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Preface

These are lecture notes on the algebraic approach to regular languages. The
classical algebraic approach is for finite words; it uses semigroups instead of
automata. However, the algebraic approach can be extended to structures be-
yond words, e.g. infinite words, or trees or graphs.
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PART ONE

WORDS





1
Semigroups

In this chapter, we define semigroups and monoids, and show how they can be
used to recognise languages of finite words.

Definition 1.1 (Semigroup). A semigroup consists of an underlying set S to-
gether with a binary product operation

(a, b) 7→ ab,

that is associative in the sense that

a(bc) = (ab)c for all a, b, c ∈ S .

The definition says that the order of evaluation in a semigroup is not im-
portant, i.e. that different ways of parenthesising a sequence of elements in
the monoid will yield the same result as far as far as the semigroup product is
concerned. For example,

((ab)c)(d(e f )) = ((((ab)c)d)e) f .

Therefore, it makes sense to omit the parentheses and write simply

abcde f .

This means that the product operation in the semigroup can be seen as defined
not just on pairs of semigroups elements, but also on all finite words consisting
of semigroup elements.

A semigroup homomorphism if a function between semigroups that pre-
serves the structure of semigroups, i.e. a function

h : S︸︷︷︸
semigroup

→ T︸︷︷︸
semigroup

3
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which is consistent with the product operation in the sense that

h(a · b) = h(a) · h(b),

where the semigroup product on the left is in S , and the semigroup product on
the right is in T .

A monoid is the special case of a semigroup where there is an identity ele-
ment, denoted by 1 ∈ S , which satisfies

1a = a1 for all a ∈ S .

The identity element, if it exists, must be unique. This is because if there are
two candidates for the identity, then taking their product reveals the true iden-
tity. A monoid homomorphism is a semigroup homomorphism that preserves
the identity element.

Example 1.2. Here are some examples of monoids and semigroups.

(1) If Σ is a set, then the set Σ+ of nonempty words over Σ, equipped with con-
catenation, is a semigroup, called the free1 semigroup over generators Σ.
The free monoid is the set Σ∗ of possibly empty words.

(2) Every group is a monoid.

(3) For every set Q, the set of all functions Q → Q, equipped with function
composition, is a monoid. The monoid identity is the identity function.

(4) For every set Q, the set of all binary relations on Q is a monoid, when
equipped with relational composition

a ◦ b = {(p, q) : there is some r ∈ Q such that (p, r) ∈ a and (r, q) ∈ b}.

The monoid identity is the identity function. The monoid from the previous
item is a submonoid of this one, i.e. the inclusion map is a monoid homo-
morphism.

(5) Here are all semigroups of size two, up to semigroup isomorphism:

({0, 1},+)︸     ︷︷     ︸
addition mod 2

({0, 1},×) ({0, 1}, π1)︸      ︷︷      ︸
product ab is a

({0, 1}, π2)︸      ︷︷      ︸
product ab is b

The first two are monoids.

1 The reason for this name is the following universality property. The free semigroup is
generated by Σ, and it is the biggest semigroup generated by Σ in the following sense. For
every semigroup S that is generated by Σ, there exists a (unique) surjective semigroup
homomorphism h : Σ+ → S which is the identity on the Σ generators.
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Semigroup homomorphisms are closely related with functions that are com-
positional in the sense defined below. Let S be a semigroup, and let X be a set
(without a semigroup structure). A function

h : S → X

is called compositional if for every a, b ∈ S , the value h(a · b) is uniquely
determined by the values h(a) and h(b). If X has a semigroup structure, then
every semigroup homomorphism S → X is a compositional function. The
following lemma shows that the converse is also true for surjective functions.

Lemma 1.3. Let S be a semigroup, let X be a set, and let h : S → X be
a surjective compositional function. Then there exists (a unique) semigroup
structure on X which makes h into a semigroup homomorphism.

Proof Saying that h(a · b) is uniquely determined by h(a) and h(b), as in the
definition of compositionality, means that there is a binary operation ◦ on X,
which is not yet known to be associative, that satisfies

h(a · b) = h(a) ◦ h(b) for all a, b ∈ S . (1.1)

The semigroup structure on X uses ◦ as the semigroup operation. It remains to
prove associativity of ◦. Consider three elements of X, which can be written as
h(a), h(b), h(c) thanks to the assumption on surjectivity of h. We have

(h(a) ◦ h(b)) ◦ h(c)
(1.1)
= (h(ab)) ◦ h(c)

(1.1)
= h(abc).

