
/19

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5
1

/19

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5
1

/19

Some logics that describe tree properties

“ere is a set of nodes that is closed under
parents, has an a label, and has no c label”

∃X
∃x∈X a(x)
∀x∈X ∀y parent(x,y) ⇒ y∈X
∀x∈X ¬c(x)

{∧

monadic second-order logic

“ere is a node with label a that has
only b-labeled ancestors”

∃x a(x) ∧ (∀y < x b(y))

first-order logic

“On some path, b holds until a holds”
E b U a

temporal logics

Instead of < we can write
(parent(x,y))*

first-order logic with transitive closure

(b

a

)*
⊥ ⊥

⊥

regular expressions

2

/193

Temporal Logic for Words

Temporal Logic for Trees

XPath

definition
the virtuous cycle
MSO=regular

definition
CTL, PDL, CTL*
expressivity

definition
two-variable logic
regular XPath

/19

alphabet:

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

alphabet:

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

alphabet:

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

alphabet:

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

NEXT

alphabet:

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

NEXT

alphabet:

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

UNTIL

NEXT

alphabet:

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

UNTIL

NEXT

alphabet:

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

UNTIL

NEXT

alphabet:

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

UNTIL

NEXT

alphabet:

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

UNTIL

NEXT

alphabet:

FINALLY
true UNTIL

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

UNTIL

NEXT

alphabet:

FINALLY
true UNTIL

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

4

/19

UNTIL

NEXT

alphabet:

FINALLY
true UNTIL

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

FINALLY() UNTIL

4

/19

UNTIL

NEXT

alphabet:

FINALLY
true UNTIL

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

FINALLY() UNTIL

4

/19

UNTIL

NEXT

alphabet:

FINALLY
true UNTIL

PREVIOUS

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

FINALLY() UNTIL

4

/19

UNTIL

NEXT

alphabet:

FINALLY
true UNTIL

PREVIOUS

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

FINALLY() UNTIL

4

/19

UNTIL

NEXT

alphabet:

FINALLY
true UNTIL

SINCE
PREVIOUS

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

FINALLY() UNTIL

4

/19

UNTIL

NEXT

alphabet:

FINALLY
true UNTIL

SINCE
PREVIOUS

LTL (Linear Time Logic):
UNTIL and NEXT

2LTL
UNTIL, NEXT, SINCE, PREVIOUS

m (Kamp)
LTL = FO(<)

FINALLY() UNTIL

4

/19

For word languages, the following have
the same expressive power:

FO(<)

LTLaperiodic
semigroups

Virtuous Cycle

5

/19

For word languages, the following have
the same expressive power:

FO(<)

LTLaperiodic
semigroups

Virtuous Cycle

easy
EF-game

5

/19

For word languages, the following have
the same expressive power:

FO(<)

LTLaperiodic
semigroups

Virtuous Cycle

easy
EF-game

easy
induction on

formula

5

/19

For word languages, the following have
the same expressive power:

FO(<)

LTLaperiodic
semigroups

Virtuous Cycle

easy
EF-game

easy
induction on

formula

5

/19

For word languages, the following have
the same expressive power:

FO(<)

LTLaperiodic
semigroups

star-free
regular expressions

Virtuous Cycle

easy
EF-game

easy
induction on

formula

5

/19

For word languages, the following have
the same expressive power:

FO(<)

LTLaperiodic
semigroups

star-free
regular expressions

Virtuous Cycle

easy
EF-game

easy
induction on

formula

easy
induction on

expression

5

/19

For word languages, the following have
the same expressive power:

FO(<)

LTLaperiodic
semigroups

star-free
regular expressions

Virtuous Cycle

easy
EF-game

easy
induction on

formula

easy
induction on

expression

5

/19

An LTL-relabeling is a function f : A* B*

the relabeling is given by formulas and over alphabet A.

6

/19

An LTL-relabeling is a function f : A* B*

the relabeling is given by formulas and over alphabet A.

