
Tree-walking automata
Mikołaj Bojańczyk

(Warsaw University)

Plan

-A tree-walking automaton

-Expressive power

-Pebble automata and logic

Plan

-A tree-walking automaton

-Expressive power

-Pebble automata and logic

Trees are #nite, binary and labeled

b

a

a

a b

Trees are #nite, binary and labeled

b

a

a

a b

A tree-walking automaton is sequential and two-way.

Trees are #nite, binary and labeled

b

a

a

a b

A tree-walking automaton is sequential and two-way.

Trees are #nite, binary and labeled

b

a

a

a b

A tree-walking automaton is sequential and two-way.

Trees are #nite, binary and labeled

b

a

a

a b

A tree-walking automaton is sequential and two-way.

Trees are #nite, binary and labeled

b

a

a

a b

A tree-walking automaton is sequential and two-way.

b

a

a

a b

If the state is p and the node is the root with label a,
then move to the left child and change state to q.

b

a

a

a b

If the state is p and the node is the root with label a,
then move to the left child and change state to q.

b

a

a

a b

If the state is p and the node is the root with label a,
then move to the left child and change state to q.

command

test

b

a

a

a b

If the state is p and the node is the root with label a,
then move to the left child and change state to q.

command

test

Tests are boolean
combinations of:
has label a,
is right/left child,
is leaf

Commands are:
move left/right/up,
accept,
reject

b

a

a

a b

If the state is p and the node is the root with label a,
then move to the left child and change state to q.

command

test

Tests are boolean
combinations of:
has label a,
is right/left child,
is leaf

Commands are:
move left/right/up,
accept,
reject

Def. A tree walking-automaton is a tuple

states
initial state alphabet

transitions

b

a

a

a b

Example.
Check if the pre#x is

b

a

a

b

a

a

a b

Example.
Check if the pre#x is

b

a

a

In state p, label a and root, move left, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

b

a

a

a b

Example.
Check if the pre#x is

b

a

a

In state p, label a and root, move left, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

b

a

a

a b

Example.
Check if the pre#x is

b

a

a

In state p, label a and root, move left, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

b

a

a

a b

Example.
Check if the pre#x is

b

a

a

In state p, label a and root, move left, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

b

a

a

a b

Example.
Check if the pre#x is

b

a

a

In state p, label a and root, move left, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

b

a

a

a b

Example.
Check if the pre#x is

b

a

a

In state p, label a and root, move left, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

up

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

up

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a
up

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

left

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a
up

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

right

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

left

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

up

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

right

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Example.
Some node has label b

In state p, move left.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Complemenation is difficult!

Open problem:
Are nondeterministic
tree-walking automata closed
under complementation?

A clever tree-walking automaton

0

1 0

A clever tree-walking automaton

0

1 0

States:

#rst time

just evaluated evaluated left/right subtree to 0/1

A clever tree-walking automaton

0

1 0

States:

#rst time

just evaluated evaluated left/right subtree to 0/1

A clever tree-walking automaton

0

1 0

States:

#rst time

just evaluated evaluated left/right subtree to 0/1

A clever tree-walking automaton

0

1 0

States:

#rst time

just evaluated evaluated left/right subtree to 0/1

A clever tree-walking automaton

0

1 0

States:

#rst time

just evaluated evaluated left/right subtree to 0/1

A clever tree-walking automaton

0

1 0

States:

#rst time

just evaluated evaluated left/right subtree to 0/1

A clever tree-walking automaton

0

1 0

States:

#rst time

just evaluated evaluated left/right subtree to 0/1

A clever tree-walking automaton

0

1 0

States:

#rst time

just evaluated evaluated left/right subtree to 0/1

A clever tree-walking automaton

0

1 0

States:

#rst time

just evaluated evaluated left/right subtree to 0/1

A clever tree-walking automaton

0

1 0

States:

#rst time

just evaluated evaluated left/right subtree to 0/1

still works with
negation, but what
about XOR?

Complemenation is difficult!

Open problem:
Are nondeterministic
tree-walking automata closed
under complementation?

Complemenation is difficult!

Open problem:
Are nondeterministic
tree-walking automata closed
under complementation?

eorem. [Muscholl, Samuelides, Segou#n]
Deterministic tree-walking automata are closed under
complementation.

Complemenation is difficult!

