
Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

All nodes have label b, except three leaves with label a. 2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

All nodes have label b, except three leaves with label a.

a a a a a a

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

Descend to the leaf on the lemost path.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

Descend to the leaf on the lemost path.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

Descend to the leaf on the lemost path.

Accept if there are exactly two a’s to the right.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

Descend to the leaf on the lemost path.

Accept if there are exactly two a’s to the right.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

Descend to the leaf on the lemost path.

Accept if there are exactly two a’s to the right.

2

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

We will find trees and that cannot be distinguished by A.
Fix a deterministic tree-walking automaton A.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

Strategy:

We will find trees and that cannot be distinguished by A.
Fix a deterministic tree-walking automaton A.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

Strategy:
1 Define notion of pattern, together with
pattern equivalence

≈

We will find trees and that cannot be distinguished by A.
Fix a deterministic tree-walking automaton A.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

Strategy:

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

We will find trees and that cannot be distinguished by A.
Fix a deterministic tree-walking automaton A.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

Strategy:

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

3 Build the counterexample
using these confusing patterns

≈

We will find trees and that cannot be distinguished by A.
Fix a deterministic tree-walking automaton A.

3

b

a

a bb

a

A pattern is a tree with some distinguished
leaves, called leaf ports. e number of leaf

ports is the arity of the pattern.

leaf ports

a

1

2

composition of patterns

=

b

a

a bb

a

A pattern is a tree with some distinguished
leaves, called leaf ports. e number of leaf

ports is the arity of the pattern.

root port

leaf ports

a

a

1

2

composition of patterns

=

b

a

a bb

a

A pattern is a tree with some distinguished
leaves, called leaf ports. e number of leaf

ports is the arity of the pattern.

leaf ports

a

a

1

2

composition of patterns

=

Two patterns and

Fix a tree-walking automaton A.

are considered A-equivalent if

1 2

root

1 2

root

A accepts the tree A accepts the tree

iff

1 2rootfor every completion

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

δ∆ ⊆ Q × {ε,1,..,n} × Q × {ε,1,..,n}

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

δ∆ ⊆ Q × {ε,1,..,n} × Q × {ε,1,..,n}

b

b

b

b

b

b

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

δ∆ ⊆ Q × {ε,1,..,n} × Q × {ε,1,..,n}

δ∆ : types {ε,1,..,n} Q × {ε,1,..,n} × Q × {ε,1,..,n}

b

b

b

b

b

b

A-equivalence is a congruence with respect to pattern composition.

≈ ≈implies

A-equivalence is a congruence with respect to pattern composition.

≈ ≈implies

Corollary. A-equivalence classes of unary patterns form a finite semigroup.

A-equivalence is a congruence with respect to pattern composition.

≈ ≈implies

Corollary. A-equivalence classes of unary patterns form a finite semigroup.

. =.

A-equivalence is a congruence with respect to pattern composition.

≈ ≈implies

Corollary. A-equivalence classes of unary patterns form a finite semigroup.

. =.

(this semigroup does not contain all
information on the automaton)

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

We will find trees and that cannot be distinguished by A.

Strategy:

3 Build the counterexample
using these confusing patterns

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

≈

Fix a deterministic tree-walking automaton A.

8

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

We will find trees and that cannot be distinguished by A.

Strategy:

3 Build the counterexample
using these confusing patterns

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

≈

Fix a deterministic tree-walking automaton A.

8

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

Example. S = {0,1} with addition mod 2. In this case, set X=Y=0.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

Example. S = {0,1} with addition mod 2. In this case, set X=Y=0.

Example. S = {a(a+b)*, b(a+b)*} . In this case, set X=x and Y=y.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

X := (xω · yω)ω Y := yω ·X
Proof.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

X · X = (xω · yω)ω · (xω · yω)ω = (xω · yω)ω = X

X := (xω · yω)ω Y := yω ·X
Proof.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

X · Y = (xω · yω)ω · yω ·(xω · yω)ω = (xω · yω)ω · (xω · yω)ω = (xω

· yω)ω = X

X · X = (xω · yω)ω · (xω · yω)ω = (xω · yω)ω = X

X := (xω · yω)ω Y := yω ·X
Proof.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

X · Y = (xω · yω)ω · yω ·(xω · yω)ω = (xω · yω)ω · (xω · yω)ω = (xω

· yω)ω = X

X · X = (xω · yω)ω · (xω · yω)ω = (xω · yω)ω = X

Y · X = y · X · X = y · X = Y

X := (xω · yω)ω Y := yω ·X
Proof.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

X · Y = (xω · yω)ω · yω ·(xω · yω)ω = (xω · yω)ω · (xω · yω)ω = (xω

· yω)ω = X

X · X = (xω · yω)ω · (xω · yω)ω = (xω · yω)ω = X

Y · Y = y · X · Y = y · X = Y

Y · X = y · X · X = y · X = Y

X := (xω · yω)ω Y := yω ·X
Proof.

