} one gets

both (a, b) a and (a, b) b.

• Strong support is necessary/sufficient to preserve de-
terminacy [Tzevelekos, LMCS’09].
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COMPOSITION

• Move ownership (O-name vs P-name)

• Interaction: enforce disjointness of P-
names, propagate foreign names

• Hiding: P-names cannot become O-names.



NOMINAL GAMES
BIBLIOGRAPHY

• A Game Semantics of Local Names and Good Variables (Laird;
FOSSACS’04)

• Nominal Games and Full Abstraction for the Nu-Calculus (Abram-
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• Game Semantics for Higher-Order Concurrency (Laird, FSTTCS’06)
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! ∶ 0,1,2,3 " ∶ 4,5,6,⋯

int ref (int ref) ref ⋯

" Ground ML
! Reduced ML
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ALGORITHMIC GAME 
SEMANTICS

• Design of algorithms based on game semantics.

• Because of full abstraction, the most immediate 
application is equivalence testing.

• Numerous relationships between classes of automata 
and classes of strategies (obtained for restricted finitary 
fragments).

• Source of the first and only decidability routines for 
contextual equivalence.



ALGORITHMIC GAME 
SEMANTICS
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strategy

fun (f:int->int) -> f(0)+1

eval ⋆ call(?) call(0) ret(13) ret(14)

S P S P S P

P1, P2

observationally
equivalent

⇐⇒ !P1" = !P2"

M1,M2

contextually
equivalent

⇐⇒ !M1" = !M2" ⇐⇒ AM1
≈ AM2

λx.M blockx inM

M :=N whileM doN

{0, · · · ,max}

Order Type
0 bool

1 bool → bool

2 (bool → bool) → bool

3 ((bool → bool) → bool) → bool

Order Observational Equivalence
1 PSPACE-complete
2 PSPACE-complete
3 EXPTIME-complete
4 undecidable

Order Observational Equivalence
1 EXPSPACE-complete
2 EXPSPACE-complete
3 2-EXPTIME-complete
4 undecidable

Order Observational Equivalence
1 2-EXPTIME-complete
2 2-EXPTIME-complete
3 3-EXPTIME-complete
4 undecidable

1



ALGORITHMIC NOMINAL

• The use of names means that the alphabet has to 
be infinite.

• Automata theory over infinite alphabets

• Lots of automata to choose from: RA, PDRA, CMA,
…

• Freshness is not a major concern in XML research, 
but can be integrated within existing frameworks. 



FINITARY GROUND ML
(FINITE INT, LOOPING, NO RECURSION)

· · · , θL, · · · ⊢ θR

θR decidability
unit !

unit → unit !

(unit → unit) → unit !

(unit → · · · → unit) → unit !

((unit → unit) → unit) → unit "

unit → unit → unit "

θL ≡ θR → . . . → θR → unit.

θL decidability of · · · , θL, · · · ⊢ θR
unit +

unit → unit +
(unit → unit) → unit +

((unit → unit) → unit) → unit +
(((unit → unit) → unit) → unit) → unit −

(unit → unit → unit) → unit −

18

· · · , θL, · · · ⊢ θR

θR decidability
unit !

unit → unit !

(unit → unit) → unit !

((unit → unit) → unit) → unit "

unit → unit → unit "

θL ≡ θR → . . . → θR → unit

θL decidability of · · · , θL, · · · ⊢ θR
unit +

unit → unit +
(unit → unit) → unit +

((unit → unit) → unit) → unit +
(((unit → unit) → unit) → unit) → unit −

(unit → unit → unit) → unit −

18

(M., Tzevelekos; ICALP’12)

x : ref (int → int) ⊢ !x : int → int

n(n,⋆) †(n,⋆) 1(n,⋆) 1(n,⋆) 3(n,⋆) 3(n,⋆)

x : ref (int → int) ⊢ λhint.(!x)h : int → int

n(n,⋆) ⋆(n,⋆) 1(n,⋆) 1(n,⋆) 3(n,⋆) 3(n,⋆)

ref int ref (ref int) ref (ref (ref int)) · · ·

69



TWO REASONS FOR 
INFINITE ALPHABETS

• resource creation

• binding structure

q ⋆ q n1
(n1,true) q(n1,false) n2

(n1,false),(n2,true)

