Tree automata

What is a Tree Automaton?
Decision Problems L .
OglC
Logic for Words
Logic for Trees

Transitive Closure Logic

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Tree-Walking Automata, 1

Tree-Walking Automata

Expressive Power

Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized

Tree automata

What is a Tree Automaton?
Decision Problems L .
OglC
Logic for Words
Logic for Trees

Transitive Closure Logic

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Tree-Walking Automata, 1

Tree-Walking Automata

Expressive Power

Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized

Some logics that describe tree properties

monadic second-order logic

“There is a set of nodes that is closed under
parents, has an # label, and has no ¢ label”

AxeX a(x)
X /\{ VxeX Vy parent(x,y) = yeX
vxeX -i(x)

first-order logic

temporal logics

“There is a node with label #z that has
only b-labeled ancestors”

x alx) A (Vy<x b(y))

first-order logic with transitive closure

Instead of < we can write

(parent(xy))*

“On some path, b holds until 2 holds”
EbUa

regular expressions

Temporal Logic for Words

definition
the virtuous cycle

MSO-=regular

Temporal Logic for Trees

definition
CTL,PDL,CTL*

expressivity

XPath

definition
two-variable logic
regular XPath

alphabet: () @ @

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

CO0000000V000000000 VOGO O

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

CO0000000V000000000 VOGO O

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

CO0000000V000000000V VOGO O

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

CO0000000V000000000V VOGO O

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

CO0000000V000000000 VOGO O

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

@® UNTIL @

CO0000000V000000000 VOGO O

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

@® UNTIL @

CO0000000V000000000 VOGO O

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

@® UNTIL @

CO0000000V000000000 VOGO O

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

@® UNTIL @

CO0000000V000000000 VOGO O

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

@® UNTIL @

CO0000000V000000000 VOGO O

FINALLY ()
true UNTIL ()

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

@® UNTIL @

CO0000000V000000000 VOGO O

FINALLY ()
true UNTIL ()

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

(FINALLY O) UNTIL @

@® UNTIL @

CO0000000V000000000 VOGO O

FINALLY ()
true UNTIL ()

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

(FINALLY O) UNTIL @

@® UNTIL @

CO0000000V000000000 VOGO O

FINALLY ()
true UNTIL ()

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

(FINALLY O) UNTIL @

PREVIOUS @
@® UNTIL @

CO0000000V000000000 VOGO O

FINALLY ()
true UNTIL ()

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

(FINALLY O) UNTIL @

PREVIOUS @

CO0000000V000000000 VOGO O

FINALLY ()
true UNTIL ()

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

(FINALLY O) UNTIL @

PREVIOUS @
@ UNTIL @ / () SINCE @

\

CO0000000V000000000 VOGO O

FINALLY ()
true UNTIL ()

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: () @ @

(FINALLY O) UNTIL @

PREVIOUS @
@ UNTIL @ / () SINCE @

\

CO0000000V000000000 VOGO O

FINALLY ()
true UNTIL ()

LTL (Linear Time Logic):

UNTIL and NEXT Thm (Kamp)

— LTL = FO(<)

UNTIL, NEXT, SINCE, PREVIOUS

Virtuous Cycle

For word languages, the following have
the same expressive power:

aperiodic
semigroups

Virtuous Cycle

For word languages, the following have
the same expressive power:

aperiodic
semigroups

Virtuous Cycle

For word languages, the following have
the same expressive power:

casy

induction on
formula

aperiodic
semigroups

Virtuous Cycle

For word languages, the following have
the same expressive power:

casy

induction on
formula

aperiodic
semigroups

N _—

Virtuous Cycle

For word languages, the following have
the same expressive power:

casy

induction on
formula

aperiodic
semigroups

\/ star-free

regular expressions

Virtuous Cycle

For word languages, the following have

the same expressive power:

aperiodic
semigroups

easy

induction on
formula

N _—

easy

induction on
expression

star-free
regular expressions

Virtuous Cycle

For word languages, the following have
the same expressive power:

easy

induction on

expression

casy

induction on
formula

aperiodic

LTL

N _—

semigroups

star-free

\/l‘evgular expressions

An LTL-relabeling is a function f: 4*— B*

the relabeling is given by formulas {(} }pcp and @1 over alphabet 4.