A=

B=

6

/19

An LTL-relabeling is a function f : A* B*

the relabeling is given by formulas and over alphabet A.

A=

B=

and NEXT and NEXT () ()or=

= last in same-colored block=

6

/19

An LTL-relabeling is a function f : A* B*

the relabeling is given by formulas and over alphabet A.

A=

B=

and NEXT and NEXT () ()or=

= last in same-colored block=

w

6

/19

An LTL-relabeling is a function f : A* B*

the relabeling is given by formulas and over alphabet A.

A=

B=

and NEXT and NEXT () ()or=

= last in same-colored block=

w

f(w)

6

/19

An LTL-relabeling is a function f : A* B*

the relabeling is given by formulas and over alphabet A.

A=

B=

and NEXT and NEXT () ()or=

= last in same-colored block=

w

f(w)

Lemma.
If L⊆B* is LTL-definable, and f is an LTL relabeling, then f -1(L) is also LTL-definable.

6

/19

An LTL-relabeling is a function f : A* B*

the relabeling is given by formulas and over alphabet A.

A=

B=

and NEXT and NEXT () ()or=

= last in same-colored block=

w

f(w)

Lemma.
If L⊆B* is LTL-definable, and f is an LTL relabeling, then f -1(L) is also LTL-definable.

preimages: yes, images: no

6

/19

An LTL-relabeling is a function f : A* B*

the relabeling is given by formulas and over alphabet A.

A=

B=

and NEXT and NEXT () ()or=

= last in same-colored block=

w

f(w)

Lemma.
If L⊆B* is LTL-definable, and f is an LTL relabeling, then f -1(L) is also LTL-definable.

first letter is and last letter is f () = ()* ∉ LTL

preimages: yes, images: no

6

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

sS = { st : t ∈S }
sS· sS ⊆ sS

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

If Ss = S then t ts is a bijection. For aperiodic semigroups, such a bijection has to be the identity.
Proof of Claim.

sS = { st : t ∈S }
sS· sS ⊆ sS

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

sS = { st : t ∈S }
sS· sS ⊆ sS

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

s1 ∈ sS s2 ∈ sS s3 ∈ sS s4 ∈ sS

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

s1 ∈ sS s2 ∈ sS s3 ∈ sS s4 ∈ sS

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

s1 ∈ sS s2 ∈ sS s3 ∈ sS s4 ∈ sS

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

s1 ∈ sS s2 ∈ sS s3 ∈ sS s4 ∈ sS

is is an LTL-relabeling (thanks to the induction assumption on a smaller alphabet).

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

s1 ∈ sS s2 ∈ sS s3 ∈ sS s4 ∈ sS

is is an LTL-relabeling (thanks to the induction assumption on a smaller alphabet).
A word has the same value as its relabeling.

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

7

/19

Prop. Let α : A+ → S be a semigroup morphism, with S aperiodic.
 For every s ∈ S, the language α-1(s) is LTL definable.

Proof. Induction on size of S, then size of A.
Induction base, when S has one element: the inverse image is A+

s1 ∈ sS s2 ∈ sS s3 ∈ sS s4 ∈ sS

is is an LTL-relabeling (thanks to the induction assumption on a smaller alphabet).
A word has the same value as its relabeling.

Aer the relabeling, we can use the smaller semigroup sS.

Since S is aperiodic, there must be some ∈ A such that s=α() satisfies sS ⊄ S Ss ⊄ Sor
Claim.

7

/19

m. Emptiness for LTL is -complete.

8

/19

m. Emptiness for LTL is -complete.

Upper bound.
Compile into an alternating automaton, determinize, check for emptiness.

8

/19

m. Emptiness for LTL is -complete.

Upper bound.
Compile into an alternating automaton, determinize, check for emptiness.

Lower bound.
LTL has negation, so emptiness is same problem as universality, which is -hard.

