What is a Tree Automaton?
Decision Problems

2 Temporal Logics
Temporal Logic for Words
Temporal Logic for Trees XPath

## Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata
Tree-Walking Automata, 2
Tree-Walking Automata Cannot Be Determinized

What is a Tree Automaton?
Decision Problems

## 2 Temporal Logics

Temporal Logic for Words Temporal Logic for Trees XPath

## Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

## Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized

Theorem (B., Colcombet '04)
Tree-walking automata cannot be determinized.

Theorem (B., Colcombet '04) Tree-walking automata cannot be determinized.

Theorem (B., Colcombet '04) Tree-walking automata cannot be determinized.
$L \in$ TWA
$L \notin$ DTWA


All nodes have label $b$, except three leaves with label $a$.

Theorem (B., Colcombet '04) Tree-walking automata cannot be determinized.
$L \in$ TWA
$L \notin$ DTWA


Theorem (B., Colcombet '04) Tree-walking automata cannot be determinized.
$L \in$ TWA
$L \notin$ DTWA


Theorem (B., Colcombet '04)
Tree-walking automata cannot be determinized.
$L \in$ TWA
$L \notin$ DTWA


Using DFS, check that all nodes have $b$, except three leaves with $a$.

Theorem (B., Colcombet '04)
Tree-walking automata cannot be determinized.
$L \in$ TWA
$L \notin$ DTWA


Using DFS, check that all nodes have $b$, except three leaves with $a$.
Go to the rightmost $a$.

Theorem (B., Colcombet '04)
Tree-walking automata cannot be determinized.
$L \in$ TWA
$L \notin$ DTWA


Using DFS, check that all nodes have $b$, except three leaves with $a$.
Go to the rightmost $a$.

Theorem (B., Colcombet '04)
Tree-walking automata cannot be determinized.
$L \in$ TWA
$L \notin$ DTWA


Using DFS, check that all nodes have $b$, except three leaves with $a$.
Go to the rightmost $a$.
Nondeterministically pick an ancestor.

Theorem (B., Colcombet '04)
Tree-walking automata cannot be determinized.
$L \in$ TWA
$L \notin$ DTWA


Using DFS, check that all nodes have $b$, except three leaves with $a$.
Go to the rightmost $a$.
Nondeterministically pick an ancestor.

Theorem (B., Colcombet '04) Tree-walking automata cannot be determinized.


Using DFS, check that all nodes have $b$, except three leaves with $a$.
Go to the rightmost $a$.
Nondeterministically pick an ancestor.
Descend to the leaf on the leftmost path.

Theorem (B., Colcombet '04) Tree-walking automata cannot be determinized.


Using DFS, check that all nodes have $b$, except three leaves with $a$.
Go to the rightmost $a$.
Nondeterministically pick an ancestor.
Descend to the leaf on the leftmost path.

Theorem (B., Colcombet '04)
Tree-walking automata cannot be determinized.
$L \in$ TWA
$L \notin$ DTWA


Using DFS, check that all nodes have $b$, except three leaves with $a$.
Go to the rightmost $a$.
Nondeterministically pick an ancestor.
Descend to the leaf on the leftmost path.
Accept if there are exactly two $a$ 's to the right.

Theorem (B., Colcombet '04)
Tree-walking automata cannot be determinized.
$L \in$ TWA
$L \notin$ DTWA


Using DFS, check that all nodes have $b$, except three leaves with $a$.
Go to the rightmost $a$.
Nondeterministically pick an ancestor.
Descend to the leaf on the leftmost path.
Accept if there are exactly two $a$ 's to the right.

Theorem (B., Colcombet '04)
Tree-walking automata cannot be determinized.
$L \in$ TWA
$L \notin$ DTWA


Using DFS, check that all nodes have $b$, except three leaves with $a$.
Go to the rightmost $a$.
Nondeterministically pick an ancestor.
Descend to the leaf on the leftmost path.
Accept if there are exactly two $a$ 's to the right.

Goal: No deterministic tree-walking automaton recognizes the language $L$.

Goal: No deterministic tree-walking automaton recognizes the language $L$.

## Goal: No deterministic tree-walking automaton recognizes the language $L$.

Fix a deterministic tree-walking automaton $A$.


## Goal: No deterministic tree-walking automaton recognizes the language $L$.

Fix a deterministic tree-walking automaton $A$.


## Strategy:

## Goal: No deterministic tree-walking automaton recognizes the language $L$.

Fix a deterministic tree-walking automaton $A$.


## Strategy:

1 Define notion of pattern, together with
 pattern equivalence

## Goal: No deterministic tree-walking automaton recognizes the language $L$.

Fix a deterministic tree-walking automaton $A$.


