Tree automata

What is a Tree Automaton? Decision Problems

Logic Logic for Words Logic for Trees Transitive Closure Logic

Temporal Logics

Temporal Logic for Words Temporal Logic for Trees XPath

Tree-Walking Automata, 1 Tree-Walking Automata

Tree-Walking Automata Expressive Power Pebble Automata

Tree-Walking Automata Cannot Be Determinized

Tree automata

What is a Tree Automaton? Decision Problems

Logic for Words Logic for Trees Transitive Closure Logic

Temporal Logics

Temporal Logic for Words Temporal Logic for Trees XPath

Tree-Walking Automata, 1

Tree-Walking Automata Expressive Power Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized

Theorem (B., Colcombet '04) Tree-walking automata cannot be determinized.

$L \in TWA$ $L \notin DTWA$

Theorem (B., Colcombet '04) Tree-walking automata cannot be determinized.

$L \in TWA$ $L \notin DTWA$

All nodes have label *b*, except three leaves with label *a*.

Theorem (B., Colcombet '04) Tree-walking automata cannot be determinized.

 $L \in TWA$ $L \notin DTWA$

All nodes have label *b*, except three leaves with label *a*.

Theorem (B., Colcombet '04) Tree-walking automata cannot be determinized.

 $L \in TWA$ $L \notin DTWA$

Theorem (B., Colcombet '04) Tree-walking automata cannot be determinized.

 $L \in TWA$ $L \notin DTWA$

Using DFS, check that all nodes have *b*, except three leaves with *a*. Go to the rightmost *a*.

Using DFS, check that all nodes have *b*, except three leaves with *a*. Go to the rightmost *a*.

Go to the rightmost *a*.

Nondeterministically pick an ancestor.

Go to the rightmost *a*.

Nondeterministically pick an ancestor.

Go to the rightmost *a*.

Nondeterministically pick an ancestor.

Descend to the leaf on the leftmost path.

Go to the rightmost *a*.

Nondeterministically pick an ancestor.

Descend to the leaf on the leftmost path.

Go to the rightmost *a*.

- Nondeterministically pick an ancestor.
- Descend to the leaf on the leftmost path.

Accept if there are exactly two *a*'s to the right.

Go to the rightmost *a*.

- Nondeterministically pick an ancestor.
- Descend to the leaf on the leftmost path.

Accept if there are exactly two *a*'s to the right.

Go to the rightmost *a*.

- Nondeterministically pick an ancestor.
- Descend to the leaf on the leftmost path.

Accept if there are exactly two *a*'s to the right.

3/20

Fix a deterministic tree-walking automaton *A*. We will find trees and that cannot be distinguished by *A*.

Fix a deterministic tree-walking automaton A. We will find trees and that cannot be distinguished by A.

Fix a deterministic tree-walking automaton A. We will find trees A and C that cannot be distinguished by A.

1 Define notion of pattern, together with pattern equivalence

Fix a deterministic tree-walking automaton *A*. We will find trees and that cannot be distinguished by *A*.

1 Define notion of pattern, together with pattern equivalence

2 Using algebra, find some confusing patterns

Fix a deterministic tree-walking automaton *A*. We will find trees and that cannot be distinguished by *A*.

1 Define notion of pattern, together with pattern equivalence

2 Using algebra, find some confusing patterns

3 Build the counterexample using these confusing patterns

A pattern is a tree with some distinguished leaves, called *leaf ports*. The number of leaf ports is the *arity* of the pattern.

composition of patterns

A pattern is a tree with some distinguished leaves, called *leaf ports*. The number of leaf ports is the *arity* of the pattern.

A pattern is a tree with some distinguished leaves, called *leaf ports*. The number of leaf ports is the *arity* of the pattern.

composition of patterns

Fix a tree-walking automaton A.

 $\delta_{\Delta} \subseteq Q \times \{\varepsilon, 1, ..., n\} \times Q \times \{\varepsilon, 1, ..., n\}$

 $\delta_{\Delta} \subseteq Q \times \{\varepsilon, 1, ..., n\} \times Q \times \{\varepsilon, 1, ..., n\}$

 δ_{Δ} : types $\{\varepsilon, 1, ..., n\}$ \longrightarrow $Q \times \{\varepsilon, 1, ..., n\} \times Q \times \{\varepsilon, 1, ..., n\}$

A-equivalence is a congruence with respect to pattern composition.

A-equivalence is a congruence with respect to pattern composition.

Corollary. *A*-equivalence classes of unary patterns form a finite semigroup.
A-equivalence is a congruence with respect to pattern composition.

Corollary. A-equivalence classes of unary patterns form a finite semigroup.

A-equivalence is a congruence with respect to pattern composition.

Corollary. *A*-equivalence classes of unary patterns form a finite semigroup.

Goal: No deterministic tree-walking automaton recognizes the language *L*.

Fix a deterministic tree-walking automaton *A*. We will find trees and that cannot be distinguished by *A*.

Strategy:

1 Define notion of pattern, together with pattern equivalence

2 Using algebra, find some confusing patterns

3 Build the counterexample using these confusing patterns

Goal: No deterministic tree-walking automaton recognizes the language *L*.

Fix a deterministic tree-walking automaton *A*. We will find trees and that cannot be distinguished by *A*.

1 Define notion of pattern, together with pattern equivalence

2 Using algebra, find some confusing patterns

Strategy:

3 Build the counterexample using these confusing patterns

A semigroup lemma. For any finite semigroup S and elements $x, y \in$

S, there are $X \in xS$ and $Y \in yS$ with $X = X \cdot X = X \cdot Y$ $Y = Y \cdot Y = Y \cdot X$

Example. $S = \{0, 1\}$ with addition mod 2. In this case, set X=Y=0.

