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Some logics that describe tree properties

“ere is a set of nodes that is closed under 
parents, has an a label, and has no c label”

∃X   
∃x∈X   a(x)
∀x∈X  ∀y    parent(x,y)  ⇒   y∈X
∀x∈X   ¬c(x)

{∧

monadic second-order logic

“ere is a node with label a that has
only b-labeled ancestors”

∃x   a(x)     ∧     (∀y < x    b(y) )

first-order logic

“On some path, b holds until a holds”
E b U a

temporal logics

Instead of < we can write 
(parent(x,y))*

first-order logic with transitive closure

( b

a

)*
⊥ ⊥

⊥

regular expressions
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Temporal Logic for Words

Temporal Logic for Trees

XPath

definition
the virtuous cycle
MSO=regular

definition
CTL, PDL, CTL*
expressivity

definition
two-variable logic
regular XPath
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An LTL-relabeling is a function f : A*        B*

the relabeling is given by formulas and over alphabet A.

A=

B=

and NEXT and NEXT ( ) ( )or=

= last in same-colored block=

w

f(w)

Lemma.
If L⊆B* is LTL-definable, and f  is an LTL relabeling, then f -1(L) is also LTL-definable.

first letter is      and last letter is f ( ) = ( )* ∉ LTL

preimages: yes,    images: no

6
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Since S is aperiodic, there must be some        ∈ A  such that s=α(      ) satisfies sS ⊄ S Ss ⊄ Sor
Claim.

If Ss = S then    t          ts     is a bijection. For aperiodic semigroups, such a bijection has to be the identity.
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s1  ∈ sS s2  ∈ sS s3  ∈ sS s4  ∈ sS

is is an LTL-relabeling (thanks to the induction assumption on a smaller alphabet).
A word has the same value as its relabeling.

Aer the relabeling, we can use the smaller semigroup sS.

Since S is aperiodic, there must be some        ∈ A  such that s=α(      ) satisfies sS ⊄ S Ss ⊄ Sor
Claim.
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b a... b a...a a b ...a

configuration 1 configuration 2 configuration 3

b,p a,p a,r

Upper bound.
Compile into an alternating automaton, determinize, check for emptiness.

Lower bound.
LTL has negation, so emptiness is same problem as universality, which is -hard. 

“some position has a different label than its n-fold successor.”
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b

a

...
a

configuration 0

b,p

b

a

...
a

b,p b

a

...
a

b,q

b

a

b,p b

a

b,qb

a

b,p

b

a

b,q

∧

∧ ∨

configuration 0·0 configuration 0·1

Emptiness is -complete for both CTL and 2CTL,
but model checking is linear time (formula times tree).
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PDL
If  Φ1,...,Φn  are formulas of PDL, and L⊆{Φ1,...,Φn}* is a regular word language,

then “exists a path in L”, written EL, is a formula of PDL

label tests, boolean combinations

a PDL formula CTL* fragment of PDL where the word language 
L must be first-order definable.

Usually L is written in LTL.
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