## Strategy:

$$
\begin{aligned}
& 1 \text { Define notion of pattern, together with } \\
& \text { pattern equivalence }
\end{aligned}
$$

2 Using algebra, find some confusing patterns


## Goal: No deterministic tree-walking automaton recognizes the language $L$.

Fix a deterministic tree-walking automaton $A$.


## Strategy:

## 1 Define notion of pattern, together with pattern equivalence

2 Using algebra, find some confusing patterns


3 Build the counterexample using these confusing patterns


A pattern is a tree with some distinguished leaves, called leaf ports. The number of leaf ports is the arity of the pattern.

composition of patterns


A pattern is a tree with some distinguished leaves, called leaf ports. The number of leaf ports is the arity of the pattern.

composition of patterns


A pattern is a tree with some distinguished leaves, called leaf ports. The number of leaf ports is the arity of the pattern.

composition of patterns


Fix a tree-walking automaton $A$.

for every completion

$A$ accepts the tree

$A$ accepts the tree
iff


Fact. For a fixed number of ports, $A$-equivalence has finitely many equivalence classes.


Fact. For a fixed number of ports, $A$-equivalence has finitely many equivalence classes.


Fact. For a fixed number of ports, $A$-equivalence has finitely many equivalence classes.


Fact. For a fixed number of ports, $A$-equivalence has finitely many equivalence classes.


$$
\delta_{\Delta} \subseteq Q \times\{\varepsilon, 1, . ., n\} \times Q \times\{\varepsilon, 1, \ldots, n\}
$$

Fact. For a fixed number of ports, $A$-equivalence has finitely many equivalence classes.


$$
\delta_{\Delta} \subseteq Q \times\{\varepsilon, 1, . ., n\} \times Q \times\{\varepsilon, 1, \ldots, n\}
$$

Fact. For a fixed number of ports, $A$-equivalence has finitely many equivalence classes.


$$
\delta_{\Delta} \subseteq Q \times\{\varepsilon, 1, \ldots, n\} \times Q \times\{\varepsilon, 1, \ldots, n\}
$$

$$
\delta_{\Delta}: \text { types }\{\varepsilon, 1 \ldots, \ldots\} \longrightarrow Q \times\{\varepsilon, 1, \ldots, n\} \times Q \times\{\varepsilon, 1, \ldots, n\}
$$

$A$-equivalence is a congruence with respect to pattern composition.

$A$-equivalence is a congruence with respect to pattern composition.


Corollary. $A$-equivalence classes of unary patterns form a finite semigroup.
$A$-equivalence is a congruence with respect to pattern composition.


Corollary. $A$-equivalence classes of unary patterns form a finite semigroup.

-

$A$-equivalence is a congruence with respect to pattern composition.


Corollary. $A$-equivalence classes of unary patterns form a finite semigroup.

(this semigroup does not contain all information on the automaton)


## Goal: No deterministic tree-walking automaton recognizes the language $L$.

Fix a deterministic tree-walking automaton $A$.


## Strategy:

1 Define notion of pattern, together with
 pattern equivalence

2 Using algebra, find some confusing patterns


3 Build the counterexample using these confusing patterns


## Goal: No deterministic tree-walking automaton recognizes the language $L$.

Fix a deterministic tree-walking automaton $A$.


## Strategy:

> 1 Define notion of pattern, together with pattern equivalence


2 Using algebra, find some confusing patterns


3 Build the counterexample using these confusing patterns


A semigroup lemma. For any finite semigroup $S$ and elements $x, y \in$ $S$,
there are $X \in x S$ and $Y \in y S$ with
$X=X \cdot X=X \cdot Y$
$Y=Y \cdot Y=Y \cdot X$

A semigroup lemma. For any finite semigroup $S$ and elements $x, y \in$ $S$, there are $X \in x S$ and $Y \in y S$ with
$X=X \cdot X=X \cdot Y$
$Y=Y \cdot Y=Y \cdot X$

Example. $S=\{0,1\}$ with addition mod 2. In this case, set $X=Y=0$.

A semigroup lemma. For any finite semigroup $S$ and elements $x, y \in$ $S$,

$$
\begin{aligned}
& \text { there are } X \in x S \text { and } Y \in y S \text { with } \\
& \qquad \begin{aligned}
X & =X \cdot X=X \cdot Y \\
Y & =Y \cdot Y=Y \cdot X
\end{aligned}
\end{aligned}
$$

Example. $S=\{0,1\}$ with addition $\bmod 2$. In this case, set $X=Y=0$.
Example. $S=\left\{a(a+b)^{*}, b(a+b)^{*}\right\}$. In this case, set $X=x$ and $Y=y$.

