What is a Tree Automaton?
Decision Problems

2 Temporal Logics
Temporal Logic for Words
Temporal Logic for Trees XPath

Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized

What is a Tree Automaton?
Decision Problems

Temporal Logics

Temporal Logic for Words Temporal Logic for Trees XPath

Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized

Some logics that describe tree properties

Temporal Logic for Words definition
 the virtuous cycle
 MSO=regular

Temporal Logic for Trees

definition
CTL, PDL, CTL*
expressivity

XPath

definition
two-variable logic
regular XPath

alphabet: $\bigcirc \bigcirc \bigcirc$

LTL (Linear Time Logic): UNTIL and NEXT

2LTL

Thm (Kamp)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet $: \bigcirc \bigcirc \bigcirc$

$\bigcirc \bigcirc \bigcirc$

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet $: \bigcirc \bigcirc \bigcirc$

$\bigcirc \bigcirc \bigcirc$

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: $\bigcirc \bigcirc$

$\bigcirc \bigcirc \bigcirc$

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: $\bigcirc \bigcirc \bigcirc$

$\bigcirc \bigcirc \bigcirc$
 NEXT -

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: $\bigcirc \bigcirc$

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: $\bigcirc \bigcirc$

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)

UNTIL, NEXT, SINCE, PREVIOUS
alphabet: $\bigcirc \bigcirc$

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)

UNTIL, NEXT, SINCE, PREVIOUS

alphabet: $\bigcirc \bigcirc$

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)

UNTIL, NEXT, SINCE, PREVIOUS
alphabet: $\bigcirc \bigcirc$

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)

UNTIL, NEXT, SINCE, PREVIOUS
alphabet: $\bigcirc \bigcirc$

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)
$\mathrm{LTL}=\mathrm{FO}(<)$
UNTIL, NEXT, SINCE, PREVIOUS
alphabet: $\bigcirc \bigcirc$

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)
$\mathrm{LTL}=\mathrm{FO}(<)$
UNTIL, NEXT, SINCE, PREVIOUS

$($ FINALLY $\bigcirc)$ UNTIL \bigcirc

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)
$\mathrm{LTL}=\mathrm{FO}(<)$

UNTIL, NEXT, SINCE, PREVIOUS
alphabet $: \bigcirc \bigcirc \bigcirc$

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)
$\mathrm{LTL}=\mathrm{FO}(<)$

UNTIL, NEXT, SINCE, PREVIOUS

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

$$
\begin{aligned}
& \text { Thm (Kamp) } \\
& \text { LTL }=\mathrm{FO}(<)
\end{aligned}
$$

UNTIL, NEXT, SINCE, PREVIOUS

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)
$\mathrm{LTL}=\mathrm{FO}(<)$

UNTIL, NEXT, SINCE, PREVIOUS

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)
$\mathrm{LTL}=\mathrm{FO}(<)$

UNTIL, NEXT, SINCE, PREVIOUS

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL

Thm (Kamp)
$\mathrm{LTL}=\mathrm{FO}(<)$

UNTIL, NEXT, SINCE, PREVIOUS

Virtuous Cycle

For word languages, the following have
the same expressive power:

$$
\mathrm{FO}(<)
$$

aperiodic
semigroups
LTL

Virtuous Cycle

For word languages, the following have
the same expressive power:

Virtuous Cycle

For word languages, the following have
the same expressive power:

Virtuous Cycle

For word languages, the following have
the same expressive power:

Virtuous Cycle

For word languages, the following have
the same expressive power:

Virtuous Cycle

For word languages, the following have
the same expressive power:

Virtuous Cycle

For word languages, the following have
the same expressive power:

An LTL-relabeling is a function $f: A^{*} \longrightarrow B^{*}$
the relabeling is given by formulas $\left\{\varphi_{b}\right\}_{b \in B}$ and φ_{\perp} over alphabet A.

An LTL-relabeling is a function $f: A^{*} \longrightarrow B^{*}$
the relabeling is given by formulas $\left\{\varphi_{b}\right\}_{b \in B}$ and φ_{\perp} over alphabet A.

$$
\begin{aligned}
& A=\bigcirc \bigcirc \\
& B=\bigcirc
\end{aligned}
$$

An LTL-relabeling is a function $f: A^{*} \longrightarrow B^{*}$
the relabeling is given by formulas $\left\{\varphi_{b}\right\}_{b \in B}$ and $\varphi \perp$ over alphabet A.

