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If the state is p and the node is the root with label a, 
then move to the left child and change state to q.

command

test

Tests are boolean 
combinations of:
has label a, 
is right/left child, 
is leaf

Commands are:
move left/right/up, 
accept, 
reject

Def. A tree walking-automaton is a tuple

states
initial state alphabet

transitions
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still works with
negation, but what
about XOR?
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Complemenation is difficult!

Open problem:
Are nondeterministic 
tree-walking automata closed
under complementation?

eorem. [Muscholl, Samuelides, Segou#n]
Deterministic tree-walking automata are closed under 
complementation.

Lemma. 
Every deterministic tree-walking automaton is equivalent to
one that ends every run with a reject or accept command.
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Branching automata are closed under union, intersection, 
complementation, projection etc.

Def. A tree language is called regular if it is recognized by
a branching automaton.
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An n-pebble automaton has pebbles 1,...,n.
New tests: “is pebble i on the current node?”
New commands: “place pebble i on the current node”
“lift pebble i from the current node”.
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emptiness.

e set of pebbles on the tree is always a pre#x 1,...,k of 1,...,n.
When the newest pebble is i, only i can be lifted, and i+1 placed.

eorem. [Engelfriet, Hoogeboom 99]
 Every pebble automaton is equivalent to a tree automaton.

If the pebble automaton has n pebbles, the tree automaton may have 

states. Likewise, emptiness is non-elementary.
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What logic? Monadic second-order logic is good enough.

Pebble automata = #rst-order logic with positive transitive closure.
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First-order logic.

For every nodes x, y, if x has label a and 
y is a child of x, then y has label b.

...

First-order logic with transitive closure.

a

a
a

a
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For words, 
#rst-order logic with transitive closure = regular languages.

What about trees?
#rst-order logic with positive transitive closure = pebble automata

eorem. [ten Cate, Segou#n ’08]
For trees, not all regular languages are captured by #rst-order
logic with transitive closure.
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Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

Open questions:
-complementation
-detereminization of pebble automata
-better understanding