8

/19

m. Emptiness for LTL is -complete.

b a... b a...a a b ...a

configuration 1 configuration 2 configuration 3

b,p a,p a,r

Upper bound.
Compile into an alternating automaton, determinize, check for emptiness.

Lower bound.
LTL has negation, so emptiness is same problem as universality, which is -hard.

8

/19

m. Emptiness for LTL is -complete.

b a... b a...a a b ...a

configuration 1 configuration 2 configuration 3

b,p a,p a,r

Upper bound.
Compile into an alternating automaton, determinize, check for emptiness.

Lower bound.
LTL has negation, so emptiness is same problem as universality, which is -hard.

“some position has a different label than its n-fold successor.”

8

/19

Temporal Logic for Words

Temporal Logic for Trees

XPath

definition
the virtuous cycle
MSO=regular

definition
CTL, PDL, CTL*
expressivity

definition
two-variable logic
regular XPath

9

/19

Temporal Logic for Words

Temporal Logic for Trees

XPath

definition
the virtuous cycle
MSO=regular

definition
CTL, PDL, CTL*
expressivity

definition
two-variable logic
regular XPath

9

/19

Temporal Logic for Trees

first approach: CTL

CTL

2-CTL = FO(<,suc0,suc1)

Emptiness is -complete for both CTL and 2CTL,
but model checking is linear time (formula times tree).

10

/19

Temporal Logic for Trees

first approach: CTL

CTL

2-CTL = FO(<,suc0,suc1)

Emptiness is -complete for both CTL and 2CTL,
but model checking is linear time (formula times tree).

10

/19

Temporal Logic for Trees

first approach: CTL
EX

EXISTS NEXT

CTL

2-CTL = FO(<,suc0,suc1)

Emptiness is -complete for both CTL and 2CTL,
but model checking is linear time (formula times tree).

10

/19

Temporal Logic for Trees

first approach: CTL
EX

EXISTS NEXT

EX0

CTL

2-CTL = FO(<,suc0,suc1)

Emptiness is -complete for both CTL and 2CTL,
but model checking is linear time (formula times tree).

10

/19

Temporal Logic for Trees

first approach: CTL
EX

EXISTS NEXT

EX0

AX

CTL

2-CTL = FO(<,suc0,suc1)

Emptiness is -complete for both CTL and 2CTL,
but model checking is linear time (formula times tree).

10

/19

Temporal Logic for Trees

first approach: CTL
EX

EXISTS NEXT

EX0

E U

AX

CTL

2-CTL = FO(<,suc0,suc1)

Emptiness is -complete for both CTL and 2CTL,
but model checking is linear time (formula times tree).

10

/19

Temporal Logic for Trees

first approach: CTL
EX

EXISTS NEXT

EX0

E U

A U

AX

CTL

2-CTL = FO(<,suc0,suc1)

Emptiness is -complete for both CTL and 2CTL,
but model checking is linear time (formula times tree).

10

/19

Temporal Logic for Trees

first approach: CTL
EX

EXISTS NEXT

EX0

E U

S
A U

AX

CTL

2-CTL = FO(<,suc0,suc1)

Emptiness is -complete for both CTL and 2CTL,
but model checking is linear time (formula times tree).

10

/19

Emptiness is -complete for both CTL and 2CTL,
but model checking is linear time (formula times tree).

11

/19

b

a

...
a

configuration 0

b,p

b

a

...
a

b,p b

a

...
a

b,q

b

a

b,p b

a

b,qb

a

b,p

b

a

b,q

∧

∧ ∨

configuration 0·0 configuration 0·1

Emptiness is -complete for both CTL and 2CTL,
but model checking is linear time (formula times tree).

11

/19

L = some (maximal) path in ()*

12

/19

L = some (maximal) path in ()*

12

/19

L = some (maximal) path in ()*

12

/19

L = some (maximal) path in ()*
Claim.
L ∈ 2CTL but L ∉ CTL

12

/19

L = some (maximal) path in ()*
Claim.
L ∈ 2CTL but L ∉ CTL

there is a leaf
such that every ancestor has a parent, and vice versa.