The same reasoning shows that h(a) ◦ (h(b) ◦ h(c)) is equal to h(abc), thus
establishing associativity. �

Exercise 1. Show a function between two monoids that is a semigroup homo-
moprhism, but not a monoid homomorphism.

Exercise 2. Show that there are exponentially many semigroups of size n.

Exercise 3. Show that for every semigroup homomorphism h : Σ+ → S , with
S finite, there exists some N ∈ {1, 2, . . .} such that every word of length at least
N can be factorised as w = w1w2w3 where h(w2) is an idempotent2.

2 This exercise can be seen as the semigroup version of the pumping lemma.
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Recognising languages

In this book, we are interested in monoids and semigroups as an alternative to
finite automata for the purpose of recognising languages. Since languages are
usually defined for possibly empty words, we use monoids and not semigroups
when recognising languages.

Definition 1.4. Let Σ be a finite alphabet. A language L ⊆ Σ∗ is recognised by
a monoid homomorphism

h : Σ∗ → M

if membership in w ∈ L is determined uniquely by h(w). In other words, there
is a subset F ⊆ M such that

w ∈ L iff h(w) ∈ F for every w ∈ Σ∗.

We say that a language is recognised by a monoid if it is recognised by some
monoid homomorphism into that monoid. The following theorem shows that,
for the purpose of recognising languages, finite monoids and finite automata
are equivalent.

Theorem 1.5. The following conditions are equivalent for every L ⊆ Σ∗:

(1) L is recognised by a finite nondeterministic automaton;
(2) L is recognised by a finite monoid.

Proof

2⇒ 1 From a monoid homomorphism one creates a deterministic automaton,
whose states are elements of the monoid, the initial state is the identity, and
the transition function is

(m, a) 7→ m · (homomorphic image of a).

After reading an input word, the state of the automaton is its homomorphic
image, and therefore the accepting state from the monoid homomorphisms
can be used. This automaton computes the monoid product according to the
choice of parentheses illustrated in this example:

(((((ab)c)d)e) f )g.

1⇒ 2 Let Q be the states of the nondeterministic automaton recognising L.
Define a function3

δ : Σ∗ → monoid of binary relations on Q

3 This transformation from a nondeterministic (or deterministic) finite automaton to a monoid
incurs an exponential blow-up, which is unavoidable in the worst case.
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which sends a word w to the binary relation

{(p, q) ∈ Q2 : some run over w goes from p to q}.

This is a monoid homomorphism. It recognises the language: a word is in
the language if and only if its image under the homomorphism contains at
least one (initial, accepting) pair.

�

Exercise 4. Show that the translation from deterministic finite automata to
monoids is exponential in the worst case.

Exercise 5. Show that the translation from (left-to-right) deterministic finite
automata to monoids is exponential in the worst case, even if there is a right-
to-left deterministic automaton of same size.

Exercise 6. Which languages are recognised by finite commutative monoids?

The syntactic monoid of a language

Deterministic finite automata have minimisation, i.e. for every language there
is a minimal deterministic automaton, which can be found inside every other
deterministic automaton that recognises the language. The same is true for
monoids, as proved in the following theorem.

Theorem 1.6. For every language4 L ⊆ Σ∗ there is a surjective monoid homo-
morphism

h : Σ∗ → M,

called the syntactic homomorphism of L, which recognises it and is minimal in
the sense explained in the following quantified diagram5

∀∃! Σ∗
h // //

monoid homomorphism g
that recognises L '' ''

M

N

monoid homomorphism f

OOOO

4 The language need not be regular, and the alphabet need not be finite.
5 Here is how to read the diagram. For every red extension of the black diagram there exists a

unique blue extension which makes the diagram commute. Double headed arrows denote
surjective homomorphisms, which means that ∀ quantifies over surjective homomorphisms,
and the same is true for ∃!.
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Proof The proof is the same as for the Myhill-Nerode theorem about mini-
mal automata, except that the corresponding congruence is two-sided. Define
the syntactic congruence of L to be the equivalence relation ∼ on Σ∗ which
identifies two words w,w′ ∈ Σ∗ if

uwv ∈ L iff uw′v ∈ L for all u, v ∈ Σ∗.