$$
\begin{array}{ll}
A=\bigcirc \bigcirc & \varphi_{\perp}=(\bigcirc \text { and NEXT } \bigcirc) \text { or }(\bigcirc \text { and NEXT } \bigcirc) \\
B=\bigcirc & \varphi_{\bigcirc}=\neg \varphi_{\perp}=\text { last in same-colored block }
\end{array}
$$

An LTL-relabeling is a function $f: A^{*} \longrightarrow B^{*}$
the relabeling is given by formulas $\left\{\varphi_{b}\right\}_{b \in B}$ and φ_{\perp} over alphabet A.

$$
\begin{aligned}
& A=\bigcirc \quad \varphi_{\perp}=(\bigcirc \text { and NEXT } \bigcirc) \text { or }(\bigcirc \text { and NEXT } \bigcirc) \\
& B=\bigcirc \quad \varphi_{\mathrm{O}}=\neg \varphi_{\perp}=\text { last in same-colored block } \\
& w \bigcirc \bigcirc
\end{aligned}
$$

An LTL-relabeling is a function $f: A^{*} \longrightarrow B^{*}$
the relabeling is given by formulas $\left\{\varphi_{b}\right\}_{b \in B}$ and φ_{\perp} over alphabet A.

$$
\begin{array}{ll}
A=\bigcirc \bigcirc & \varphi_{\perp}=(\bigcirc \text { and NEXT } \bigcirc) \text { or }(\bigcirc \text { and NEXT } \bigcirc) \\
B=\bigcirc & \varphi_{\bigcirc}=\neg \varphi_{\perp}=\text { last in same-colored block } \\
w & f(w) \bigcirc
\end{array}
$$

An LTL-relabeling is a function $f: A^{*} \longrightarrow B^{*}$
the relabeling is given by formulas $\left\{\varphi_{b}\right\}_{b \in B}$ and φ_{\perp} over alphabet A.

$$
\begin{aligned}
& A=\text { 〇 } \quad \varphi_{\perp}=(\bigcirc \operatorname{andNEXT} \bullet) \text { or }(\bullet \text { and NEXT } \bullet) \\
& B=\bigcirc \quad \varphi_{\bigcirc}=\neg \varphi_{\perp}=\text { last in same-colored block }
\end{aligned}
$$

Lemma.

If $L \subseteq B^{*}$ is LTL-definable, and f is an LTL relabeling, then $f^{-1}(L)$ is also LTL-definable.

An LTL-relabeling is a function $f: A^{*} \longrightarrow B^{*}$
the relabeling is given by formulas $\left\{\varphi_{b}\right\}_{b \in B}$ and φ_{\perp} over alphabet A.

$$
\begin{array}{ll}
A=\bigcirc & \varphi_{\perp}=(\bigcirc \text { and NEXT } \bigcirc) \text { or }(\bigcirc \text { and NEXT } \bigcirc) \\
B=\bigcirc & \varphi_{\bigcirc}=\neg \varphi_{\perp}=\text { last in same-colored block } \\
w & f(w) \bigcirc
\end{array}
$$

Lemma.

If $L \subseteq B^{*}$ is LTL-definable, and f is an LTL relabeling, then $f^{-1}(L)$ is also LTL-definable.

```
preimages: yes, images: no
```

An LTL-relabeling is a function $f: A^{*} \longrightarrow B^{*}$
the relabeling is given by formulas $\left\{\varphi_{b}\right\}_{b \in B}$ and φ_{\perp} over alphabet A.

$$
\begin{aligned}
& A=\bigcirc \quad \varphi_{\perp}=(\bigcirc \text { andNEXT } \bigcirc) \text { or }(\bigcirc \text { andNEXT } \bigcirc) \\
& B=\bigcirc \quad \varphi_{\bigcirc}=\neg \varphi_{\perp}=\text { last in same-colored block }
\end{aligned}
$$

Lemma.

If $L \subseteq B^{*}$ is LTL-definable, and f is an LTL relabeling, then $f^{-1}(L)$ is also LTL-definable.
preimages: yes, images: no
$f($ first letter is \bigcirc and last letter is $\bigcirc)=(\bigcirc \bigcirc)^{*} \notin \operatorname{LTL}$

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic. For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic. For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.

Proof. Induction on size of S, then size of A.

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic. For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.

$$
s S=\{s t: t \in S\}
$$

$$
s S . s S \subseteq s S
$$

Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.

$$
\begin{gathered}
s S=\{s t: t \in S\} \\
s S . s S \subseteq s S
\end{gathered}
$$

Induction base, when S has one element: the inverse image is A^{+}

Claim.

Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

Proof of Claim.

