
Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5

/22

Some logics that describe tree properties

2

/22

Some logics that describe tree properties

“ere is a set of nodes that is closed under
parents, has an a label, and has no c label”

∃X
∃x∈X a(x)
∀x∈X ∀y parent(x,y) ⇒ y∈X
∀x∈X ¬c(x)

{∧

monadic second-order logic

2

/22

Some logics that describe tree properties

“ere is a set of nodes that is closed under
parents, has an a label, and has no c label”

∃X
∃x∈X a(x)
∀x∈X ∀y parent(x,y) ⇒ y∈X
∀x∈X ¬c(x)

{∧

monadic second-order logic

“ere is a node with label a that has
only b-labeled ancestors”

∃x a(x) ∧ (∀y < x b(y))

first-order logic

2

/22

Some logics that describe tree properties

“ere is a set of nodes that is closed under
parents, has an a label, and has no c label”

∃X
∃x∈X a(x)
∀x∈X ∀y parent(x,y) ⇒ y∈X
∀x∈X ¬c(x)

{∧

monadic second-order logic

“ere is a node with label a that has
only b-labeled ancestors”

∃x a(x) ∧ (∀y < x b(y))

first-order logic

Instead of < we can write
(parent(x,y))*

first-order logic with transitive closure

2

/22

Some logics that describe tree properties

“ere is a set of nodes that is closed under
parents, has an a label, and has no c label”

∃X
∃x∈X a(x)
∀x∈X ∀y parent(x,y) ⇒ y∈X
∀x∈X ¬c(x)

{∧

monadic second-order logic

“ere is a node with label a that has
only b-labeled ancestors”

∃x a(x) ∧ (∀y < x b(y))

first-order logic

“On some path, b holds until a holds”
E b U a

temporal logics

Instead of < we can write
(parent(x,y))*

first-order logic with transitive closure

2

/22

Some logics that describe tree properties

“ere is a set of nodes that is closed under
parents, has an a label, and has no c label”

∃X
∃x∈X a(x)
∀x∈X ∀y parent(x,y) ⇒ y∈X
∀x∈X ¬c(x)

{∧

monadic second-order logic

“ere is a node with label a that has
only b-labeled ancestors”

∃x a(x) ∧ (∀y < x b(y))

first-order logic

“On some path, b holds until a holds”
E b U a

temporal logics

Instead of < we can write
(parent(x,y))*

first-order logic with transitive closure

(b

a

)*
⊥ ⊥

⊥

regular expressions

2

/22

Some logics that describe tree properties

“ere is a set of nodes that is closed under
parents, has an a label, and has no c label”

∃X
∃x∈X a(x)
∀x∈X ∀y parent(x,y) ⇒ y∈X
∀x∈X ¬c(x)

{∧

monadic second-order logic

“ere is a node with label a that has
only b-labeled ancestors”

∃x a(x) ∧ (∀y < x b(y))

first-order logic

“On some path, b holds until a holds”
E b U a

temporal logics

Instead of < we can write
(parent(x,y))*

first-order logic with transitive closure

(b

a

)*
⊥ ⊥

⊥

regular expressions

2

/223

Monadic- and First-Order Logic for Words

Monadic- and First-Order Logic for Trees

Transitive Closure Logic and Regular Expressions

definition
weakness of first-order logic
MSO=regular

/22

Monadic Second-Order Logic
grandfather of logics for regular languages

4

/22

Monadic Second-Order Logic
grandfather of logics for regular languages

m. (atcher, Wright `68)
A tree language is regular if and only if it can be defined in monadic second-order logic.

