What is a Tree Automaton?
Decision Problems

2 Temporal Logics
Temporal Logic for Words
Temporal Logic for Trees XPath

Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata
Tree-Walking Automata, 2
Tree-Walking Automata Cannot Be Determinized

What is a Tree Automaton?

Decision Problems

Logic
 Logic for Words
 Logic for Trees
 Transitive Closure Logic

Temporal Logic for Words Temporal Logic for Trees XPath XPath

Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized

Some logics that describe tree properties

Some logics that describe tree properties
monadic second-order logic
"There is a set of nodes that is closed under parents, has an a label, and has no c label"

$$
\exists X \wedge\left\{\begin{array}{l}
\exists x \in X \quad a(x) \\
\forall x \in X \quad \forall y \text { parent }(x, y) \Rightarrow y \in X \\
\forall x \in X \neg c(x)
\end{array}\right.
$$

Some logics that describe tree properties

monadic second-order logic
"There is a set of nodes that is closed under parents, has an a label, and has no c label"
\(\exists X \wedge\left\{\begin{array}{l}\exists x \in X \quad a(x)
\forall x \in X \quad \forall y parent(x, y) \Rightarrow y \in X
\forall x \in X \neg c(x)\end{array}\right.\)
first-order logic
"There is a node with label a that has
only b-labeled ancestors"
$$
\exists x a(x) \wedge(\forall y<x \quad b(y))
$$

Some logics that describe tree properties

monadic second-order logic
"There is a set of nodes that is closed under parents, has an a label, and has no c label"
$\exists X \wedge\left\{\begin{array}{l}\exists x \in X \quad a(x) \\ \forall x \in X \quad \forall y \text { parent }(x, y) \Rightarrow y \in X \\ \forall x \in X \quad \neg(x)\end{array}\right.$
first-order logic
"There is a node with label a that has
only b-labeled ancestors"

$$
\exists x a(x) \wedge(\forall y<x \quad b(y))
$$

first-order logic with transitive closure
Instead of < we can write
$(\operatorname{parent}(x, y))^{*}$

Some logics that describe tree properties

monadic second-order logic
"There is a set of nodes that is closed under parents, has an a label, and has no c label"
$\exists X \wedge\left\{\begin{array}{l}\exists x \in X \quad a(x) \\ \forall x \in X \quad \forall y \text { parent }(x, y) \Rightarrow y \in X \\ \forall x \in X \neg c(x)\end{array}\right.$
temporal logics
"On some path, b holds until a holds"
$\mathbf{E} b \mathbf{U} a$
first-order logic
"There is a node with label a that has only b-labeled ancestors"

$$
\exists x a(x) \wedge \quad(\forall y<x \quad b(y))
$$

first-order logic with transitive closure
Instead of < we can write
$(\operatorname{parent}(x, y))^{*}$

Some logics that describe tree properties

monadic second-order logic
"There is a set of nodes that is closed under parents, has an a label, and has no c label"
$\exists X \wedge\left\{\begin{array}{l}\exists x \in X \quad a(x) \\ \forall x \in X \quad \forall y \text { parent }(x, y) \Rightarrow y \in X \\ \forall x \in X \neg c(x)\end{array}\right.$
"On some path, b holds until a holds"
$\mathbf{E} b \mathbf{U} a$
first-order logic
"There is a node with label a that has only b-labeled ancestors" $\exists x a(x) \wedge \quad(\forall y<x \quad b(y))$
first-order logic with transitive closure
Instead of < we can write
$(\operatorname{parent}(x, y))^{*}$
regular expressions

Some logics that describe tree properties

monadic second-order logic
"There is a set of nodes that is closed under parents, has an a label, and has no c label"
$\exists X \wedge\left\{\begin{array}{l}\exists x \in X \quad a(x) \\ \forall x \in X \quad \forall y \text { parent }(x, y) \Rightarrow y \in X \\ \forall x \in X \neg c(x)\end{array}\right.$
temporal logics
"On some path, b holds until a holds"
$\mathrm{E} b \mathbf{U} a$
first-order logic
"There is a node with label a that has only b-labeled ancestors"

$$
\exists x a(x) \wedge(\forall y<x \quad b(y))
$$

first-order logic with transitive closure
Instead of < we can write $(\text { parent }(x, y))^{*}$
regular expressions

Monadic- and First-Order Logic for Words

definition
weakness of first-order logic
MSO=regular

Monadic- and First-Order Logic for Trees

Transitive Closure Logic and Regular Expressions

Monadic Second-Order Logic
grandfather of logics for regular languages

Monadic Second-Order Logic

grandfather of logics for regular languages

Thm. (Thatcher, Wright `68)
A tree language is regular if and only if it can be defined in monadic second-order logic.

Monadic Second-Order Logic

grandfather of logics for regular languages
words: Büchi, Trakhtenbrot, Elgot (`60, `61)
infinite words: Büchi ` 62

Thm. (Thatcher, Wright ` 68)
A tree language is regular if and only if it can be defined in monadic second-order logic.

