
/23

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5
1

/23

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5
1

/23

Plan

Tree-Walking Automata

Expressive Power

Pebble Automata

definition
some examples
problems

comparison with tree automata
complexity
determinization

definition
stack discipline
transitive closure logic

2

/23

Trees are finite, binary and labeled

b

a

a

a b

3

/23

Trees are finite, binary and labeled

b

a

a

a b

A tree-walking automaton is sequential and two-way.

3

/23

Trees are finite, binary and labeled

b

a

a

a b

A tree-walking automaton is sequential and two-way.

3

/23

Trees are finite, binary and labeled

b

a

a

a b

A tree-walking automaton is sequential and two-way.

3

/23

Trees are finite, binary and labeled

b

a

a

a b

A tree-walking automaton is sequential and two-way.

3

/23

Trees are finite, binary and labeled

b

a

a

a b

A tree-walking automaton is sequential and two-way.

3

/23

b

a

a

a b

If the state is p and the node is the root with label a,
then move to the le child and change state to q.

4

/23

b

a

a

a b

If the state is p and the node is the root with label a,
then move to the le child and change state to q.

4

/23

command

test

b

a

a

a b

If the state is p and the node is the root with label a,
then move to the le child and change state to q.

4

/23

command

test

b

a

a

a b

If the state is p and the node is the root with label a,
then move to the le child and change state to q.

Tests are boolean
combinations of:
has label a,
is right/le child,
is leaf

Commands are:
move le/right/up,
accept,
reject

4

/23

command

test

b

a

a

a b

If the state is p and the node is the root with label a,
then move to the le child and change state to q.

Tests are boolean
combinations of:
has label a,
is right/le child,
is leaf

Commands are:
move le/right/up,
accept,
reject

Def. A tree walking-automaton is a tuple

states
initial state alphabet

transitions

4

/23

b

a

a

a b

Example.
Check if the prefix is

b

a

a

5

/23

b

a

a

a b

Example.
Check if the prefix is

b

a

a

In state p, label a and root, move le, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

5

/23

b

a

a

a b

Example.
Check if the prefix is

b

a

a

In state p, label a and root, move le, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

5

/23

b

a

a

a b

Example.
Check if the prefix is

b

a

a

In state p, label a and root, move le, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

5

/23

b

a

a

a b

Example.
Check if the prefix is

b

a

a

In state p, label a and root, move le, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

5

/23

b

a

a

a b

Example.
Check if the prefix is

b

a

a

In state p, label a and root, move le, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

5

/23

b

a

a

a b

Example.
Check if the prefix is

b

a

a

In state p, label a and root, move le, change state to q
In state q, label b and not leaf, move up, change state to r
In state r, move right, change state to s
In state s, label a and leaf, accept.

5

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

up

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

up

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a
up

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

le

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a
up

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

right

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

le

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

up

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

right

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

6

/23

Example.
Some node has label b

In state p, move le.
In state p, move right.
In state p, label b, accept.

Example.
All nodes have label a

a

a

a

a a

Complemenation is difficult!

Open problem:
Are nondeterministic
tree-walking automata closed
under complementation?

6

/23

A clever tree-walking automaton

0

1 0

7

/23

A clever tree-walking automaton

0

1 0

States:

first time

just evaluated evaluated le/right subtree to 0/1
7

/23

A clever tree-walking automaton

0

1 0

States:

first time

just evaluated evaluated le/right subtree to 0/1
7

/23

A clever tree-walking automaton

0

1 0

States:

first time

just evaluated evaluated le/right subtree to 0/1
7

/23

A clever tree-walking automaton

0

1 0

States:

first time

just evaluated evaluated le/right subtree to 0/1
7

/23

A clever tree-walking automaton

0

1 0

States:

first time

just evaluated evaluated le/right subtree to 0/1
7

/23

A clever tree-walking automaton

0

1 0

States:

first time

just evaluated evaluated le/right subtree to 0/1
7

/23

A clever tree-walking automaton

0

1 0

States:

first time

just evaluated evaluated le/right subtree to 0/1
7

/23

A clever tree-walking automaton

0

1 0

States:

first time

just evaluated evaluated le/right subtree to 0/1
7

/23

A clever tree-walking automaton

0

1 0

States:

first time

just evaluated evaluated le/right subtree to 0/1
7

/23

A clever tree-walking automaton

0

1 0

States:

first time

just evaluated evaluated le/right subtree to 0/1

still works with
negation, but what
about XOR?