Define h to be the function that maps a word to its equivalence class under
syntactic congruence. It is not hard to see that h is compositional, and therefore
by (the monoid version of) Lemma 1.3, one can equip the set of equivalence
classes of syntactic congruences with a monoid structure – call M the resulting
monoid – which turns h into a monoid homomorphism.

It remains to show minimality of h, as expressed by the diagram in the
lemma. Let then g be as in the diagram. Because g recognises the language
L, we have

g(w) = g(w′) implies w ∼ w′,

which, thanks to surjectivity of g, yields some function f from N to M, which
makes the diagram commute, i.e. h = f ◦ g. Furthermore, f must be a monoid
homomorphism, because

f (a1 · a2) = (by surjectivity of g, each ai can be presented as g(wi) for some wi)

f (g(w1) · g(w2)) = (g is a monoid homomorphism)

f (g(w1w2)) = (the diagram commutes)

h(w1w2) = (h is a monoid homomorphism)

h(w1) · h(w2) = (the diagram commutes)

f (g(w1)) · f (g(w2)) =

f (a1) · f (a2).

�

Exercise 7. Prove that surjectivity of g is important in Theorem 1.6.

Exercise 8. Show that for every language, not necessarily regular, its syntactic
homomorphism is the function

w ∈ Σ∗ 7→ (q 7→ qw)︸     ︷︷     ︸
state transformation

in the sytactic automaton

,
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where the syntactic automaton is the deterministic finite automaton from the
Myhill-Nerode theorem.



2
Green’s relations and the structure of finite

semigroups

In this chapter, we describe some of the structural theory of finite semigroups.
This theory is based on Green’s relations, which are pre-orders in a semigroup
that are based on prefixes, suffixes and infixes.

We begin with idempotents, which are ubiquitous in the analysis of finite
semigroups. A semigroup element e is called idempotent if it satisfies

ee = e.

Example 2.1. In a group, there is a unique idempotent element, namely the
group identity. There can be several idempotent elements, for example all ele-
ments are idempotent in the semigroup

({1, . . . , n},max).

One can think of idempotents as being a relaxed version of identity elements.

Lemma 2.2 (Idempotent Power Lemma). Let S be a finite semigroup. For
every a ∈ S , there is exactly one idempotent in the set

{a1, a2, a3, . . .} ⊆ S .

Proof Because the semigroup is finite, the sequence a1, a2, . . . must contain
a repetition, i.e. there must exist n, k ∈ {1, 2, . . .} such that

an = an+k = an+2k = · · · .

After multiplying both sides of the above equation by ank−n we get

ank = ank+k = ank+2k = · · · ,

and therefore ank = ank+nk is an idempotent. To prove uniqueness of the idem-
potent, suppose n1, n2 ∈ {1, 2, . . .} are powers such that that an1 and an2 are

10
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idempotent. The we have

an1 = (an1 )n2︸         ︷︷         ︸
because an1

is idempotent

= an1n2 = (an1 )n2 = an2︸         ︷︷         ︸
because an2

is idempotent

�

We use the name idempotent power for the unique idempotent in the above
lemma. Note that it is the resulting semigroup element an that is unique, and
not the exponent n. Finiteness is crucial for the above lemma, for example the
infinite semigroup

({1, 2, . . .},+)

contains no idempotents. The analysis presented in the rest of this chapter will
hold in any semigroup which satisfies the conclusion of the Idempotent Power
Lemma.

Green’s relations

We now give the main definition of this chapter.

Definition 2.3 (Green’s relations). Let a, b be elements of a semigroup S . We
say that a is a prefix of b if there exists a solution x of

ax = b.

The solution x can be an element of the semigroup, or empty (i.e. a = b).
Likewise we define the suffix and infix relations, but with the equations

xa = b︸ ︷︷ ︸
suffix

xay = b︸   ︷︷   ︸
infix

.

In the case of the infix relation, one or both of x and y can be empty.