A semigroup lemma. For any finite semigroup $S$ and elements $x, y \in$ $S$,
there are $X \in x S$ and $Y \in y S$ with
$X=X \cdot X=X \cdot Y$
$Y=Y \cdot Y=Y \cdot X$

A semigroup lemma. For any finite semigroup $S$ and elements $x, y \in$ $S$, there are $X \in x S$ and $Y \in y S$ with
$X=X \cdot X=X \cdot Y$
$Y=Y \cdot Y=Y \cdot X$

Proof.

$$
X:=\left(x^{\omega} \cdot y^{\omega}\right) \omega \quad Y:=y^{\omega} \cdot X
$$

A semigroup lemma. For any finite semigroup $S$ and elements $x, y \in$ $S$,

$$
\begin{aligned}
& \text { there are } X \in x S \text { and } Y \in y S \text { with } \\
& \begin{aligned}
X & =X \cdot X=X \cdot Y \\
Y & =Y \cdot Y=Y \cdot X
\end{aligned}
\end{aligned}
$$

Proof.

$$
\begin{aligned}
X:= & \left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \quad Y:=y^{\omega} \cdot X \\
& X \cdot X=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \cdot\left(x^{\omega} \cdot y^{\omega}\right)^{\omega}=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega}=X
\end{aligned}
$$

A semigroup lemma. For any finite semigroup $S$ and elements $x, y \in$ $S$, there are $X \in x S$ and $Y \in y S$ with

$$
\begin{aligned}
X & =X \cdot X \\
Y & =X \cdot Y \\
Y & =Y \cdot Y
\end{aligned}
$$

## Proof.

$$
\begin{gathered}
X:=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \quad Y:=y^{\omega} \cdot \mathrm{X} \\
\quad X \cdot X=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \cdot\left(x^{\omega} \cdot y^{\omega}\right)^{\omega}=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega}=X \\
X \cdot Y=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \cdot y^{\omega} \cdot\left(x^{\omega} \cdot y^{\omega}\right) \omega=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \cdot\left(x^{\omega} \cdot y^{\omega}\right)^{\omega}=\left(x^{\omega}\right. \\
\left.\cdot y^{\omega}\right)^{\omega}=X
\end{gathered}
$$

A semigroup lemma. For any finite semigroup $S$ and elements $x, y \in$ $S$,

$$
\begin{aligned}
\text { there are } X & \in x S \text { and } Y \in y S \text { with } \\
X & =X \cdot X=X \cdot Y \\
Y & =Y \cdot Y=Y \cdot X
\end{aligned}
$$

Proof.

$$
\begin{gathered}
X:=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \quad Y:=y^{\omega} \cdot \mathrm{X} \\
\quad X \cdot X=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \cdot\left(x^{\omega} \cdot y^{\omega}\right)^{\omega}=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega}=X \\
X \cdot Y=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \cdot y^{\omega} \cdot\left(x^{\omega} \cdot y^{\omega}\right) \omega=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \cdot\left(x^{\omega} \cdot y^{\omega}\right)^{\omega}=\left(x^{\omega}\right. \\
\left.\cdot y^{\omega}\right)^{\omega}=X \\
Y \cdot X=y \cdot X \cdot X=y \cdot X=Y
\end{gathered}
$$

A semigroup lemma. For any finite semigroup $S$ and elements $x, y \in$ $S$,

$$
\begin{aligned}
\text { there are } X & \in x S \text { and } Y \in y S \text { with } \\
X & =X \cdot X=X \cdot Y \\
Y & =Y \cdot Y=Y \cdot X
\end{aligned}
$$

## Proof.

$$
\begin{gathered}
X:=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \quad Y:=y^{\omega} \cdot \mathrm{X} \\
\begin{array}{c}
X \cdot X=\left(x^{\omega} \cdot y^{\omega}\right) \omega \cdot\left(x^{\omega} \cdot y^{\omega}\right)^{\omega}=\left(x^{\omega} \cdot y^{\omega}\right) \omega=X \\
X \cdot Y=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \cdot y^{\omega} \cdot\left(x^{\omega} \cdot y^{\omega}\right)^{\omega}=\left(x^{\omega} \cdot y^{\omega}\right)^{\omega} \cdot\left(x^{\omega} \cdot y^{\omega}\right)^{\omega}=\left(x^{\omega}\right. \\
\\
\left.\cdot y^{\omega}\right) \omega=X \\
Y \cdot X=y \cdot X \cdot X=y \cdot X=Y \\
Y \cdot Y=y \cdot X \cdot Y=y \cdot X=Y
\end{array}
\end{gathered}
$$

Pattern Lemma. Fix a tree-walking automaton $A$. There exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have the same $A$-equivalence class.