4

/22

Monadic Second-Order Logic
grandfather of logics for regular languages

m. (atcher, Wright `68)
A tree language is regular if and only if it can be defined in monadic second-order logic.

words: Büchi, Trakhtenbrot, Elgot (`60, `61)
infinite words: Büchi `62

4

/22

Monadic Second-Order Logic
grandfather of logics for regular languages

m. (atcher, Wright `68)
A tree language is regular if and only if it can be defined in monadic second-order logic.

infnite trees: Rabin `69

words: Büchi, Trakhtenbrot, Elgot (`60, `61)
infinite words: Büchi `62

4

/22

Monadic Second-Order Logic
grandfather of logics for regular languages

m. (atcher, Wright `68)
A tree language is regular if and only if it can be defined in monadic second-order logic.

infnite trees: Rabin `69

Regular tree languages are closed under:

– union
– intersection
– complementation
– projection f(L), with f letter-to-letter

words: Büchi, Trakhtenbrot, Elgot (`60, `61)
infinite words: Büchi `62

4

/22

Monadic Second-Order Logic
grandfather of logics for regular languages

m. (atcher, Wright `68)
A tree language is regular if and only if it can be defined in monadic second-order logic.

infnite trees: Rabin `69

Regular tree languages are closed under:

– union
– intersection
– complementation
– projection f(L), with f letter-to-letter

∧
∨

¬
∃

words: Büchi, Trakhtenbrot, Elgot (`60, `61)
infinite words: Büchi `62

4

/22

First-Order Logic for Words

Alphabet: A={a,b,c} A*ab*aA*

∃x ∃y a(x) ∧ a(y) ∧ x<y ∧ (∀z x<z<y ⇒ b(x))

first-order logic

quantification
is over positions label predicates order on positions

m. Every language definable in first-order logic is regular, but not conversely, eg. (aa)*.

Formal definition: a word w=a1 a2 ··· an word is interpreted as
structure w=〈 {1,..,n}, < , a(x) , b(x) , c(x) 〉

A formula Ψ gives a language LΨ={w : Ψ holds in w}

5

/22

Ehrenfeucht-Fraïssé Game

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

on these two structures, Duplicator can survive 2 rounds, but not 3.

6

/22

Ehrenfeucht-Fraïssé Game

m. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

e game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures.
Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round.
(for words, same = same order on colors, same labels for same colors)

a b b b aa b b b b a

on these two structures, Duplicator can survive 2 rounds, but not 3.

“exists a b-node that separates every two other b-nodes”

6

/22

Fact. e language (aa)* cannot be defined in first-order logic (with order < and labels).

7

/22

Fact. e language (aa)* cannot be defined in first-order logic (with order < and labels).

For any number of rounds k, Duplicator has a strategy to
survive the game played on words of length 2k and 2k+1

Proof.

7

/22

Fact. e language (aa)* cannot be defined in first-order logic (with order < and labels).

For any number of rounds k, Duplicator has a strategy to
survive the game played on words of length 2k and 2k+1

Proof.

Pebbles are ordered the same way, and the distances between
consecutive pebbles are either equal, or at least 2i.

Strategy: preserve the following invariant, when i rounds are le.

7

/22

Fact. e language (aa)* cannot be defined in first-order logic (with order < and labels).

For any number of rounds k, Duplicator has a strategy to
survive the game played on words of length 2k and 2k+1

Proof.

Pebbles are ordered the same way, and the distances between
consecutive pebbles are either equal, or at least 2i.

Strategy: preserve the following invariant, when i rounds are le.

7 6 4 8

6 6 6 9

7

/22

Fact. e language (aa)* cannot be defined in first-order logic (with order < and labels).

For any number of rounds k, Duplicator has a strategy to
survive the game played on words of length 2k and 2k+1

Proof.

Pebbles are ordered the same way, and the distances between
consecutive pebbles are either equal, or at least 2i.

Strategy: preserve the following invariant, when i rounds are le.

7 6 4 8

6 6 6 9

if there are i=2 rounds le, Duplicator will survive.

7

/22

Fact. e language (aa)* cannot be defined in first-order logic (with order < and labels).

For any number of rounds k, Duplicator has a strategy to
survive the game played on words of length 2k and 2k+1

Proof.

Pebbles are ordered the same way, and the distances between
consecutive pebbles are either equal, or at least 2i.

Strategy: preserve the following invariant, when i rounds are le.

7 6 4 8

6 6 6 9

if there are i=2 rounds le, Duplicator will survive.

Lemma. If L is a language definable in first-order logic, then there is some
m such that for any word w, the words wm and wm+1 are equivalent.

