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In Coq nontermination has to be avoided

General recursion will make Coq inconsistent

Fixpoint bad (u : unit) : P := bad u.

Fixpoint definition has its “guard condition” (recursive calls has to be
done on structurally smaller terms) and it reduces only when aki (the
argument one does recursion on) starts with a constructor:

(Fix £ a1l ... aki) -> ti al ... aki

Fix and Case reductions are called together iota reduction

Daria Walukiewicz-Chrzqszcz
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Coinductive types
Lazy lists — LList

CoInductive LList (A:Set) :Set :=
LNil : LList A
| LCons : A -> LList A -> LList A

o terms built from constructors

@ LList is the greatest set of terms built from LNil i LCons
containing infinite and finite terms

@ induction principle does not hold

@ constructors are injective and distinct (one may use tactics
injection and discriminate)
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Coinductive types
Lazy trees — LTree

CoInductive LTree (A:Set) :Set :=
LLeaf : LTree A
| ILBin : A -> LTree A -> LTree A -> LTree A

o finite and infinite trees

@ some branches can be infinite
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Coinductive types
Streams — Stream

CoInductive Stream (A:Set) :Set :=
Cons : A -> Stream A -> Stream A
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Coinductive types
Streams — Stream

CoInductive Stream (A:Set) :Set
Cons : A -> Stream A -> Stream A

@ there are no finite streams
@ every stream is of the form Cons a 1
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Coinductive types
Pattern-matching

Definition isEmpty (A:Type) (1:LList A) : Prop :=
match 1 with

| LNil => True
| LCons a 1’ => False
end.
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Coinductive types
Pattern-matching

Definition isEmpty (A:Type) (1:LList A) : Prop :=
match 1 with

| LNil => True
| LCons a 1’ => False
end.

Definition LHead (A:Type) (1l:LList A) : option A :=
match 1 with
| LNil => None
| LCons a 1’ => Some a
end.
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Coinductive types
Pattern-matching

Fixpoint LNth (A:Type) (n:nat) (1l:LList A) {struct n} :
option A :=
match 1 with
| LNil => None
| LCons a 1’ => match n with
| 0 => Some a
| S p=>LNth p 1’
end
end.
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Coinductive types
Pattern-matching

Fixpoint LNth (A:Type) (n:nat) (1l:LList A) {struct n} :
option A :=
match 1 with
| LNil => None
| LCons a 1’ => match n with
| 0 => Some a
| S p=>LNth p 1’
end
end.

Eval compute in (LNth 2 (LCons 4 (LCons 3 (LCons 90 LNil)))).
= Some 90 : option nat
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Coinductive types
Building infinite objects

Goal: to represent infinite objects in a finite way.
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Coinductive types
Building infinite objects

Goal: to represent infinite objects in a finite way. Failed attempt:

Fixpoint from (n:nat) {struct n} : LList nat :=
Lcons n (from (S n)).

Reason: recursive call from is not applied to structurally smaller
argument. Successful attempt:

CoFixpoint from (n:nat) : LList nat := LCons n (from (S n)).

Definition Nats : LList nat := from O.

Daria Walukiewicz-Chrzqszcz
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all computations in Coq are finite,
recursive function consumes values of an inductive type,
corecursive function produces values in a coinductive type,

result may be infinite, but its every finite aproximation should be
computable in finite time,
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Coinductive types

Corecursive functions — introduction

all computations in Coq are finite,
recursive function consumes values of an inductive type,

corecursive function produces values in a coinductive type,

® 6 o6 o

result may be infinite, but its every finite aproximation should be
computable in finite time,

@ corecursive functions have its “guard conditions”.
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Coinductive types

Corecursive functions — guard condition

Definition by cofixpoint is correct if every (co)recursive call is one of
the arguments of some constructor of a coniductive type.

@ similarity: in lazy programming languages constructors do not
evaluate its arguments

@ if coinductive values are matched against patterns, then guard
condition ensures that every recursive call of a corecursive function
produces in a finite time its head-constructor

@ recursive function reduces when it is applied to a value with
constructor in head position; corecursive function reduces when it is
an argument to pattern-matching

Daria Walukiewicz-Chrzgszcz



Coinductive types
SEIES
Eval simpl in (from 3).

= from 3 : LLIst nat

Eval simpl in (LHead (LTail (from 3))).
= Some 4 : option nat
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Coinductive types
SEIES
Eval simpl in (from 3).

= from 3 : LLIst nat

Eval simpl in (LHead (LTail (from 3))).
= Some 4 : option nat

CoFixpoint forever (A:Type)(a:A):LList A:=LCons a (forever a).