Pattern Lemma. Fix a tree-walking automaton $A$. There exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have the same $A$-equivalence class.


Pattern Lemma. Fix a tree-walking automaton $A$. There exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have the same $A$-equivalence class.

for nondeterministic automata, the lemma fails for 3 ports.


We start out with patterns


We start out with patterns

by pumping, there are $n<m$ such that

balanced binary tree of depth $m$

balanced binary tree of depth $n$

We start out with patterns

by pumping, there are $n<m$ such that

balanced binary tree of depth $m$
$\approx$
balanced binary tree of depth $n$


We start out with patterns


We start out with patterns



Let $S$ be the semigroup generated by $x=0-\infty$

We start out with patterns

applying the semigroup lemma, we get

$$
X \approx X X \approx X Y \text { and } Y \approx Y Y \approx Y X
$$

We start out with patterns
 Let $S$ be the semigroup generated by $x=0$ and $30-0$

applying the semigroup lemma, we get

$$
X \approx X X \approx X Y \text { and } Y \approx Y Y \approx Y X
$$

We start out with patterns
 "蒠 Let $S$ be the semigroup generated by $x=0 \rightarrow-$ and $30-9$

applying the semigroup lemma, we get

$$
X \approx X X \approx X Y \text { and } Y \approx Y Y \approx Y X
$$

choose:
$=\quad X$


We start out with patterns
 such the $2=$ Let $S$ be the semigroup generated by $x=0-\infty$ and $30-0$

applying the semigroup lemma, we get $X \approx X X \approx X Y$ and $Y \approx Y Y \approx Y X$

To prove the pattern lemma, it suffices to show:


We start out with patterns
 such the $\approx 8$ Let $S$ be the semigroup generated by $x=0$ and $30-0$


applying the semigroup lemma, we get $X \approx X X \approx X Y$ and $Y \approx Y Y \approx Y X$

To prove the pattern lemma, it suffices to show:
choose:
$2=X$



We start out with patterns
 such tho $\approx 8$ Let $S$ be the semigroup generated by $x=0-\infty$ and $30-0$

applying the semigroup lemma, we get

$$
X \approx X X \approx X Y \text { and } Y \approx Y Y \approx Y X
$$

To prove the pattern lemma, it suffices to show:
choose:

 $\approx$ 0

## Goal: No deterministic tree-walking automaton recognizes the language $L$.

Fix a deterministic tree-walking automaton $A$.


## Strategy:

> 1 Define notion of pattern, together with pattern equivalence


2 Using algebra, find some confusing patterns


3 Build the counterexample using these confusing patterns


## Goal: No deterministic tree-walking automaton recognizes the language $L$.

Fix a deterministic tree-walking automaton $A$.


## Strategy:

> 1 Define notion of pattern, together with pattern equivalence

2 Using algebra, find some confusing patterns


3 Build the counterexample using these confusing patterns

we will show that

type of things we need to show:

we will show that

type of things we need to show:









## Proof


by similar reasoning, we rule out all possibilities except for


implies


## Proof


by similar reasoning,

why $r=q$ ?


## Proof


by similar reasoning,

why $r=q$ ?


Lemma
implies


## Proof


by similar reasoning, we rule out all possibilities except for

why $r=q$ ?


Lemma
implies


## Proof


by similar reasoning, we rule out all possibilities except for

why $r=q$ ?

by determinism, we get $q=r$
we will show that

type of things we need to show:



what happens in


imnossible
we will show that

type of things we need to show:


assume

assume

what happens
in this situation?

assume

what happens
in this situation?
impossible

assume

what happens in this situation?
impossible

assume

what happens in this situation?
impossible

assume

what happens in this situation?

impossible

must hold

assume

impossible
what happens in this situation?

what happens in this situation?


assume

impossible
what happens in this situation?

iff

assume

impossible
what happens in this situation?

iff

assume

impossible
what happens in this situation?

iff

assume

impossible
what happens in this situation?

impossible
what happens in this situation?

> impossible

must hold

iff

assume

impossible
what happens in this situation?

impossible
what happens in this situation?

> impossible

must hold

iff

assume

impossible
what happens in this situation?

impossible
what happens in this situation?

> impossible

must hold

iff

assume

what happens in this situation?
impossible

iff

assume

impossible

iff

assume

what happens in this situation?
impossible

iff

assume

impossible

iff
what happens in this situation?

impossible
assume

impossible

iff
what happens in this situation?

impossible