7

/22

Monadic Second-Order Logic for Words

A word belongs to (aa)* iff its satisfies the following formula:

8

/22

Monadic Second-Order Logic for Words

A word belongs to (aa)* iff its satisfies the following formula:

there is a set of
positions

that contains every second position,

and contains the first position,

but does not contain the last position

8

/22

Monadic Second-Order Logic for Words

A word belongs to (aa)* iff its satisfies the following formula:

there is a set of
positions

that contains every second position,

and contains the first position,

but does not contain the last position

MSO is the extension of first-order logic with set quantification.

8

/22

Monadic Second-Order Logic for Words

A word belongs to (aa)* iff its satisfies the following formula:

there is a set of
positions

that contains every second position,

and contains the first position,

but does not contain the last position

MSO is the extension of first-order logic with set quantification.
Contrary to what the above suggests, MSO is more succint than regular expressions.

8

/22

MSO=regular for words

9

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

9

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

9

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Take an automaton:

9

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

A word is accepted by the automaton iff it satisfies the following formula of MSO:

Take an automaton:

9

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

exists state assignment

A word is accepted by the automaton iff it satisfies the following formula of MSO:

Take an automaton:

9

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

the first position has an initial state

exists state assignment

A word is accepted by the automaton iff it satisfies the following formula of MSO:

Take an automaton:

9

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

the first position has an initial state

the transitions are respectedexists state assignment

A word is accepted by the automaton iff it satisfies the following formula of MSO:

Take an automaton:

9

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

the first position has an initial state

the transitions are respected

the last position has an accepting state

exists state assignment

A word is accepted by the automaton iff it satisfies the following formula of MSO:

Take an automaton:

9

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

the first position has an initial state

the transitions are respected

the last position has an accepting state

exists state assignment

A word is accepted by the automaton iff it satisfies the following formula of MSO:

Take an automaton:

X X X X X X X X X X X X X

q q q q q q q q q q q q q q 9

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

the first position has an initial state

the transitions are respected

the last position has an accepting state

exists state assignment

A word is accepted by the automaton iff it satisfies the following formula of MSO:

Take an automaton:

X X X X X X X X X X X X X

q q q q q q q q q q q q q q 9

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

the first position has an initial state

the transitions are respected

the last position has an accepting state

exists state assignment

A word is accepted by the automaton iff it satisfies the following formula of MSO:

Take an automaton:

X X X X X X X X X X X X X

q q q q q q q q q q q q q q 9

/22

For every regular language, there is an equivalent MSO formula of the form

first-order

Corollary of the proof:

10

/22

For every regular language, there is an equivalent MSO formula of the form

first-order

Corollary of the proof:

By encoding states in binary, we only need log(n) set variables.

10

/22

For every regular language, there is an equivalent MSO formula of the form

first-order

Corollary of the proof:

By encoding states in binary, we only need log(n) set variables.
Actually, we only need one.

10

/22

For every regular language, there is an equivalent MSO formula of the form

first-order

Corollary of the proof:

For every regular language, there is an equivalent MSO formula of the form

first-order

By encoding states in binary, we only need log(n) set variables.
Actually, we only need one.

10

/22

For every regular language, there is an equivalent MSO formula of the form

first-order

Corollary of the proof:

For every regular language, there is an equivalent MSO formula of the form

first-order

By encoding states in binary, we only need log(n) set variables.

X X

length encodes state

Actually, we only need one.

10

/22

For every regular language, there is an equivalent MSO formula of the form

first-order

Corollary of the proof:

For every regular language, there is an equivalent MSO formula of the form

first-order

By encoding states in binary, we only need log(n) set variables.

X X

length encodes state

an first-order formula can check
consistency for consecutive states

Actually, we only need one.

10

/22

MSO=regular for words

11

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

11

/22

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

11

/22

Proposition. For every sentence Ψ of MSO, the set LΨ is regular.

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

11

/22

Proposition. For every sentence Ψ of MSO, the set LΨ is regular.

Proof. Induction on the structure of the formula.

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

11

/22

Claim. For every formula Ψ(x1,x2,..., xn, X1,X2,..., Xm) of MSO, the set LΨ is regular.

Proposition. For every sentence Ψ of MSO, the set LΨ is regular.

Proof. Induction on the structure of the formula.