An LTL-relabeling is a function f: 4*— B*

the relabeling is given by formulas {(} }pcp and @1 over alphabet 4.

An LTL-relabeling is a function f: 4*— B*

the relabeling is given by formulas {(} }pcp and @1 over alphabet 4.

(@ andNEXT @) or (@ and NEXT @)

=] = lastin same-colored block

An LTL-relabeling is a function f: 4*— B*

the relabeling is given by formulas {(} }pcp and @1 over alphabet 4.

(@ andNEXT @) or (@ and NEXT @)

@] = lastin same-colored block

" 000000000000

An LTL-relabeling is a function f: 4*— B*

the relabeling is given by formulas {(} }pcp and @1 over alphabet 4.

= (@ andNEXT @) or (@ andNEXT @)

@] = lastin same-colored block

" 000000000000
ftw) O o O 0O O

An LTL-relabeling is a function f: 4*— B*

the relabeling is given by formulas {(} }pcp and @1 over alphabet 4.

(@ andNEXT @) or (@ and NEXT @)

=] = lastin same-colored block

" 000000000000
ftw) O o O 0O O

Lemma.

If LCB*is LTL-definable, and f is an LTL relabeling, then ~/(L) is also LT L-definable.

An LTL-relabeling is a function f: 4*— B*

the relabeling is given by formulas {(} }pcp and @1 over alphabet 4.

(@ andNEXT @) or (@ and NEXT @)

=] = lastin same-colored block

" 000000000000
ftw) O o O 0O O

Lemma.

If LCB*is LTL-definable, and f is an LTL relabeling, then ~/(L) is also LT L-definable.

preimages: yes, images: no

An LTL-relabeling is a function f: 4*— B*

the relabeling is given by formulas {(} }pcp and @1 over alphabet 4.

(@ andNEXT @) or (@ and NEXT @)

=] = lastin same-colored block

" 000000000000
ftw) O o O 0O O

Lemma.

If LCB*is LTL-definable, and f is an LTL relabeling, then ~/(L) is also LT L-definable.

preimages: yes, images: no

f (first letter is @and last letter is @)) = (Q O) * ¢ LTL

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € §, the language 1(s) is LTL definable.

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € S, the language a'!(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € S, the language a'!(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € S, the language a'!(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € S, the language a'!(s) is LTL definable.

sS={st:reS}
s§-sSC S

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € S, the language a'!(s) is LTL definable.

sS={st:tel}
s§-sSC S

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

Proof of Claim.

If Ss=Sthen ¢ +— #5 isabijection. For aperiodic semigroups, such a bijection has to be the identity.

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € S, the language a'!(s) is LTL definable.

sS={st:reS}
s§-sSC S

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € S, the language a'!(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € S, the language a'!(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisies sS¢S§ or Ss¢§

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € §, the language 1(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

CO00000V00V000000000 VOGO O

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € §, the language 1(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

CO000V00000V00000000 V0V OOL O

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € §, the language 1(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

CO000V00000V00000000 V0V OOL O

s; €sS s> €sS s3€sS sq €58

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € §, the language 1(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

0000000000000 000G OOL G

s; €sS s> €sS s3€sS sq €58

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € §, the language 1(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

0000000000000 000G OOL G

s; €sS s> €sS s3€sS sq €58

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € §, the language 1(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

0000000000000 000G OOL G

s; €sS s> €sS s3€sS sq €58

This is an LTL-relabeling (thanks to the induction assumption on a smaller alphabet).

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € S, the language a'!(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

0000000000000 000G OOL G

s; €sS s> €sS s3€sS sq €58

This is an LTL-relabeling (thanks to the induction assumption on a smaller alphabet).

A word has the same value as its relabeling.

Prop. Leta : A* > .S be a semigroup morphism, with § aperiodic.
For every s € S, the language a'!(s) is LTL definable.