If $S s=S$ then $t \mapsto t s \quad$ is a bijection. For aperiodic semigroups, such a bijection has to be the identity.

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.

$$
s S=\{s t: t \in S\}
$$

$$
s S . s S \subseteq s S
$$

Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}

Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

$$
s_{1} \in s S
$$

$$
s_{2} \in s S
$$

$$
s_{3} \in s S
$$

$$
s_{4} \in s S
$$

This is an LTL-relabeling (thanks to the induction assumption on a smaller alphabet).

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

This is an LTL-relabeling (thanks to the induction assumption on a smaller alphabet). A word has the same value as its relabeling.

Prop. Let $\alpha: A^{+} \rightarrow S$ be a semigroup morphism, with S aperiodic.
For every $s \in S$, the language $\alpha^{-1}(s)$ is LTL definable.
Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A^{+}
Claim.
Since S is aperiodic, there must be some $\bigcirc \in A$ such that $s=\alpha(\bigcirc)$ satisfies $\quad s S \not \subset S \quad$ or $\quad S s \not \subset S$

This is an LTL-relabeling (thanks to the induction assumption on a smaller alphabet).
A word has the same value as its relabeling. After the relabeling, we can use the smaller semigroup $s S$.

Thm. Emptiness for LTL is PSPACE-complete.

Thm. Emptiness for LTL is PSPACE-complete.

Upper bound.

Compile into an alternating automaton, determinize, check for emptiness.

Thm. Emptiness for LTL is PSPACE-complete.

Upper bound.

Compile into an alternating automaton, determinize, check for emptiness.

Lower bound.

LTL has negation, so emptiness is same problem as universality, which is PSPACE-hard.

Thm. Emptiness for LTL is PSPACE-complete.

Upper bound.

Compile into an alternating automaton, determinize, check for emptiness.

Lower bound.

LTL has negation, so emptiness is same problem as universality, which is PSPACE-hard.

Thm. Emptiness for LTL is PSPACE-complete.

Upper bound.

Compile into an alternating automaton, determinize, check for emptiness.

Lower bound.

LTL has negation, so emptiness is same problem as universality, which is PSPACE-hard.

"some position has a different label than its n-fold successor."

Temporal Logic for Words definition
 the virtuous cycle
 MSO=regular

Temporal Logic for Trees

definition
CTL, PDL, CTL*
expressivity

XPath

definition
two-variable logic
regular XPath

Temporal Logic for Words
 definition
 the virtuous cycle
 $\mathrm{MSO}=$ regular

Temporal Logic for Trees
definition
CTL, PDL, CTL*
expressivity

XPath
definition
two-variable logic
regular XPath

Temporal Logic for Trees

first approach: CTL
$2-\mathrm{CTL}=\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

CTL
Emptiness is Exptime-complete for both CTL and 2CTL, but model checking is linear time (formula times tree).

Temporal Logic for Trees

first approach: CTL

$2-\mathrm{CTL}=\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

CTL
Emptiness is Exptime-complete for both CTL and 2CTL, but model checking is linear time (formula times tree).

Temporal Logic for Trees

EXISTS NEXT

first approach: CTL

$2-\mathrm{CTL}=\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

CTL
Emptiness is Exptime-complete for both CTL and 2CTL, but model checking is linear time (formula times tree).

Temporal Logic for Trees

EXISTS NEXT

first approach: CTL

$2-\mathrm{CTL}=\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

CTL
Emptiness is Exptime-complete for both CTL and 2CTL, but model checking is linear time (formula times tree).

Temporal Logic for Trees

EXISTS NEXT

first approach: CTL

$2-\mathrm{CTL}=\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

CTL
Emptiness is Exptime-complete for both CTL and 2CTL, but model checking is linear time (formula times tree).

Temporal Logic for Trees

EXISTS NEXT

first approach: CTL

$2-\mathrm{CTL}=\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

CTL
Emptiness is Exptime-complete for both CTL and 2CTL, but model checking is linear time (formula times tree).

Temporal Logic for Trees

EXISTS NEXT

first approach: CTL

$2-\mathrm{CTL}=\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

CTL
Emptiness is Exptime-complete for both CTL and 2CTL, but model checking is linear time (formula times tree).

Temporal Logic for Trees

EXISTS NEXT

$2-\mathrm{CTL}=\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

CTL
Emptiness is Exptime-complete for both CTL and 2CTL, but model checking is linear time (formula times tree).

Emptiness is exptime-complete for both CTL and 2CTL, but model checking is linear time (formula times tree).

Emptiness is exptime-complete for both CTL and 2CTL, but model checking is linear time (formula times tree).