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

11

/22

Claim. For every formula Ψ(x1,x2,..., xn, X1,X2,..., Xm) of MSO, the set LΨ is regular.

Proposition. For every sentence Ψ of MSO, the set LΨ is regular.

Proof. Induction on the structure of the formula.

to simplify, we remove individual variables x1,x2,..., xn from MSO syntax.

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

11

/22

Claim. For every formula Ψ(x1,x2,..., xn, X1,X2,..., Xm) of MSO, the set LΨ is regular.

Proposition. For every sentence Ψ of MSO, the set LΨ is regular.

Proof. Induction on the structure of the formula.

to simplify, we remove individual variables x1,x2,..., xn from MSO syntax.

X⊆Y X=∅ X⊆a X<Y

MSO=regular for words
m. For every regular language L, there is an equivalent formula of MSO, and vice versa.

11

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

12

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

How do we define LΨ for formulas with free set variables X1,...,Xn?
A word w∈A* together with valuations for sets X1,...,Xn is represented as a word over A×{0,1}n.

12

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

How do we define LΨ for formulas with free set variables X1,...,Xn?
A word w∈A* together with valuations for sets X1,...,Xn is represented as a word over A×{0,1}n.

X1

a b b b b a
X1 X1 X1

X2X2X2 X2

12

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

How do we define LΨ for formulas with free set variables X1,...,Xn?
A word w∈A* together with valuations for sets X1,...,Xn is represented as a word over A×{0,1}n.

X1

a b b b b a
X1 X1 X1

X2X2X2 X2

a
1
0

a
1
1

a
0
1

a
1
1

a
0
1

a
1
0

is encoded as

12

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

How do we define LΨ for formulas with free set variables X1,...,Xn?
A word w∈A* together with valuations for sets X1,...,Xn is represented as a word over A×{0,1}n.

X1

a b b b b a
X1 X1 X1

X2X2X2 X2

Under this encoding, LΨ is a language over A×{0,1}n.

a
1
0

a
1
1

a
0
1

a
1
1

a
0
1

a
1
0

is encoded as

12

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

How do we define LΨ for formulas with free set variables X1,...,Xn?
A word w∈A* together with valuations for sets X1,...,Xn is represented as a word over A×{0,1}n.

X1

a b b b b a
X1 X1 X1

X2X2X2 X2

Under this encoding, LΨ is a language over A×{0,1}n.

a
1
0

a
1
1

a
0
1

a
1
1

a
0
1

a
1
0

is encoded as

Induction proof of claim.

12

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

How do we define LΨ for formulas with free set variables X1,...,Xn?
A word w∈A* together with valuations for sets X1,...,Xn is represented as a word over A×{0,1}n.

X1

a b b b b a
X1 X1 X1

X2X2X2 X2

Under this encoding, LΨ is a language over A×{0,1}n.

a
1
0

a
1
1

a
0
1

a
1
1

a
0
1

a
1
0

is encoded as

Induction proof of claim.
induction base.

simple. Eg. Xi⊆Xj is the regular language “if true on bit i then true on bit j”

12

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

boolean operations
standard constructions for automata.

How do we define LΨ for formulas with free set variables X1,...,Xn?
A word w∈A* together with valuations for sets X1,...,Xn is represented as a word over A×{0,1}n.

X1

a b b b b a
X1 X1 X1

X2X2X2 X2

Under this encoding, LΨ is a language over A×{0,1}n.

a
1
0

a
1
1

a
0
1

a
1
1

a
0
1

a
1
0

is encoded as

Induction proof of claim.
induction base.

simple. Eg. Xi⊆Xj is the regular language “if true on bit i then true on bit j”

12

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

boolean operations
standard constructions for automata.

existential quantification ∃Xm. Ψ(X1,X2,..., Xm)

How do we define LΨ for formulas with free set variables X1,...,Xn?
A word w∈A* together with valuations for sets X1,...,Xn is represented as a word over A×{0,1}n.

X1

a b b b b a
X1 X1 X1

X2X2X2 X2

Under this encoding, LΨ is a language over A×{0,1}n.

a
1
0

a
1
1

a
0
1

a
1
1

a
0
1

a
1
0

is encoded as

Induction proof of claim.
induction base.

simple. Eg. Xi⊆Xj is the regular language “if true on bit i then true on bit j”

12

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

boolean operations
standard constructions for automata.

existential quantification ∃Xm. Ψ(X1,X2,..., Xm)
run the automaton for Ψ(X1,X2,..., Xm), nondeterministically guessing values for Xm.