Monadic Second-Order Logic

grandfather of logics for regular languages
words: Büchi, Trakhtenbrot, Elgot (`60, `61)
infinite words: Büchi ` 62

Thm. (Thatcher, Wright `68) A tree language is regular if and only if it can be defined in monadic second-order logic. infnite trees: Rabin` 69

Monadic Second-Order Logic

grandfather of logics for regular languages
words: Büchi, Trakhtenbrot, Elgot (`60, `61)
infinite words: Büchi ` 62

Thm. (Thatcher, Wright `68) A tree language is regular if and only if it can be defined in monadic second-order logic. infnite trees: Rabin` 69

Regular tree languages are closed under:

- union
- intersection
- complementation
- projection $f(L)$, with f letter-to-letter

Monadic Second-Order Logic

grandfather of logics for regular languages
words: Büchi, Trakhtenbrot, Elgot (`60, `61)
infinite words: Büchi ` 62

Thm. (Thatcher, Wright `68) A tree language is regular if and only if it can be defined in monadic second-order logic. infnite trees: Rabin` 69

Regular tree languages are closed under:
\vee - union
\wedge - intersection
ᄀ - complementation
\exists - projection $f(L)$, with f letter-to-letter

First-Order Logic for Words

Alphabet: $A=\{a, b, c\} \quad A^{*} a b^{*} a A^{*}$ first-order logic

Formal definition: a word $w=a_{1} a_{2} \cdots a_{n}$ word is interpreted as structure $\underline{w}=\langle\{1, . ., n\},\langle, a(x), b(x), c(x)\rangle$
A formula Ψ gives a language $L_{\Psi}=\{w: \Psi$ holds in $\underline{w}\}$

Thm. Every language definable in first-order logic is regular, but not conversely, eg. (aa)*.

Ehrenfeucht-Fraïssé Game

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

one round:
Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.
The game is played on two structures, in k rounds.

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.
The game is played on two structures, in k rounds.

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

on these two structures, Duplicator can survive 2 rounds, but not 3 .

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Ehrenfeucht-Fraïssé Game

Thm. Two structures satisfy the same sentences of quantifier depth k if and only
if Duplicator can survive the k-round game against Spoiler.

The game is played on two structures, in k rounds.

on these two structures, Duplicator can survive 2 rounds, but not 3 .
"exists a b-node that separates every two other b-nodes"

one round:

Spoiler creates a new color, and places a pebble of this color on some node of one of the structures. Duplicator responds by placing a pebble of the same color on some node of the other structure.

If the pebble configurations are not the same, Duplicator dies at the end of the round. (for words, same $=$ same order on colors, same labels for same colors)

Fact. The language $(a a)^{*}$ cannot be defined in first-order logic (with order < and labels).

Fact. The language $(a a)^{*}$ cannot be defined in first-order logic (with order < and labels).

Proof. For any number of rounds k, Duplicator has a strategy to survive the game played on words of length 2^{k} and $2^{k}+1$

Fact. The language $(a a)^{*}$ cannot be defined in first-order logic (with order < and labels).

Proof. For any number of rounds k, Duplicator has a strategy to survive the game played on words of length 2^{k} and $2^{k}+1$

Strategy: preserve the following invariant, when i rounds are left.
Pebbles are ordered the same way, and the distances between consecutive pebbles are either equal, or at least 2^{i}.

Fact. The language $(a a)^{*}$ cannot be defined in first-order logic (with order < and labels).

Proof. For any number of rounds k, Duplicator has a strategy to survive the game played on words of length 2^{k} and $2^{k}+1$

Strategy: preserve the following invariant, when i rounds are left.
Pebbles are ordered the same way, and the distances between consecutive pebbles are either equal, or at least 2^{i}.

Fact. The language $(a a)^{*}$ cannot be defined in first-order logic (with order < and labels).

Proof. For any number of rounds k, Duplicator has a strategy to survive the game played on words of length 2^{k} and $2^{k}+1$

Strategy: preserve the following invariant, when i rounds are left.
Pebbles are ordered the same way, and the distances between consecutive pebbles are either equal, or at least 2^{i}.

if there are $i=2$ rounds left, Duplicator will survive.

Fact. The language $(a a)^{*}$ cannot be defined in first-order logic (with order < and labels).

Proof. For any number of rounds k, Duplicator has a strategy to survive the game played on words of length 2^{k} and $2^{k}+1$

Strategy: preserve the following invariant, when i rounds are left.
Pebbles are ordered the same way, and the distances between consecutive pebbles are either equal, or at least 2^{i}.

if there are $i=2$ rounds left, Duplicator will survive.