Proof. Induction on size of S, then size of A.

Induction base, when § has one element: the inverse image is 4+

Claim.

Since § is aperiodic, there must be some @) € 4 such thats=a(@)) satisfies S¢S or Ss¢§

0000000000000 000G OOL G

s; €sS s> €sS s3€sS sq €58

This is an LTL-relabeling (thanks to the induction assumption on a smaller alphabet).

A word has the same value as its relabeling.
After the relabeling, we can use the smaller semigroup sS.

Thm. Emptiness for LTL is PSPACE-complete.

Thm. Emptiness for LTL is PSPACE-complete.

Upper bound.

Compile into an alternating automaton, determinize, check for emptiness.

Thm. Emptiness for LTL is PSPACE-complete.

Upper bound.

Compile into an alternating automaton, determinize, check for emptiness.

Lower bound.
LTL has negation, so emptiness is same problem as universality, which is PSPACE-hard.

Thm. Emptiness for LTL is PSPACE-complete.

Upper bound.

Compile into an alternating automaton, determinize, check for emptiness.

Lower bound.
LTL has negation, so emptiness is same problem as universality, which is PSPACE-hard.

configuration 1 configuration 2 configuration 3

<&
<

HDO®D -00PD@E - OO

Thm. Emptiness for LTL is PSPACE-complete.

Upper bound.

Compile into an alternating automaton, determinize, check for emptiness.

Lower bound.
LTL has negation, so emptiness is same problem as universality, which is PSPACE-hard.

configuration 1 configuration 2 configuration 3

<&
<

HDO®D -00PD@E - OO

“some position has a different label than its z-fold successor.”

Temporal Logic for Words

definition
the virtuous cycle

MSO-=regular

Temporal Logic for Trees

definition
CTL,PDL,CTL*

expressivity

XPath

definition
two-variable logic
regular XPath

Temporal Logic for Words

definition
the virtuous cycle

MSO-=regular

Temporal Logic for Trees

definition
CTL,PDL,CTL*

expressivity

XPath

definition
two-variable logic
regular XPath

Temporal Logic for Trees

first approach: CTL

2-CTL = FO(<,suco,suc))

Emptiness is EXPTIME-complete for both CTL and 2CTL,

but model checking is linear time (formula times tree).

Temporal Logic for Trees

first approach: CTL

2-CTL = FO(<,suco,suc)

Emptiness is EXPTIME-complete for both CTL and 2CTL,

but model checking is linear time (formula times tree).

Temporal Logic for Trees EXISTS NEXT

first approach: CTL

2-CTL = FO(<,suco,suc)

Emptiness is EXPTIME-complete for both CTL and 2CTL,

but model checking is linear time (formula times tree).

Temporal Logic for Trees EXISTS NEXT

EX@
first approach: CTL /

\EXO.
()

2-CTL = FO(<,suco,suc)

Emptiness is EXPTIME-complete for both CTL and 2CTL,

but model checking is linear time (formula times tree).

Temporal Logic for Trees EXISTS NEXT

EX@
first approach: CTL /

\EXO.

\

AX@

2-CTL = FO(<,suco,suc)

Emptiness is EXPTIME-complete for both CTL and 2CTL,

but model checking is linear time (formula times tree).

Temporal Logic for Trees EXISTS NEXT

EX@
first approach: CTL EQU@ /

\EXO.

\

AX@

2-CTL = FO(<,suco,suc)

Emptiness is EXPTIME-complete for both CTL and 2CTL,

but model checking is linear time (formula times tree).

Temporal Logic for Trees EXISTS NEXT

EX@
first approach: CTL EQU@ /

\EXO.

\

AX@

2-CTL = FO(<,suco,suc)

Emptiness is EXPTIME-complete for both CTL and 2CTL,

but model checking is linear time (formula times tree).

Temporal Logic for Trees EXISTS NEXT

EX@
first approach: CTL EQU@ /

\EXO.

\

AX@

2-CTL = FO(<,suco,suc)

Emptiness is EXPTIME-complete for both CTL and 2CTL,

but model checking is linear time (formula times tree).

