NOMINAL GAME

SEMANTICS

Andrzej Murawski
UNIVERSITY OF OXFORD

FULL ABSTRACTION

= A S A e = i) = T

17170, 31 4

O P O P O P

letg = []ing(A\z™.2 + 3)

ARENAS

An arena A = (My, I4, Aa,F4) is given by:

e a set of moves My and a subset 4 C M4 of initial
ones,

e a labelling function A4 : My — {O, P} x {Q, A},

e an enabling relation -4 C My X (Ma \ 14);
satisfying, for each m, m’ € My, the conditions:

emcly = M(m)=(PA),

embam AN (m)=A4 = \m) =Q,

e mb,m = \¢F(m) # \qF(m)).

“NA (INITIAL+

EST)

ARENA CONST

(iAv iB)

A® B

RUCTIONS
f

e

14

Al

ARENA EXAMPLE

[unit] = ({x}, {x},0,0)
[int] = (Z,7Z,0, D)
[6 — 0] = [6] = [0]
[refd] = Junit — 0] ® [6 — unit]

EXAMPLE (ARENA)

INTERPRETATION

e Although types are interpreted by arenas, the actual
games will be played in prearenas, which are defined
in the same way as arenas with the exception that

initial moves are O-questions.

e Typed terms
x1:01,--- ,x,:0,F-M:0
are interpreted using the (pre)arena
(0] ® - @ [0n] = [0]

where — is the same way as = but without 7.

EXAMPLE (PREARENA)

| F (int — int) — int]

JUSTIFIED SEQUENCES

T02T0231408190

LA

02 T 02 31 40 8 9o
0O PA OQ PQ 0OQ PQ OA PA OA PA

STRATEGIES

even-length o m

prefixes of HOH 0, o R T
0Q PA 0Q PQ 0Q PQ OA PA OA PA

51

i eGY COMPOS

g B

asp @ W s O

T D

- Inty — Inty

72
81

105

k_’_\
114

|[ON

gERE Oy O RS

TOWARDS STRATEGY
COMPOSITION

g:int—intk g(g(7)+2)+3:int

int, — int; F intg inty — int; = intg
f O f
72 i 72
O
9 B 109
S NG ARG
9 0, 114
124 = 14,

R SRR R ©) T (O

IN

i int2 — iﬂtl

104
114

RAC

Sl BIE LB D) (g (O

|[ON

inty — inty F Intg

T
79

104

\\—ﬁ
11

14

N

A [ION SEQE

e Into, — Inty 5 int()

0, *
e
s T
O 79
/5
O 105
oS
P Lk

14¢

-INICE

T O gl T R

HIDING

o int()

14, P

STRATEGY COMPOSITION

COMPOSITIONAL
INTERPRETATION

* Types interpreted by games between O and P
- Jerms interpreted by strategies for P

* Each syntactic construct interpreted through
special strategies, constructions on strategies

and composition.

- (Categories of games (arenas) and strategies.

(IS8

A fully abstract game semantics for general references

Samson Abramsky

Abstract

A games model of a programming language with higher-
order store in the style of ML-references is introduced. The
category used for the model is obtained by relaxing certain
behavioural conditions on a category of games previously
used to provide fully abstract models of pure functional lan-
guages. The model is shown to be fully abstract by means of
factorization arguments which reduce the question of defin-
ability for the language with higher-order store to that for
its purely functional fragment.

Kohei Honda
LFCS, University of Edinburgh

Guy McCusker”
St John’s College, Oxford

created object to another object.

The key idea behind our model is to represent a refer-
ence by a certain form of information flow: a reference is
modelled not as a static entity, but as a dynamic behaviour
which mediates the flow of information between readers
and writers, connecting them in an appropriate fashion. In
the presence of higher-order references, these connections
have to be made dynamically, and the computations of the
multiple readers and writers may be interleaved in arbitrar-
ily complex ways. The technical apparatus of game se-
mantics provides exactly the right setting in which to for-
malize this idea. The “dynamic connections™ used to in-

REFERENCES

* Operational semantics uses hames to
manage resources via references.

* They come from an infinite set, can be
compared for equality and generated afresh.