Figure 2.1 shows a monoid along with the accompanying Green’s relations.
The prefix, suffix and infix relations are pre-orders, i.e. they are transitive and
reflexive1. They need not be anti-symmetric, for example in a group every
element is an prefix (suffix, infix) of every other element. We say that two

1 Another description of the prefix pre-order is that a is a prefix of b if

aS 1 ⊇ bS 1. (2.1)

In the above, S 1 is the monoid obtained from S by adding an identity element, unless it was
already there. The sets aS 1, bS 1 are called right ideals. Because of the description in terms of
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elements of a semigroup are in the same prefix class if they are prefixes of
each other. Likewise we define suffix classes and infix classes.

Clearly every prefix class is contained in some infix class, because prefixes
are special cases of infixes. Therefore, every infix class is partitioned into prefix
classes. For the same reasons, every infix class is partitioned into suffix classes.
The following lemma describes the structure of these partitions.

Lemma 2.4 (Eggbox lemma). The following hold in every finite semigroup.

(1) all distinct prefix classes in a given infix class are incomparable:

a, b are infix equivalent, and a is a prefix of b ⇒ a, b are prefix equivalent

(2) if a prefix class and a suffix class are contained in the same infix class, then
they have nonempty intersection;

(3) all prefix classes in the same infix class have the same size.

Of course, by symmetry, the lemma remains true after swapping infixes with
suffixes.

Proof

(1) This item says that distinct prefix classes in the same infix class are incom-
parable, with respect to the prefix relation. This item of the Eggbox Lemma
is the one that will be used most often.

Suppose that a, b are infix equivalent and a is a prefix of b, as witnessed
by solutions x, y, z to the equations

b = ax a = ybz.

As usual, each of x, y, z could be empty. This can be illustrated as

a
c7→cx

** b
c7→ycz

jj

By the Idempotent Power Lemma, there is some n ∈ {1, 2, . . .} such that yn

is idempotent. By following the loop around a in the above diagram n times,

inclusion of right ideals, the semigroup literature uses the notation

a ≥R b def
= aS 1 ⊇ bS 1

for the prefix relation. Likewise, a ≥L b is used for the prefix relation, which is defined in
terms of left ideals. Also, for some mysterious reason, a ≥J b is used for the infix relation. We
avoid this notation, because it makes longer words smaller.
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dotted rectangle
is an in�x class

proper in�x

yellow elements
are idempotent

blue rectangle
is a su�x class

red rectangle
is a pre�x class

Figure 2.1 The semigroup of partial functions from a three element set to itself,
partitioned into prefix, suffix and infix classes. In this particular example, the infix
classes are totally ordered, which need not be the case in general.
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and then going to b, we get

b = (follow 2n times the loop around a, then go to b)

y2na(xz)2nx = (yn is an idempotent)

yna(xz)2nx = (follow n times the loop around a)

a(xz)nz,

which establishes that b is a prefix of a, and therefore a, b are in the same
prefix class.

(2) We now show that prefix and suffix classes in the same infix class must
intersect. Suppose that a, b are in the same infix class, as witnessed by

a = xby.

With respect to the infix relation, by is between b and a, and therefore it
must be in the same infix class as both of them. We have

by is a suffix of xby = a︷  ︸︸  ︷
x b y︸︷︷︸

b is a prefix of by

,

and therefore, thanks to the previous item, by is prefix equivalent to b and
suffix equivalent to a. This witnesses that the prefix class of b and the suffix
class of a have nonempty intersection.

(3) We now show that all prefix classes in the same infix class have the same
size. Take some two prefix classes in the same infix class, given by repre-
sentatives a, b. We can assume that a, b are in the same suffix class, thanks
to the previous item. Let

a = xb b = ya

be witnesses for the fact that a, b are in the same suffix class. The following
claim implies that the two prefix classes under consideration have the same
size.