Emptiness is EXPTIME-complete for both CTL and 2CTL,

but model checking is linear time (formula times tree).

configuration 0

configuration 0-0

@
&

\Y

(]

configuration 0-1

2
©
(2)

Emptiness is EXPTIME-complete for both CTL and 2CTL,

but model checking is linear time (formula times tree).

L = some (maximal) path in (:) *

L = some (maximal) path in (:) *

L = some (maximal) path in (:) *

L = some (maximal) path in (

Claim.

L e2CTL but L¢CTL

L = some (maximal) path in (

Claim.

L e2CTL but L¢CTL

thereisa @ leaf

such that every @ ancestor hasa @ parent, and vice versa.

L = some (maximal) path in (

Claim.

L e2CTL but L¢CTL

L = some (maximal) path in (

Claim.

L e2CTL but L¢CTL

Complete binary tree of depth 7,

with root label @ ,
where left children have label @ and

right children have label @) .

L = some (maximal) path in (

Claim.

L e2CTL but L¢CTL

Complete binary tree of depth 7,

with root label @ ,
where left children have label @ and

right children have label @) .

L = some (maximal) path in (

Claim.

L e2CTL but L¢CTL

Complete binary tree of depth 7,

with root label @ ,
where left children have label @ and

right children have label @) .

A CTL formula of depth 7 cannot distinguish #,+; and #,+>.

L = some (maximal) path in (

Claim.

L e2CTL but L¢CTL

Complete binary tree of depth 7,

with root label @ ,
where left children have label @ and

right children have label @) .

t,el ift niseven.

A CTL formula of depth 7 cannot distinguish #,+; and #,+>.

L = some (maximal) path in (

Claim.

L e2CTL but L¢CTL

Complete binary tree of depth 7,

with root label @ ,
where left children have label @ and

right children have label @) .

t,el ift niseven.

A CTL formula of depth 7 cannot distinguish #,+; and #,+>.

PDL label tests, boolean combinations

If @,,..,0, are formulas of PDL, and LE{D;y,...,D,}* is a regular word language,
then “exists a path in L”, written EZ, is a formula of PDL

a PDL formula CTL* fragment of PDL where the word language
L must be first-order definable.
Usually L is written in LTL.

How to tell a right child from a left child?
add a formula: “I am a left child”

Thm. (Hafer, Thomas ‘87)
Over binary trees, CTL* (with left/right child) has the same ‘%\‘ ‘g\‘
expressive power as FO(<,suco,suci).

look the same

Without left/right child, CTL* has the same expressive

power as FO(<), but only for binary trees (and not ternary ones).

PDL label tests, boolean combinations

If @,,..,0, are formulas of PDL, and LE{D;y,...,D,}* is a regular word language,
then “exists a path in L”, written EZ, is a formula of PDL

a PDL formula CTL* fragment of PDL where the word language
L must be first-order definable.
Usually L is written in LTL.

How to tell a right child from a left child?
add a formula: “I am a left child”

Thm. (Hafer, Thomas ‘87)
Over binary trees, CTL* (with left/right child) has the same ‘%\‘ ‘g\‘
expressive power as FO(<,suco,suci).

look the same

Without left/right child, CTL* has the same expressive

power as FO(<), but only for binary trees (and not ternary ones).

Regular = MSO

Regular = MSO

Regular = MSO

(1) (0) boolean expressions

Regular = MSO

(1) (0) boolean expressions

even number of @

Regular = MSO

(1) (0) boolean expressions

even number of @

Regular = MSO

(1) (0) boolean expressions

even number of @

Regular = MSO

(1) (0) boolean expressions

even number of @

Regular = MSO

(1) (0) boolean expressions

even number of @

Regular = MSO

(1) (0) boolean expressions

even number of @

Regular = MSO

(1) (0) boolean expressions

even number of @

Why can’t you do Boolean expressions in PDL?

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.
No boolean combination of languages EL; defines the set of true boolean expressions.

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.

No boolean combination of languages EL; defines the set of true boolean expressions.