CoFixpoint LAppend (A:Type) (u v:LList A) : LList A :=
match u with

| LNil => v
| LCons a u’ => LCons a (LAppend u’ v)
end.

Eval compute in (LNth 123 (LAppend (forever 33) Nats)).
= Some 33 : option nat

Eval compute in
(LNth 123 (LAppend (LCons O (LCons 1 (LCons 2 LNil))) Nats)).
= Some 120 : option nat
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Coinductive types
Incorrect definitions by cofixpoint

CoFixpoint filter (A:Set) (p: A->bool) (1:LList A) : LList A

match 1 with

| LNil => LNil

| LCons a 1’ => if (p a) then LCons a (filter p 1°)
else (filter p 1’) end.
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Coinductive types
Incorrect definitions by cofixpoint

CoFixpoint filter (A:Set) (p: A->bool) (1:LList A) : LList A

match 1 with

| LNil => LNil

| LCons a 1’ => if (p a) then LCons a (filter p 1°)
else (filter p 1’) end.

LHead (filter (fun p:nat =>
match p with 0 => true | S n => false end)
(from 1))

would cause an infinite computation
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Coinductive types
Decomposition lemmas

Definition LList_decompose (A:Type) (l:LList A) : LList A :=
match 1 with
| LNil => LNil
| LCons a 1’ => LCons a 1’
end.

Eval simpl in (LList_decompose (forever 33)).
= LCons 33 (forever 33) : LList nat
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Coinductive types
Decomposition lemmas

Definition LList_decompose (A:Type) (l:LList A) : LList A :=
match 1 with
| LNil => LNil
| LCons a 1’ => LCons a 1’
end.

Eval simpl in (LList_decompose (forever 33)).
= LCons 33 (forever 33) : LList nat

Lemma LList_decomposition : forall (A:Type) (1l:LList A), 1 =
LList_decompose 1.
Proof.
intros A 1; destruct 1; trivial.
Qed.
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Coinductive types
Proofs using decomposition

Ltac LList_unfold term := apply trans_equal with
(1 := LList_decomposition term).

Lemma LAppend_LNil : forall (A:Type) (v:LList A),
LAppend LNil v = v.
Proof.
intros A v.
LList_unfold (LAppend LNil v).
simpl; destruct v; reflexivity.
Qed.
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Coinductive types

Inductive predicates on coinductive types

Inductive Finite (A:Type) : LList A -> Prop :=

| Finite_LNil : Finite LNil

| Finite_LCons : forall (a:A) (1:LList A), Finite 1 -> Finite
(LCons a 1).
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Inductive predicates on coinductive types

Inductive Finite (A:Type) : LList A -> Prop :=
| Finite_LNil : Finite LNil
| Finite_LCons : forall (a:A) (1:LList A), Finite 1 -> Finite

(LCons a 1).

Remark one_two_three : Finite (LCons 1 (LCons 2 (LCons 3 LNil)))

Proof.
repeat constructor.

Qed.
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Coinductive types

Inductive predicates on coinductive types

Inductive Finite (A:Type) : LList A -> Prop :=

| Finite_LNil : Finite LNil

| Finite_LCons : forall (a:A) (1:LList A), Finite 1 -> Finite
(LCons a 1).

Remark one_two_three : Finite (LCons 1 (LCons 2 (LCons 3 LNil)))
Proof.

repeat constructor.

Qed.

Theorem Finite_of_LCons :
forall (A:Type) (a:A) (l:LList A),
Finite (LCons a 1) -> Finite 1.

Proof.
intros A a 1 H; inversion H; assumption.

Qed.
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Coinductive predicates

Coinductive predicates

CoInductive Infinite (A:Type) : LList A -> Prop :=
Infinite_LCons :
forall (a:A) (1:LList A), Infinite 1 -> Infinite (LCons a 1).
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Coinductive predicates

Coinductive predicates

CoInductive Infinite (A:Type) : LList A -> Prop :=
Infinite_LCons :
forall (a:A) (1:LList A), Infinite 1 -> Infinite (LCons a 1).

We want to prove that forall n:nat, Infinite (from n)
We need an auxiliary decomposition lemma for from:

Lemma from_unfold : forall n:nat, from n = LCons n (from (S
n)).
Proof.
intro n.
LList_unfold (from n).
simpl; trivial.
Qed.

Daria Walukiewicz-Chrzgszcz



Coinductive predicates

Proof of forall n:nat, Infinite (from n)

The proof will be a corecursive function — the greatest fixpoint of
F_from:

Definition F_from :
(forall n:nat, Infinite (from n)) -> forall n:nat, Infinite
(from n).

intros H n; rewrite (from_unfold n).
constructor; auto.
Defined.
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Coinductive predicates

Proof of forall n:nat, Infinite (from n)

The proof will be a corecursive function — the greatest fixpoint of
F_from:

Definition F_from :
(forall n:nat, Infinite (from n)) -> forall n:nat, Infinite
(from n).

intros H n; rewrite (from_unfold n).
constructor; auto.
Defined.