12

/19

L = some (maximal) path in ()*
Claim.
L ∈ 2CTL but L ∉ CTL

12

/19

L = some (maximal) path in ()*
Claim.
L ∈ 2CTL but L ∉ CTL

tn =
Complete binary tree of depth n,
with root label ,
where le children have label and
right children have label .

12

/19

L = some (maximal) path in ()*
Claim.
L ∈ 2CTL but L ∉ CTL

tn =
Complete binary tree of depth n,
with root label ,
where le children have label and
right children have label .

t4 =

12

/19

L = some (maximal) path in ()*
Claim.
L ∈ 2CTL but L ∉ CTL

tn =
Complete binary tree of depth n,
with root label ,
where le children have label and
right children have label .

t4 =
A CTL formula of depth n cannot distinguish tn+1 and tn+2.

12

/19

L = some (maximal) path in ()*
Claim.
L ∈ 2CTL but L ∉ CTL

tn =
Complete binary tree of depth n,
with root label ,
where le children have label and
right children have label .

t4 =

tn ∈L iff n is even.

A CTL formula of depth n cannot distinguish tn+1 and tn+2.

12

/19

L = some (maximal) path in ()*
Claim.
L ∈ 2CTL but L ∉ CTL

tn =
Complete binary tree of depth n,
with root label ,
where le children have label and
right children have label .

t4 =

tn ∈L iff n is even.

A CTL formula of depth n cannot distinguish tn+1 and tn+2.

12

/19

PDL
If Φ1,...,Φn are formulas of PDL, and L⊆{Φ1,...,Φn}* is a regular word language,

then “exists a path in L”, written EL, is a formula of PDL

label tests, boolean combinations

a PDL formula CTL* fragment of PDL where the word language
L must be first-order definable.

Usually L is written in LTL.

How to tell a right child from a le child?
add a formula: “I am a le child”

m. (Hafer, omas `87)
Over binary trees, CTL* (with le/right child) has the same
expressive power as FO(<,suc0,suc1).

Without le/right child, CTL* has the same expressive
power as FO(<), but only for binary trees (and not ternary ones).

look the same

13

/19

PDL
If Φ1,...,Φn are formulas of PDL, and L⊆{Φ1,...,Φn}* is a regular word language,

then “exists a path in L”, written EL, is a formula of PDL

label tests, boolean combinations

a PDL formula CTL* fragment of PDL where the word language
L must be first-order definable.

Usually L is written in LTL.

How to tell a right child from a le child?
add a formula: “I am a le child”

m. (Hafer, omas `87)
Over binary trees, CTL* (with le/right child) has the same
expressive power as FO(<,suc0,suc1).

Without le/right child, CTL* has the same expressive
power as FO(<), but only for binary trees (and not ternary ones).

look the same

13

/19

Regular = MSO

14

/19

Regular = MSO

PDL

14

/19

Regular = MSO

PDL∨

∧

01 1

∧

∨

1 0 boolean expressions

14

/19

Regular = MSO

PDL∨

∧

01 1

∧

∨

1 0 boolean expressions

even number of

14

/19

Regular = MSO

PDL

CTL* = FO(<,suc0,suc1) = 2CTL

∨

∧

01 1

∧

∨

1 0 boolean expressions

even number of

14

/19

Regular = MSO

PDL

CTL* = FO(<,suc0,suc1) = 2CTL

∨

∧

01 1

∧

∨

1 0 boolean expressions
exists a path with even number of

even number of

14

/19

Regular = MSO

PDL

CTL* = FO(<,suc0,suc1) = 2CTL

CTL

∨

∧

01 1

∧

∨

1 0 boolean expressions
exists a path with even number of

even number of

14

/19

Regular = MSO

PDL

CTL* = FO(<,suc0,suc1) = 2CTL

CTL

∨

∧

01 1

∧

∨

1 0 boolean expressions
exists a path with even number of

even number of

exists a path with ()*

14

/19

Regular = MSO

PDL

CTL* = FO(<,suc0,suc1) = 2CTL

CTL

∨

∧

01 1

∧

∨

1 0 boolean expressions
exists a path with even number of

even number of

exists a path with ()*

FO(suc0,suc1)