0 0 Q 0 Let Q be the state space of the automaton recognizing all ;.

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.

No boolean combination of languages EL; defines the set of true boolean expressions.

0 0 Q 0 Let Q be the state space of the automaton recognizing all ;.

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.

No boolean combination of languages EL; defines the set of true boolean expressions.

0 0 @ 0 Let Q be the state space of the automaton recognizing all ;.

§5 3o db Sh

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.

No boolean combination of languages EL; defines the set of true boolean expressions.

0 0 @ 0 Let Q be the state space of the automaton recognizing all ;.

tioiopiowi!

with each @ node, we associate the
state transformation of the path that
leads to the root.

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.

No boolean combination of languages EL; defines the set of true boolean expressions.

0 0 Q 0 Let Q be the state space of the automaton recognizing all ;.

\Y

fodo P

with each @ node, we associate the
state transformation of the path that
leads to the root.

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.

No boolean combination of languages EL; defines the set of true boolean expressions.

0 0 Q 0 Let Q be the state space of the automaton recognizing all ;.

. 4 V
v
\%A ,'

..

with each @ node, we associate the
state transformation of the path that
leads to the root.

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.

No boolean combination of languages EL; defines the set of true boolean expressions.

0 0 Q 0 Let Q be the state space of the automaton recognizing all ;.

\Y

VA4 eV
\,

Pal
.
»

..

with each @ node, we associate the
state transformation of the path that
leads to the root.

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.

No boolean combination of languages EL; defines the set of true boolean expressions.

0 0 Q 0 Let Q be the state space of the automaton recognizing all ;.

\Y

YLOXY)
% LN [/

Py
.
»

we put 0 in

all other leaves . .
with each @ node, we associate the

state transformation of the path that
leads to the root.

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.

No boolean combination of languages EL; defines the set of true boolean expressions.

0 0 Q 0 Let Q be the state space of the automaton recognizing all ;.

£ V
vV XXV

- ; »
YK
! §

Y / ™
© @ @) (0 WN\NO ©
we put 0 in
with each @ node, we associate the

state transformation of the path that
leads to the root.

all other leaves

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.

No boolean combination of languages EL; defines the set of true boolean expressions.

0 0 Q 0 Let Q be the state space of the automaton recognizing all ;.

£ V
vV XXV

- ; »
YK
! §

all other leaves . .
with each @ node, we associate the

state transformation of the path that
leads to the root.

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.

We only do the case of nesting depth 1.

° ° Let L,..., L, be regular word languages over {v, A, 0, 1} x {left,right}.

No boolean combination of languages EL; defines the set of true boolean expressions.

0 0 Q 0 Let Q be the state space of the automaton recognizing all ;.

we put 0 in

BB

all other leaves .
with each @ node, we associate the

state transformation of the path that
leads to the root.

Temporal Logic for Words

definition
the virtuous cycle

MSO-=regular

Temporal Logic for Trees

definition
CTL,PDL,CTL*

expressivity

XPath

definition
two-variable logic
regular XPath

Temporal Logic for Words

definition
the virtuous cycle

MSO-=regular

Temporal Logic for Trees

definition
CTL,PDL,CTL*

expressivity

XPath

definition
two-variable logic
regular XPath

XPath

(navigational

XPath)

XPath

(navigational

XPath)

unary query: selects a node binary query: selects a pair of nodes

XPath

(navigational

XPath)

unary query: selects a node binary query: selects a pair of nodes

XPath

(navigational

XPath)

unary query: selects a node binary query: selects a pair of nodes

@00

XPath

(navigational

XPath)

unary query: selects a node binary query: selects a pair of nodes

@00

XPath

(navigational

XPath)

unary query: selects a node binary query: selects a pair of nodes

@00

XPath

(navigational

XPath)

unary query: selects a node binary query: selects a pair of nodes

CX J@ descendant, child, right

and their converses

XPath

(navigational

XPath)

descendant

unary query: selects a node binary query: selects a pair of nodes

CX J@ descendant, child, right

and their converses

XPath

(navigational

XPath)