$L=$ some (maximal) path in $\binom{\bigcirc}{\bigcirc} *$

Claim.

$L \in 2$ CTL but $L \notin$ CTL

$L=$ some (maximal) path in $\binom{\bigcirc}{0}^{*}$

Claim.

$L \in 2 \mathrm{CTL}$ but $L \notin \mathrm{CTL}$
there is a leaf
such that every \bigcirc ancestor has a \bigcirc parent, and vice versa.

Claim.

$L \in 2$ CTL but $L \notin$ CTL

$L=$ some (maximal) path in $\binom{\bigcirc}{\bigcirc} *$

Claim.

$L \in 2 \mathrm{CTL}$ but $L \notin \mathrm{CTL}$

Complete binary tree of depth n,
$t_{n}=$ with root label \bigcirc, where left children have label \bigcirc and right children have label \bigcirc.

$L=$ some (maximal) path in $\binom{\bigcirc}{\bigcirc} *$

Claim.

$L \in 2 \mathrm{CTL}$ but $L \notin \mathrm{CTL}$

Complete binary tree of depth n,
$t_{n}=\quad$ with root label \bigcirc, where left children have label \bigcirc and right children have label \bigcirc.

$L=$ some (maximal) path in $\binom{\bigcirc}{0} *$

Claim.
 $L \in 2 \mathrm{CTL}$ but $L \notin \mathrm{CTL}$

Complete binary tree of depth n,
$t_{n}=\quad \begin{aligned} & \text { with root label } \bigcirc \text { where left }\end{aligned}$ where left children have label \bigcirc and right children have label \bigcirc.

A CTL formula of depth n cannot distinguish t_{n+1} and t_{n+2}.
$L=$ some (maximal) path in $\binom{\bigcirc}{\bigcirc} *$

Claim.
 $L \in 2 \mathrm{CTL}$ but $L \notin \mathrm{CTL}$

Complete binary tree of depth n,
$t_{n}=\quad \begin{aligned} & \text { with root label } \bigcirc \text { where left children }\end{aligned}$ where left children have label \bigcirc and right children have label \bigcirc.

$$
t_{n} \in L \quad \text { iff } \quad n \text { is even. }
$$

A CTL formula of depth n cannot distinguish t_{n+1} and t_{n+2}.
$L=$ some (maximal) path in $\binom{\bigcirc}{\bigcirc} *$

Claim.
 $L \in 2 \mathrm{CTL}$ but $L \notin \mathrm{CTL}$

Complete binary tree of depth n,
$t_{n}=\quad \begin{aligned} & \text { with root label } \bigcirc \text { where left children }\end{aligned}$ where left children have label \bigcirc and right children have label \bigcirc.

$$
t_{n} \in L \quad \text { iff } \quad n \text { is even }
$$

A CTL formula of depth n cannot distinguish t_{n+1} and t_{n+2}.

PDL

If $\Phi_{1}, \ldots, \Phi_{n}$ are formulas of PDL, and $L \subseteq\left\{\Phi_{1}, \ldots, \Phi_{n}\right\}^{*}$ is a regular word language, then "exists a path in L ", written $\mathrm{E} L$, is a formula of PDL

CTL* fragment of PDL where the word language
L must be first-order definable.
Usually L is written in LTL.

How to tell a right child from a left child? add a formula: "I am a left child"

Thm. (Hafer, Thomas ' 87)
Over binary trees, CTL* (with left/right child) has the same expressive power as $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$.

Without left/right child, CTL* has the same expressive power as $\mathrm{FO}(<)$, but only for binary trees (and not ternary ones).

PDL

If $\Phi_{l}, \ldots, \Phi_{n}$ are formulas of PDL, and $L \subseteq\left\{\Phi_{l}, \ldots, \Phi_{n}\right\}^{*}$ is a regular word language, then "exists a path in L ", written $\mathrm{E} L$, is a formula of PDL

CTL* fragment of PDL where the word language
L must be first-order definable. Usually L is written in LTL.

How to tell a right child from a left child? add a formula: "I am a left child"

Thm. (Hafer, Thomas '87)
Over binary trees, CTL* (with left/right child) has the same expressive power as $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$.

Without left/right child, CTL* has the same expressive power as $\mathrm{FO}(<)$, but only for binary trees (and not ternary ones).