2

q0 a0 q1 a1 q1 a1 q1 a1 q2 a2

n0 n0 n1 n1 n2 n2 n3 n3 n2 n2

3



FINITARY REDUCED ML
(FINITE INT, LOOPING, NO RECURSION)

x : ref (int → int) ⊢ !x : int → int

n(n,⋆) †(n,⋆) 1(n,⋆) 1(n,⋆) 3(n,⋆) 3(n,⋆)

x : ref (int → int) ⊢ λhint.(!x)h : int → int

n(n,⋆) ⋆(n,⋆) 1(n,⋆) 1(n,⋆) 3(n,⋆) 3(n,⋆)

ref int ref (ref int) ref (ref (ref int)) · · ·

69

• A Game Semantics of Local Names and Good Variables (Laird;
FOSSACS’04)

• Nominal Games and Full Abstraction for the Nu-Calculus (Abram-
sky, Ghica, M., Ong, Stark; LICS’04)

• Game Semantics for Higher-Order Concurrency (Laird, FSTTCS’06)

• Full abstraction for nominal general references (Tzevelekos, LICS’08)

• Full Abstraction for Reduced ML (M., Tzevelekos; FOSSACS’09)

• Game Semantics for Good General References (M. & Tzevelekos,
LICS’11)

• Game semantics for Interface Middleweight Java (M., Tzevelekos;
POPL 2014)

• Game Semantics for Nominal Exceptions (M., Tzevelekos; FOS-
SACS 2014)

• ν (Abramsky, Ghica, M., Ong, Stark; LICS’04)

• νρ (Laird; FOSSACS’04)

• Concurrent ML (Laird; FOSSACS’06)

• Reduced ML (M.,Tzevelekos; FOSSACS’09)

• RefML (M., Tzevelekos; LICS’11)

• Interface Middleweight Java (M.,Tzevelekos; POPL’14)

• ExML (M., Tzevelekos; FOSSACS 2014)

! ∶ 0,1,2,3 " ∶ 4,5,6,⋯

int ref (int ref) ref ⋯

" Ground ML
! Reduced ML

4

• Names used to encode pointers
• Connections with (nested) Petri nets

⊢ unit → unit

q ⋆ c r c r c r

⊢ unit → unit → unit

q ⋆ c r c r c r c1 r1 c r c r c1 r1

24

(C.-Barratt, Hopkins, M., Ong; FOSSACS’15)



CONEQCT
IMJA Compiler

Canonical form 
Converter

Automaton
Generator

Input 
IMJ* terms

IMJA
Automata

FPDRA Builder

IMJ2A
Converter

FPDRA
Converter

FPDRA
Automaton

FPDRA
Reachability

Checker

Fig. 1. Overview of tool architecture.

Checking language equivalence of IMJA proceeds through a series of intermediate
constructions, ultimately concluding with a fresh-register pushdown automaton (FP-
DRA). Due to the properties of the translation, the two IMJA are language equivalent
iff the FPDRA is (language) empty. An overview is shown in Figure 1. The tool reports
the main characteristics of each of the intermediate constructions (e.g. number of states,
number of registers) and the time taken to construct them.

From IMJ⇤ Terms to IMJA. The first transformation is from the pair input terms to a
pair of IMJA. This translation is extensively documented in [8] and our implementation
is faithful to that description, so we shall not discuss it further here. As soon as the
IMJA are produced, we remove states that are not graph-reachable from the initial state
or backwards-graph-unreachable from an accepting state (by graph-reachable we mean
reachable in the finite transition graph of the IMJA).

From IMJA to IMJ2A. The strategy for checking language equivalence of IMJA is to
construct a kind of symmetric difference automaton, which accepts exactly those words
that are in one of the two IMJA but not in the other, which is called an IMJ2 Automaton
(IMJ2A) in [8]. This is possible, because IMJA operate over a visibly pushdown al-
phabet [2] and, hence, their stacks can be synchronised. Overall, the translation in ibid.
ensures that the pair of IMJA represent the same interactions (plays) iff their IMJ2A
translate is empty.