Monadic Second-Order Logic for Words

A word belongs to $(a a)^{*}$ iff its satisfies the following formula:

Monadic Second-Order Logic for Words

A word belongs to $(a a)^{*}$ iff its satisfies the following formula:
that contains every second position,
$\forall x \forall y \operatorname{suc}(x, y) \Rightarrow(x \in X \Longleftrightarrow y \notin X)$
there is a set of
positions
and contains the first position,
$\forall x \exists y \quad y \geq x \wedge y \notin X$

but does not contain the last position
$\forall x \exists y \quad y \leq x \wedge y \in X$

Monadic Second-Order Logic for Words

A word belongs to $(a a)^{*}$ iff its satisfies the following formula:
that contains every second position,
$\forall x \forall y \operatorname{suc}(x, y) \Rightarrow(x \in X \Longleftrightarrow y \notin X)$
there is a set of
positions
and contains the first position,
$\forall x \exists y \quad y \geq x \wedge y \notin X$

but does not contain the last position
$\forall x \exists y \quad y \leq x \wedge y \in X$

MSO is the extension of first-order logic with set quantification.

Monadic Second-Order Logic for Words

A word belongs to $(a a)^{*}$ iff its satisfies the following formula:
that contains every second position,

there is a set of
positions

$\exists X$$\left\{\begin{array}{l}\forall \forall \forall y \operatorname{suc}(x, y) \Rightarrow(x \in X \Longleftrightarrow y \notin X) \\
\text { and contains the first position, } \\
\forall x \exists y y \geq x \wedge y \notin X \\
\text { but does not contain the last position } \\
\forall x \exists y \quad y \leq x \wedge y \in X\end{array}\right.$

MSO is the extension of first-order logic with set quantification.
Contrary to what the above suggests, MSO is more succint than regular expressions.
$\mathrm{MSO}=$ regular for words
$\mathrm{MSO}=$ regular for words
Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Take an automaton: $\quad Q=\left\{q_{1}, \ldots, q_{n}\right\} \quad I, F \subseteq Q \quad \delta \subseteq Q \times A \times Q$

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Take an automaton: $\quad Q=\left\{q_{1}, \ldots, q_{n}\right\} \quad I, F \subseteq Q \quad \delta \subseteq Q \times A \times Q$
A word is accepted by the automaton iff it satisfies the following formula of MSO:

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Take an automaton: $\quad Q=\left\{q_{1}, \ldots, q_{n}\right\} \quad I, F \subseteq Q \quad \delta \subseteq Q \times A \times Q$
A word is accepted by the automaton iff it satisfies the following formula of MSO:
exists state assignment
$\exists X_{1} \cdots \exists X_{n}$

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Take an automaton: $\quad Q=\left\{q_{1}, \ldots, q_{n}\right\} \quad I, F \subseteq Q \quad \delta \subseteq Q \times A \times Q$
A word is accepted by the automaton iff it satisfies the following formula of MSO:
the first position has an initial state

$$
\forall x \text { first }(x) \Rightarrow \bigvee_{q_{i} \in I} X_{i}
$$

exists state assignment

$$
\exists X_{1} \cdots \exists X_{n}
$$

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Take an automaton: $\quad Q=\left\{q_{1}, \ldots, q_{n}\right\} \quad I, F \subseteq Q \quad \delta \subseteq Q \times A \times Q$
A word is accepted by the automaton iff it satisfies the following formula of MSO:
the first position has an initial state

$$
\forall x \text { first }(x) \Rightarrow \bigvee_{q_{i} \in I} X_{i}
$$

exists state assignment
$\exists X_{1} \cdots \exists X_{n}$
the transitions are respected

$$
\bigwedge_{a \in A}\left(\forall x \forall y a(x) \wedge \operatorname{suc}(x, y) \Rightarrow \bigvee_{\left(q_{i}, a, q_{j}\right) \in \delta} x \in X_{i} \wedge y \in X_{j}\right)
$$

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Take an automaton: $\quad Q=\left\{q_{1}, \ldots, q_{n}\right\} \quad I, F \subseteq Q \quad \delta \subseteq Q \times A \times Q$
A word is accepted by the automaton iff it satisfies the following formula of MSO:
the first position has an initial state

$$
\forall x \text { first }(x) \Rightarrow \bigvee_{q_{i} \in I} X_{i}
$$

exists state assignment

$$
\exists X_{1} \cdots \exists X_{n}
$$

the transitions are respected

$$
\bigwedge_{a \in A}\left(\forall x \forall y a(x) \wedge \operatorname{suc}(x, y) \Rightarrow \bigvee_{\left(q_{i}, a, q_{j}\right) \in \delta} x \in X_{i} \wedge y \in X_{j}\right)
$$

the last position has an accepting state

$$
\forall x \operatorname{last}(x) \Rightarrow \bigvee_{q_{i} \in F} X_{i}
$$

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Take an automaton: $\quad Q=\left\{q_{1}, \ldots, q_{n}\right\} \quad I, F \subseteq Q \quad \delta \subseteq Q \times A \times Q$
A word is accepted by the automaton iff it satisfies the following formula of MSO:
the first position has an initial state

$$
\forall x \text { first }(x) \Rightarrow \bigvee_{q_{i} \in I} X_{i}
$$

exists state assignment
the transitions are respected

$$
\exists X_{1} \cdots \exists X_{n}<\bigwedge_{a \in A}\left(\forall x \forall y a(x) \wedge \operatorname{suc}(x, y) \Rightarrow \bigvee_{\left(q_{i}, a, q_{j}\right) \in \delta} x \in X_{i} \wedge y \in X_{j}\right)
$$