Regular $=$ MSO

Regular $=$ MSO

PDL

Regular $=$ MSO

PDL

Regular $=$ MSO

PDL

Regular $=\mathrm{MSO}$

PDL

$\mathrm{CTL}^{*}=\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)=2 \mathrm{CTL}$

Regular $=$ MSO

PDL

$\mathrm{CTL}^{*}=\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)=2 \mathrm{CTL}$

Regular $=$ MSO

PDL

$$
\mathrm{CTL}^{*}=\mathrm{FO}\left(<, \text { suc }_{0}, \text { suc }_{1}\right)=2 \mathrm{CTL}
$$

CTL

Regular $=$ MSO

PDL

exists a path with even number of \bigcirc
$\mathrm{CTL}^{*}=\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)=2 \mathrm{CTL}$

Regular $=$ MSO

PDL

Regular $=$ MSO

PDL

Why can't you do Boolean expressions in PDL?

Why can't you do Boolean expressions in PDL?

Induction on nesting depth in formula. We only do the case of nesting depth 1 .

Why can't you do Boolean expressions in PDL?

Let L_{1}, \ldots, L_{n} be regular word languages over $\{\vee, \wedge, 0,1\} \times\{$ left, right $\}$. No boolean combination of languages $\mathbf{E} L_{i}$ defines the set of true boolean expressions.

Why can't you do Boolean expressions in PDL?
Induction on nesting depth in formula. We only do the case of nesting depth 1 .

Let L_{1}, \ldots, L_{n} be regular word languages over $\{\vee, \wedge, 0,1\} \times\{$ left,right $\}$. No boolean combination of languages $\mathrm{E} L_{i}$ defines the set of true boolean expressions.

Let Q be the state space of the automaton recognizing all L_{i}.

Why can't you do Boolean expressions in PDL?

Induction on nesting depth in formula. We only do the case of nesting depth 1.

Let L_{1}, \ldots, L_{n} be regular word languages over $\{\vee, \wedge, 0,1\} \times\{$ left,right $\}$. No boolean combination of languages $\mathbf{E} L_{i}$ defines the set of true boolean expressions.

Let Q be the state space of the automaton recognizing all L_{i}.

Why can't you do Boolean expressions in PDL?

Let L_{1}, \ldots, L_{n} be regular word languages over $\{\mathrm{v}, \wedge, 0,1\} \times\{$ left,right $\}$. No boolean combination of languages $\mathrm{E} L_{i}$ defines the set of true boolean expressions.

Let Q be the state space of the automaton recognizing all L_{i}.

Why can't you do Boolean expressions in PDL?

Induction on nesting depth in formula. We only do the case of nesting depth 1.

Let L_{1}, \ldots, L_{n} be regular word languages over $\{\vee, \wedge, 0,1\} \times\{$ left, right $\}$. No boolean combination of languages $\mathbf{E} L_{i}$ defines the set of true boolean expressions.

Let Q be the state space of the automaton recognizing all L_{i}.

Why can't you do Boolean expressions in PDL?

Let L_{1}, \ldots, L_{n} be regular word languages over $\{\mathrm{v}, \wedge, 0,1\} \times\{$ left,right $\}$. No boolean combination of languages $\mathrm{E} L_{i}$ defines the set of true boolean expressions.

Let Q be the state space of the automaton recognizing all L_{i}.
 state transformation of the path that leads to the root.

Why can't you do Boolean expressions in PDL?

Let L_{1}, \ldots, L_{n} be regular word languages over $\{\mathrm{v}, \wedge, 0,1\} \times\{$ left,right $\}$. No boolean combination of languages $\mathrm{E} L_{i}$ defines the set of true boolean expressions.

Let Q be the state space of the automaton recognizing all L_{i}.
 state transformation of the path that leads to the root.

Why can't you do Boolean expressions in PDL?

Let L_{1}, \ldots, L_{n} be regular word languages over $\{\mathrm{v}, \wedge, 0,1\} \times\{$ left,right $\}$. No boolean combination of languages $\mathrm{E} L_{i}$ defines the set of true boolean expressions.

Let Q be the state space of the automaton recognizing all L_{i}.
 state transformation of the path that leads to the root.

Why can't you do Boolean expressions in PDL?

Let L_{l}, \ldots, L_{n} be regular word languages over $\{\mathrm{v}, \wedge, 0,1\} \times\{$ left,right $\}$. No boolean combination of languages $\mathrm{E} L_{i}$ defines the set of true boolean expressions.

Let Q be the state space of the automaton recognizing all L_{i}.
we put 0 in
Induction on nesting depth in formula. We only do the case of nesting depth 1 .

all other leaves

with each \wedge node, we associate the state transformation of the path that leads to the root.

Why can't you do Boolean expressions in PDL?