From IMJ2A to FPDRA. IMJ2A are defined in terms of the underlying transitions of the
two constituent IMJA. Because they refer to two sets of registers, emptiness checking
is not straightforward: in order for the automata to synchronise, matching names have
to be used as labels. The following is an example of an IMJA2 transition:

(q1, q2)
call r1.m()S1 , call r2.m()S2

�����������������! (q01, q
0
2)

This transition describes how if the two underlying IMJA have reached states q1 and q2
respectively and, moreover, the same object name is contained in register r1 of the first
IMJA and register r2 of the second IMJA and there is a correspondence between the
names contained in the registers of the two IMJA which makes S1 and S2 correspond,
then they will both consume this call move and step into states q01 and q02 respectively.

The tool compiles away such special transitions by tracking register correspon-
dences. These are pairs of maps which describe how registers from the two constituent

3
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OPERATIONAL GAME SEMANTICS

A Fully Abstract Trace Semantics for General
References

J. Laird⋆

Dept. of Informatics, University of Sussex, UK
jiml@sussex.ac.uk

Abstract. We describe a fully abstract trace semantics for a functional
language with locally declared general references (a fragment of Standard
ML). It is based on a bipartite LTS in which states alternate between pro-
gram and environment configurations and labels carry only (sets of) basic
values, location and pointer names. Interaction between programs and
environments is either direct (initiating or terminating subprocedures)
or indirect (by the overwriting of shared locations): actions reflect this
by carrying updates to the shared part of the store.

The trace-sets of programs and contexts may be viewed as determin-
istic strategies and counter-strategies in the sense of game semantics: we
prove soundness of the semantics by showing that the evaluation of a pro-
gram in an environment tracks the interaction between the corresponding
strategies. We establish full abstraction by proving a definability result:
every bounded deterministic strategy of a given type is the trace-set of
a configuration of that type.

1 Introduction

The conjunction of functional programming and general references is a power-
ful one — for example, it can describe both object-oriented and aspect-oriented
[11] computation by translation. So it is not, perhaps, surprising that the be-
haviour of functional programs with locally bound references is difficult to reason
about; they may exhibit a variety of subtle phenomena such as aliassing, and
self-referencing and self-updating variables. In some respects, the higher-order
“pointer-passing” exhibited by such programs is analogous to process-passing in
a concurrent setting. The most significant differences between pointer-passing
and process-passing are that the former typically takes place sequentially, be-
tween a program and its environment rather than between processes in parallel,
and that pointers and locations may be passed through the medium of the store,
where they persist until overwritten. In this paper, we describe a labelled tran-
sition system for a sequential functional language with general references which
captures these aspects of reference passing, and use it to give a sound, complete
and direct characterization of contextual equivalence.

⋆ Supported by UK EPSRC grant GR/S72181.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 667–679, 2007.
c⃝ Springer-Verlag Berlin Heidelberg 2007
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Nominal Game Semantics

Andrzej S. Murawski
University of Warwick

Nikos Tzevelekos
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An invitation to game semantics

Andrzej S. Murawski Nikos Tzevelekos
Department of Computer Science School of Electronic Engineering and Computer Science

University of Warwick, UK Queen Mary University of London, UK

Game semantics is a flexible semantic theory that has led in recent years to an unprecedented number of
full abstraction results for various programming paradigms. We present a gentle introduction to the subject,

focussing on high-level ideas and examples with a view to providing a bridge to more technical literature.

1. INTRODUCTION

Denotational semantics aims at finding meaningful compositional interpretations (de-
notations) of programs, couched in a variety of mathematical universes. The quality
of such interpretations can then be measured by understanding which programs are
interpreted in the same way, i.e. by the same elements of the model. For example, in-
jective interpretations will be faithful models of the syntax. In contrast to that, if the
modelling objective is to characterise program behaviour then one would like the inter-
pretations of two programs to coincide if and only if the two programs are equivalent.
This criterion of modelling accuracy was introduced in the 1970s [Milner 1977], under
the name full abstraction. It has ever since become the highest prize for the practising
semanticist.

