Tree automata

What is a Tree Automaton?
Decision Problems L .
OglC
Logic for Words
Logic for Trees

Transitive Closure Logic

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Tree-Walking Automata, 1

Tree-Walking Automata

Expressive Power

Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized

Tree automata

What is a Tree Automaton?
Decision Problems L .
OglC
Logic for Words
Logic for Trees

Transitive Closure Logic

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Tree-Walking Automata, 1

Tree-Walking Automata

Expressive Power

Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized

Plan

Tree-Walking Automata

definition
some examples
problems

Expressive Power

comparison with tree automata
complexity
determinization

Pebble Automata

definition
stack discipline
transitive closure logic

Trees are finite, binary and labeled

Trees are finite, binary and labeled

A tree-walking automaton is sequential and two-way.

Trees are finite, binary and labeled

A tree-walking automaton is sequential and two-way.

Trees are finite, binary and labeled

A tree-walking automaton is sequential and two-way.

Trees are finite, binary and labeled

A tree-walking automaton is sequential and two-way.

Trees are finite, binary and labeled

A tree-walking automaton is sequential and two-way.

If the state is p and the node is the root with label 4,
then move to the left child and change state to 4.

If the state is p and the node is the root with label 4,
then move to the left child and change state to 4.

test

It the state is p and the node is the root with label 4,
then move to the left child and change state to 4.

command

test

It the state is p and the node is the root with label 4,
then move to the left child and change state to 4.

command

Tests are boolean Commands are:

combinations of: @ @ move left/right/up,

has label 4, accept,

is right/left child, reject

is leaf @ @

test

It the state is p and the node is the root with label 4,
then move to the left child and change state to 4.

command

Tests are boolean Commands are:

combinations of: move left/right/up,
has label 4, @ @ accept,
is right/left child, reject

is leaf @ @

Def. A tree walking-automaton is a tuple (@, qr, >3, 90)

states transitions

initial state alphabet

Example.
Check if the prefix is

Example.
Check if the prefix is @

In state p, label 2 and root, move left, change state to ¢
In state g, label & and not leat, move up, change state to »
In state 7, move right, change state to s

In state s, label 2 and leaf, accept.

Example.
Check if the prefix is @

In state p, label 2 and root, move left, change state to g
In state g, label & and not leat, move up, change state to »
In state 7, move right, change state to s

In state s, label 2 and leaf, accept.

Example.
Check if the prefix is @

In state p, label 2 and root, move left, change state to ¢
In state g, label 4 and not leat, move up, change state to »
In state 7, move right, change state to s

In state s, label 2 and leaf, accept.

Example.
Check if the prefix is @

In state p, label 2 and root, move left, change state to ¢
In state g, label & and not leat, move up, change state to »
In state 7, move right, change state to s

In state s, label 2 and leaf, accept.

Example.
Check if the prefix is @

In state p, label 2 and root, move left, change state to ¢
In state g, label & and not leat, move up, change state to »
In state 7, move right, change state to s

In state s, label 2 and leaf, accept.

Example.
Check if the prefix is @

In state p, label 2 and root, move left, change state to ¢
In state g, label & and not leat, move up, change state to »
In state 7, move right, change state to s

In state s, label 2 and leaf, accept.

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

up

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

OO

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

e

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

up
OB ©

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.

In state p, label 4, accept. @

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.

In state p, label 4, accept. a

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.

In state p, label 4, accept. a

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

ofiio

Example.
All nodes have label

Example.
Some node has label @

In state p, move left.
In state p, move right.
In state p, label 4, accept.

ofiio

Complemenation is difhcult!

Open problem: @ @

Are nondeterministic
tree-walking automarta closed
under complementation? Example.

All nodes have label

A clever tree-walking automaton

A clever tree-walking automaton

States: {q} U ({left,right} X{O,l})

first time

just evaluated evaluated left/right subtree to 0/ ; s

A clever tree-walking automaton

States: {q} U ({left,right} X{O,l})

first time

just evaluated evaluated left/right subtree to 0/ ; s

A clever tree-walking automaton

States: {q} U ({left,right} X{O,l})

first time

just evaluated evaluated left/right subtree to 0/ ; s

A clever tree-walking automaton

States: {q} U ({left,right} X{O,l})

first time

just evaluated evaluated left/right subtree to 0/ ; s

A clever tree-walking automaton

States: {q} U ({left,right} X{O,l})

