
Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

All nodes have label b, except three leaves with label a. 2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

All nodes have label b, except three leaves with label a.

a a a a a a

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

Descend to the leaf on the lemost path.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

Descend to the leaf on the lemost path.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

Descend to the leaf on the lemost path.

Accept if there are exactly two a’s to the right.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

Descend to the leaf on the lemost path.

Accept if there are exactly two a’s to the right.

2

/20

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized. TWA

DTWA

a a a a a a

Using DFS, check that all nodes have b, except three leaves with a.

Go to the rightmost a.

Nondeterministically pick an ancestor.

Descend to the leaf on the lemost path.

Accept if there are exactly two a’s to the right.

2

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

We will find trees and that cannot be distinguished by A.
Fix a deterministic tree-walking automaton A.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

Strategy:

We will find trees and that cannot be distinguished by A.
Fix a deterministic tree-walking automaton A.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

Strategy:
1 Define notion of pattern, together with
pattern equivalence

≈

We will find trees and that cannot be distinguished by A.
Fix a deterministic tree-walking automaton A.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

Strategy:

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

We will find trees and that cannot be distinguished by A.
Fix a deterministic tree-walking automaton A.

3

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

Strategy:

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

3 Build the counterexample
using these confusing patterns

≈

We will find trees and that cannot be distinguished by A.
Fix a deterministic tree-walking automaton A.

3

b

a

a bb

a

A pattern is a tree with some distinguished
leaves, called leaf ports. e number of leaf

ports is the arity of the pattern.

leaf ports

a

1

2

composition of patterns

=

b

a

a bb

a

A pattern is a tree with some distinguished
leaves, called leaf ports. e number of leaf

ports is the arity of the pattern.

root port

leaf ports

a

a

1

2

composition of patterns

=

b

a

a bb

a

A pattern is a tree with some distinguished
leaves, called leaf ports. e number of leaf

ports is the arity of the pattern.

leaf ports

a

a

1

2

composition of patterns

=

Two patterns and

Fix a tree-walking automaton A.

are considered A-equivalent if

1 2

root

1 2

root

A accepts the tree A accepts the tree

iff

1 2rootfor every completion

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

δ∆ ⊆ Q × {ε,1,..,n} × Q × {ε,1,..,n}

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

δ∆ ⊆ Q × {ε,1,..,n} × Q × {ε,1,..,n}

b

b

b

b

b

b

1 2

root

Fact. For a fixed number of ports, A-equivalence has
finitely many equivalence classes.

δ∆ ⊆ Q × {ε,1,..,n} × Q × {ε,1,..,n}

δ∆ : types {ε,1,..,n} Q × {ε,1,..,n} × Q × {ε,1,..,n}

b

b

b

b

b

b

A-equivalence is a congruence with respect to pattern composition.

≈ ≈implies

A-equivalence is a congruence with respect to pattern composition.

≈ ≈implies

Corollary. A-equivalence classes of unary patterns form a finite semigroup.

A-equivalence is a congruence with respect to pattern composition.

≈ ≈implies

Corollary. A-equivalence classes of unary patterns form a finite semigroup.

. =.

A-equivalence is a congruence with respect to pattern composition.

≈ ≈implies

Corollary. A-equivalence classes of unary patterns form a finite semigroup.

. =.

(this semigroup does not contain all
information on the automaton)

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

We will find trees and that cannot be distinguished by A.

Strategy:

3 Build the counterexample
using these confusing patterns

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

≈

Fix a deterministic tree-walking automaton A.

8

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

We will find trees and that cannot be distinguished by A.

Strategy:

3 Build the counterexample
using these confusing patterns

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

≈

Fix a deterministic tree-walking automaton A.

8

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

Example. S = {0,1} with addition mod 2. In this case, set X=Y=0.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

Example. S = {0,1} with addition mod 2. In this case, set X=Y=0.

Example. S = {a(a+b)*, b(a+b)*} . In this case, set X=x and Y=y.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

X := (xω · yω)ω Y := yω ·X
Proof.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

X · X = (xω · yω)ω · (xω · yω)ω = (xω · yω)ω = X

X := (xω · yω)ω Y := yω ·X
Proof.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

X · Y = (xω · yω)ω · yω ·(xω · yω)ω = (xω · yω)ω · (xω · yω)ω = (xω

· yω)ω = X

X · X = (xω · yω)ω · (xω · yω)ω = (xω · yω)ω = X

X := (xω · yω)ω Y := yω ·X
Proof.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

X · Y = (xω · yω)ω · yω ·(xω · yω)ω = (xω · yω)ω · (xω · yω)ω = (xω

· yω)ω = X

X · X = (xω · yω)ω · (xω · yω)ω = (xω · yω)ω = X

Y · X = y · X · X = y · X = Y

X := (xω · yω)ω Y := yω ·X
Proof.