Let L_{l}, \ldots, L_{n} be regular word languages over $\{\mathrm{v}, \wedge, 0,1\} \times\{$ left,right $\}$. No boolean combination of languages $\mathrm{E} L_{i}$ defines the set of true boolean expressions.

Let Q be the state space of the automaton recognizing all L_{i}.
we put 0 in all other leaves

Induction on nesting depth in formula. We only do the case of nesting depth 1 .

with each \wedge node, we associate the state transformation of the path that leads to the root.

Why can't you do Boolean expressions in PDL?

Let L_{l}, \ldots, L_{n} be regular word languages over $\{\mathrm{v}, \wedge, 0,1\} \times\{$ left,right $\}$. No boolean combination of languages $\mathrm{E} L_{i}$ defines the set of true boolean expressions.

Let Q be the state space of the automaton recognizing all L_{i}.

with each (\wedge node, we associate the state transformation of the path that leads to the root.

Why can't you do Boolean expressions in PDL?

Let L_{l}, \ldots, L_{n} be regular word languages over $\{\mathrm{v}, \wedge, 0,1\} \times\{$ left,right $\}$. No boolean combination of languages $\mathrm{E} L_{i}$ defines the set of true boolean expressions.

Let Q be the state space of the automaton recognizing all L_{i}.

with each (\wedge node, we associate the state transformation of the path that leads to the root.

Temporal Logic for Words

definition
the virtuous cycle
$\mathrm{MSO}=$ regular

Temporal Logic for Trees

definition
CTL, PDL, CTL*
expressivity

XPath

definition

two-variable logic
regular XPath
Temporal Logic for Words
definition
the virtuous cycle
$\mathrm{MSO}=$ regular
Temporal Logic for Trees
definition
CTL, PDL, CTL*
expressivity

XPath

definition
two-variable logic
regular XPath

XPath XPath)

XPath

 XPath)unary query: selects a node
binary query: selects a pair of nodes

XPath

(navigational XPath)

unary query: selects a node
binary query: selects a pair of nodes

XPath

(navigational XPath)

unary query: selects a node
binary query: selects a pair of nodes

-O

XPath

(navigational XPath)

unary query: selects a node
binary query: selects a pair of nodes

-O

XPath

(navigational XPath)

unary query: selects a node
binary query: selects a pair of nodes

-O

XPath

(navigational XPath)

unary query: selects a node

binary query: selects a pair of nodes
descendant, child, right and their converses

XPath

(navigational XPath)

unary query: selects a node

binary query: selects a pair of nodes
descendant, child, right and their converses

XPath

(navigational XPath)

unary query: selects a node

-O

binary query: selects a pair of nodes
descendant, child, right and their converses

XPath

(navigational XPath)

unary query: selects a node

binary query: selects a pair of nodes
descendant, child, right and their converses
composition

XPath

(navigational XPath)

unary query: selects a node

binary query: selects a pair of nodes
descendant, child, right and their converses

XPath

(navigational XPath)

unary query: selects a node

binary query: selects a pair of nodes
descendant, child, right and their converses

XPath

(navigational XPath)

unary query: selects a node

binary query: selects a pair of nodes
descendant, child, right and their converses
composition
a unary query can be seen as a binary query that selects a subset of pairs (x, x)

XPath

(navigational XPath)

unary query: selects a node

exists (binary query)
binary query: selects a pair of nodes
descendant, child, right and their converses
composition
a unary query can be seen as a binary query that selects a subset of pairs (x, x)

XPath

$$
\text { exists }(\text { descendant } \bigcirc \text { right } \bigcirc)
$$

(navigational XPath)

unary query: selects a node

exists (binary query)
binary query: selects a pair of nodes
descendant, child, right and their converses
composition
a unary query can be seen as a binary query that selects a subset of pairs (x, x)

XPath (navigational XPath)

unary query: selects a node

exists (binary query)
binary query: selects a pair of nodes
descendant, child, right and their converses
composition
a unary query can be seen as a binary query that selects a subset of pairs (x, x)

XPath (navigational XPath)

unary query: selects a node

boolean operations
exists (binary query)
binary query: selects a pair of nodes
descendant, child, right and their converses
composition
a unary query can be seen as a binary query that selects a subset of pairs (x, x)

Thm. (Marx, de Rijke)

XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)

Thm. (Marx, de Rijke)

XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

Thm. (Marx, de Rijke)

XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)
from logic to XPath

Thm. (Marx, de Rijke)

XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

$$
\begin{gathered}
\text { from logic to XPath } \\
\varphi(x)=\exists y<x \quad \bigcirc(x)
\end{gathered}
$$

Thm. (Marx, de Rijke)

XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

$$
\begin{gathered}
\text { from logic to XPath } \\
\varphi(x)=\exists y<x \quad \bigcirc(x) \\
\text { becomes } \\
\text { exists (ancestor } \bigcirc)
\end{gathered}
$$

Thm. (Marx, de Rijke)

XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

Thm. (Marx, de Rijke)

XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

Thm. (Marx, de Rijke)

XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

$$
\begin{gathered}
\text { from logic to XPath } \\
\varphi(x)=\exists y<x \quad \bigcirc(x) \\
\text { becomes } \\
\text { exists (ancestor } \bigcirc)
\end{gathered}
$$

from XPath to logic
exists (ancestor \bigcirc ancestor \bigcirc)
becomes
exists (ancestor \bigcirc exists (ancestor (\bigcirc))

Thm. (Marx, de Rijke)

XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

$$
\begin{gathered}
\text { from logic to XPath } \\
\varphi(x)=\exists y<x \quad \bigcirc(x) \\
\text { becomes } \\
\text { exists (ancestor } \bigcirc)
\end{gathered}
$$

from XPath to logic
exists (ancestor \bigcirc ancestor \bigcirc)
becomes
exists (ancestor \bigcirc exists (ancestor (\bigcirc))
becomes
$\varphi(x)=\exists y<x \quad(x) \wedge(\exists x<y \quad(y))$

Thm. (Marx, de Rijke)

XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

$$
\begin{gathered}
\text { from logic to XPath } \\
\varphi(x)=\exists y<x \quad \bigcirc(x) \\
\text { becomes } \\
\text { exists (ancestor } \bigcirc)
\end{gathered}
$$

from XPath to logic
exists (ancestor \bigcirc ancestor \bigcirc)
becomes
exists (ancestor \bigcirc exists (ancestor (\bigcirc))
becomes
$\varphi(x)=\exists y<x \quad(x) \wedge(\exists x<y \quad(y))$

Thm. (Marx, de Rijke)

XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

$$
\begin{gathered}
\text { from logic to XPath } \\
\varphi(x)=\exists y<x \quad \bigcirc(x) \\
\text { becomes } \\
\text { exists }(\text { ancestor } \bigcirc)
\end{gathered}
$$

from XPath to logic
exists (ancestor \bigcirc ancestor \bigcirc)
becomes
exists (ancestor \bigcirc exists (ancestor (\bigcirc))
becomes
$\varphi(x)=\exists y<x \quad(x) \wedge(\exists x<y \quad(y))$
\neg (ancestor \bigcirc ancestor $)$

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

$$
\begin{gathered}
\text { from logic to XPath } \\
\varphi(x)=\exists y<x \quad \bigcirc(x) \\
\text { becomes } \\
\text { exists (ancestor } \bigcirc)
\end{gathered}
$$

from XPath to logic
exists (ancestor \bigcirc ancestor \bigcirc)
becomes
exists (ancestor \bigcirc exists (ancestor (\bigcirc))
becomes
$\varphi(x)=\exists y<x \quad(x) \wedge(\exists x<y \quad(y))$

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

$$
\begin{gathered}
\text { from logic to XPath } \\
\varphi(x)=\exists y<x \quad \bigcirc(x) \\
\text { becomes } \\
\text { exists (ancestor } \bigcirc)
\end{gathered}
$$

from XPath to logic
exists (ancestor \bigcirc ancestor \bigcirc)
becomes
exists (ancestor \bigcirc exists (ancestor (\bigcirc))
becomes
$\varphi(x)=\exists y<x \quad(x) \wedge(\exists x<y \quad(y))$

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

$$
\begin{gathered}
\text { from logic to XPath } \\
\varphi(x)=\exists y<x \quad \bigcirc(x) \\
\text { becomes } \\
\text { exists (ancestor } \bigcirc)
\end{gathered}
$$

from XPath to logic
exists (ancestor \bigcirc ancestor \bigcirc)
becomes
exists (ancestor \bigcirc exists (ancestor (\bigcirc))
becomes
$\varphi(x)=\exists y<x \quad(x) \wedge(\exists x<y \quad(y))$

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

$$
\begin{gathered}
\text { from logic to XPath } \\
\varphi(x)=\exists y<x \quad \bigcirc(x) \\
\text { becomes } \\
\text { exists (ancestor } \bigcirc)
\end{gathered}
$$

from XPath to logic
exists (ancestor \bigcirc ancestor \bigcirc)
becomes
exists (ancestor \bigcirc exists (ancestor (\bigcirc))
becomes
$\varphi(x)=\exists y<x \quad(x) \wedge(\exists x<y \quad(y))$