first time

just evaluated evaluated left/right subtree to 0/ ; s

A clever tree-walking automaton

States: {q} U ({left,right} X{O,l})

first time

just evaluated evaluated left/right subtree to 0/ ; s

A clever tree-walking automaton

States: {q} U ({left,right} X{O,l})

first time

just evaluated evaluated left/right subtree to 0/ ; s

A clever tree-walking automaton

States: {q} U ({left,right} X{O,l})

first time

just evaluated evaluated left/right subtree to 0/ ; s

A clever tree-walking automaton

States: {q} U ({left,’r‘ight} X{O,l})

first time

just evaluated evaluated left/right subtree to 0/ ; s

A clever tree-walking automaton

still works with
negation, but what

about XOR?

States: {q} U ({left,’right} X{O,l})

first time

just evaluated evaluated left/right subtree to 0/ ; s

Complemenation is difficult!

Open problem:

Are nondeterministic

tree-walking automata closed

under complementation?

Complemenation is difficult!

Open problem:

Are nondeterministic

tree-walking automata closed

under complementation?

Theorem. [Muscholl, Samuelides, Segoufin]

Deterministic tree-walking automata are closed under complementation.

Complemenation is difficult!

Open problem:

Are nondeterministic

tree-walking automata closed

under complementation?

Theorem. [Muscholl, Samuelides, Segoufin]

Deterministic tree-walking automata are closed under complementation.

Lemma.
Every deterministic tree-walking automaton is equivalent to
one that ends every run with a reject or accept command.

Plan

Tree-Walking Automata

definition
some examples
problems

Expressive Power

comparison with tree automata
complexity
determinization

Pebble Automata

definition
stack discipline
transitive closure logic

Plan

Tree-Walking Automata

definition
some examples
problems

Expressive Power

comparison with tree automata
complexity
determinization

Pebble Automata

definition
stack discipline
transitive closure logic

How do tree-walking automata relate to “real” tree automata?

How do tree-walking automata relate to “real” tree automata?

How do tree-walking automata relate to “real” tree automata?

How do tree-walking automata relate to “real” tree automata?

How do tree-walking automata relate to “real” tree automata?

q0 41

If the root label is 4, the left subtree has value 9o, and the right

subtree has value g;, then the whole tree has value 4.

Question: how do tree-walking automata relate to regular languages?

TWA CREG

Question: how do tree-walking automata relate to regular languages?

TWA CREG

To a tree-walking automaton

<Q7 qr, Za 5>

we associate a branching
automaton that accepts the
same trees.

States P(Q X Q)

Question: how do tree-walking automata relate to regular languages?

TWA CREG

To a tree-walking automaton

(Q,qr1,%,0) Value of a tree:
we associate a branching set of pairs (p,q) that

automaton that accepts the give a loop in the root:
same trees.

States P(Q X Q) P

(these are loops that
stay below the root)

Question: how do tree-walking automata relate to regular languages?

TWA CREG

To a tree-walking automaton

(Q,qr1,%,0) Value of a tree:
we associate a branching set of pairs (p,q) that

automaton that accepts the give a loop in the root:
same trees.

States Py@) J4

P(Q x Q x {left, right,root})

(these are loops that
stay below the root)

Question: how do tree-walking automata relate to regular languages?

TWA CREG

To a tree-walking automaton

(Q,qr1,%,0) Value of a tree:
we associate a branching set of pairs (p,q) that

automaton that accepts the give a loop in the root:
same trees.

States Py@) 4

P(Q x Q x {left, right,root})

(these are loops that

stay below the root)
Corollary. Emptiness for tree-walking

automata is in EXPTIME.

1heorem. Emptiness for tree-walking

automata is EXPTIME-complete.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

1heorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that

uses 7 memory cells, we write a tree-walking

qutomaton with equivalent emptiness

and O(n) states.

'The tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
1S correct.

TWA CREG

Is the inclusion strict?

Theorem (B., Colcombet 05) The inclusion is strict.

TWA CREG

Is the inclusion strict?

Theorem (B., Colcombet 05) The inclusion is strict.

Theorem (B., Colcombet 04)

Tree-walking automata cannot be determinized.