the last position has an accepting state

$$
\forall x \operatorname{last}(x) \Rightarrow \bigvee_{q_{i} \in F} X_{i}
$$

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Take an automaton: $\quad Q=\left\{q_{1}, \ldots, q_{n}\right\} \quad I, F \subseteq Q \quad \delta \subseteq Q \times A \times Q$
A word is accepted by the automaton iff it satisfies the following formula of MSO:
the first position has an initial state

$$
\forall x \text { first }(x) \Rightarrow \bigvee_{q_{i} \in I} X_{i}
$$

exists state assignment
$\exists X_{1} \cdots \exists X_{n}$
the transitions are respected

$$
\bigwedge_{a \in A}\left(\forall x \forall y a(x) \wedge \operatorname{suc}(x, y) \Rightarrow \bigvee_{\left(q_{i}, a, q_{j}\right) \in \delta} x \in X_{i} \wedge y \in X_{j}\right)
$$

the last position has an accepting state

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Take an automaton: $\quad Q=\left\{q_{1}, \ldots, q_{n}\right\} \quad I, F \subseteq Q \quad \delta \subseteq Q \times A \times Q$
A word is accepted by the automaton iff it satisfies the following formula of MSO:
the first position has an initial state

$$
\forall x \text { first }(x) \Rightarrow \bigvee_{q_{i} \in I} X_{i}
$$

exists state assignment
$\exists X_{1} \cdots \exists X_{n}$
the transitions are respected

$$
\bigwedge_{a \in A}\left(\forall x \forall y a(x) \wedge \operatorname{suc}(x, y) \Rightarrow \bigvee_{\left(q_{i}, a, q_{j}\right) \in \delta} x \in X_{i} \wedge y \in X_{j}\right)
$$

the last position has an accepting state

$$
\bigwedge_{a \in A} \forall x \operatorname{last}(x) \wedge a(x) \Rightarrow \bigvee_{\left(q_{i}, a, q_{j}\right) \in \delta, q_{j} \in F} X_{i}
$$

Corollary of the proof:

For every regular language, there is an equivalent MSO formula of the form

$$
\exists X_{1} \ldots \exists X_{n} \frac{\varphi\left(X_{1}, \ldots, X_{n}\right)}{\text { first-order }}
$$

Corollary of the proof:

For every regular language, there is an equivalent MSO formula of the form

$$
\exists X_{1} \ldots \exists X_{n} \frac{\varphi\left(X_{1}, \ldots, X_{n}\right)}{\text { first-order }}
$$

By encoding states in binary, we only need $\log (n)$ set variables.

Corollary of the proof:

For every regular language, there is an equivalent MSO formula of the form

$$
\exists X_{1} \ldots \exists X_{n} \frac{\varphi\left(X_{1}, \ldots, X_{n}\right)}{\text { first-order }}
$$

By encoding states in binary, we only need $\log (n)$ set variables.
Actually, we only need one.

Corollary of the proof:

For every regular language, there is an equivalent MSO formula of the form

$$
\exists X_{1} \ldots \exists X_{n} \frac{\varphi\left(X_{1}, \ldots, X_{n}\right)}{\text { first-order }}
$$

By encoding states in binary, we only need $\log (n)$ set variables.
Actually, we only need one.
For every regular language, there is an equivalent MSO formula of the form

$$
\exists X \underset{\text { first-order }}{\varphi(X)}
$$

Corollary of the proof:

For every regular language, there is an equivalent MSO formula of the form

$$
\exists X_{1} \ldots \exists X_{n} \frac{\varphi\left(X_{1}, \ldots, X_{n}\right)}{\text { first-order }}
$$

By encoding states in binary, we only need $\log (n)$ set variables.
Actually, we only need one.
For every regular language, there is an equivalent MSO formula of the form

$$
\exists X \underset{\text { first-order }}{\varphi(X)}
$$

length encodes state

Corollary of the proof:
For every regular language, there is an equivalent MSO formula of the form

$$
\exists X_{1} \ldots \exists X_{n} \frac{\varphi\left(X_{1}, \ldots, X_{n}\right)}{\text { first-order }}
$$

By encoding states in binary, we only need $\log (n)$ set variables.
Actually, we only need one.
For every regular language, there is an equivalent MSO formula of the form

$$
\exists X \underset{\text { first-order }}{\varphi(X)}
$$

length encodes state

$\mathrm{MSO}=$ regular for words
$\mathrm{MSO}=$ regular for words
Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.
$\mathrm{MSO}=$ regular for words
Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Proposition. For every sentence Ψ of MSO, the set $L \Psi$ is regular.

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Proposition. For every sentence Ψ of MSO, the set L_{Y} is regular.
Proof. Induction on the structure of the formula.

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Proposition. For every sentence Ψ of MSO, the set L_{Y} is regular.
Proof. Induction on the structure of the formula.

Claim. For every formula $\Psi\left(x_{1}, x_{2}, \ldots, x_{n}, X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Ψ} is regular.