How do we define LΨ for formulas with free set variables X1,...,Xn?
A word w∈A* together with valuations for sets X1,...,Xn is represented as a word over A×{0,1}n.

X1

a b b b b a
X1 X1 X1

X2X2X2 X2

Under this encoding, LΨ is a language over A×{0,1}n.

a
1
0

a
1
1

a
0
1

a
1
1

a
0
1

a
1
0

is encoded as

Induction proof of claim.
induction base.

simple. Eg. Xi⊆Xj is the regular language “if true on bit i then true on bit j”

12

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

boolean operations
standard constructions for automata.

existential quantification ∃Xm. Ψ(X1,X2,..., Xm)
run the automaton for Ψ(X1,X2,..., Xm), nondeterministically guessing values for Xm.

How do we define LΨ for formulas with free set variables X1,...,Xn?
A word w∈A* together with valuations for sets X1,...,Xn is represented as a word over A×{0,1}n.

X1

a b b b b a
X1 X1 X1

X2X2X2 X2

Under this encoding, LΨ is a language over A×{0,1}n.

a
1
0

a
1
1

a
0
1

a
1
1

a
0
1

a
1
0

is encoded as

Induction proof of claim.
induction base.

simple. Eg. Xi⊆Xj is the regular language “if true on bit i then true on bit j”

Language of ∃Xm. Ψ(X1,X2,..., Xm) Projection under π of language of Ψ(X1,X2,..., Xm)=

12

/22

Claim. For every formula Ψ(X1,X2,..., Xm) of MSO, the set LΨ is regular.

boolean operations
standard constructions for automata.

existential quantification ∃Xm. Ψ(X1,X2,..., Xm)
run the automaton for Ψ(X1,X2,..., Xm), nondeterministically guessing values for Xm.

How do we define LΨ for formulas with free set variables X1,...,Xn?
A word w∈A* together with valuations for sets X1,...,Xn is represented as a word over A×{0,1}n.

X1

a b b b b a
X1 X1 X1

X2X2X2 X2

Under this encoding, LΨ is a language over A×{0,1}n.

a
1
0

a
1
1

a
0
1

a
1
1

a
0
1

a
1
0

is encoded as

Induction proof of claim.
induction base.

simple. Eg. Xi⊆Xj is the regular language “if true on bit i then true on bit j”

Language of ∃Xm. Ψ(X1,X2,..., Xm) Projection under π of language of Ψ(X1,X2,..., Xm)=
π : (A×{0,1}n)* (A×{0,1}n-1)*

12

/2213

Monadic- and First-Order Logic for Words

Monadic- and First-Order Logic for Trees

Transitive Closure Logic and Regular Expressions

definition
weakness of first-order logic
MSO=regular

/2213

Monadic- and First-Order Logic for Words

Monadic- and First-Order Logic for Trees

Transitive Closure Logic and Regular Expressions

definition
weakness of first-order logic
MSO=regular

definition
problems with parity
problems with aperiodicity

/22

MSO for Trees

A binary tree has an even number of nodes

there is a set of
positions

that contains no leaf

but contains the root

and contains a node iff exactly on of its children is in X

iff

false

iff

14

/22

MSO for Trees

A binary tree has an even number of nodes

there is a set of
positions

that contains no leaf

but contains the root

and contains a node iff exactly on of its children is in X

m. (atcher, Wright `68)

iff

false

iff

14

/22

MSO for Trees

A binary tree has an even number of nodes

there is a set of
positions

that contains no leaf

but contains the root

and contains a node iff exactly on of its children is in X

m. (atcher, Wright `68)
MSO = regular languages for finite trees.

iff

false

iff

14

/22

MSO(suc0,suc1) = MSO(<,suc0,suc1)=regular

FO(suc0,suc1)

FO(<,suc0,suc1)

15

/22

MSO(suc0,suc1) = MSO(<,suc0,suc1)=regular

FO(suc0,suc1)