7

/23

Complemenation is difficult!

Open problem:
Are nondeterministic
tree-walking automata closed
under complementation?

8

/23

Complemenation is difficult!

Open problem:
Are nondeterministic
tree-walking automata closed
under complementation?

eorem. [Muscholl, Samuelides, Segoufin]
Deterministic tree-walking automata are closed under complementation.

8

/23

Complemenation is difficult!

Open problem:
Are nondeterministic
tree-walking automata closed
under complementation?

eorem. [Muscholl, Samuelides, Segoufin]
Deterministic tree-walking automata are closed under complementation.

Lemma.
Every deterministic tree-walking automaton is equivalent to
one that ends every run with a reject or accept command.

8

/23

Plan

Tree-Walking Automata

Expressive Power

Pebble Automata

definition
some examples
problems

comparison with tree automata
complexity
determinization

definition
stack discipline
transitive closure logic

9

/23

Plan

Tree-Walking Automata

Expressive Power

Pebble Automata

definition
some examples
problems

comparison with tree automata
complexity
determinization

definition
stack discipline
transitive closure logic

9

/23

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

10

/23

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

10

/23

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

10

/23

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

10

/23

How do tree-walking automata relate to “real” tree automata?

b

a

a

a a b a

a
q

q0 q1

If the root label is a, the le subtree has value q0 , and the right
subtree has value q1 , then the whole tree has value q.

10

/23

Question: how do tree-walking automata relate to regular languages?

TWA REG

11

/23

Question: how do tree-walking automata relate to regular languages?

TWA REG

To a tree-walking automaton

we associate a branching
automaton that accepts the
same trees.

States

11

/23

Question: how do tree-walking automata relate to regular languages?

TWA REG

To a tree-walking automaton

we associate a branching
automaton that accepts the
same trees.

States

Value of a tree:
set of pairs (p,q) that
give a loop in the root:

ap q

(these are loops that
stay below the root)

11

/23

Question: how do tree-walking automata relate to regular languages?

TWA REG

To a tree-walking automaton

we associate a branching
automaton that accepts the
same trees.

States

Value of a tree:
set of pairs (p,q) that
give a loop in the root:

ap q

(these are loops that
stay below the root)

11

/23

Question: how do tree-walking automata relate to regular languages?

TWA REG

To a tree-walking automaton

we associate a branching
automaton that accepts the
same trees.

States

Value of a tree:
set of pairs (p,q) that
give a loop in the root:

ap q

(these are loops that
stay below the root)

Corollary. Emptiness for tree-walking
automata is in EXPTIME.

11

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

eorem. Emptiness for tree-walking
automata is EXPTIME-complete.

Hardness. Reduction from APSPACE.

For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts
computation trees. It does a DFS through
the tree and checks that each branching
is correct.

b1

b2

b3

bn

...

a1

a2

a3

an

...

c1

c2

c3

cn

...

12

/23

TWA REG
Is the inclusion strict?

eorem (B., Colcombet ’05) e inclusion is strict.

13

/23

TWA REG
Is the inclusion strict?

eorem (B., Colcombet ’05) e inclusion is strict.

eorem (B., Colcombet ’04)
Tree-walking automata cannot be determinized.

13

/23

DTWA

TWA

REG

14

/23

Plan

Tree-Walking Automata

Expressive Power

Pebble Automata

definition
some examples
problems

comparison with tree automata
complexity
determinization

definition
stack discipline
transitive closure logic

15

/23

Plan

Tree-Walking Automata

Expressive Power

Pebble Automata

definition
some examples
problems

comparison with tree automata
complexity
determinization

definition
stack discipline
transitive closure logic

15

/23

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

16

/23

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

16

/23

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

16

/23

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

16

/23

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

16

/23

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

16

/23

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

16

/23

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

16

/23

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

16

/23

In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

An n-pebble automaton has pebbles 1,...,n.
New tests: “is pebble i on the current node?”
New commands: “place pebble i on the current node”
“li pebble i from the current node”.