14/23

Plan

Tree-Walking Automata

definition
some examples
problems

Expressive Power

comparison with tree automata
complexity
determinization

Pebble Automata

definition
stack discipline
transitive closure logic

Plan

Tree-Walking Automata

definition
some examples
problems

Expressive Power

comparison with tree automata
complexity
determinization

Pebble Automata

definition
stack discipline
transitive closure logic

In a large tree with only one type of label, all nodes look the same.
What it the automaton could mark nodes with pebbles?

In a large tree with only one type of label, all nodes look the same.
What it the automaton could mark nodes with pebbles?

In a large tree with only one type of label, all nodes look the same.
What it the automaton could mark nodes with pebbles?

In a large tree with only one type of label, all nodes look the same.
What it the automaton could mark nodes with pebbles?

In a large tree with only one type of label, all nodes look the same.
What it the automaton could mark nodes with pebbles?

In a large tree with only one type of label, all nodes look the same.
What it the automaton could mark nodes with pebbles?

In a large tree with only one type of label, all nodes look the same.
What it the automaton could mark nodes with pebbles?

In a large tree with only one type of label, all nodes look the same.
What it the automaton could mark nodes with pebbles?

In a large tree with only one type of label, all nodes look the same.
What it the automaton could mark nodes with pebbles?

In a large tree with only one type of label, all nodes look the same.
What it the automaton could mark nodes with pebbles?

An n-pebble automaton has pebbles I....,x.
New tests: “is pebble 7 on the current node?”
New commands: “place pebble 7 on the current node”

“lifc pebble 7 from the current node”.

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

0/00]0l® 0/0]010l®

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

DOOOO 0/0]010l®

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

Gooo0 ©eEEEO

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

Gooo0 ©OEEO0

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

0 OIGICIOIN 0 Ololole

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

0 OICICIOIN 0 Ololole

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

o000 o0

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

OO0 o0

Bad news: emptiness is undecidable for pebble automata,

even on words and with two pebbles.

© 0 ololOJIN © Ololole

Bad news: emptiness is undecidable for pebble automata,

even on words and with two pebbles.

© 0 olClOJIN © Ololole

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

PO OO0

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

© 0 olCclelN6!0l0l0le

Bad news: emptiness is undecidable for pebble automata,

even on words and with two pebbles.

0 0 JlCIeRENN0 0 olole

Bad news: emptiness is undecidable for pebble automata,

even on words and with two pebbles.

0 0 JlcIeRENN0 0 olole

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

0l0/0l0IOJNO 0 olole

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

OO0 PO

Bad news: emptiness is undecidable for pebble automata,

even on words and with two pebbles.

2o 0 CleRENo 0 olole

Bad news: emptiness is undecidable for pebble automata,

even on words and with two pebbles.

2lc 0 CISREN0 0 olole

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

OO0 OO

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

OO0 OGO

Bad news: emptiness is undecidable for pebble automata,

even on words and with two pebbles.

2lc 0 CISRENOl0 0 Ole

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

010 0 CION0I0 0 0le

configuration 1 configuration 2 configuration 3 configuration 7

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

010 0 CION0I0 0 0le

configuration 1 configuration 2 configuration 3 configuration 7

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

010 0 CION0I0 0 0le

configuration 1 configuration 2 configuration 3 configuration 7

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

010 0 CION0I0 0 0le

configuration 1 configuration 2 configuration 3 configuration 7

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

010 0 CION0I0 0 0le

configuration 1 configuration 2 configuration 3 configuration 7

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

010 0 CION0I0 0 0le

configuration 1 configuration 2 configuration 3 configuration 7

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

010 0 CION0I0 0 0le

configuration 1 configuration 2 configuration 3 configuration 7

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

010 0 CION0I0 0 0le

configuration 1 configuration 2 configuration 3 configuration 7

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

010 0 CION0I0 0 0le

configuration 1 configuration 2 configuration 3 configuration 7

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

010 0 CION0I0 0 0le

configuration 1 configuration 2 configuration 3 configuration 7

initial accepting

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

010 0 CION0I0 0 0le

configuration 1 configuration 2 configuration 3 configuration 7

initial accepting

Good news: with stack discipline, pebble automata have decidable

emptiness.

Good news: with stack discipline, pebble automata have decidable

emptiness.

The set of pebbles on the tree is always a prefix I,...,£ of I,...,7.
When the newest pebble is 7, only 7 can be lifted, and i+1 placed.