14

/19

Regular = MSO

PDL

CTL* = FO(<,suc0,suc1) = 2CTL

CTL

∨

∧

01 1

∧

∨

1 0 boolean expressions
exists a path with even number of

even number of

exists a path with ()*

FO(suc0,suc1)

E U

14

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL? Induction on nesting depth in formula.
We only do the case of nesting depth 1.

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

Let Q be the state space of the automaton recognizing all Li.

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

∨

∨ ∨

∨∨
∨∨

∨
∨

∨∨ ∨

Let Q be the state space of the automaton recognizing all Li.

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

∨

∨ ∨

∨∨
∨∨

∨
∨

∨∨ ∨

∧ ∧ ∧ ∧

Let Q be the state space of the automaton recognizing all Li.

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

∨

∨ ∨

∨∨
∨∨

∨
∨

∨∨ ∨

∧ ∧ ∧ ∧

Let Q be the state space of the automaton recognizing all Li.

with each node, we associate the
state transformation of the path that

leads to the root.

∧

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

∨

∨ ∨

∨∨
∨∨

∨
∨

∨∨ ∨

∧ ∧ ∧ ∧

Let Q be the state space of the automaton recognizing all Li.

with each node, we associate the
state transformation of the path that

leads to the root.

∧

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

∨

∨ ∨

∨∨
∨∨

∨
∨

∨∨ ∨

∧ ∧ ∧ ∧

Let Q be the state space of the automaton recognizing all Li.

with each node, we associate the
state transformation of the path that

leads to the root.

∧

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

∨

∨ ∨

∨∨
∨∨

∨
∨

∨∨ ∨

∧ ∧ ∧ ∧

Let Q be the state space of the automaton recognizing all Li.

with each node, we associate the
state transformation of the path that

leads to the root.

∧

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

∨

∨ ∨

∨∨
∨∨

∨
∨

∨∨ ∨

∧ ∧ ∧ ∧

Let Q be the state space of the automaton recognizing all Li.

with each node, we associate the
state transformation of the path that

leads to the root.

∧

0 0 0 0
we put 0 in

all other leaves

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

∨

∨ ∨

∨∨
∨∨

∨
∨

∨∨ ∨

∧ ∧ ∧ ∧

Let Q be the state space of the automaton recognizing all Li.

with each node, we associate the
state transformation of the path that

leads to the root.

∧

0 0 0 00 11 0
we put 0 in

all other leaves

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

∨

∨ ∨

∨∨
∨∨

∨
∨

∨∨ ∨

∧ ∧ ∧ ∧

Let Q be the state space of the automaton recognizing all Li.

with each node, we associate the
state transformation of the path that

leads to the root.

∧

0 0 0 00 11 0
we put 0 in

all other leaves

15

/19

∨

∧

∨

∧

0

0

1

1 1

Why can’t you do Boolean expressions in PDL?

Let L1,..., Ln be regular word languages over {∨, ∧ , 0 , 1} × {le,right}.
No boolean combination of languages ELi defines the set of true boolean expressions.

Induction on nesting depth in formula.
We only do the case of nesting depth 1.

∨

∨ ∨

∨∨
∨∨

∨
∨

∨∨ ∨

∧ ∧ ∧ ∧

Let Q be the state space of the automaton recognizing all Li.

with each node, we associate the
state transformation of the path that

leads to the root.