Thm. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, left, etc.)
(for boolean and unary queries only, not for binary queries)

$$
\begin{gathered}
\text { from logic to XPath } \\
\varphi(x)=\exists y<x \quad \bigcirc(x) \\
\text { becomes } \\
\text { exists (ancestor } \bigcirc)
\end{gathered}
$$

from XPath to logic
exists (ancestor \bigcirc ancestor \bigcirc)
becomes
exists (ancestor \bigcirc exists (ancestor (\bigcirc))
becomes
$\varphi(x)=\exists y<x \quad(x) \wedge(\exists x<y \quad(y))$
$(\neg($ ancestor $\neg \bigcirc$ ancestor $) \cap$ ancestor $)(x, y)$
holds between x and y

Regular XPath $=$ XPath with Kleene star for binary queries

Regular XPath $=$ XPath with Kleene star for binary queries
path of even length $(\text { child child })^{*}$

Regular XPath = XPath with Kleene star for binary queries

$$
\text { path of even length }(\text { child child })^{*}
$$

Regular XPath captures all first-order logic...

Regular XPath = XPath with Kleene star for binary queries

$$
\text { path of even length }(\text { child child })^{*}
$$

Regular XPath captures all first-order logic...

$$
\text { exists } \bigcirc \text { until } \bigcirc=
$$

Regular XPath = Path with Kleene star for binary queries

$$
\text { path of even length }(\text { child child })^{*}
$$

Regular XPath captures all first-order logic... exists \bigcirc until $\bigcirc=(\bigcirc \text { child })^{*} \bigcirc$

Regular XPath = XPath with Kleene star for binary queries

$$
\text { path of even length }(\text { child child })^{*}
$$

Regular XPath captures all first-order logic...

$$
\text { exists } \bigcirc \text { until } \bigcirc=(\bigcirc \text { child })^{*} \bigcirc
$$...and all of PDL...

Regular XPath = XPath with Kleene star for binary queries

$$
\text { path of even length }(\text { child child })^{*}
$$

Regular XPath captures all first-order logic...

$$
\text { exists } \bigcirc \text { until } \bigcirc=(\bigcirc \text { child })^{*} \bigcirc
$$...and all of PDL... ...and more

Regular XPath $=$ XPath with Kleene star for binary queries

$$
\text { path of even length }(\text { child child })^{*}
$$

Regular XPath captures all first-order logic... exists \bigcirc until $\bigcirc=(\bigcirc \text { child })^{*} \bigcirc$...and all of PDL...
...and more
next boolean query that connects a node

Regular XPath $=$ XPath with Kleene star for binary queries

$$
\text { path of even length }(\text { child child })^{*}
$$

Regular XPath captures all first-order logic...

$$
\text { exists } \bigcirc \text { until } \bigcirc=(\bigcirc \text { child })^{*} \bigcirc
$$

...and all of PDL...
...and more
boolean query that connects a node with the next one in DFS traversal

Regular XPath $=$ XPath with Kleene star for binary queries

$$
\text { path of even length }(\text { child child })^{*}
$$

Regular XPath captures all first-order logic...

$$
\text { exists } \bigcirc \text { until } \bigcirc=(\bigcirc \text { child })^{*}
$$

...and all of PDL...

...and more

Regular XPath $=$ XPath with Kleene star for binary queries

$$
\text { path of even length }(\text { child child })^{*}
$$

Regular XPath captures all first-order logic...

$$
\text { exists } \bigcirc \text { until } \bigcirc=(\bigcirc \text { child })^{*}
$$

...and all of PDL...
...and more

$\left((\text { next } \bigcirc)^{*} \operatorname{next} \bigcirc(\text { next } \bigcirc)^{*} \operatorname{next} \bigcirc\right)^{*}(\text { next } \bigcirc)^{*} \neg \operatorname{exists} \operatorname{next}$

Regular XPath $=$ XPath with Kleene star for binary queries

$$
\text { path of even length }(\text { child child })^{*}
$$

Regular XPath captures all first-order logic...

$$
\text { exists } \bigcirc \text { until } \bigcirc=(\bigcirc \text { child })^{*}
$$...and all of PDL...

...and more

$\left((\text { next } \bigcirc)^{*} \operatorname{next} \bigcirc(\text { next } \bigcirc)^{*} \operatorname{next} \bigcirc\right)^{*}(\operatorname{next} \bigcirc)^{*} \neg \operatorname{exists}$ next selects the root iff the tree contains an even number of \bigcirc nodes.