« (Game models of references from the [990s
were name-free, though, e.g. Abramsky,

Honda, McCusker [LICS98].

[refd] = Junit — 0] ® [0 — unit]

NAM

-FREE GAMES

= refin(0) @ ref int [ref int] = Junit — int] ® [int — unit]
*
(t1, T2)
5 12
’ T m o
— T *x (T1,T2) *1° 01 1o %9 % 14

BAD VARIABLES

' M :unit— 0 I'=M:60 — unit
I' = mkvar(M, N) : ref 6

CONSEQUENCES

- refint r:=1 : unit zorefint =z =1 2 — 1 Sl

(T1, Jf2) 1y (t1,12) 1o % 1y %o

FULL ABSTRACTION BY

EOMPLE T E PLATS

e Full Abstraction:
' M; = M,

if and only if
comp([I' = M;]) = comp([I" - M>])

VISIBILITY

- Without higher-order references, the patterns
created by justification pointers are more restrictive.

 [he target of a pointer must be present in the view
of a play (visibility).

INNOCENC

» Without references, strategies turn out to
depend only on a fragment of play.

* Innocence: P's responses are determined
by the view.

P

*ﬁT 31 Kzl() 31 KZLO

ORdes (082 Ol 2

OTHER PROPERTIES

NOMINAL GAMES

A =Y, Ay

NOMINAL GAMES
[ref 0] = (Ag, Ay, 0, 0)

* Moves may contain names.
» Moves carry a store: once a new name Is
blayed, it 1s added to the domain of the

store.

vi T RTIRN
/\(n,()) n(n,z) L (n,1)

* n

-XAM

T

— letn = refine(0) in Az"™ . : unit — ref int

= Az refin(0) : unit — ref int

-XAM

0, P

T

1

*(n1,7)(n2,12)

0,

s

3

n(nl ,7) (712,12)(713,0)

/£

s NOMINAL ARENE. o

An arena A = (Mg, I4,F4 “4) is given by:

e a set M4 of moves, nominal

nominal e a subset 14 C M4 of initial move~

e a relation 4 C My x (Mg \ 1),

e a function A4 : My — {O, P} x {Q, A},
satisfying, for each m, m’ € My, the conditions:

emecly = M(m)=(PA),

e mhk4m A)\gA(m) — A =)\gA(m/) = (@,

emb,m = \Q¥(m) # \E(m).

We call -4 the justification relation of A, and A4 its
labelling function.

STRATEGIES

A strategy o on a prearena A is a non-empty set of
even-length plays of A satistying:

o If 50°p° € o then s € o (Even-prefiz closure).

o If s € o then, for all permutations 7, # - s € o
(Equivariance).

o If sp1 ,sp2 € o then sp]L =T- sp22 for some permu-
tation 7 (Determinacy).

STRONG SUPPOIRE

HIGHER-ORDER STATE

* We cannot reveal higher-order values in the store.
This would jeopardize full abstraction!

* The properties of stored values will be revealed
during play thanks to the use of special pointers to
the store (in previous game models, pointers could
only point at other moves).

-XAM

T

x : ref (int — int) F lx :int — int

(o tT 3) jth) Y nh) 30nh) g(n.h)

z : ref (int — int) = AR (I2)h : int — int

R0 W) AT) 3t g

COMPOSITION

NOM
BIBL

NAL GAMES
OGRAPHY

Av! (Laird; FOSSACS’04)

v (Abramsky, Ghica, M., Ong, Stark; LICS’04)

Concurrent ML (Laird; FOSSACS’06)

Reduced ML (M., Tzevelekos; FOSSACS’09)

RefML (M., Tzevelekos; LICS’11)

Interface Middleweight Java (M., Tzevelekos; POPL’14)

ExML (M., Tzevelekos; FOSSACS 2014)