∧

0 0 0 00 110
we put 0 in

all other leaves

15

/19

Temporal Logic for Words

Temporal Logic for Trees

XPath

definition
the virtuous cycle
MSO=regular

definition
CTL, PDL, CTL*
expressivity

definition
two-variable logic
regular XPath

16

/19

Temporal Logic for Words

Temporal Logic for Trees

XPath

definition
the virtuous cycle
MSO=regular

definition
CTL, PDL, CTL*
expressivity

definition
two-variable logic
regular XPath

16

/19

XPath
(navigational

XPath)

17

/19

XPath

 unary query: selects a node binary query: selects a pair of nodes

(navigational
XPath)

17

/19

XPath

 unary query: selects a node binary query: selects a pair of nodes

(navigational
XPath)

17

/19

XPath

 unary query: selects a node binary query: selects a pair of nodes

(navigational
XPath)

17

/19

XPath

 unary query: selects a node binary query: selects a pair of nodes

(navigational
XPath)

17

/19

XPath

 unary query: selects a node binary query: selects a pair of nodes

(navigational
XPath)

17

/19

XPath

 unary query: selects a node binary query: selects a pair of nodes

descendant, child, right
and their converses

(navigational
XPath)

17

/19

XPath

descendant

 unary query: selects a node binary query: selects a pair of nodes

descendant, child, right
and their converses

(navigational
XPath)

17

/19

XPath

descendant
1

2

 unary query: selects a node binary query: selects a pair of nodes

descendant, child, right
and their converses

(navigational
XPath)

17

/19

XPath

descendant
1

2

 unary query: selects a node binary query: selects a pair of nodes

descendant, child, right
and their converses

composition

(navigational
XPath)

17

/19

XPath

descendant
1

2

descendant right

 unary query: selects a node binary query: selects a pair of nodes

descendant, child, right
and their converses

composition

(navigational
XPath)

17

/19

XPath

descendant
1

2

descendant right1

2

 unary query: selects a node binary query: selects a pair of nodes

descendant, child, right
and their converses

composition

(navigational
XPath)

17

/19

XPath

descendant
1

2

descendant right1

2

 unary query: selects a node binary query: selects a pair of nodes

descendant, child, right
and their converses

composition

a unary query can be seen as a binary
query that selects a subset of pairs (x,x)

(navigational
XPath)

17

/19

XPath

descendant
1

2

descendant right1

2

 unary query: selects a node binary query: selects a pair of nodes

descendant, child, right
and their converses

composition

a unary query can be seen as a binary
query that selects a subset of pairs (x,x)exists (binary query)

(navigational
XPath)

17

/19

XPath

descendant
1

2

descendant right1

2

exists descendant right()

 unary query: selects a node binary query: selects a pair of nodes

descendant, child, right
and their converses

composition

a unary query can be seen as a binary
query that selects a subset of pairs (x,x)exists (binary query)

(navigational
XPath)

17

/19

XPath

descendant
1

2

descendant right1

2

exists descendant right()

 unary query: selects a node binary query: selects a pair of nodes

descendant, child, right
and their converses

composition

a unary query can be seen as a binary
query that selects a subset of pairs (x,x)exists (binary query)

(navigational
XPath)

17

/19

XPath

descendant
1

2

descendant right1

2

exists descendant right()

 unary query: selects a node binary query: selects a pair of nodes

descendant, child, right
and their converses

composition

a unary query can be seen as a binary
query that selects a subset of pairs (x,x)

boolean operations

exists (binary query)

(navigational
XPath)

17

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath

18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

from logic to XPath

18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath

18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath from XPath to logic

18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath from XPath to logic

exists ancestor()ancestor

18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath from XPath to logic

exists ancestor()ancestor

becomes

exists ancestor()ancestorexists(()

18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath from XPath to logic

exists ancestor()ancestor

becomes

becomes

exists ancestor()ancestorexists(()