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Proposition. For every sentence Ψ of MSO, the set $L \Psi$ is regular.
Proof. Induction on the structure of the formula.

Claim. For every formula $\Psi\left(x_{1}, x_{2}, \ldots, x_{n}, X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Ψ} is regular. to simplify, we remove individual variables $x_{1}, x_{2}, \ldots, x_{n}$ from MSO syntax.

$\mathrm{MSO}=$ regular for words

Thm. For every regular language L, there is an equivalent formula of MSO, and vice versa.

Proposition. For every sentence Ψ of MSO, the set $L \Psi$ is regular.
Proof. Induction on the structure of the formula.

Claim. For every formula $\Psi\left(x_{1}, x_{2}, \ldots, x_{n}, X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Ψ} is regular. to simplify, we remove individual variables $x_{1}, x_{2}, \ldots, x_{n}$ from MSO syntax.

$$
X \subseteq Y \quad X=\varnothing \quad X \subseteq a \quad X<Y
$$

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Ψ} is regular.

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Ψ} is regular.
How do we define L_{Ψ} for formulas with free set variables X_{1}, \ldots, X_{n} ?
A word $w \in A^{*}$ together with valuations for sets X_{1}, \ldots, X_{n} is represented as a word over $A \times\{0,1\}^{n}$.

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Y} is regular.
How do we define L_{Ψ} for formulas with free set variables X_{1}, \ldots, X_{n} ?
A word $w \in A^{*}$ together with valuations for sets X_{I}, \ldots, X_{n} is represented as a word over $A \times\{0,1\}^{n}$.

(a)	(b)	(b)	(b)	(b)	(a)
X_{1}	X_{1}		X_{1}		X_{1}
	X_{2}	X_{2}	X_{2}	X_{2}	

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Y} is regular.
How do we define L_{Ψ} for formulas with free set variables X_{l}, \ldots, X_{n} ? A word $w \in A^{*}$ together with valuations for sets X_{I}, \ldots, X_{n} is represented as a word over $A \times\{0,1\}^{n}$.

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Y} is regular.
How do we define L_{Ψ} for formulas with free set variables X_{1}, \ldots, X_{n} ? A word $w \in A^{*}$ together with valuations for sets X_{I}, \ldots, X_{n} is represented as a word over $A \times\{0,1\}^{n}$.

Under this encoding, L_{Ψ} is a language over $A \times\{0,1\}^{n}$.

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Ψ} is regular.
How do we define L_{Ψ} for formulas with free set variables X_{1}, \ldots, X_{n} ? A word $w \in A^{*}$ together with valuations for sets X_{l}, \ldots, X_{n} is represented as a word over $A \times\{0,1\}^{n}$.

Under this encoding, L_{Ψ} is a language over $A \times\{0,1\}^{n}$.

Induction proof of claim.

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Ψ} is regular.
How do we define L_{Ψ} for formulas with free set variables X_{1}, \ldots, X_{n} ? A word $w \in A^{*}$ together with valuations for sets X_{l}, \ldots, X_{n} is represented as a word over $A \times\{0,1\}^{n}$.

Under this encoding, L_{Y} is a language over $A \times\{0,1\}^{n}$.

Induction proof of claim.

induction base.
simple. Eg. $X_{i} \subseteq X_{j}$ is the regular language "if true on bit i then true on bit j "

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Ψ} is regular.
How do we define L_{Ψ} for formulas with free set variables X_{1}, \ldots, X_{n} ? A word $w \in A^{*}$ together with valuations for sets X_{l}, \ldots, X_{n} is represented as a word over $A \times\{0,1\}^{n}$.

Under this encoding, L_{Ψ} is a language over $A \times\{0,1\}^{n}$.

Induction proof of claim.

induction base.
simple. Eg. $X_{i} \subseteq X_{j}$ is the regular language "if true on bit i then true on bit j "
boolean operations
standard constructions for automata.

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Y} is regular.
How do we define L_{Ψ} for formulas with free set variables X_{1}, \ldots, X_{n} ? A word $w \in A^{*}$ together with valuations for sets X_{l}, \ldots, X_{n} is represented as a word over $A \times\{0,1\}^{n}$.

Under this encoding, L_{Y} is a language over $A \times\{0,1\}^{n}$.

Induction proof of claim.

induction base.
simple. Eg. $X_{i} \subseteq X_{j}$ is the regular language "if true on bit i then true on bit j "
boolean operations
standard constructions for automata.
existential quantification $\exists X_{m} . \Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Y} is regular.
How do we define L_{Ψ} for formulas with free set variables X_{1}, \ldots, X_{n} ? A word $w \in A^{*}$ together with valuations for sets X_{l}, \ldots, X_{n} is represented as a word over $A \times\{0,1\}^{n}$.

Under this encoding, L_{Y} is a language over $A \times\{0,1\}^{n}$.

Induction proof of claim.

induction base. simple. Eg. $X_{i} \subseteq X_{j}$ is the regular language "if true on bit i then true on bit j "
boolean operations
standard constructions for automata.
existential quantification $\exists X_{m} . \Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ run the automaton for $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, nondeterministically guessing values for X_{m}.