ALGORITHMIC GAME
SEMANTICS

ALGO

intGreen =
intBlue
intRe

intG < 0 then int

intB < 0 then intBEly

intleve 1

color limb intCurrentBread

color limb intCurrentBread
endif

Ml ’ M2
contextually =
equivalent

Rl

RMIC GRS

ANTICS

ALGORITHMIC NOMINAL

-INITARY GROUND ML
(FINITE INT, LOOPING, NO RECURSION)

ref int ref (ref int) ref (ref (ref int))

o 0p, - Op

DR s— - —————rl

Or decidability

unit

unit — unit

(unit — unit) — unit

((unit — unit) — unit) — unit
unit — unit — unit

®» OO

(M., | zevelekos; [CAISESEES

VYO REASONS FOIS
INFINITE ALPHABETS

°* resource creation

(n1,false) n2(n1,false),(n2,true)

q

(n1,true)

q¢"* q"m

* binding structure

£ N\ - N\ - N\ ¥ N\ £ \
o ay g1 a1 Qg1 a1 g a1 g2 a2
J

"Ny Ny N1 M1 N2 N2 N3 N3 N2 N

J

~IN

(FINITE IN

ref int

A

IFCOORING, NOFREEE

®
®©

RY

%

LA

i i

Ve

RSION)

~ unit — unit — unit

Ground ML
Reduced ML

BN desilised io encode POINLERS
* Connections with (nested) Petri nets

(C.-Barratt, Hopkins, M., Ong; FOSS5AGESEN

EPSRC

Engineering and Physical Sciences —
Research Council < O N Q < ‘

f IMJA Compiler h f FPDRA Builder h (\
C ical f IMJ2A FPDRA
; \ anonical form ; N\ —
j Converter Converter AT
Input IMJA _)
k IMJ* terms rk Automata T
Automaton FPDRA
\ / (Generator ' \ / Converter [Reglgl?a%i ty
-) _ Y Checker
[POPL’14] IMFCS’14] ICALP’12]
[ATVA’15] [ATVA’15] [MFCS’14]
56 Andrzej S. Murawski, Steven J. Ramsay, Nikos Tzevelekos: A Contextual Equivalence

Checker for IMJ *. ATVA 2015: 234-240

jib K
lexd ML

or

“RATIONAL GAM

e —

B
)

A Fully Abstract Trace Semantics for (General

References

J. Laird*

Dept. of Informatics, University of Sussex, UK
jiml@sussex.ac.uk

Abstract. We describe a fully abstract trace semantics for a functional
language with locally declared general references (a fragment of Standard
ML). It is based on a bipartite LTS in which states alternate between pro-
gram and environment configurations and labels carry only (sets of) basic
values, location and pointer names. Interaction between programs and
environments is either direct (initiating or terminating subprocedures)
or indirect (by the overwriting of shared locations): actions reflect this
by carrying updates to the shared part of the store.

The trace-sets of programs and contexts may be viewed as determin-
istic strategies and counter-strategies in the sense of game semantics: we
prove soundness of the semantics by showing that the evaluation of a pro-
gram in an environment tracks the interaction between the corresponding
strategies. We establish full abstraction by proving a definability result:
every bounded deterministic strategy of a given type is the trace-set of
a configuration of that type.

-MAN T,

An invitation to game semantics

Andrze] S. Murawski Nikos Tzevelekos
‘Schoal of ence
‘Queen Mary University of London, UK

University of Warwick, UK

Game semantis is a lexible semanti theory that has led in recent years (o an unprecedented number of

focussing on

1. INTRODUCTION

t finding gful »
notations) of programs, couched in a variety of mathematical universes. The quality
ofsuch interpretations can thcn bc messured by understanding which programs are

terpreted in the ie. by the same elements of the model. For example, in-
e |||L:rpreulmni i rmmul models o the syntax. T contrast to that, i the
ke the inter-

s i oFForo peogfuis 10 cairicia s A only i tha o progsaran e eqlvoleat
This eriterion of modelling accuracy was introduced in the 1970s [Milner 19771, under
the name full abstraction. It has ever since become the highest prize for the practising
semanticist.