@

descendant

unary query: selects a node binary query: selects a pair of nodes

CX J@ descendant, child, right

and their converses

XPath

(navigational

XPath)

@

descendant

o0

unary query: selects a node binary query: selects a pair of nodes

CX J@ descendant, child, right

and their converses

composition

XPath

(navigational

XPath)

unary query: selects a node

@00

descendant @ right @

@

descendant

o0

binary query: selects a pair of nodes

descendant, child, right
and their converses

composition

XPath

(navigational

XPath)
. —descendant @ right @

oAk
O

Ok
@

@ descendant

unarv queryv: selects a node binarv query: selects a pair of nodes
Y query Yy query p

CX J@ descendant, child, right

and their converses

composition

XPath

(navigational

XPath)

C)

unary query: selects a node

@00

. —descendant @ right @

oAk
®
‘iDZ

@

descendant

o0

binary query: selects a pair of nodes

descendant, child, right
and their converses

composition

a unary query can be seen as a binary

query that selects a subset of pairs (x,x)

XPath

(navigational

XPath)
. —descendant @ right @

oAk
o ®

O 2

- @

@ descendant

unarv queryv: selects a node binarv query: selects a pair of nodes
Y query Yy query p

CX J@ descendant, child, right

and their converses
composition

, , a unary query can be seen as a binar
exists (binary query) yquety y

query that selects a subset of pairs (x,x)

XPath

(navigational

XPath)

unary query: selects a node

@00

exists (binary query)

exists (descendant @ right Q)

. —descendant @ right @

oAk
®
2

@

descendant

o0

binary query: selects a pair of nodes

descendant, child, right
and their converses

composition

a unary query can be seen as a binary

query that selects a subset of pairs (x,x)

XPath exists (descendant @ right Q)

(navigational

XPath)
.~ descendant @ right @

Oy (@
o ®

O 2

- @

@ descendant

unarv queryv: selects a node binarv query: selects a pair of nodes
Y query Yy query p

CX J@ descendant, child, right

and their converses
composition

, , a unary query can be seen as a binar
exists (binary query) yquety y

query that selects a subset of pairs (x,x)

XPath exists (descendant @ right Q)

(navigational

XPath)
. —descendant @ right @

Oy (@
o ®

® Ok

- @

@ descendant

unarv queryv: selects a node binarv query: selects a pair of nodes
Y query Yy query p

CX J@ descendant, child, right

and their converses

boolean operations mmesiHon

, , a unary query can be seen as a binar
exists (binary query) yquety y

query that selects a subset of pairs (x,x)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath

plr) =y <z @)

becomes

exists (ancestor .)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath from XPath to logic

plr) =y <z @)

becomes

exists (ancestor .)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath from XPath to logic

exists (ancestor . ancestor ‘)

plr) =y <z @)

becomes

exists (ancestor .)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath from XPath to logic

exists (ancestor . ancestor ‘)

QO(./B) — Ely <X .(CC) becomes

exists (ancestor @ cxists (ancestor (.))

becomes

exists (ancestor .)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath from XPath to logic

exists (ancestor . ancestor ‘)

QO(./B) — Ely <X .(CC) becomes

exists (ancestor @ cxists (ancestor (.))

becomes

becomes
exists (ances tor .)

plr)=Ty<z @@)AN(Fr<y @)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath from XPath to logic

exists (ancestor . ancestor ‘)

QO(./B) — Ely <X .(CC) becomes

exists (ancestor @ cxists (ancestor (.))

becomes

becomes
exists (ances tor .)

plr)=Ty<z @@)AN(Fr<y @)

ancestor @ ancestor

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath from XPath to logic

exists (ancestor . ancestor ‘)

QO(./B) — Ely <X .(CC) becomes

exists (ancestor @ cxists (ancestor (.))

becomes

becomes
exists (ances tor .)

plr)=Ty<z @@)AN(Fr<y @)

ﬁ(ancestor O ancestor)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath from XPath to logic

exists (ancestor. ancestor ‘)
QO(./B) — Ely <X .(CC) becomes

exists (ancestor @ cxists (ancestor (.))