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Y} is regular.
How do we define L_{Ψ} for formulas with free set variables X_{1}, \ldots, X_{n} ? A word $w \in A^{*}$ together with valuations for sets X_{l}, \ldots, X_{n} is represented as a word over $A \times\{0,1\}^{n}$.

Under this encoding, L_{Y} is a language over $A \times\{0,1\}^{n}$.

Induction proof of claim.

induction base. simple. Eg. $X_{i} \subseteq X_{j}$ is the regular language "if true on bit i then true on bit j "
boolean operations
standard constructions for automata.
existential quantification $\exists X_{m} . \Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ run the automaton for $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, nondeterministically guessing values for X_{m}.

Language of $\exists X_{m} . \Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)=$ Projection under π of language of $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$

Claim. For every formula $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of MSO, the set L_{Y} is regular.
How do we define L_{Ψ} for formulas with free set variables X_{1}, \ldots, X_{n} ?
A word $w \in A^{*}$ together with valuations for sets X_{l}, \ldots, X_{n} is represented as a word over $A \times\{0,1\}^{n}$.

Under this encoding, L_{Y} is a language over $A \times\{0,1\}^{n}$.

Induction proof of claim.

induction base. simple. Eg. $X_{i} \subseteq X_{j}$ is the regular language "if true on bit i then true on bit j "
boolean operations
standard constructions for automata.
existential quantification $\exists X_{m} . \Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ run the automaton for $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, nondeterministically guessing values for X_{m}.

Language of $\exists X_{m} . \Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)=$ Projection under π of language of $\Psi\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ $\pi:\left(A \times\{0,1\}^{n}\right)^{*} \longrightarrow\left(A \times\{0,1\}^{n-1}\right)^{*}$

Monadic- and First-Order Logic for Words

definition

weakness of first-order logic
$\mathrm{MSO}=$ regular

Monadic- and First-Order Logic for Trees

Transitive Closure Logic and Regular Expressions

Monadic- and First-Order Logic for Words
 definition
 weakness of first-order logic
 $\mathrm{MSO}=$ regular

Monadic- and First-Order Logic for Trees

definition
problems with parity
problems with aperiodicity

Transitive Closure Logic and Regular Expressions

MSO for Trees

A binary tree has an even number of nodes
iff
that contains no leaf
$\forall x \exists y \quad y \geq x \wedge y \notin X$
there is a set of positions
but contains the root
$\forall x \exists y \quad y \leq x \wedge y \in X$
$\exists X$
and contains a node iff exactly on of its children is in X

$$
\forall x \forall y_{0} \forall y_{1}\left(\operatorname{suc}_{0}\left(x, y_{0}\right) \wedge \operatorname{suc}_{1}\left(x, y_{1}\right)\right) \Rightarrow(x \notin X
$$

iff
false

MSO for Trees

A binary tree has an even number of nodes
iff
that contains no leaf
$\forall x \exists y \quad y \geq x \wedge y \notin X$
there is a set of positions
but contains the root
$\forall x \exists y \quad y \leq x \wedge y \in X$
and contains a node iff exactly on of its children is in X

$$
\forall x \forall y_{0} \forall y_{1}\left(\operatorname{suc}_{0}\left(x, y_{0}\right) \wedge \operatorname{suc}_{1}\left(x, y_{1}\right)\right) \Rightarrow(x \notin X
$$

Thm. (Thatcher, Wright ' 68)

MSO for Trees

A binary tree has an even number of nodes
iff
that contains no leaf

$$
\forall x \exists y \quad y \geq x \wedge y \notin X
$$

there is a set of positions
but contains the root

$$
\forall x \exists y \quad y \leq x \wedge y \in X
$$

$\exists X$
and contains a node iff exactly on of its children is in X

$$
\forall x \forall y_{0} \forall y_{1}\left(\operatorname{suc}_{0}\left(x, y_{0}\right) \wedge \operatorname{suc}_{1}\left(x, y_{1}\right)\right) \Rightarrow(x \notin X
$$

Thm. (Thatcher, Wright ' 68)
$\mathrm{MSO}=$ regular languages for finite trees.
$\operatorname{MSO}\left(\right.$ suc $_{0}$, suc $\left._{1}\right)=\mathrm{MSO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)=$ regular
$\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$
$\mathrm{FO}\left(\mathrm{suc}_{0}, \mathrm{suc}_{1}\right)$
$\operatorname{MSO}\left(\right.$ suc $_{0}$, suc $\left._{1}\right)=\mathrm{MSO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)=$ regular

$\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

$\mathrm{FO}\left(\mathrm{suc}_{0}\right.$, suc $\left._{1}\right)$
all b 's below all a 's
$\operatorname{MSO}\left(\right.$ suc $_{0}$, suc $\left._{1}\right)=\mathrm{MSO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)=$ regular

$\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

$\mathrm{FO}\left(\right.$ suc $_{0}$, suc $\left._{1}\right)$
all b 's below all a 's

$\operatorname{MSO}\left(\right.$ suc $_{0}$, suc $\left._{1}\right)=\mathrm{MSO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)=$ regular