Claim 2.5. The following maps are mutually inverse bijections

prefix class of a
c7→yc

..
prefix class of b

c 7→xc
nn

Proof Suppose that c is in the prefix class of a, as witnessed by a decom-
position c = az. If we apply sequentially both maps in the statement of the
claim to c, then we get

xyc = xyaz
ya=b
= xbz xb=a

= az az=c
= c.
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This, and a symmetric argument for the case when c is in the prefix class of b,
establishes that the maps in the statement of the claim are mutually inverse.
It remains to justify that the images of the maps are as in the statement of the
claim, i.e. the image of the top map is the prefix class of b, and the image of
the bottom map is the prefix class of a. Because the two maps are mutually
inverse, and they prepend elements to their inputs, it follows that each of
the maps has its image contained in the infix class of a, b. To show that the
image of the top map is in the prefix class of b (a symmetric argument works
for the bottom map), we observe that every element of this image is of the
form yaz, and therefore it has b = ya as a prefix, but it is still in the same
infix class as a, b as we have observed before, and therefore it must be prefix
equivalent to b thanks to the item (1) of the lemma. �

�

The Eggbox Lemma establishes that each infix class has the structure of a
rectangular grid (which apparently is reminiscent of a box of eggs), with the
rows being prefix classes and the columns being suffix classes. Let us now look
at the eggs in the box: define anH-class to be a nonempty intersection of some
prefix class and some suffix class. By item (2) of the Eggbox Lemma, every
pair of prefix and suffix classes in the same infix class lead to some H-class.
The following lemma shows that allH-classes in the same infix class have the
same size.

Lemma 2.6. If a, b are in the same infix class, then there exist possibly empty
x, y such that the following is a bijection

H-class of a
c7→xcy

--
H-class of b

Proof Consider first the special case of the lemma, when a and b are in the
same suffix class. Take the map from Claim 2.5, which maps bijectively the
prefix class of a to the prefix class of b. Since this map preserves suffix classes,
it maps bijectively theH-class of a to theH-class of b. By a symmetric argu-
ment, the lemma is also true when a and b are in the same prefix class.

For the general case, we use item (2) of the Eggbox Lemma, which says
that there must be some intermediate element that is in the same prefix class
as a and in the same suffix class as b, and we can apply the previously proved
special cases to go from the H-class of a to the H-class of the intermediate
element, and then to theH-class of b. �

The following lemma shows a dichotomy for anH-class: either it is a group,
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or the the product of every two elements in thatH-class falls outside the infix
class.

Lemma 2.7 (H-class Lemma). Furthermore, the following conditions are
equivalent for everyH-class G in a finite semigroup:

(1) G contains an idempotent;
(2) ab is in the same infix class as a and b, for some a, b ∈ G;
(3) ab ∈ G for some a, b ∈ G;
(4) ab ∈ G for all a, b ∈ G;
(5) G is a group (with product inherited from the semigroup)

Proof Implications (5) ⇒ (1) ⇒ (2) in the lemma are obvious, so we focus
on the remaining implications.

(2)⇒(3) Suppose that ab is in the same infix class as a and b. Since a is a
prefix of ab, and the two elements are in the same infix class, item (1) of the
Eggbox Lemma implies that ab is in the prefix class of a, which is the same
as the prefix class of b. For similar reasons, ab is in the same suffix class as
a and b, and therefore ab ∈ G.

(3)⇒(4) Suppose that there exist a, b ∈ G with ab ∈ G. We need to show
that G contains the product of every elements c, d ∈ G. Since c is prefix
equivalent to a there is a decomposition a = xc, and for similar reasons
there is a decomposition b = dy. Therefore, cd is an infix of

a︷︸︸︷
xc

b︷︸︸︷
dy ∈ G,

and therefore it is in the same infix class as G. Since c is a prefix of cd, and
both are in the same infix class, the Eggbox Lemma implies that cd is in the
prefix class of c. For similar reasons cd is in the suffix class of d. Therefore,
cd ∈ G.

(4)⇒(5) Suppose that G is closed under products, i.e. it is a subsemigroup. We
will show that it is a group. By the Idempotent Power Lemma, G contains
some idempotent, call it e. We claim that e is an identity element in G, in
particular it is unique. Indeed, let a ∈ G. Because a and e are in the same
suffix class, it follows that a can be written as xe, and therefore

ae = xee = xe = a.

For similar reasons, ea = a, and therefore e is an identity element in G. The
group inverse is defined as follows. For a ∈ G, choose some k ∈ {2, 3, . . .}
such that ak is idempotent, such k exists by Lemma 2.2. Since there is only
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one idempotent in G, we have ak = e. Therefore, ak−1 is a group inverse of
a.