A semigroup lemma. For any finite semigroup S and elements x,y ∈
S,

there are X ∈ xS and Y ∈ yS with
X = X · X = X · Y
Y = Y · Y = Y · X

X · Y = (xω · yω)ω · yω ·(xω · yω)ω = (xω · yω)ω · (xω · yω)ω = (xω

· yω)ω = X

X · X = (xω · yω)ω · (xω · yω)ω = (xω · yω)ω = X

Y · Y = y · X · Y = y · X = Y

Y · X = y · X · X = y · X = Y

X := (xω · yω)ω Y := yω ·X
Proof.

Pattern Lemma. Fix a tree-walking automaton A. ere exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have
the same A-equivalence class.

Pattern Lemma. Fix a tree-walking automaton A. ere exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have
the same A-equivalence class.

≈

Pattern Lemma. Fix a tree-walking automaton A. ere exist patterns

such that all compositions of these patterns with 0 ports (resp., 1 port, 2 ports) have
the same A-equivalence class.

≈
≈

for nondeterministic automata,
the lemma fails for 3 ports.

We start out with patterns such that ≈

by pumping, there are n < m such that

≈

balanced binary
tree of depth m

balanced binary
tree of depth n

We start out with patterns such that ≈

by pumping, there are n < m such that

≈

balanced binary
tree of depth m

balanced binary
tree of depth n

We start out with patterns such that ≈

= =

We start out with patterns such that ≈

We start out with patterns such that ≈

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X’ Y’
X= ∈ xS Y= ∈ yS

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X’ Y’
X= ∈ xS Y= ∈ yS

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

X’Y’

 X

choose:

=

=

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X’ Y’
X= ∈ xS Y= ∈ yS

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

X’Y’

 X

choose:

=

=

≈ ≈ ≈

To prove the pattern lemma, it suffices to show:

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X’ Y’
X= ∈ xS Y= ∈ yS

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

X’Y’

 X

choose:

=

=

≈ ≈ ≈

To prove the pattern lemma, it suffices to show:

= ≈ ≈ ≈ ≈

We start out with patterns such that ≈

Let S be the semigroup generated by x= and y=

X’ Y’
X= ∈ xS Y= ∈ yS

X ≈ XX ≈ XY and Y ≈ YY ≈ YX
applying the semigroup lemma, we get

X’Y’

 X

choose:

=

=

≈ ≈ ≈

To prove the pattern lemma, it suffices to show:

≈
X’Y’

=
Y’

 XY≈ ≈

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

We will find trees and that cannot be distinguished by A.

Strategy:

3 Build the counterexample
using these confusing patterns

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

≈

Fix a deterministic tree-walking automaton A.

13

/20

Goal: No deterministic tree-walking automaton recognizes the language L.

We will find trees and that cannot be distinguished by A.

Strategy:

3 Build the counterexample
using these confusing patterns

2 Using algebra, find some
confusing patterns

1 Define notion of pattern, together with
pattern equivalence

≈

≈

Fix a deterministic tree-walking automaton A.

13

≈we will show that holds for a deterministic tree-walking automaton

iff

p

q

qp

iff

p

q q

p

iff

p

q q

p

type of things we need to show:

≈we will show that holds for a deterministic tree-walking automaton

iff

p

q

qp

iff

p

q q

p

type of things we need to show:

iff

p

q q

p

iff

p

q q

p

iff

p

q q

p

p

q
impliesLemma

q

p

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

p

r
by similar reasoning,

we rule out all
possibilities
except for

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

p

r
by similar reasoning,

we rule out all
possibilities
except for

why r=q ?

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

p

r
by similar reasoning,

we rule out all
possibilities
except for

why r=q ?

p

r

⇒
p

r

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

p

r
by similar reasoning,

we rule out all
possibilities
except for

why r=q ?

p

r

⇒
p

r

p

q

⇒
p

q

iff

p

q q

p

Proof

p

q
impliesLemma

q

p

p p

p⇒ ⇒

p

r
by similar reasoning,

we rule out all
possibilities
except for

why r=q ?

p

r

⇒
p

r

p

q

⇒
p

q

by determinism, we get q=r

iff

p

q q

p

≈we will show that holds for a deterministic tree-walking automaton

iff

p

q

qp

iff

p

q q

p

iff

p

q q

p

type of things we need to show:

iff

p

q q

p

iff

p

q q

p
p

q

p

assume

what happens in
this situation?

p

p

impossible

p

p
p

impossible

p

≈we will show that holds for a deterministic tree-walking automaton

iff

p

q q

p

iff

p

q q

p

type of things we need to show:

iff

p

q

qp

iff

p

q

qp

p q

assume

iff

p

q

qp

p q

p

what happens
in this situation?

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p
must hold

p
impossible

p

impossible
p

impossible

p

must hold

assume

iff

p

q

qp

p q

p

what happens
in this situation?

p

what happens
in this situation?

p
impossible

p
impossible

p
must hold

p
impossible

p

impossible
p

impossible

p

must hold

assume

q
iff

p

q

qp