$\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

> all b 's below all a 's
> for alphabet a, b, c

$\mathrm{FO}\left(\mathrm{suc}_{0}\right.$, suc $\left._{1}\right)$

all b 's below all a 's

$\operatorname{MSO}\left(\right.$ suc $_{0}$, suc $\left._{1}\right)=\mathrm{MSO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)=$ regular

$\operatorname{MSO}\left(\right.$ suc $_{0}$, suc $\left._{1}\right)=\mathrm{MSO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)=$ regular

$\operatorname{MSO}\left(\right.$ suc $_{0}$, suc $\left._{1}\right)=\mathrm{MSO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)=$ regular

$\operatorname{MSO}\left(\right.$ suc $_{0}$, suc $\left._{1}\right)=\mathrm{MSO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)=$ regular
parity

all b 's below all a 's

Parity
\square

2 \square
\square路里

Parity

$L=$ Exists a leaf at even depth

Surprise (Potthof)

This language is definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

Surprise (Potthof)
This language is definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$
all leaves at even depth

all leaves at odd depth

both parities

Surprise (Potthof)
This language is definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

> to disinguish between these two, follow the left zigzag

all leaves at even depth

all leaves at odd depth

both parities

Parity

$L=$ Exists a leaf at even depth

Surprise (Potthof)

This language is definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

A node is on the zigzag if for every left child ancestor, its parent is a right child or the root (and vice versa).

The left zigzag starts with a left turn.
to disinguish between these two, follow the left zigzag

all leaves at even depth

both parities

Parity

$L=$ Exists a leaf at even depth

Surprise (Potthof)

This language is definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

A node is on the zigzag if for every left child ancestor, its parent is a right child or the root (and vice versa).

The left zigzag starts with a left turn.
to disinguish between these two, follow the left zigzag

all leaves at even depth

all leaves at odd depth

to detect this one, search for conflicting zigzags

both parities

Parity

$L=$ Exists a leaf at even depth

Surprise (Potthof)

This language is definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

A node is on the zigzag if for every left child ancestor, its parent is a right child or the root (and vice versa).

The left zigzag starts with a left turn.
to disinguish between these two, follow the left zigzag

all leaves at even depth

to detect this one, search for conflicting zigzags

both parities

Parity

$L=$ Exists a leaf at even depth

Surprise (Potthof)

This language is definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

A node is on the zigzag if for every left child ancestor, its parent is a right child or the root (and vice versa).

The left zigzag starts with a left turn.
to disinguish between these two, follow the left zigzag

all leaves at even depth

to detect this one, search for conflicting zigzags

both parities

Parity

$L=$ Exists a leaf at even depth

Surprise (Potthof)

This language is definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$

A node is on the zigzag if for every left child ancestor, its parent is a right child or the root (and vice versa).

The left zigzag starts with a left turn.
to disinguish between these two, follow the left zigzag

all leaves at even depth

to detect this one, search for conflicting zigzags
both parities

$$
\mathrm{FO}(<) \quad \not \subset
$$

$\mathrm{FO}\left(<\right.$, suc $_{\text {c }}$, suc $\left._{1}\right)$
$+$
commutative children

$$
\begin{gathered}
\mathrm{FO}\left(<, \text { suc }_{0}, \text { suc }_{1}\right) \\
+ \\
\text { commutative children }
\end{gathered}
$$

This language is definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$...

This language is definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$...
...but not in $\mathrm{FO}(<)$

$\not \subset$

$$
\begin{gathered}
\mathrm{FO}\left(<,{\text { suc } \left.0, \mathrm{suc}_{1}\right)}^{+}\right. \\
+ \\
\text {commutative children }
\end{gathered}
$$

Parity

So what parity language lies outside $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$?

Parity

So what parity language lies outside $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$?

$$
L=\text { "Leftmost leaf has even depth." }
$$

So what parity language lies outside $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$?

$L=$ "Leftmost leaf has even depth."

Duplicator survives the k round game on trees

So what parity language lies outside $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$?

$$
L=\text { "Leftmost leaf has even depth." }
$$

Duplicator survives the k round game on trees

So what parity language lies outside $\mathrm{FO}\left(<\right.$, such $_{0}$, such $\left._{1}\right)$?

$$
L=\text { "Leftmost leaf has even depth." }
$$

Lemma. Every tree language definable in $\mathrm{FO}\left(<\right.$, such $\left._{0}, \mathrm{suc}_{1}\right)$ is aperiodic. That is, there is some m such that for any context p, the contexts p^{m} and p^{m+1} are equivalent.

So what parity language lies outside $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$?

$$
L=\text { "Leftmost leaf has even depth." }
$$

So what parity language lies outside $\mathrm{FO}\left(<\right.$, such $_{0}$, such $\left._{1}\right)$?

$$
L=\text { "Leftmost leaf has even depth." }
$$

Lemma. Every tree language definable in $\mathrm{FO}\left(<\right.$, such $_{0}$, suc $\left._{1}\right)$ is aperiodic. That is, there is some m such that for any context p, the contexts p^{m} and p^{m+l} are equivalent.