Example. $S = \{0, 1\}$ with addition mod 2. In this case, set X=Y=0. **Example.** $S = \{a(a+b)^*, b(a+b)^*\}$. In this case, set X=x and Y=y. A semigroup lemma. For any finite semigroup S and elements $x, y \in$

S, there are $X \in xS$ and $Y \in yS$ with $X = X \cdot X = X \cdot Y$ $Y = Y \cdot Y = Y \cdot X$

Proof.

$X := (x^{\omega} \cdot y^{\omega})^{\omega} \qquad Y := y^{\omega} \cdot X$

$$X := (x^{\omega} \cdot y^{\omega})^{\omega} \qquad Y := y^{\omega} \cdot X$$

$$X \cdot X = (x^{\omega} \cdot y^{\omega})^{\omega} \cdot (x^{\omega} \cdot y^{\omega})^{\omega} = (x^{\omega} \cdot y^{\omega})^{\omega} = X$$

$$X := (x^{\omega} \cdot y^{\omega})^{\omega} \qquad Y := y^{\omega} \cdot X$$

$$X \cdot X = (x^{\omega} \cdot y^{\omega})^{\omega} \cdot (x^{\omega} \cdot y^{\omega})^{\omega} = (x^{\omega} \cdot y^{\omega})^{\omega} = X$$
$$X \cdot Y = (x^{\omega} \cdot y^{\omega})^{\omega} \cdot y^{\omega} \cdot (x^{\omega} \cdot y^{\omega})^{\omega} = (x^{\omega} \cdot y^{\omega})^{\omega} \cdot (x^{\omega} \cdot y^{\omega})^{\omega} = (x^{\omega} \cdot y^{\omega})^{\omega}$$
$$\cdot y^{\omega})^{\omega} = X$$

$$X := (x^{\omega} \cdot y^{\omega})^{\omega} \qquad Y := y^{\omega} \cdot X$$

$$X \cdot X = (x^{\omega} \cdot y^{\omega})^{\omega} \cdot (x^{\omega} \cdot y^{\omega})^{\omega} = (x^{\omega} \cdot y^{\omega})^{\omega} = X$$
$$X \cdot Y = (x^{\omega} \cdot y^{\omega})^{\omega} \cdot y^{\omega} \cdot (x^{\omega} \cdot y^{\omega})^{\omega} = (x^{\omega} \cdot y^{\omega})^{\omega} \cdot (x^{\omega} \cdot y^{\omega})^{\omega} = (x^{\omega} \cdot y^{\omega})^{\omega}$$
$$Y^{\omega} = X$$
$$Y \cdot X = y \cdot X \cdot X = y \cdot X = Y$$

$$X := (x^{\omega} \cdot y^{\omega})^{\omega} \qquad Y := y^{\omega} \cdot X$$

$$X \cdot X = (x^{\omega} \cdot y^{\omega})^{\omega} \cdot (x^{\omega} \cdot y^{\omega})^{\omega} = (x^{\omega} \cdot y^{\omega})^{\omega} = X$$

$$X \cdot Y = (x^{\omega} \cdot y^{\omega})^{\omega} \cdot y^{\omega} \cdot (x^{\omega} \cdot y^{\omega})^{\omega} = (x^{\omega} \cdot y^{\omega})^{\omega} \cdot (x^{\omega} \cdot y^{\omega})^{\omega} = (x^{\omega} \cdot y^{\omega})^{\omega} = X$$

$$Y \cdot X = y \cdot X \cdot X = y \cdot X = Y$$

$$Y \cdot Y = y \cdot X \cdot Y = y \cdot X = Y$$

Pattern Lemma. Fix a tree-walking automaton A. There exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have the same *A*-equivalence class.

Pattern Lemma. Fix a tree-walking automaton A. There exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have the same *A*-equivalence class.

Pattern Lemma. Fix a tree-walking automaton A. There exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have the same *A*-equivalence class.

by pumping, there are n < m such that

 \approx

balanced binary tree of depth *m*

balanced binary tree of depth *n*

by pumping, there are n < m such that

 \approx

balanced binary tree of depth *m*

balanced binary tree of depth *n*

applying the semigroup lemma, we get $X \approx XX \approx XY$ and $Y \approx YY \approx YX$

Goal: No deterministic tree-walking automaton recognizes the language *L*.

Fix a deterministic tree-walking automaton *A*. We will find trees and that cannot be distinguished by *A*.

1 Define notion of pattern, together with pattern equivalence

2 Using algebra, find some confusing patterns

Strategy:

3 Build the counterexample using these confusing patterns

Goal: No deterministic tree-walking automaton recognizes the language *L*.

Fix a deterministic tree-walking automaton A. We will find trees and that cannot be distinguished by A.

1 Define notion of pattern, together with pattern equivalence

2 Using algebra, find some confusing patterns

Strategy:

3 Build the counterexample using these confusing patterns

holds for a deterministic tree-walking automaton

type of things we need to show:

holds for a deterministic tree-walking automaton

type of things we need to show:

p

by similar reasoning, we rule out all possibilities except for

p

by similar reasoning, we rule out all possibilities except for

why r=q?

by similar reasoning, we rule out all possibilities except for

why r=q?

p

by similar reasoning, we rule out all possibilities except for

why r=q?

p

by determinism, we get q=r

holds for a deterministic tree-walking automaton

type of things we need to show:

impossible

holds for a deterministic tree-walking automaton

type of things we need to show:

assume

assume

what happens in this situation?

p

9

