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The Functor
Choice of categories

F : Graphs → Groups

I full and faithful:

Hom(X ,Y ) ∼= Hom(FX ,FY )

I “almost” full:

HomGraphs(X ,Y ) ∪ {∗}
∼=−→ Rep(FX ,FY )

where Rep(FX ,FY ) = Hom(FX ,FY )/FY
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The Functor
Choice of categories

F : Graphs → Groups

Choice of categories: target

I Groups - is interesting in itself

I Groups B−→ Ho (unpointed homotopy category)
yields, up to constant maps, a full embedding

BF : Graphs −→ Ho
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The Functor
Choice of categories

Choice of categories: source

Graphs is very comprehensive and well researched. Many
“non-homotopy” categories are contained in Graphs as full
subcategories:

I category of groups
I category of fields
I category of R-modules
I category of Hilbert spaces
I category of partially ordered sets
I category of simplicial sets
I category of metrizable spaces and continuous maps
I category of CW-complexes and continuous maps
I category of models of some first order theory
I many more

Tool: Adámek, Rosický Locally presentable and accessible categories, Theorem 2.65.
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Bass-Serre theory
Construction of the functor F
Reduction to trees

Bass-Serre theory on groups acting on trees

G = M ∗N P
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I If A ⊆ G is finite then it stabilizes a vertex of the tree

hence is conjugated to a subgroup of M or P.
I Take A = M finite, s.t. Hom(M,P) = ∗ and M → M is either

trivial or an inner automorphism.
I Let NM(N) = N, N ⊆ M does not extend to P → M,

N ⊆ P extends uniquely to P → P
then M ⊆ G uniquely extends to G→ G.
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Bass-Serre theory
Construction of the functor F
Reduction to trees

G = (M ∗N P) ∗N P
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Rep(G,G) = {∗} ∪ Hom(2,2)
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Bass-Serre theory
Construction of the functor F
Reduction to trees

Start with a graph Γ
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Bass-Serre theory
Construction of the functor F
Reduction to trees
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Bass-Serre theory
Construction of the functor F
Reduction to trees

Obtain graph of groups GΓ, define FΓ = colim GΓ
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Bass-Serre theory
Construction of the functor F
Reduction to trees

Example
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Bass-Serre theory
Construction of the functor F
Reduction to trees

Reduction to trees
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FΓ = F1Γ ∗F0Γ F2Γ
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Localizations
More properties of F
Large localizations of finite groups
Orthogonal subcategory problem

Two definitions of a localization L : C → C
1. L is a left adjoint of an inclusion D ⊆ C of some

subcategory.
2. L is a functor with coaugmentation η : Id → L such that

ηLX = LηX : LX → LLX is an isomorphism

Localizations may be viewed as projections
onto the class of local objects D
along the class of L-equivalences E = {f | Lf is an equivalence}
For every

f : A→ B in E , an L-equivalence and
Z in D, an L-local object

we have:
Hom(B,Z )

∼=−→ Hom(A,Z )

map(B,Z )
'−→ map(A,Z )
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Localizations
More properties of F
Large localizations of finite groups
Orthogonal subcategory problem

Orthogonality classes
If for f : A→ B and Z we have

Hom(B,Z )
∼=−→ Hom(A,Z )

map(B,Z )
'−→ map(A,Z )

then we say that f is orthogonal to Z and write f ⊥ Z .
A pair (E ,D) is orthogonal if E = D⊥ and D = E⊥.
A localization always yields an orthogonal pair.

Whether every orthogonal pair yields a localization depends on
set theory

in Graphs:
NO is consistent with ZFC
weak Vopěnka’s principle is equivalent to YES
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Localizations
More properties of F
Large localizations of finite groups
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More properties of F : Graphs → Groups

1. HomGraphs(X ,Y ) ∪ {∗}
∼=−→ Rep(FX ,FY )

2. f ⊥ Z if and only if Ff ⊥ FZ
3. F preserves directed colimits
4. F preserves intersections and countably co-directed limits
5. ∆ ⊆ Γ implies F∆ ⊆ FΓ

6. for every g ∈ FΓ there exists a finite subgraph ∆ ⊆ Γ s.t.
g ∈ F∆

7. F does not preserve products.
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Localizations
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Large localizations of finite groups
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Large localizations of finite groups

Theorem
There exist localizations L : Groups → Groups whose values LM
on a finite group M have arbitrarily large cardinalities.

Proof.
Vopěnka (1965): there exist arbitrarily large graphs Γ s.t.
Hom(Γ, Γ) = {id}.
The inclusion i : ∅ ⊆ Γ is orthogonal to Γ.
Fi ⊥ FΓ
If L = LFi then LM = FΓ.

Proved by Shelah and Göbel (2002) on 28 pages.
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Localizations
More properties of F
Large localizations of finite groups
Orthogonal subcategory problem

Theorem
The following are equivalent:

1. Every orthogonal pair (E ,D) in Groups is associated with a
localization.

2. Every orthogonal pair (E ,D) in Graphs is associated with a
localization (weak Vopěnka’s principle).

2 =⇒ 1 was proved by Adámek and Rosický (1994)
1 =⇒ 2 follows from properties of F
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Localizations
More properties of F
Large localizations of finite groups
Orthogonal subcategory problem

Theorem
The following are equivalent:

1. For every orthogonal pair (E ,D) in Groups there exists a
homomorphism f such that D = {f}⊥.

2. For every orthogonal pair (E ,D) in Graphs there exists a
map f such that D = {f}⊥ (Vopěnka’s principle).

3. For every orthogonal pair (E ,D) in Ho there exists a map f
such that D = {f}⊥.

2 =⇒ 3 was proved by Casacuberta, Scevenels, Smith (2005)
1 =⇒ 2 and 3 =⇒ 1 follow from properties of F
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Summary

An almost full embedding F : Graphs → Groups

HomGraphs(X ,Y ) ∪ {∗}
∼=−→ Rep(FX ,FY )

is a “black box” tool translating some categorical constructions
from many point-set categories to the category of groups
(or to the homotopy category).

I Question
Is there an embedding F : Graphs → Ab −Groups
such that f ⊥ Z if and only if Ff ⊥ FZ .
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