�

Exercise 9. Show that for every finite monoid, the infix class of the monoid
identity is a group.

Exercise 10. Consider a finite semigroup. Show that an infix class contains an
idempotent if and only if it is regular, which means that there exist a, b in the
infix class such that ab is also in the infix class.

Exercise 11. Show that if G1,G2 are two H-classes in the same infix class
of a finite semigroup, and they are both groups, then they are isomorphic as
groups2.

2 Let us combine Exercises 10 and 11. By Exercises (10) and theH-class lemma, an infix class
is regular if and only if it contains anH-class which is a group. By Exercise (11), the
corresponding group is unique up to isomorphism. This group is called the Schützenberger
group of the regular infix class.
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Solution to Exercise 1.
Let M be any monoid, e.g. the trivial monoid of size one, and let M′ be its
extension obtained by adding an extra identity element 1. The inclusion em-
bedding

M ↪→ M′

is a semigroup homomorphism, but not a monoid homomorphism.

Solution to Exercise 2.
Take any finite set X and any function

f : X2 → {0, true}.

The number of choices for f is exponential in X2. We can extend f to an
associative product operation on the set

S = X + {0, true}

by defining all products outside X2 to give value 0. Semigroups obtained this
way correspond to languages where all words have length at most 2.

Solution to Exercise 3.

Solution to Exercise 4.
For n ∈ {1, 2, . . .}, consider the language of words in {a, b}∗ where the n-th letter
is a. This language is recognised by a deterministic finite automaton with O(n)
states. To recognise the language with a monoid homomorphism, we need to
remember the first n letters of a word.

Solution to Exercise 5.
An example is words of length 2n + 1, over alphabet {a, b}, where the mid-
dle letter is a. For the same reasons as in Exercise 4, this language needs an
exponential size monoid to be recognised. On the other hand, the language is
clearly recognised by a deterministic automaton (running in either direction),
with O(n) states.

Solution to Exercise 6.
No surprises here – these are the commutative languages, i.e. languages L ⊆ Σ∗

which are commutative in the sense that

wabv ∈ L iff wbav ∈ L for all w, a, b, v ∈ Σ∗.

There is, however, an extended description of commutative languages, which
is given below.
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Consider a language L ⊆ Σ∗ recognised by a monoid homomorphism

h : Σ∗ → M,

where M is a commutative monoid. By commutativity of M, we have

h(w) =
∏
a∈Σ

h(a)#a(w) for every w ∈ Σ∗,

where #a(w) ∈ {0, 1, . . .} is the number of appearances of letter a ∈ Σ in w. For
every a ∈ M the sequence

a0, a1, a2, . . . ∈ M

is easily seen to be ultimately periodic, which means that after cutting of a
finite prefix of the sequence we get a sequence that is periodic. This in turn
implies that for every a, b ∈ M, the set

{i ∈ {0, 1, . . .} : ai = b}

is defined by a formula ϕ(i) which is a finite Boolean combination of formulas
which have one of the following forms:

(1) i = k for some k ∈ {0, 1, . . .}; or
(2) i ≡ k mod m for some k ∈ {0, 1, . . .}.

Putting these observations together, we see that for every b ∈ M, the set

{w ∈ Σ∗ : b =
∏
a∈Σ

h(a)#a(w)},

which is equal to the inverse image h−1(b), is defined by a finite Boolean com-
bination of formulas of one of the following forms:

(i) #a(w) = k for some a ∈ Σ and k ∈ {0, 1, . . .}; or
(ii) #a(w) ≡ k mod m for some a ∈ Σ and k ∈ {0, 1, . . .}.

It follows that the following conditions are equivalent for every language:

• recognised by a finite commutative monoid;
• regular and commutative as a language;
• defined by a finite Boolean combination of conditions as in (i) and (ii).