Good news: with stack discipline, pebble automata have decidable
emptiness.

The set of pebbles on the tree is always a prefix I,...,£ of I,...,7.
When the newest pebble is 7, only 7 can be lifted, and i+1 placed.

Theorem. | Engelfriet, Hoogeboom 99|

Every pebble automaton is equivalent to a tree automaton.

Good news: with stack discipline, pebble automata have decidable
emptiness.

The set of pebbles on the tree is always a prefix I,...,£ of I,...,7.
When the newest pebble is 7, only 7 can be lifted, and i+1 placed.

Theorem. | Engelfriet, Hoogeboom 99|

Every pebble automaton is equivalent to a tree automaton.

If the pebble automaton has # pebbles, the tree automaton may have

n times 2
2
22

states. Likewise, emptiness is non-elementary.

@paCI(aj?y)xlv SR 7372')

There is a run that beginsin (p, 2hd endsin (g, y)

The pebbles at the beginningand end arein x4, ..., x;

During the run, pebble xjs not lifted, but pebbles can be added.

(p, ™)

@paCI(aj?y)xlv SR 7372')

There is a run that beginsin (p, 2hd endsin (g, y)

The pebbles at the beginningand end arein x4, ..., x;

During the run, pebble xjs not lifted, but pebbles can be added.

(p, ™)

Li41

gﬁpaCZ(aj?y)xlv SR 7372')

There is a run that beginsin (p, 2hd endsin (g, y)

The pebbles at the beginningand end arein x4, ..., x;

During the run, pebble xjs not lifted, but pebbles can be added.

gpr,s(fE,y,fﬁla---axuxﬁl) (p,x)

Li41

gﬁpaCI(Qj?y)xlv SR 7'772')

What logic? Monadic second-order logic is good enough.

Pebble automata = first-order logic with positive transitive closure.

gpr,s(fﬁ,y,fﬁla---axiyfﬁl) (p,il?)

Li41

Theorem. |B., Samuelides, Schwentick, Segoufin 06]

-Pebble automata do not recognize all regular languages.
-Deterministic # pebbles are weaker than nondeterminstic 7 pebbles.

-n pebbles are weaker than 741 pebbles, both in det and nondet.

Theorem. |B., Samuelides, Schwentick, Segoufin 06]

-Pebble automata do not recognize all regular languages.
-Deterministic # pebbles are weaker than nondeterminstic 7 pebbles.

-n pebbles are weaker than #+1 pebbles, both in det and nondet.

2PA 2DPA

1PA 1DPA

. .

Open question: Known:

| JiPA = JiDPA Vi OPA ¢ iDPA

1

Pebble automata = first-order logic with positive transitive closure.

Pebble automata = first-order logic with positive transitive closure.

First-order logic.

VaVy a(x) A child(x,y) = b(y)

For every nodes x, ¥, if x has label 2 and

y is a child of x, then y has label 4.

Pebble automata = first-order logic with positive transitive closure.

First-order logic.
VaVy a(x) A child(z,y) = b(y)
For every nodes x, ¥, if x has label 2 and

y is a child of x, then y has label 4.

First-order logic with transitive closure.

TC (child(z,y) A a(z))(x,y)

5"

For words,

first-order logic with transitive closure = regular languages.

For words,

first-order logic with transitive closure = regular languages.

For words,
first-order logic with transitive closure = regular languages.

What about trees?

first-order logic with positive transitive closure = pebble automata

For words,
first-order logic with transitive closure = regular languages.

What about trees?
first-order logic with positive transitive closure = pebble automata

1heorem. [ten Cate, Segoufin "08]

For trees, not all regular languages are captured by first-order

logic with transitive closure.

Conclusion

Conclusion

What did we miss?

Conclusion

What did we miss?

-caterpillar expressions

Conclusion

What did we miss?

-caterpillar expressions

-invisible pebbles

Conclusion

What did we miss?

-caterpillar expressions

-invisible pebbles

-complexity issues

Conclusion

What did we miss?

-caterpillar expressions

-invisible pebbles

-complexity issues

Open questions:

Conclusion

What did we miss?

-caterpillar expressions

-invisible pebbles

-complexity issues

Open questions:
-complementation

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles

-complexity issues

Open questions:
-complementation

-detereminization of pebble automata

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles

-complexity issues

Open questions:
-complementation

-detereminization of pebble automata
-better understanding

