Two-Way Alternating Automata and Finite Models

Tedious proofs of irrelevant results
Mikolaj Bojanczyk

Warsaw University

Intuition on the automaton

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says "yes" or "no".

Intuition on the automaton

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says "yes" or "no".

Some example properties recognized by alternating two-way automata:

Intuition on the automaton

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says "yes" or "no".
Some example properties recognized by alternating two-way automata:

- There is a vertex labelled by "a" in the graph

Intuition on the automaton

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says "yes" or "no".
Some example properties recognized by alternating two-way automata:

- There is a vertex labelled by "a" in the graph
- There is an infinite path in the graph

Intuition on the automaton

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says "yes" or "no".
Some example properties recognized by alternating two-way automata:

- There is a vertex labelled by "a" in the graph
- There is an infinite path in the graph
- There is an infinite path in the graph and no vertex of this path is the starting point of some infinite backward path

The automaton \mathcal{A}

An example: \mathbb{N}

Parity condition

An infinite sequence a_{1}, a_{2}, \ldots of elements from a finite set of natural numbers satisfies the parity condition if the lowest number occurring infinitely often is even.

\mathcal{A} accepts only infinite graphs

Fact 0 For any graph G, the automaton \mathcal{A} accpets in a vertex v_{1} and state q_{1} iff

1. No infinite backward path condition. v_{1} is not the beginning of a sequence $v_{1} v_{2} \ldots$ where for all $i \in\{1,2, \ldots\},\left(v_{i+1}, v_{i}\right)$ is an edge in G.
2. Infinite forward path condition. v_{1} is the beginning of a sequence $v_{1} v_{2} \ldots$ where for all $i \in\{1,2, \ldots\},\left(v_{i}, v_{i+1}\right)$ is an edge in G and \mathcal{A} accepts in v_{i} and q_{1}.

Cor: \mathcal{A} accepts only infinite graphs.

Finite model problems

- Automata

Instance: A two-way alternating automaton \mathcal{A}.
Question: Does \mathcal{A} accept some finite graph?

Finite model problems

- Automata

Instance: A two-way alternating automaton \mathcal{A}.
Question: Does \mathcal{A} accept some finite graph?

- μ-calculus

Instance: A formula ϕ of the two-way modal μ-calculus
Question: Is ϕ satisfiable in some finite structure?

Finite model problems

- Automata

Instance: A two-way alternating automaton \mathcal{A}.
Question: Does \mathcal{A} accept some finite graph?

- μ-calculus

Instance: A formula ϕ of the two-way modal μ-calculus
Question: Is ϕ satisfiable in some finite structure?

- Guarded fragment with fixed points Instance: A formula ϕ of the guarded fragment with fixed points
Question: Is ϕ satisfiable in some finite structure?

Finite model problems

- Automata

Instance: A two-way alternating automaton \mathcal{A}.
Question: Does \mathcal{A} accept some finite graph?

- μ-calculus

Instance: A formula ϕ of the two-way modal μ-calculus
Question: Is ϕ satisfiable in some finite structure?

- Guarded fragment with fixed points Instance: A formula ϕ of the guarded fragment with fixed points
Question: Is ϕ satisfiable in some finite structure?

All three are equivalent

A strategy for the good player

Memoryless strategies

Thm:[Emmerson-Jutla/Mostowski] One of the players has a winning strategy and, moreover, it is a memoryless strategy

The graph \mathcal{N}

Its unwinding

A strategy s for the green player

Locally possible moves under s

Locally possible moves under s with accessible positions

The graph $\operatorname{Gr}(t, s)$

Parity length

- The i-length of a sequence of numbers $a=a_{1} a_{2} \ldots a_{n}$ is the length of the longest sequence of i-s in the sequence a^{\prime} resulting from a by taking out all numbers greater than i.
For example, the 1 -length of 131231 is 3 .

Parity length

- The i-length of a sequence of numbers $a=a_{1} a_{2} \ldots a_{n}$ is the length of the longest sequence of i-s in the sequence a^{\prime} resulting from a by taking out all numbers greater than i. For example, the 1 -length of 131231 is 3 .
- The parity length of a sequence of numbers maximal i-length of the sequence for odd i.

Parity length

- The i-length of a sequence of numbers $a=a_{1} a_{2} \ldots a_{n}$ is the length of the longest sequence of i-s in the sequence a^{\prime} resulting from a by taking out all numbers greater than i. For example, the 1 -length of 131231 is 3 .
- The parity length of a sequence of numbers maximal i-length of the sequence for odd i.
- The parity length of a path labelled by priorities is the parity length of the corresponding sequence of priorities.

Properties of $\operatorname{Gr}(t, s)$

- s is a winning strategy for the green player iff no infnite path in $\operatorname{Gr}(t, s)$ violates the parity condition (the parity length of paths in $\operatorname{Gr}(t, s)$ is finite).

Properties of $\operatorname{Gr}(t, s)$

- s is a winning strategy for the green player iff no infnite path in $\operatorname{Gr}(t, s)$ violates the parity condition (the parity length of paths in $\operatorname{Gr}(t, s)$ is finite).
- t can be wound back into a finite graph iff for some s, the parity length of paths in $\operatorname{Gr}(t, s)$ is bounded, i. e. there is some $M \in \mathcal{N}$ such that all paths in $\operatorname{Gr}(t, s)$ have parity length not greater than M.

Properties of $\operatorname{Gr}(t, s)$

- s is a winning strategy for the green player iff no infnite path in $\operatorname{Gr}(t, s)$ violates the parity condition (the parity length of paths in $\operatorname{Gr}(t, s)$ is finite).
- t can be wound back into a finite graph iff for some s, the parity length of paths in $\operatorname{Gr}(t, s)$ is bounded, i. e. there is some $M \in \mathcal{N}$ such that all paths in $\operatorname{Gr}(t, s)$ have parity length not greater than M.
- The finite graph question thus becomes: is there some tree t and strategy s such that the parity length of paths in $\operatorname{Gr}(t, s)$ is bounded.

Regular trees and languages

- A tree language is regular iff it is recognized by some finite automaton.
- A tree is regular iff it contains a only finitely many non-isomorphic subtrees.

Thm:[Rabin]Every regular tree language contains some regular tree.

- Let LB be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length of paths is bounded.
- Let LB be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length of paths is bounded.
- Let LF be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length (both ways) of paths is finite.
- Let LB be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length of paths is bounded.
- Let LF be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length (both ways) of paths is finite.
- LB is not regular.
- Let LB be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length of paths is bounded.
- Let LF be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length (both ways) of paths is finite.
- LB is not regular.
- LB and LF are not equal, but ...
- Let LB be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length of paths is bounded.
- Let LF be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length (both ways) of paths is finite.
- LB is not regular.
- LB and LF are not equal, but ...
- LF and LB coincide on regular trees
- Let LB be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length of paths is bounded.
- Let LF be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length (both ways) of paths is finite.
- LB is not regular.
- LB and LF are not equal, but ...
- LF and LB coincide on regular trees
- Since LF is regular and LB is a sum of regular languages, we obtain:
- Let LB be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length of paths is bounded.
- Let LF be the set of graphs $\operatorname{Gr}(t, s)$ where the parity length (both ways) of paths is finite.
- LB is not regular.
- LB and LF are not equal, but ...
- LF and LB coincide on regular trees
- Since LF is regular and LB is a sum of regular languages, we obtain:

Thm: LF is nonempty iff LB is nonempty.

Thm: The finite graph problem is decidable

Signature

Signature

Another graph

Another graph

Another graph

Tree unwinding

Tree unwinding

Tree unwinding

Tree unwinding