Solution to Exercise 7.
Consider the language (aa)∗ of even length words, which is recognised by the
homomorphism

h : a∗ → Z2 = ({0, 1},+mod2).
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Define Z2 + ⊥ to be the extension of Z2 with an absorbing element ⊥. Define

g : a∗ → Z2 + ⊥

to be the same function as h, except that the co-domain is bigger. In particular,
g is not surjective. We claim that there is no monoid homomorphism f which
makes the following diagram commute

a∗ h //

g
""

Z2

Z2 + ⊥

f

OO

Since ⊥ is absorbing in Z2 + ⊥, then the image of f (⊥) must be an absorbing
in Z2, and there are no absorbing elements in Z2. It follows that there is no f
which makes the diagram commute.

Solution to Exercise 8.
The syntactic congruence identifies two words w1 and w2 if

uw1v ∈ L⇔ uw2v ∈ L for all u, v ∈ Σ∗.

To prove the exercise, we will show that two words are equivalent in the above
sense if and only if they induce the same state transformations in the syntac-
tic automaton. Clearly if the words have the same state transformations, then
they are equivalent. We are left with proving the opposite, i.e. different state
transformations imply non-equivalence under the syntactic congruence.

Suppose that w1 and w2 have different state transformations. This means that
there is some state q of the syntactic automaton such that

qw1 , qw2.

Like any state of the syntactic automaton, q is reached from the initial state by
reading some word u. Since the states qw1 and qw2 are different, there must be
some word u such that exactly one of the states

(qw1)u (qw2)u

is accepting. Summing up, we have found two words u, v such that exactly one
of the words

uw1v uw2v

is in the language, thus proving that w1 and w2 are not equivalent under the
syntactic congruence.
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Solution to Exercise 9.
Let J be the infix class of the monoid identity 1. Since 1 is prefix of every
monoid element, it follows from the Eggbox Lemma that J is equal to the
prefix class of 1. For the same reasons, J is equal to the suffix class of 1.
Therefore J is a single H-class. Since J contains an idempotent, namely 1, it
must be a group by theH-class Lemma.

Solution to Exercise 10.
If an infix class contains an idempotent, then it clearly contains elements a, b
such that ab is in the infix class. For the converse implication, suppose that
a, b and ab are in the same infix class J. It follows that each of a, b can be
decomposed as products of two elements from J. By iterating this procedure,
we see that a can be decomposed as product of n elements from J, for every
n ∈ {1, 2, . . .}. Thanks Exercise 3, a product of n elements from J must contain
an idempotent infix.

Solution to Exercise 11.
Suppose that G1 and G2 are groups in the same infix class. Let e1, e2 be the
identities in the groups G1,G2. From Claim 2.5 it follows that there exist
x1, x2, y1, y2 such that

G1

g 7→x1gy1
++ G2

g 7→x2gy2

kk (2.2)

are mutually inverse bijections. By replacing

x1e1︸︷︷︸
new x1

e1x2︸︷︷︸
new x2

e1y1︸︷︷︸
new y1

y2e1︸︷︷︸
new y2

,

we still get mutually inverse bijections between G1 and G2. Summing up, we
can assume without loss of generality that x1, y2 end with e1, while x2, y1 begin
with e1.

The element y1x1 begins and ends with e1, and it is also an infix of e2 (and
therefore also of e1) thanks to

e2 = e2e2 = x1x2e2y2y1︸       ︷︷       ︸
e2

x1x2e2y2y1︸       ︷︷       ︸
e2

.

It follows from the Eggbox Lemma that y1x1 is both in the prefix class and
suffix class of e1, which means that y1x1 ∈ G1. Since G1 is a group, there must
be some a, b ∈ G1 such that

ay1x1a = e1
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Let y1x1 be the group inverse of y1x1, in the group G1. Define α : G1 → G2 to
be the composition of the following two functions

G1
g 7→gy1 x1 // G1

g 7→x1gy1 // G2.

The first function is a permutation of G1, while the second function is a bijec-
tion of G1 and G2. It follows that α is a bijection. We now claim that α is a
homomorphism:

α(gh) = x1ghy1x1y1 =

α(g)︷     ︸︸     ︷
x1g︸    ︷︷    ︸

e1

y1x1y1

α(h)︷     ︸︸     ︷
x1hy1x1y1 = α(g)α(h).

Summing up, α is a bijective semigroup homomorphism between the groups
G1 and G2. It follows that these groups are isomorphic as groups, because a
bijective semigroup homomorphism also preserves the group structure.
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