Two-Way Alternating Automata and Finite Models

Tedious proofs of irrelevant results

Mikolaj Bojanczyk

Warsaw University

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says "yes" or "no".

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says "yes" or "no".

Some example properties recognized by alternating two-way

automata:

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says "yes" or "no".

Some example properties recognized by alternating two-way automata:

There is a vertex labelled by "a" in the graph

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says "yes" or "no".

Some example properties recognized by alternating two-way automata:

- There is a vertex labelled by "a" in the graph
- There is an infinite path in the graph

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says "yes" or "no".

Some example properties recognized by alternating two-way automata:

- There is a vertex labelled by "a" in the graph
- There is an infinite path in the graph
- There is an infinite path in the graph and no vertex of this path is the starting point of some infinite backward path

The automaton \mathcal{A}

Parity condition

An infinite sequence a_1, a_2, \ldots of elements from a finite set of natural numbers satisfies the *parity condition* if the lowest number occurring infinitely often is even.

${\cal A}$ accepts only infinite graphs

Fact 0 For any graph G, the automaton \mathcal{A} accepts in a vertex v_1 and state q_1 iff

- 1. No infinite backward path condition. v_1 is not the beginning of a sequence $v_1v_2...$ where for all $i \in \{1, 2, ...\}$, (v_{i+1}, v_i) is an edge in G.
- 2. Infinite forward path condition. v_1 is the beginning of a sequence $v_1v_2...$ where for all $i \in \{1, 2, ...\}$, (v_i, v_{i+1}) is an edge in G and \mathcal{A} accepts in v_i and q_1 .
- **Cor:** \mathcal{A} accepts only infinite graphs.

Automata Instance: A two-way alternating automaton A. Question: Does A accept some *finite* graph?

Automata Instance: A two-way alternating automaton A. Question: Does A accept some *finite* graph?

• μ -calculus

Instance: A formula ϕ of the two-way modal μ -calculus Question: Is ϕ satisfiable in some finite structure?

- Automata Instance: A two-way alternating automaton A. Question: Does A accept some *finite* graph?
- \checkmark μ -calculus Instance: A formula ϕ of the two-way modal μ -calculus Question: Is ϕ satisfiable in some finite structure?
- Guarded fragment with fixed points Instance: A formula ϕ of the guarded fragment with fixed points

Question: Is ϕ satisfiable in some finite structure?

- Automata Instance: A two-way alternating automaton A. Question: Does A accept some *finite* graph?
- µ-calculus
 Instance: A formula ϕ of the two-way modal µ-calculus
 Question: Is ϕ satisfiable in some finite structure?
- Guarded fragment with fixed points Instance: A formula \u03c6 of the guarded fragment with fixed points Question: Is \u03c6 satisfiable in some finite structure?

All three are equivalent

A strategy for the good player

Memoryless strategies

Thm:[Emmerson-Jutla/Mostowski] One of the players has a winning strategy and, moreover, it is a memoryless strategy

The graph ${\cal N}$

A strategy s for the green player

Locally possible moves under \boldsymbol{s}

Locally possible moves under s with accessible positions

The graph Gr(t, s)

Parity length

• The *i*-length of a sequence of numbers $a = a_1 a_2 \dots a_n$ is the length of the longest sequence of *i*-s in the sequence a' resulting from a by taking out all numbers greater than *i*.

For example, the 1-length of 131231 is 3.

Parity length

- The *i*-length of a sequence of numbers a = a₁a₂...a_n is the length of the longest sequence of *i*-s in the sequence a' resulting from a by taking out all numbers greater than *i*. For example, the 1-length of 131231 is 3.
- The parity length of a sequence of numbers maximal i-length of the sequence for odd i.

Parity length

- The *i*-length of a sequence of numbers a = a₁a₂...a_n is the length of the longest sequence of *i*-s in the sequence a' resulting from a by taking out all numbers greater than *i*. For example, the 1-length of 131231 is 3.
- The parity length of a sequence of numbers maximal i-length of the sequence for odd i.
- The parity length of a path labelled by priorities is the parity length of the corresponding sequence of priorities.

Properties of Gr(t, s)

■ *s* is a winning strategy for the green player iff no infnite path in Gr(t, s) violates the parity condition (the parity length of paths in Gr(t, s) is finite).

Properties of Gr(t, s)

- *s* is a winning strategy for the green player iff no infnite path in Gr(t, s) violates the parity condition (the parity length of paths in Gr(t, s) is finite).
- *t* can be wound back into a finite graph iff for some *s*, the parity length of paths in Gr(t, s) is bounded, i. e. there is some $M \in \mathcal{N}$ such that all paths in Gr(t, s) have parity length not greater than M.

Properties of Gr(t, s)

- *s* is a winning strategy for the green player iff no infnite path in Gr(t, s) violates the parity condition (the parity length of paths in Gr(t, s) is finite).
- *t* can be wound back into a finite graph iff for some *s*, the parity length of paths in Gr(t, s) is bounded, i. e. there is some $M \in \mathcal{N}$ such that all paths in Gr(t, s) have parity length not greater than M.
- The finite graph question thus becomes: is there some tree t and strategy s such that the parity length of paths in Gr(t, s) is bounded.

Regular trees and languages

- A tree language is *regular* iff it is recognized by some finite automaton.
- A tree is *regular* iff it contains a only finitely many non-isomorphic subtrees.

Thm:[Rabin]Every regular tree language contains some regular tree. • Let LB be the set of graphs Gr(t, s) where the parity length of paths is bounded.

- Let LB be the set of graphs Gr(t, s) where the parity length of paths is bounded.
- Let LF be the set of graphs Gr(t, s) where the parity length (both ways) of paths is finite.

- Let LB be the set of graphs Gr(t, s) where the parity length of paths is bounded.
- Let LF be the set of graphs Gr(t, s) where the parity length (both ways) of paths is finite.
- LB is not regular.

- Let LB be the set of graphs Gr(t, s) where the parity length of paths is bounded.
- Let LF be the set of graphs Gr(t, s) where the parity length (both ways) of paths is finite.
- LB is not regular.
- LB and LF are not equal, but ...

- Let LB be the set of graphs Gr(t, s) where the parity length of paths is bounded.
- Let LF be the set of graphs Gr(t, s) where the parity length (both ways) of paths is finite.
- LB is not regular.
- LB and LF are not equal, but ...
- LF and LB coincide on regular trees

- Let LB be the set of graphs Gr(t, s) where the parity length of paths is bounded.
- Let LF be the set of graphs Gr(t, s) where the parity length (both ways) of paths is finite.
- LB is not regular.
- LB and LF are not equal, but ...
- LF and LB coincide on regular trees
- Since LF is regular and LB is a sum of regular languages, we obtain:

- Let LB be the set of graphs Gr(t, s) where the parity length of paths is bounded.
- Let LF be the set of graphs Gr(t, s) where the parity length (both ways) of paths is finite.
- LB is not regular.
- LB and LF are not equal, but ...
- LF and LB coincide on regular trees
- Since LF is regular and LB is a sum of regular languages, we obtain:

Thm: LF is nonempty iff LB is nonempty.

Thm: The finite graph problem is decidable

Signature

Signature

Another graph

Another graph

Another graph