Theorem from_Infinite_VO : forall n:nat, Infinite (from n).
Proof (cofix H : forall n:nat, Infinite (from n) := F_from H).
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Coinductive predicates

Proof of forall n:nat, Infinite (from n)

The proof will be a corecursive function — the greatest fixpoint of
F_from:

Definition F_from :
(forall n:nat, Infinite (from n)) -> forall n:nat, Infinite
(from n).

intros H n; rewrite (from_unfold n).
constructor; auto.
Defined.

Theorem from_Infinite_VO : forall n:nat, Infinite (from n).
Proof (cofix H : forall n:nat, Infinite (from n) := F_from H).

Lemma from_Infinite : forall n:nat, Infinite (from n).
Proof.

cofix H.

intro n; rewrite (from_unfold n).

constructor; apply H.

Qed.
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Coinductive predicates

Wrong proof of forall n:nat, Infinite (from n)

Lemma from_Infinite_buggy : forall n:nat, Infinite (from n).
Proof.

cofix H.

assumption.

Qed.

Error: Recursive definition of “H” is ill-formed.
In environment

H: ¥ n:nat, Infinite (from n)

ungarded recursive call in H
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Coinductive predicates

Wrong proof of forall n:nat, Infinite (from n)

Lemma from_Infinite_buggy : forall n:nat, Infinite (from n).
Proof.

cofix H.

assumption.

Qed.

Error: Recursive definition of “H” is ill-formed.
In environment

H: ¥ n:nat, Infinite (from n)

ungarded recursive call in H

Note: you may use command Guarded, to check that “guard condition” is
still satisfied

Daria Walukiewicz-Chrzqszcz



Coinductive predicates

Elimination of coinductive assumptions

Tactics case and inversion work for coinductive types:

Lemma LNil_not_Infinite : forall A:Type, ~ Infinite (@LNil A).
Proof.

intros A H; inversion H.

Qed.

Daria Walukiewicz-Chrzgqszcz



Bisimulation

Equality of coinductive objects

Equality eq is adequate if finite number of simplification results in
identical terms. There are examples when it does not hold:
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Bisimulation

Equality of coinductive objects

Equality eq is adequate if finite number of simplification results in
identical terms. There are examples when it does not hold:

Lemma Lappend_of_Infinite_0 :
forall (A:Type) (u:LList A), Infinite u -> forall v:LList A,
u = LAppend u v.

Equality eq is too strong, one needs a weaker predicate.

Daria Walukiewicz-Chrzqszcz



Bisimulation
Bisimilarity

CoInductive bisimilar (A:Type) : LList A -> LList A -> Prop

| bisimO : bisimilar LNil LNil
| bisiml
forall (a:A) (1 1’:LList A),
bisimilar 1 1’ -> bisimilar (LCons a 1) (LCons a 17).
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Bisimulation
Bisimulation

Definition bisimulation (A:Type) (R:LList A -> LList A -> Prop)

forall 11 12:LList A,
R 11 12 ->
match 11 with
| LNil => 12 = LNil
| LCons a 1’1 =>
match 12 with
| LNil => False
| LCons b 1’2 =>a =Db AR 1’1 1°2
end
end.

Daria Walukiewicz-Chrzgqszcz



Park principle

Bisimilarity is the greatest relation containing the pair LNil, LNil and
closed under application of LCons.
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Park principle

Bisimilarity is the greatest relation containing the pair LNil, LNil and
closed under application of LCons.

Bisimulation is any relation satisfying these closure properties. Hence:

Theorem park_principle :
forall (A:Type) (R:LList A -> LList A -> Prop),
bisimulation R -> forall 11 12:LList A, R 11 12 ->
bisimilar 11 12.

Daria Walukiewicz-Chrzgqszcz



Example

Coinductive operational semantics for while-programs

(example from CPDT)

Nonterminating (and terminating) programs will be modeled using
coinductive types.

Definition var := nat.

Definition vars := var — nat.
Definition set (vs : vars) (v : var) (n : nat) : vars .=
fun v’ = if beq_nat v v’ then n else vs v".

Daria Walukiewicz-Chrzgszcz



Example
Expressions

Inductive exp : Set (=

| Const : nat — exp

| Var : var — exp

| Plus : exp — exp — exp.
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Example
Expressions

Inductive exp : Set (=

| Const : nat — exp

| Var : var — exp

| Plus : exp — exp — exp.