Pattern Lemma. Fix a tree-walking automaton A. ere exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have
the same A-equivalence class.

Pattern Lemma. Fix a tree-walking automaton A. ere exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have
the same A-equivalence class.

≈

Pattern Lemma. Fix a tree-walking automaton A. ere exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have
the same A-equivalence class.

≈
≈

for nondeterministic automata,
the lemma fails for 3 ports.

We start out with patterns such that ≈

by pumping, there are n < m such that

≈

balanced binary
tree of depth m

balanced binary
tree of depth n

We start out with patterns such that ≈

by pumping, there are n < m such that

≈

balanced binary
tree of depth m

balanced binary
tree of depth n

We start out with patterns such that ≈

= =

We start out with patterns such that ≈

We start out with patterns such that ≈

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X’ Y’
X= ∈ xS Y= ∈ yS

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X’ Y’
X= ∈ xS Y= ∈ yS

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

X’Y’

 X

choose:

=

=

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X’ Y’
X= ∈ xS Y= ∈ yS

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

X’Y’

 X

choose:

=

=

≈ ≈ ≈

To prove the pattern lemma, it suffices to show:

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X’ Y’
X= ∈ xS Y= ∈ yS

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

X’Y’

 X

choose:

=

=

≈ ≈ ≈

To prove the pattern lemma, it suffices to show:

= ≈ ≈ ≈ ≈

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X’ Y’
X= ∈ xS Y= ∈ yS

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

X’Y’

 X

choose:

=

=

≈ ≈ ≈

To prove the pattern lemma, it suffices to show:

≈
X’Y’

=
Y’

 XY≈ ≈

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

We will find trees and that cannot be distinguished by A.

Strategy:

3 Build the counterexample
using these confusing patterns

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

≈

Fix a deterministic tree-walking automaton A.

13

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

We will find trees and that cannot be distinguished by A.

Strategy:

3 Build the counterexample
using these confusing patterns

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

≈

Fix a deterministic tree-walking automaton A.

13

≈we will show that holds for a deterministic tree-walking automaton

iff

p

q

qp

iff

p

q q

p

iff

p

q q

p

type of things we need to show:

≈we will show that holds for a deterministic tree-walking automaton

iff

p

q

qp

iff

p

q q

p

type of things we need to show:

iff

p

q q

p

iff

p

q q

p

iff

p

q q

p

p

q
impliesLemma

q

p

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

p

r
by similar reasoning,

we rule out all
possibilities
except for

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

p

r
by similar reasoning,

we rule out all
possibilities
except for

why r=q ?

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

p

r
by similar reasoning,

we rule out all
possibilities
except for

why r=q ?

p

r

⇒
p

r

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

p

r
by similar reasoning,

we rule out all
possibilities
except for

why r=q ?

p

r

⇒
p

r

p

q

⇒
p

q

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

p

r
by similar reasoning,

we rule out all
possibilities
except for

why r=q ?

p

r

⇒
p

r

p

q

⇒
p

q

by determinism, we get q=r

iff

p

q q

p

≈we will show that holds for a deterministic tree-walking automaton

iff

p

q

qp

iff

p

q q

p

iff

p

q q

p

type of things we need to show:

iff

p

q q

p

iff

p

q q

p
p

q

p

assume

what happens in
this situation?

p

p

impossible

p

p
p

impossible

p

≈we will show that holds for a deterministic tree-walking automaton

iff

p

q q

p

iff

p

q q

p

type of things we need to show:

iff

p

q

qp

iff

p

q

qp

p q

assume

iff

p

q

qp

p q

p

what happens
in this situation?

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p
must hold

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p
must hold

p
impossible

p

impossible
p

impossible

p

must hold

assume

q
iff

p

q

qp

