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If the state is p and the node is the root with label a, 
then move to the le child and change state to q.

Tests are boolean 
combinations of:
has label a, 
is right/le child, 
is leaf

Commands are:
move le/right/up, 
accept, 
reject

Def. A tree walking-automaton is a tuple

states
initial state alphabet

transitions
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just evaluated evaluated le/right subtree to 0/1

still works with
negation, but what
about XOR?
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Open problem:
Are nondeterministic 
tree-walking automata closed
under complementation?

eorem. [Muscholl, Samuelides, Segoufin]
Deterministic tree-walking automata are closed under complementation.

Lemma. 
Every deterministic tree-walking automaton is equivalent to
one that ends every run with a reject or accept command.
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a
q

q0 q1

If the root label is a, the le subtree has value q0 , and the right 
subtree has value q1 , then the whole tree has value q.
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automaton that accepts the 
same trees.

States 

Value of a tree:
set of pairs (p,q) that 
give a loop in the root:

ap q

(these are loops that
stay below the root)

Corollary. Emptiness for tree-walking 
automata is in EXPTIME.
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For an alternating Turing machine that
uses n memory cells, we write a tree-walking
automaton with equivalent emptiness
and O(n) states.

e tree-walking automaton accepts 
computation trees. It does a DFS through
the tree and checks that each branching
is correct.
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Is the inclusion strict?

eorem (B., Colcombet ’05) e inclusion is strict.

eorem (B., Colcombet ’04) 
Tree-walking automata cannot be determinized.
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In a large tree with only one type of label, all nodes look the same.
What if the automaton could mark nodes with pebbles?

b

a

a

a b

An n-pebble automaton has pebbles 1,...,n.
New tests: “is pebble i on the current node?”
New commands: “place pebble i on the current node”
“li pebble i from the current node”.
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even on words and with two pebbles.
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Good news: with stack discipline, pebble automata have decidable
emptiness.
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Good news: with stack discipline, pebble automata have decidable
emptiness.

e set of pebbles on the tree is always a prefix 1,...,k of 1,...,n.
When the newest pebble is i, only i can be lied, and i+1 placed.

eorem. [Engelfriet, Hoogeboom 99]
 Every pebble automaton is equivalent to a tree automaton.

If the pebble automaton has n pebbles, the tree automaton may have 

states. Likewise, emptiness is non-elementary.
18
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ere is a run that begins in            and  ends in          .
e pebbles at the beginning and end are in                    .
During the run, pebble      is not lied, but pebbles can be added.
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ere is a run that begins in            and  ends in          .
e pebbles at the beginning and end are in                    .
During the run, pebble      is not lied, but pebbles can be added.

What logic? Monadic second-order logic is good enough.

Pebble automata = first-order logic with positive transitive closure.
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eorem. [B., Samuelides, Schwentick, Segoufin 06]
-Pebble automata do not recognize all regular languages.
-Deterministic n pebbles are weaker than nondeterminstic n pebbles.
-n pebbles are weaker than n+1 pebbles, both in det and nondet.
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-Pebble automata do not recognize all regular languages.
-Deterministic n pebbles are weaker than nondeterminstic n pebbles.
-n pebbles are weaker than n+1 pebbles, both in det and nondet.

0PA

1PA

2PA

0DPA

1DPA

2DPA

Open question: Known:
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First-order logic.

For every nodes x, y, if x has label a and 
y is a child of x, then y has label b.
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Pebble automata = first-order logic with positive transitive closure.

First-order logic.

For every nodes x, y, if x has label a and 
y is a child of x, then y has label b.

...

First-order logic with transitive closure.

a

a
a

a
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For words, 
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For words, 
first-order logic with transitive closure = regular languages.

What about trees?
first-order logic with positive transitive closure = pebble automata

eorem. [ten Cate, Segoufin ’08]
For trees, not all regular languages are captured by first-order
logic with transitive closure.
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Conclusion

What did we miss?
-caterpillar expressions
-invisible pebbles
-complexity issues

Open questions:
-complementation
-detereminization of pebble automata
-better understanding
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