FO(<,suc0,suc1)

all b’s below all a’s

15

/22

MSO(suc0,suc1) = MSO(<,suc0,suc1)=regular

FO(suc0,suc1)

FO(<,suc0,suc1)

all b’s below all a’s
b

a

15

/22

MSO(suc0,suc1) = MSO(<,suc0,suc1)=regular

FO(suc0,suc1)

FO(<,suc0,suc1)

all b’s below all a’s
b

a

all b’s below all a’s
for alphabet a,b,c

15

/22

MSO(suc0,suc1) = MSO(<,suc0,suc1)=regular

FO(suc0,suc1)

FO(<,suc0,suc1)

all b’s below all a’s
b

a

all b’s below all a’s
for alphabet a,b,c

b

c

a

c
cc
c

c

c
cc c

c
c

a b

15

/22

MSO(suc0,suc1) = MSO(<,suc0,suc1)=regular

FO(suc0,suc1)

FO(<,suc0,suc1)

all b’s below all a’s
b

a

all b’s below all a’s
for alphabet a,b,c

b

c

a

c
cc
c

c

c
cc c

c
c

a b

15

/22

MSO(suc0,suc1) = MSO(<,suc0,suc1)=regular

FO(suc0,suc1)

FO(<,suc0,suc1)

all b’s below all a’s
b

a

all b’s below all a’s
for alphabet a,b,c

b

c

a

c
cc
c

c

c
cc c

c
c

ab

15

/22

MSO(suc0,suc1) = MSO(<,suc0,suc1)=regular

FO(suc0,suc1)

FO(<,suc0,suc1)

all b’s below all a’s
b

a

all b’s below all a’s
for alphabet a,b,c

b

c

a

c
cc
c

c

c
cc c

c
c

ab

parity

15

/22

Parity

16

/22

Parity
L=Exists a leaf at even depth

16

/22

Parity
L=Exists a leaf at even depth

Surprise (Potthof)
is language is definable in FO(<,suc0,suc1)

16

/22

Parity
L=Exists a leaf at even depth

Surprise (Potthof)
is language is definable in FO(<,suc0,suc1)

all leaves at odd depth both paritiesall leaves at even depth

16

/22

Parity
L=Exists a leaf at even depth

Surprise (Potthof)
is language is definable in FO(<,suc0,suc1)

to disinguish between these two,
follow the le zigzag

all leaves at odd depth both paritiesall leaves at even depth

16

/22

Parity
L=Exists a leaf at even depth

Surprise (Potthof)
is language is definable in FO(<,suc0,suc1)

to disinguish between these two,
follow the le zigzag

A node is on the zigzag if for every le child ancestor,
its parent is a right child or the root (and vice versa).

e le zigzag starts with a le turn.

all leaves at odd depth both paritiesall leaves at even depth

16

/22

Parity
L=Exists a leaf at even depth

Surprise (Potthof)
is language is definable in FO(<,suc0,suc1)

to disinguish between these two,
follow the le zigzag

A node is on the zigzag if for every le child ancestor,
its parent is a right child or the root (and vice versa).

e le zigzag starts with a le turn.

all leaves at odd depth both paritiesall leaves at even depth

to detect this one,
search for conflicting zigzags

16

/22

Parity
L=Exists a leaf at even depth

Surprise (Potthof)
is language is definable in FO(<,suc0,suc1)

to disinguish between these two,
follow the le zigzag

A node is on the zigzag if for every le child ancestor,
its parent is a right child or the root (and vice versa).

e le zigzag starts with a le turn.

all leaves at odd depth both paritiesall leaves at even depth

to detect this one,
search for conflicting zigzags

16

/22

Parity
L=Exists a leaf at even depth

Surprise (Potthof)
is language is definable in FO(<,suc0,suc1)

to disinguish between these two,
follow the le zigzag

A node is on the zigzag if for every le child ancestor,
its parent is a right child or the root (and vice versa).

e le zigzag starts with a le turn.

all leaves at odd depth both paritiesall leaves at even depth

to detect this one,
search for conflicting zigzags

smallest subtree
with both parities

16

/22

Parity
L=Exists a leaf at even depth

Surprise (Potthof)
is language is definable in FO(<,suc0,suc1)

to disinguish between these two,
follow the le zigzag

A node is on the zigzag if for every le child ancestor,
its parent is a right child or the root (and vice versa).