Fixpoint evalExp (vs : vars) (e : exp) : nat :=
match e with
| Const n = n
| Var v = vs v
| Plus el €2 = evalExp vs el + evalExp vs €2
end.
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Example
Instructions

Inductive cmd : Set =

| Assign : var — exp — cmd

| Seq : emd — cmd — cmd

| While : exp — cmd — cmd.

Daria Walukiewicz-Chrzgqszcz



Example
Operational semantics

A program that does not terminate in a particular initial state is related
to any final state.
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Example
Operational semantics

A program that does not terminate in a particular initial state is related
to any final state.

CoInductive evalCmd : vars — cmd — vars — Prop :=
| EvalAssign : V vs v e, evalCmd vs (Assign v e) (set vs v (evalExp vs
e))
| EvalSeq : V vsI vs2 vs3 cl c2, evalCmd vsl cl1 vs2
— evalCmd vs2 c2 vs3
— evalCmd vs1 (Seq cI ¢2) vs3
| EvalWhileFalse : V vs e ¢, evalExp vs e = 0
— evalCmd vs (While e ¢) vs
| EvalWhileTrue : V vsI vs2 vs3 e c, evalExp vsI e # 0
— evalCmd vsl c vs2
— evalCmd vs2 (While e c) vs3
— evalCmd vs1 (While e ¢) vs3.
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Example
Bisimulation for evalCmd

Section evalCmd_coind.
Variable R : vars — cmd — vars — Prop.

Hypothesis AssignCase : V vsl vs2 v e, R vs1 (Assign v €) vs2
— vs2 = set vsl v (evalExp vsI e).

Hypothesis SeqCase : V vsI vs3 c1 c2, R vs1 (Seq cI c2) vs3
— dvs2, Rvsl cl vs2 A R vs2 c2 vs3.

Hypothesis WhileCase : V vs1 vs3 e ¢, R vs1 (While e ¢) vs3
— (evalExp vsI e =0 A vs3 = vsl)
V 3 vs2, evalExp vsI e # 0 A R vsl c vs2 A R vs2 (While e ¢)
vs3.

Daria Walukiewicz-Chrzgqszcz



Example
Bisimulation for evalCmd cont.

Theorem evalCmd_coind : V vsl ¢ vs2, R vsl ¢ vs2 — evalCmd vsI
c vs2.
cofix; intros; destruct c.
rewrite (AssignCase H); constructor.
destruct (SeqCase H) as [? [? ?]]; econstructor; eauto.
destruct (WhileCase H) as [[? 7] | [? [? [? ?]]]]; subst;
econstructor; eauto.
Qed.
End evalCmd_coind.

Daria Walukiewicz-Chrzgqszcz



Example
Optimization

Fixpoint optExp (e : exp) : exp :=
match e with
| Plus (Const 0) e = optExp e
| Plus el e2 = Plus (optExp el) (optExp e2)
|- =e
end.
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Example
Optimization

Fixpoint optExp (e : exp) : exp :=
match e with
| Plus (Const 0) e = optExp e
| Plus el e2 = Plus (optExp el) (optExp e2)
|- =e
end.

Fixpoint optCmd (¢ : cmd) : cmd =
match ¢ with
| Assign v e = Assign v (optExp e)
| Seq cI ¢2 = Seq (optCmd c1) (optCmd c2)
| While e ¢ = While (optExp €) (optCmd c¢)

end.
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Example
Optimization correctness for expressions

Lemma optExp_correct : V vs e, evalExp vs (optExp e) = evalExp vs e.

Daria Walukiewicz-Chrzgqszcz



Example
Optimization correctness for instructions

Lemma optCmd_correctl : V vsI ¢ vs2, evalCmd vsI c vs2
— evalCmd vs1 (optCmd c) vs2.
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Example
Optimization correctness for instructions

Lemma optCmd_correctl : V vsI ¢ vs2, evalCmd vsI c vs2
— evalCmd vs1 (optCmd c) vs2.

Lemma optCmd_correct2 : V vsI ¢ vs2, evalCmd vsI (optCmd c) vs2
— evalCmd vsI c vs2.
intros; apply (evalCmd_coind (fun vsI ¢ vs2 = evalCmd vsI
(optCmd c¢) vs2));
crush; finisher.
Qed.
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Example

Optimization correctness for instructions, cont.

Theorem optCmd_correct : V vsI ¢ vs2, evalCmd vsI (optCmd ¢) vs2
<> evalCmd vsI c vs2.
split; apply optCmd_correctl || apply optCmd_correct2;
assumption.
Qed.

Daria Walukiewicz-Chrzgqszcz
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