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Some logics that describe tree properties

monadic second-order logic

“There is a set of nodes that is closed under
parents, has an # label, and has no ¢ label”

AxeX a(x)
X /\{ VxeX Vy parent(x,y) = yeX
vxeX -i(x)

first-order logic

temporal logics

“There is a node with label #z that has
only b-labeled ancestors”

x alx) A (Vy<x b(y))

first-order logic with transitive closure

Instead of < we can write

(parent(xy))*

“On some path, b holds until 2 holds”
EbUa

regular expressions




Temporal Logic for Words

definition
the virtuous cycle

MSO-=regular

Temporal Logic for Trees

definition
CTL,PDL,CTL*

expressivity

XPath

definition
two-variable logic
regular XPath
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Virtuous Cycle

For word languages, the following have
the same expressive power:

easy

induction on

expression

casy

induction on
formula

aperiodic

LTL

N _—

semigroups

star-free

\/l‘evgular expressions
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An LTL-relabeling is a function f: 4*— B*

the relabeling is given by formulas {(} }pcp and @1 over alphabet 4.

(@ andNEXT @) or (@ and NEXT @)

=] = lastin same-colored block

" 000000000000
ftw) O o O 0O O

Lemma.

If LCB*is LTL-definable, and f is an LTL relabeling, then ~/(L) is also LT L-definable.

preimages: yes, images: no

f ( first letter is @and last letter is @) ) = (Q O ) * ¢ LTL
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Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € S, the language a'!(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

0000000000000 000G OOL G

s; €sS s> €sS s3€sS sq €58

This is an LTL-relabeling (thanks to the induction assumption on a smaller alphabet).

A word has the same value as its relabeling.
After the relabeling, we can use the smaller semigroup sS.
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Thm. Emptiness for LTL is PSPACE-complete.

Upper bound.

Compile into an alternating automaton, determinize, check for emptiness.

Lower bound.
LTL has negation, so emptiness is same problem as universality, which is PSPACE-hard.

configuration 1 configuration 2 configuration 3

<&
<

HDO®D -00PD@E - OO

“some position has a different label than its z-fold successor.”
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configuration 0
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Emptiness is EXPTIME-complete for both CTL and 2CTL,

but model checking is linear time (formula times tree).
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PDL label tests, boolean combinations

If @,,..,0, are formulas of PDL, and LE{D;y,...,D,}* is a regular word language,
then “exists a path in L”, written EZ, is a formula of PDL

a PDL formula CTL* fragment of PDL where the word language
L must be first-order definable.
Usually L is written in LTL.

How to tell a right child from a left child?
add a formula: “I am a left child”

Thm. (Hafer, Thomas ‘87)
Over binary trees, CTL* (with left/right child) has the same ‘%\‘ ‘g\‘
expressive power as FO(<,suco,suci).

look the same

Without left/right child, CTL* has the same expressive

power as FO(<), but only for binary trees (and not ternary ones).
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Re gular XPath = XPath with Kleene star for binary queries

path of even length ( child child ) *

Regular XPath captures all first-order logic... exists @ until @
...and all of PDL...

...and more

. boolean query that connects a node
with the next one in DFS traversal

*

child (exists right) (parent (= exists right )) right

((next.)* next @ (next.)* next ‘) * (next.)* 1 exists next

selects the root iff the tree contains an even number of @ nodes.