16

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

configuration 1 configuration 2 configuration 3 ... configuration n

initial accepting

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

configuration 1 configuration 2 configuration 3 ... configuration n

initial accepting

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

configuration 1 configuration 2 configuration 3 ... configuration n

initial accepting

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

configuration 1 configuration 2 configuration 3 ... configuration n

initial accepting

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

configuration 1 configuration 2 configuration 3 ... configuration n

initial accepting

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

configuration 1 configuration 2 configuration 3 ... configuration n

initial accepting

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

configuration 1 configuration 2 configuration 3 ... configuration n

initial accepting

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

configuration 1 configuration 2 configuration 3 ... configuration n

initial accepting

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

configuration 1 configuration 2 configuration 3 ... configuration n

initial accepting

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

configuration 1 configuration 2 configuration 3 ... configuration n

initial accepting

17

/23

Bad news: emptiness is undecidable for pebble automata,
even on words and with two pebbles.

a b ba a b ba

configuration 1 configuration 2 configuration 3 ... configuration n

initial accepting

17

/23

Good news: with stack discipline, pebble automata have decidable
emptiness.

18

/23

Good news: with stack discipline, pebble automata have decidable
emptiness.

e set of pebbles on the tree is always a prefix 1,...,k of 1,...,n.
When the newest pebble is i, only i can be lied, and i+1 placed.

18

/23

Good news: with stack discipline, pebble automata have decidable
emptiness.

e set of pebbles on the tree is always a prefix 1,...,k of 1,...,n.
When the newest pebble is i, only i can be lied, and i+1 placed.

eorem. [Engelfriet, Hoogeboom 99]
 Every pebble automaton is equivalent to a tree automaton.

18

/23

Good news: with stack discipline, pebble automata have decidable
emptiness.

e set of pebbles on the tree is always a prefix 1,...,k of 1,...,n.
When the newest pebble is i, only i can be lied, and i+1 placed.

eorem. [Engelfriet, Hoogeboom 99]
 Every pebble automaton is equivalent to a tree automaton.

If the pebble automaton has n pebbles, the tree automaton may have

states. Likewise, emptiness is non-elementary.
18

/23

ere is a run that begins in and ends in .
e pebbles at the beginning and end are in .
During the run, pebble is not lied, but pebbles can be added.

19

/23

ere is a run that begins in and ends in .
e pebbles at the beginning and end are in .
During the run, pebble is not lied, but pebbles can be added.

19

/23

ere is a run that begins in and ends in .
e pebbles at the beginning and end are in .
During the run, pebble is not lied, but pebbles can be added.

19

/23

ere is a run that begins in and ends in .
e pebbles at the beginning and end are in .
During the run, pebble is not lied, but pebbles can be added.

What logic? Monadic second-order logic is good enough.

Pebble automata = first-order logic with positive transitive closure.

19

/23

eorem. [B., Samuelides, Schwentick, Segoufin 06]
-Pebble automata do not recognize all regular languages.
-Deterministic n pebbles are weaker than nondeterminstic n pebbles.
-n pebbles are weaker than n+1 pebbles, both in det and nondet.

0PA

1PA

2PA

0DPA

1DPA

2DPA

20

/23

eorem. [B., Samuelides, Schwentick, Segoufin 06]
-Pebble automata do not recognize all regular languages.
-Deterministic n pebbles are weaker than nondeterminstic n pebbles.
-n pebbles are weaker than n+1 pebbles, both in det and nondet.

0PA

1PA

2PA

0DPA

1DPA

2DPA

Open question: Known:

20

/23

Pebble automata = first-order logic with positive transitive closure.

21

/23

Pebble automata = first-order logic with positive transitive closure.

First-order logic.

For every nodes x, y, if x has label a and
y is a child of x, then y has label b.

21

/23

Pebble automata = first-order logic with positive transitive closure.

First-order logic.

For every nodes x, y, if x has label a and
y is a child of x, then y has label b.

...

First-order logic with transitive closure.

a

a
a

a

21

/23

For words,
first-order logic with transitive closure = regular languages.

22

/23

For words,
first-order logic with transitive closure = regular languages.

22

/23

For words,
first-order logic with transitive closure = regular languages.

What about trees?
first-order logic with positive transitive closure = pebble automata

22

/23

For words,
first-order logic with transitive closure = regular languages.

What about trees?
first-order logic with positive transitive closure = pebble automata

eorem. [ten Cate, Segoufin ’08]
For trees, not all regular languages are captured by first-order
logic with transitive closure.

22

/23

Conclusion

23

/23

Conclusion

What did we miss?

23

/23

Conclusion

What did we miss?
-caterpillar expressions

23

/23

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles

23

/23

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

23

/23

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

Open questions:

23

/23

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

Open questions:
-complementation

23

/23

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

Open questions:
-complementation
-detereminization of pebble automata

23

/23

Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

Open questions:
-complementation
-detereminization of pebble automata
-better understanding

23