18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath from XPath to logic

exists ancestor()ancestor

becomes

becomes

exists ancestor()ancestorexists(()

ancestor ancestor

18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath from XPath to logic

exists ancestor()ancestor

becomes

becomes

exists ancestor()ancestorexists(()

ancestor ancestor¬()
18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath from XPath to logic

exists ancestor()ancestor

becomes

becomes

exists ancestor()ancestorexists(()

ancestor ancestor¬()(ancestor∩)
18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath from XPath to logic

exists ancestor()ancestor

becomes

becomes

exists ancestor()ancestorexists(()

ancestor ancestor¬()¬(ancestor∩)
18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath from XPath to logic

exists ancestor()ancestor

becomes

becomes

exists ancestor()ancestorexists(()

ancestor ancestor¬()¬(ancestor∩)(x,y)

18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath from XPath to logic

exists ancestor()ancestor

becomes

becomes

exists ancestor()ancestorexists(()

ancestor ancestor¬()¬(ancestor∩)(x,y) holds between x and y
18

/19

m. (Marx, de Rijke)
XPath has the same expressive power as two-variable first-order logic.
(the predicates are the same as in XPath: descendant, le, etc.)

(for boolean and unary queries only, not for binary queries)

exists ancestor()

becomes

from logic to XPath from XPath to logic

exists ancestor()ancestor

becomes

becomes

exists ancestor()ancestorexists(()

ancestor ancestor¬()¬(ancestor∩)(x,y) holds between x and y
exists until 18

/19

Regular XPath = XPath with Kleene star for binary queries

19

/19

Regular XPath = XPath with Kleene star for binary queries

child()*childpath of even length

19

/19

Regular XPath = XPath with Kleene star for binary queries

child()*childpath of even length

Regular XPath captures all first-order logic...

19

/19

Regular XPath = XPath with Kleene star for binary queries

child()*childpath of even length

Regular XPath captures all first-order logic... =exists until

19

/19

Regular XPath = XPath with Kleene star for binary queries

child()*childpath of even length

Regular XPath captures all first-order logic... child()*=exists until

19

/19

Regular XPath = XPath with Kleene star for binary queries

child()*childpath of even length

Regular XPath captures all first-order logic... child()*=exists until

...and all of PDL...

19

/19

Regular XPath = XPath with Kleene star for binary queries

child()*childpath of even length

Regular XPath captures all first-order logic... child()*=exists until

...and all of PDL...
...and more

19

/19

boolean query that connects a node
with the next one in DFS traversalnext

Regular XPath = XPath with Kleene star for binary queries

child()*childpath of even length

Regular XPath captures all first-order logic... child()*=exists until

...and all of PDL...
...and more

19

/19

boolean query that connects a node
with the next one in DFS traversalnext

Regular XPath = XPath with Kleene star for binary queries

child()*childpath of even length

Regular XPath captures all first-order logic... child()*=exists until

...and all of PDL...
...and more

19

/19

boolean query that connects a node
with the next one in DFS traversalnext

Regular XPath = XPath with Kleene star for binary queries

child()*childpath of even length

parent)* right(¬ exists right)(child (exists right) or

Regular XPath captures all first-order logic... child()*=exists until

...and all of PDL...
...and more

19

/19

boolean query that connects a node
with the next one in DFS traversalnext

Regular XPath = XPath with Kleene star for binary queries

child()*childpath of even length

nextnext)*(next)* next(()* next)*(¬ exists next

parent)* right(¬ exists right)(child (exists right) or

Regular XPath captures all first-order logic... child()*=exists until

...and all of PDL...
...and more

19

/19

boolean query that connects a node
with the next one in DFS traversalnext

Regular XPath = XPath with Kleene star for binary queries

child()*childpath of even length

nextnext)*(next)* next(()* next)*(¬ exists next

selects the root iff the tree contains an even number of nodes.

parent)* right(¬ exists right)(child (exists right) or

Regular XPath captures all first-order logic... child()*=exists until

...and all of PDL...
...and more

19