e le zigzag starts with a le turn.

all leaves at odd depth both paritiesall leaves at even depth

to detect this one,
search for conflicting zigzags

smallest subtree
with both parities

16

/22

FO(<,suc0,suc1)
+

commutative children

FO(<) ⊄

17

/22

L=Exists a leaf at even depth

FO(<,suc0,suc1)
+

commutative children

FO(<) ⊄

17

/22

L=Exists a leaf at even depth

is language is definable in FO(<,suc0,suc1)...

FO(<,suc0,suc1)
+

commutative children

FO(<) ⊄

17

/22

L=Exists a leaf at even depth

is language is definable in FO(<,suc0,suc1)...

...but not in FO(<)

FO(<,suc0,suc1)
+

commutative children

FO(<) ⊄

17

/2218

So what parity language lies outside FO(<,suc0,suc1)?

Parity

/2218

So what parity language lies outside FO(<,suc0,suc1)?

Parity

L= “Lemost leaf has even depth.”

/2218

So what parity language lies outside FO(<,suc0,suc1)?

Parity

L= “Lemost leaf has even depth.”

Duplicator survives the k round game on trees

 2k times 2k+1 times

/2218

So what parity language lies outside FO(<,suc0,suc1)?

Parity

L= “Lemost leaf has even depth.”

Duplicator survives the k round game on trees

 2k times 2k+1 times

Lemma. Every tree language definable in FO(<,suc0,suc1) is aperiodic.
at is, there is some m such that for any context p,

the contexts pm and pm+1 are equivalent.

/2218

So what parity language lies outside FO(<,suc0,suc1)?

Parity

L= “Lemost leaf has even depth.”

Duplicator survives the k round game on trees

 2k times 2k+1 times

Lemma. Every tree language definable in FO(<,suc0,suc1) is aperiodic.
at is, there is some m such that for any context p,

the contexts pm and pm+1 are equivalent.

/2218

So what parity language lies outside FO(<,suc0,suc1)?

Parity

L= “Lemost leaf has even depth.”

Duplicator survives the k round game on trees

 2k times 2k+1 times

Lemma. Every tree language definable in FO(<,suc0,suc1) is aperiodic.
at is, there is some m such that for any context p,

the contexts pm and pm+1 are equivalent.

“some leaf has even depth” is not aperiodic,
“lemost leaf has even depth” is aperiodic”

/2218

So what parity language lies outside FO(<,suc0,suc1)?

Parity

L= “Lemost leaf has even depth.”

Duplicator survives the k round game on trees

 2k times 2k+1 times

Lemma. Every tree language definable in FO(<,suc0,suc1) is aperiodic.
at is, there is some m such that for any context p,

the contexts pm and pm+1 are equivalent.

()3

“some leaf has even depth” is not aperiodic,
“lemost leaf has even depth” is aperiodic”

/2218

So what parity language lies outside FO(<,suc0,suc1)?

Parity

L= “Lemost leaf has even depth.”

Duplicator survives the k round game on trees

 2k times 2k+1 times

Lemma. Every tree language definable in FO(<,suc0,suc1) is aperiodic.
at is, there is some m such that for any context p,

the contexts pm and pm+1 are equivalent.

()3 =

“some leaf has even depth” is not aperiodic,
“lemost leaf has even depth” is aperiodic”

/2218

So what parity language lies outside FO(<,suc0,suc1)?

Parity

L= “Lemost leaf has even depth.”

Duplicator survives the k round game on trees

 2k times 2k+1 times

Lemma. Every tree language definable in FO(<,suc0,suc1) is aperiodic.
at is, there is some m such that for any context p,

the contexts pm and pm+1 are equivalent.

()3 =

“some leaf has even depth” is not aperiodic,
“lemost leaf has even depth” is aperiodic”

/2218

So what parity language lies outside FO(<,suc0,suc1)?

Parity

L= “Lemost leaf has even depth.”