"some leaf has even depth" is not aperiodic,
"leftmost leaf has even depth" is aperiodic"

$$
(\square 0)^{3}
$$

So what parity language lies outside $\mathrm{FO}\left(<\right.$, such $_{0}$, suc $\left._{1}\right)$?

$$
L=\text { "Leftmost leaf has even depth." }
$$

Lemma. Every tree language definable in $\mathrm{FO}\left(<\right.$, such $_{0}$, suc $\left._{1}\right)$ is aperiodic. That is, there is some m such that for any context p, the contexts p^{m} and p^{m+l} are equivalent.

"some leaf has even depth" is not aperiodic,
"leftmost leaf has even depth" is aperiodic"

$$
(\square 0)^{3}=
$$

So what parity language lies outside $\mathrm{FO}\left(<, \mathrm{suc}_{0}, \mathrm{suc}_{1}\right)$?

$$
L=\text { "Leftmost leaf has even depth." }
$$

So what parity language lies outside $\mathrm{FO}\left(<\right.$, such $_{0}$, such $\left._{1}\right)$?

$$
L=\text { "Leftmost leaf has even depth." }
$$

Lemma. Every tree language definable in $\mathrm{FO}\left(<\right.$, such $_{0}$, suc $\left._{1}\right)$ is aperiodic. That is, there is some m such that for any context p, the contexts p^{m} and p^{m+l} are equivalent.

"some leaf has even depth" is not aperiodic, "leftmost leaf has even depth" is aperiodic"

$$
(\square 0)^{3}=
$$

So what parity language lies outside $\mathrm{FO}\left(<\right.$, such $_{0}$, such $\left._{1}\right)$?

$$
L=\text { "Leftmost leaf has even depth." }
$$

Lemma. Every tree language definable in $\mathrm{FO}\left(<\right.$, such $_{0}$, suc $\left._{1}\right)$ is aperiodic. That is, there is some m such that for any context p, the contexts p^{m} and p^{m+l} are equivalent.

"some leaf has even depth" is not aperiodic, "leftmost leaf has even depth" is aperiodic"

Boolean Expressions

$$
L=\text { "Boolean expressions with value } 1 \text { " }
$$

Boolean Expressions

$$
L=\text { "Boolean expressions with value } 1 \text { " }
$$

Fact. This language is aperiodic but not definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$.

Boolean Expressions

$$
L=\text { "Boolean expressions with value } 1 \text { " }
$$

Fact. This language is aperiodic but not definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$.

Boolean Expressions

$$
L=\text { "Boolean expressions with value } 1 \text { " }
$$

Fact. This language is aperiodic but not definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$.

identity

Boolean Expressions

$$
L=\text { "Boolean expressions with value } 1 \text { " }
$$

Fact. This language is aperiodic but not definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$.

identity

Boolean Expressions

$$
L=\text { "Boolean expressions with value } 1 \text { " }
$$

Fact. This language is aperiodic but not definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$.

identity

constant 1

Boolean Expressions

$L=$ "Boolean expressions with value 1 "

Fact. This language is aperiodic but not definable in $\mathrm{FO}\left(<\right.$, suc $_{0}$, suc $\left._{1}\right)$.

identity

constant 1
generally, monotone functions, which are an aperiodic set.

Monadic- and First-Order Logic for Words

definition
weakness of first-order logic
$\mathrm{MSO}=$ regular

Monadic- and First-Order Logic for Trees

definition
problems with parity
problems with aperiodicity

Transitive Closure Logic and Regular Expressions

Monadic- and First-Order Logic for Words

definition
weakness of first-order logic
$\mathrm{MSO}=$ regular

Monadic- and First-Order Logic for Trees

definition
problems with parity
problems with aperiodicity

Transitive Closure Logic and Regular Expressions

transitive closure logic for words...
...and for trees
regular expressions for trees

Transitive closure logic

Transitive closure logic

$\bigcirc \bigcirc \bigcirc$

Transitive closure logic

Transitive closure logic

$$
(T C \varphi(x, y))(x, y)
$$

Transitive closure logic

$$
\begin{gathered}
\varphi^{*}(x, y) \\
(T C \varphi(x, y))(x, y)
\end{gathered}
$$

Transitive closure logic

Transitive closure logic

Fact.
Transitive closure logic is a fragment of MSO.

Transitive closure logic

Fact.
Transitive closure logic is a fragment of MSO.

Transitive closure logic

Fact.
Transitive closure logic is a fragment of MSO.

Transitive closure logic

Fact.
Transitive closure logic is a fragment of MSO.
For every regular expression (on words), there is an equivalent formula of transitive closure logic. Hence, transitive closure logic $=$ MSO for words.

Transitive closure logic

For trees, transitive closure logic is closely related to tree-walking pebble automata, and shares their weaknesses.

Thm. ten Cate, Segoufin `08
For trees, transitive closure logic is less expressive than MSO.

Meta-Corollary.
There is no nice regular expression syntax for regular tree languages.