Open problem:
Are nondeterministic
tree-walking automata closed
under complementation?

eorem. [Muscholl, Samuelides, Segou#n]
Deterministic tree-walking automata are closed under
complementation.

Lemma.
Every deterministic tree-walking automaton is equivalent to
one that ends every run with a reject or accept command.

Plan

-A tree-walking automaton

-Expressive power

-Pebble automata and logic

Plan

-A tree-walking automaton

-Expressive power

-Pebble automata and logic

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

Standard model is a
branching automaton.

Here we use bottom-up
deterministic branching automata.

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

Standard model is a
branching automaton.

Here we use bottom-up
deterministic branching automata.

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

Standard model is a
branching automaton.

Here we use bottom-up
deterministic branching automata.

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

Standard model is a
branching automaton.

Here we use bottom-up
deterministic branching automata.

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

Standard model is a
branching automaton.

Here we use bottom-up
deterministic branching automata.

a
q

q0 q1

If the root label is a, the left subtree has value q0 , and the right
subtree has value q1 , then the whole tree has value q.

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

Standard model is a
branching automaton.

Here we use bottom-up
deterministic branching automata.

a
q

q0 q1

If the root label is a, the left subtree has value q0 , and the right
subtree has value q1 , then the whole tree has value q.

Branching automata are closed under union, intersection,
complementation, projection etc.

Def. A tree language is called regular if it is recognized by
a branching automaton.

Question: how do tree-walking automata relate to regular languages?

TWA REG

Question: how do tree-walking automata relate to regular languages?

TWA REG

To a tree-walking automaton

we associate a branching
automaton that accepts the
same trees.

States

Question: how do tree-walking automata relate to regular languages?

TWA REG

To a tree-walking automaton

we associate a branching
automaton that accepts the
same trees.

States

Value of a tree:
set of pairs (p,q) that
give a loop in the root:

ap q

(these are loops that
stay below the root)

Question: how do tree-walking automata relate to regular languages?

TWA REG

To a tree-walking automaton

we associate a branching
automaton that accepts the
same trees.

States

Value of a tree:
set of pairs (p,q) that
give a loop in the root:

ap q

(these are loops that
stay below the root)

Question: how do tree-walking automata relate to regular languages?

TWA REG

To a tree-walking automaton

we associate a branching
automaton that accepts the
same trees.

States

Value of a tree:
set of pairs (p,q) that
give a loop in the root:

ap q

(these are loops that
stay below the root)

Corollary. Emptiness for tree-walking
automata is in EXPTIME.

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

TWA REG
Is the inclusion strict?

eorem (B., Colcombet ’05) e inclusion is strict.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

All nodes have label b, except three leaves with label a.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

All nodes have label b, except three leaves with label a.

a a a a a a

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.
Go to the rightmost a.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.
Go to the rightmost a.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.
Go to the rightmost a.
Nondeterministically pick an ancestor.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.
Go to the rightmost a.
Nondeterministically pick an ancestor.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.
Go to the rightmost a.
Nondeterministically pick an ancestor.
Descend to the leaf on the leftmost path.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.
Go to the rightmost a.
Nondeterministically pick an ancestor.
Descend to the leaf on the leftmost path.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.
Go to the rightmost a.
Nondeterministically pick an ancestor.
Descend to the leaf on the leftmost path.
Accept if there are exactly two a’s to the right.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.
Go to the rightmost a.
Nondeterministically pick an ancestor.
Descend to the leaf on the leftmost path.
Accept if there are exactly two a’s to the right.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

TWA
DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.
Go to the rightmost a.
Nondeterministically pick an ancestor.
Descend to the leaf on the leftmost path.
Accept if there are exactly two a’s to the right.

DTWA

TWA

REG

Plan

-A tree-walking automaton

-Expressive power

-Pebble automata and logic

Plan

-A tree-walking automaton

-Expressive power

-Pebble automata and logic

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

An n-pebble automaton has pebbles 1,...,n.
New tests: “is pebble i on the current node?”
New commands: “place pebble i on the current node”
“lift pebble i from the current node”.