Duplicator survives the k round game on trees

 2k times 2k+1 times

Lemma. Every tree language definable in FO(<,suc0,suc1) is aperiodic.
at is, there is some m such that for any context p,

the contexts pm and pm+1 are equivalent.

()3 =

“some leaf has even depth” is not aperiodic,
“lemost leaf has even depth” is aperiodic”

/2218

So what parity language lies outside FO(<,suc0,suc1)?

Parity

L= “Lemost leaf has even depth.”

Duplicator survives the k round game on trees

 2k times 2k+1 times

Lemma. Every tree language definable in FO(<,suc0,suc1) is aperiodic.
at is, there is some m such that for any context p,

the contexts pm and pm+1 are equivalent.

()3 =

“some leaf has even depth” is not aperiodic,
“lemost leaf has even depth” is aperiodic”

/2219

Boolean Expressions

∨

∧

∨

∧

0

0

1

1 1

L = “Boolean expressions with value 1”

/2219

Boolean Expressions

∨

∧

∨

∧

0

0

1

1 1

L = “Boolean expressions with value 1”

Fact. is language is aperiodic but not definable in FO(<,suc0,suc1).

/2219

Boolean Expressions

∨

∧

∨

∧

0

0

1

1 1

L = “Boolean expressions with value 1”

Fact. is language is aperiodic but not definable in FO(<,suc0,suc1).

∨

∧

∨

∧

0 1

10

/2219

Boolean Expressions

∨

∧

∨

∧

0

0

1

1 1

L = “Boolean expressions with value 1”

Fact. is language is aperiodic but not definable in FO(<,suc0,suc1).

∨

∧

∨

∧

0 1

10

identity

/2219

Boolean Expressions

∨

∧

∨

∧

0

0

1

1 1

L = “Boolean expressions with value 1”

Fact. is language is aperiodic but not definable in FO(<,suc0,suc1).

∨

∧

∨

0 1

1

∨

∧

∨

∧

0 1

10

identity

/2219

Boolean Expressions

∨

∧

∨

∧

0

0

1

1 1

L = “Boolean expressions with value 1”

Fact. is language is aperiodic but not definable in FO(<,suc0,suc1).

∨

∧

∨

0 1

1

constant 1

∨

∧

∨

∧

0 1

10

identity

/2219

Boolean Expressions

∨

∧

∨

∧

0

0

1

1 1

L = “Boolean expressions with value 1”

Fact. is language is aperiodic but not definable in FO(<,suc0,suc1).

∨

∧

∨

0 1

1

constant 1

∨

∧

∨

∧

0 1

10

identity

generally, monotone functions,
which are an aperiodic set.

/2220

Monadic- and First-Order Logic for Words

Monadic- and First-Order Logic for Trees

Transitive Closure Logic and Regular Expressions

definition
weakness of first-order logic
MSO=regular

definition
problems with parity
problems with aperiodicity

/2220

Monadic- and First-Order Logic for Words

Monadic- and First-Order Logic for Trees

Transitive Closure Logic and Regular Expressions

definition
weakness of first-order logic
MSO=regular

definition
problems with parity
problems with aperiodicity

transitive closure logic for words...
...and for trees
regular expressions for trees

/22

Transitive closure logic

21

/22

Transitive closure logic

21

/22

Transitive closure logic

21

/22

Transitive closure logic

21

/22

Transitive closure logic

21

/22

Transitive closure logic

21

even

/22

Transitive closure logic

21

even

Fact.
Transitive closure logic is a fragment of MSO.

/22

Transitive closure logic

21

even

X is closed under

iff

Fact.
Transitive closure logic is a fragment of MSO.

/22

Transitive closure logic

21

even

Fact.
Transitive closure logic is a fragment of MSO.

/22

Transitive closure logic

21

even

Fact.
Transitive closure logic is a fragment of MSO.

For every regular expression (on words), there is an equivalent formula of
transitive closure logic. Hence, transitive closure logic = MSO for words.

/2222

Transitive closure logic

m. ten Cate, Segoufin `08
For trees, transitive closure logic is less expressive than MSO.

For trees, transitive closure logic is closely related to tree-walking
pebble automata, and shares their weaknesses.

Meta-Corollary.
ere is no nice regular expression syntax for regular tree languages.