However, the quest for fully abstract models was not to be an easy one. Despite
advances in domain theory, which fuelled early semantic research, the construction of
e Py o

T oforts o ha semantic commanity in the 16008 e purely fatctional
Ianguage PCF, have gensrated a wealth of remulta, Among therm was the emeffrce of
anew modelling approach, referred to as game semantics, which uses the metaphor of
e Blayiai 6 o foundation fo bull g modele

2. GAMES
o G s mans. ol
ronment) i which i was deployed. The interlocotors, oflovers,
ore eadigenally callod O (Opponent) and P (Propanes. The former sepresirts he
context, the latter corresponds to the program. Accordingly, a program is interpre
by 8 siraegy for P thattalle P how o condut the dislogus. Game semants o not
about winning. Rather, the chall in such a way that st
express the observable oty mwramng with its computational environ-

ACM SIGLOG News a Aprl 2016, Vo3 o 2

TUTORIALS

Soundations and Trends® in Programming Languages

ol 2, No. 4 (2015) 191260

new

2016 A, . Murawski and N, Toevelekos

30 10.1561/2500000017

the scincs st ool

Nominal Game Semantics

Murawski
Um\u,Mt\ of Warwick

Nikos Trevelekos
Queen Mary University of London

ALGORITHMIC GAME SEMANTICS

ATutorial Introduction

SAMSON ABRAMSKY (samsonécomlab.ox. ac . uk)
Oxford University Computing Laboratory

1. Introduction

Game Semantics has emerged as a powerful paradigm for giving semantics to
a variety of programming languages and logical systems. It has been used to
construct the first syntax-independent fully abstract models for a spectrum of pro-
‘gramming languages ranging from purely functional languages to languages with
non-functional features such as control operators and locally-scoped references
[4.21,5,19,2,22, 17, 11]. A substantial survey of the state of the art of Game
Semantics circa 1997 was given in a previous Marktoberdorf volume [6]

Our aim in this twtorial presentation is to give a first indication of how Game,
Semantics can be developed in a new, algorithmic direction, with a view to appli-
cations in computer-assisted verification and program analysis. Some promising
steps have already been taken in this direction. Hankin and Malacaria have applied
10 program analysis, e.¢. to certifying secure information fic
in programs [25]. A particularly striking development was the work by Ghica
McCusker [15] which captures the game semantics of a fragment of Ideali
Algol in a remarkably simple form as regular expressions. This leads to a decit
procedure for observation equivalence on this fragment. Ghica has subseque
extended the approach to a call-by-value language with arrays [14], and to m¢
checking Hoare-tyle program simisot iy [13].

We believe the time. r a systematic development of this algorith
approach to game semantics e e |
it very promising from this point of view. It provides a very concrete way
building fully abstract models. It has a clear operational content, while admit
compositional methods in the style of denotational semantics. The basic obj
studied in Game Semantics are games, and strategies on games. Strategies car
seen as certain kinds of highly-constrained processes, hence they admit the s¢
kind of automata-theoretic representations central to model checking and al

paper.tex; 29/11/200

141087 ¢

Game Semantics

Samson Abramsky
University of Edinburgh
Department nf Computer Science
James Clerk Maxwell Building
Edinburgh EH9 3]Z

Scotland
email: samson@dcs.ed.ac.uk

Guy McCusker
St John’s College
Oxford OX1 31P
England
email: mccusker@comlab.ox.ac.uk

1 Introduction

The aim of this chapter is to give an introduction to some recent work on the appli-
cation of game semantics to the study of programming languages.

An initial success for game semantics use in giving the first syntax-free
dzscnpllum e s S L L
PCF (1.

One g A e e impli
in a programming language or a logic. Thus for a typed, mgnemmumnmaml
programming language such as PCF, one may try to characterize * s o
P PP defnabl fnctonsl Well eabihed domain heoree models 12,39

i PCF.

butin fact they are ro0 rich; they include functionals, even “fintary” ones (defined
overthe booleans, say), which are sor definable in PCF. Moreover, by a remarkable
recent result of Ralph Loader [25], his is not an accident; this result (technically the
undecidability of observation equivalence on finitary PCF) implies that no effective
characterization of which functionals are definable in PCF (even in finitary PCF)
can exist. Thus in particular a model containing all and only the PCF-definable
functionals cannot be effectively presentable.
However, rather than focussing on the functionals in extenso, we may instead
eck to characterize those computational processes which arise in computing the
functionals. For a sequential, deterministic language such as PCF (and most func-