However, the quest for fully abstract models was not to be an easy one. Despite
advances in domain theory, which fuelled early semantic research, the construction of
fully abstract models turned out elusive, even though the techniques were ripe enough
to provide many informative models for numerous complicated programming features.
The efforts of the semantic community in the 1990s, focussed on the purely functional
language PCF, have generated a wealth of results. Among them was the emergence of
a new modelling approach, referred to as game semantics, which uses the metaphor of
game playing as a foundation for building models.

2. GAMES

Game semantics views computation as a two-player dialogue between a program and
the context (or environment) in which it was deployed. The interlocutors, or players,
are traditionally called O (Opponent) and P (Proponent). The former represents the
context, the latter corresponds to the program. Accordingly, a program is interpreted
by a strategy for P that tells P how to conduct the dialogue. Game semantics is not
about winning. Rather, the challenge is to design games in such a way that strategies
express the observable behaviour of code interacting with its computational environ-
ment.

ACM SIGLOG News 4 April 2016, Vol. 3, No. 2

ALGORITHMIC GAME SEMANTICS

A Tutorial Introduction

SAMSON ABRAMSKY (samson@comlab.ox.ac.uk)
Oxford University Computing Laboratory

1. Introduction

Game Semantics has emerged as a powerful paradigm for giving semantics to
a variety of programming languages and logical systems. It has been used to
construct the first syntax-independent fully abstract models for a spectrum of pro-
gramming languages ranging from purely functional languages to languages with
non-functional features such as control operators and locally-scoped references
[4, 21, 5, 19, 2, 22, 17, 11]. A substantial survey of the state of the art of Game
Semantics circa 1997 was given in a previous Marktoberdorf volume [6].

Our aim in this tutorial presentation is to give a first indication of how Game
Semantics can be developed in a new, algorithmic direction, with a view to appli-
cations in computer-assisted verification and program analysis. Some promising
steps have already been taken in this direction. Hankin and Malacaria have applied
Game Semantics to program analysis, e.g. to certifying secure information flows
in programs [25]. A particularly striking development was the work by Ghica and
McCusker [15] which captures the game semantics of a fragment of Idealized
Algol in a remarkably simple form as regular expressions. This leads to a decision
procedure for observation equivalence on this fragment. Ghica has subsequently
extended the approach to a call-by-value language with arrays [14], and to model
checking Hoare-style program correctness assertions [13].

We believe the time is ripe for a systematic development of this algorithmic
approach to game semantics. Game Semantics has several features which make
it very promising from this point of view. It provides a very concrete way of
building fully abstract models. It has a clear operational content, while admitting
compositional methods in the style of denotational semantics. The basic objects
studied in Game Semantics are games, and strategies on games. Strategies can be
seen as certain kinds of highly-constrained processes, hence they admit the same
kind of automata-theoretic representations central to model checking and allied
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Game Semantics
Samson Abramsky

University of Edinburgh
Department of Computer Science
James Clerk Maxwell Building

Edinburgh EH9 3JZ
Scotland

email: samson@dcs.ed.ac.uk
Guy McCusker
St John’s College
Oxford OX1 3JP

England
email: mccusker@comlab.ox.ac.uk

1 Introduction
The aim of this chapter is to give an introduction to some recent work on the appli-
cation of game semantics to the study of programming languages.

An initial success for game semantics was its use in giving the first syntax-free
descriptions of the fully abstract model for the functional programming language
PCF [1, 14, 31].

One goal of semantics is to characterize the “universe of discourse” implicit
in a programming language or a logic. Thus for a typed, higher-order functional
programming language such as PCF, one may try to characterize “what it is to
be a PCF-definable functional”. Well established domain-theoretic models [12, 35]
provide sufficiently rich universes of functionals to interpret languages such as PCF,
but in fact they are too rich; they include functionals, even “finitary” ones (defined
over the booleans, say), which are not definable in PCF. Moreover, by a remarkable
recent result of Ralph Loader [25], this is not an accident; this result (technically the
undecidability of observation equivalence on finitary PCF) implies that no effective
characterization of which functionals are definable in PCF (even in finitary PCF)
can exist. Thus in particular a model containing all and only the PCF-definable
functionals cannot be effectively presentable.

However, rather than focussing on the functionals in extenso, we may instead
seek to characterize those computational processes which arise in computing the
functionals. For a sequential, deterministic language such as PCF (and most func-