becomes

becomes
exists (ances tor .)

plr)=Ty<z @@)AN(Fr<y @)

(ﬁ (ancestor O ancestor) N ancestor)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath from XPath to logic

exists (ancestor. ancestor ‘)
QO(./B) — Ely <X .(CC) becomes

exists (ancestor @ cxists (ancestor (.))

becomes

becomes
exists (ances tor .)

plr)=Ty<z @@)AN(Fr<y @)

(ﬁ (ancestor -@ ancestor) N ancestor)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath from XPath to logic

exists (ancestor. ancestor ‘)
QO(./B) — Ely <X .(CC) becomes

exists (ancestor @ cxists (ancestor (.))

becomes

becomes
exists (ances tor .)

plr)=Ty<z @@)AN(Fr<y @)

(ﬁ (ancestor ﬁ. ancestor) ﬂ ancestor) (x))’)

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath from XPath to logic

exists (ancestor. ancestor ‘)
QO(./B) — Ely <X .(CC) becomes

exists (ancestor @ cxists (ancestor (.))

becomes

becomes
exists (ances tor .)

plr)=Ty<z @@)AN(Fr<y @)

(ﬁ (ancestor ~@ ancestor) N ancestor) (%) @ holds between x and y

18/19

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath from XPath to logic

exists (ancestor. ancestor ‘)
QO(./B) — Ely <X .(CC) becomes

exists (ancestor @ cxists (ancestor (.))

becomes

becomes
exists (ances tor .)

plr)=Ty<z @@)AN(Fr<y @)

(ﬁ (ancestor ~@ ancestor) N ancestor) (%) @ holds between x and y

exists @ until @19

Re gular XPath = XPath with Kleene star for binary queries

Re gular XPath = XPath with Kleene star for binary queries

path of even length (child child) *

Re gular XPath = XPath with Kleene star for binary queries

path of even length (child child) *

Regular XPath captures all first-order logic...

Re gular XPath = XPath with Kleene star for binary queries

path of even length (child child) *

Regular XPath captures all first-order logic... exists @untill @ =

Re gular XPath = XPath with Kleene star for binary queries

path of even length (child child) *

Regular XPath captures all first-order logic... exists @ until @

Re gular XPath = XPath with Kleene star for binary queries

path of even length (child child) *

Regular XPath captures all first-order logic... exists @ until @
...and all of PDL...

Re gular XPath = XPath with Kleene star for binary queries

path of even length (child child) *

Regular XPath captures all first-order logic... exists @ until @
...and all of PDL...

...and more

Re gular XPath = XPath with Kleene star for binary queries

path of even length (child child) *

Regular XPath captures all first-order logic... exists @ until @
...and all of PDL...

...and more

boolean query that connects a node
with the next one in DFS traversal

Re gular XPath = XPath with Kleene star for binary queries

path of even length (child child) *

Regular XPath captures all first-order logic... exists @ until @
...and all of PDL...

...and more

. boolean query that connects a node
with the next one in DFS traversal

Re gular XPath = XPath with Kleene star for binary queries

path of even length (child child) *

Regular XPath captures all first-order logic... exists @ until @
...and all of PDL...

...and more

. boolean query that connects a node
with the next one in DFS traversal

child (exists right) (parent (= exists right)) & right

Re gular XPath = XPath with Kleene star for binary queries

path of even length (child child) *

Regular XPath captures all first-order logic... exists @ until @
...and all of PDL...

...and more

. boolean query that connects a node
with the next one in DFS traversal

child (exists right) (parent (= exists right)) & right

((next.)* next @ (next.)* next ‘) * (next.)* 1 exists next

Re gular XPath = XPath with Kleene star for binary queries

path of even length (child child) *

Regular XPath captures all first-order logic... exists @ until @
...and all of PDL...

...and more

. boolean query that connects a node
with the next one in DFS traversal

*

child (exists right) (parent (= exists right)) right

((next.)* next @ (next.)* next ‘) * (next.)* 1 exists next

selects the root iff the tree contains an even number of @ nodes.

