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It the state is p and the node is the root with label 4,
then move to the left child and change state to 4.

command

Tests are boolean Commands are:

combinations of: move left/right/up,
has label 4, @ @ accept,
is right/left child, reject

is leaf @ @

Def. A tree walking-automaton is a tuple (@, qr, >3, 90)

states transitions

initial state  alphabet
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Complemenation is difhcult!

Open problem: @ @

Are nondeterministic
tree-walking automarta closed
under complementation? Example.

All nodes have label
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A clever tree-walking automaton

still works with
negation, but what

about XOR?

States: {q} U ({left,’right} X{O,l})

first time

just evaluated evaluated left/right subtree to 0/ ; s
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Complemenation is difficult!

Open problem:

Are nondeterministic

tree-walking automata closed

under complementation?

Theorem. [Muscholl, Samuelides, Segoufin]

Deterministic tree-walking automata are closed under complementation.

Lemma.
Every deterministic tree-walking automaton is equivalent to
one that ends every run with a reject or accept command.
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q0 41

If the root label is 4, the left subtree has value 9o, and the right

subtree has value g;, then the whole tree has value 4.
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Is the inclusion strict?

Theorem (B., Colcombet 05 ) The inclusion is strict.

Theorem (B., Colcombet 04)

Tree-walking automata cannot be determinized.
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In a large tree with only one type of label, all nodes look the same.
What it the automaton could mark nodes with pebbles?

An n-pebble automaton has pebbles I....,x.
New tests: “is pebble 7 on the current node?”
New commands: “place pebble 7 on the current node”

“lifc pebble 7 from the current node”.
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Good news: with stack discipline, pebble automata have decidable
emptiness.

The set of pebbles on the tree is always a prefix I,...,£ of I,...,7.
When the newest pebble is 7, only 7 can be lifted, and i+1 placed.

Theorem. | Engelfriet, Hoogeboom 99|

Every pebble automaton is equivalent to a tree automaton.

If the pebble automaton has # pebbles, the tree automaton may have

n times 2
2
22

states. Likewise, emptiness is non-elementary.
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There is a run that beginsin  (p, 2hd endsin (g, y)

The pebbles at the beginningand end arein x4, ..., x;

During the run, pebble xjs not lifted, but pebbles can be added.

gpr,s(fE,y,fﬁla---axuxﬁl) (p,x)

Li41
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What logic? Monadic second-order logic is good enough.

Pebble automata = first-order logic with positive transitive closure.

gpr,s(fﬁ,y,fﬁla---axiyfﬁl) (p,il?)

Li41
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Theorem. |B., Samuelides, Schwentick, Segoufin 06]

-Pebble automata do not recognize all regular languages.
-Deterministic # pebbles are weaker than nondeterminstic 7 pebbles.

-n pebbles are weaker than #+1 pebbles, both in det and nondet.

2PA 2DPA

1PA 1DPA

. .

Open question: Known:

| JiPA = JiDPA Vi OPA ¢ iDPA

1
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Pebble automata = first-order logic with positive transitive closure.

First-order logic.
VaVy a(x) A child(z,y) = b(y)
For every nodes x, ¥, if x has label 2 and

y is a child of x, then y has label 4.

First-order logic with transitive closure.

TC (child(z,y) A a(z))(x,y)

5"
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For words,
first-order logic with transitive closure = regular languages.

What about trees?
first-order logic with positive transitive closure = pebble automata

1heorem. [ten Cate, Segoufin "08]

For trees, not all regular languages are captured by first-order

logic with transitive closure.
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Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles

-complexity issues

Open questions:
-complementation

-detereminization of pebble automata
-better understanding