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

con#guration 1 con#guration 2 con#guration 3 ... con#guration n

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

con#guration 1 con#guration 2 con#guration 3 ... con#guration n

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

con#guration 1 con#guration 2 con#guration 3 ... con#guration n

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

con#guration 1 con#guration 2 con#guration 3 ... con#guration n

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

con#guration 1 con#guration 2 con#guration 3 ... con#guration n

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

con#guration 1 con#guration 2 con#guration 3 ... con#guration n

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

con#guration 1 con#guration 2 con#guration 3 ... con#guration n

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

con#guration 1 con#guration 2 con#guration 3 ... con#guration n

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

con#guration 1 con#guration 2 con#guration 3 ... con#guration n

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

con#guration 1 con#guration 2 con#guration 3 ... con#guration n

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b a b a a b a b a

con#guration 1 con#guration 2 con#guration 3 ... con#guration n

initial accepting

Good news: with stack discipline, pebble automata have decidable
emptiness.

Good news: with stack discipline, pebble automata have decidable
emptiness.

e set of pebbles on the tree is always a pre#x 1,...,k of 1,...,n.
When the newest pebble is i, only i can be lifted, and i+1 placed.

Good news: with stack discipline, pebble automata have decidable
emptiness.

e set of pebbles on the tree is always a pre#x 1,...,k of 1,...,n.
When the newest pebble is i, only i can be lifted, and i+1 placed.

eorem. [Engelfriet, Hoogeboom 99]
 Every pebble automaton is equivalent to a tree automaton.

Good news: with stack discipline, pebble automata have decidable
emptiness.

e set of pebbles on the tree is always a pre#x 1,...,k of 1,...,n.
When the newest pebble is i, only i can be lifted, and i+1 placed.

eorem. [Engelfriet, Hoogeboom 99]
 Every pebble automaton is equivalent to a tree automaton.

If the pebble automaton has n pebbles, the tree automaton may have

states. Likewise, emptiness is non-elementary.

ere is a run that begins in and ends in .
e pebbles at the beginning and end are in .
During the run, pebble is not lifted, but pebbles can be added.

ere is a run that begins in and ends in .
e pebbles at the beginning and end are in .
During the run, pebble is not lifted, but pebbles can be added.

ere is a run that begins in and ends in .
e pebbles at the beginning and end are in .
During the run, pebble is not lifted, but pebbles can be added.

ere is a run that begins in and ends in .
e pebbles at the beginning and end are in .
During the run, pebble is not lifted, but pebbles can be added.

What logic? Monadic second-order logic is good enough.

Pebble automata = #rst-order logic with positive transitive closure.

eorem. [B., Samuelides, Schwentick, Segou#n 06]
-Pebble automata do not recognize all regular languages.
-Deterministic n pebbles are weaker than nondeterminstic n pebbles.
-n pebbles are weaker than n+1 pebbles, both in det and nondet.

0PA

1PA

2PA

0DPA

1DPA

2DPA

eorem. [B., Samuelides, Schwentick, Segou#n 06]
-Pebble automata do not recognize all regular languages.
-Deterministic n pebbles are weaker than nondeterminstic n pebbles.
-n pebbles are weaker than n+1 pebbles, both in det and nondet.

0PA

1PA

2PA

0DPA

1DPA

2DPA

Open question: Known:

Pebble automata = #rst-order logic with positive transitive closure.

Pebble automata = #rst-order logic with positive transitive closure.

First-order logic.

For every nodes x, y, if x has label a and
y is a child of x, then y has label b.

Pebble automata = #rst-order logic with positive transitive closure.

First-order logic.

For every nodes x, y, if x has label a and
y is a child of x, then y has label b.

...

First-order logic with transitive closure.

a

a
a

a

For words,
#rst-order logic with transitive closure = regular languages.

For words,
#rst-order logic with transitive closure = regular languages.

For words,
#rst-order logic with transitive closure = regular languages.

What about trees?
#rst-order logic with positive transitive closure = pebble automata

For words,
#rst-order logic with transitive closure = regular languages.

What about trees?
#rst-order logic with positive transitive closure = pebble automata

eorem. [ten Cate, Segou#n ’08]
For trees, not all regular languages are captured by #rst-order
logic with transitive closure.

Conclusion

Conclusion

What did we miss?

Conclusion

What did we miss?
-caterpillar expressions

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

Open questions:

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

Open questions:
-complementation

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

Open questions:
-complementation
-detereminization of pebble automata

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

Open questions:
-complementation
-detereminization of pebble automata
-better understanding

