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Monadic- and First-Order Logic for Words

Monadic- and First-Order Logic for Trees

Transitive Closure Logic and Regular Expressions

definition
weakness of first-order logic
MSO=regular
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infnite trees: Rabin `69

Regular tree languages are closed under:

– union
– intersection
– complementation
– projection f(L), with f  letter-to-letter

∧
∨

¬
∃

words: Büchi, Trakhtenbrot, Elgot (`60, `61)
infinite words: Büchi `62
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First-Order Logic for Words

Alphabet: A={a,b,c} A*ab*aA*

∃x ∃y     a(x) ∧ a(y) ∧  x<y  ∧  (∀z    x<z<y  ⇒  b(x))

first-order logic

quantification
is over positions label predicates order on positions 

m. Every language definable in first-order logic is regular, but not conversely, eg. (aa)*.

Formal definition: a word w=a1 a2 ··· an  word is interpreted as 
structure w=〈 {1,..,n}, < , a(x) ,  b(x) , c(x) 〉

A formula Ψ gives a language  LΨ={w : Ψ holds in w}

5
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a b b b aa b b b b a

on these two structures, Duplicator can survive 2 rounds, but not 3.

“exists a b-node that separates every two other b-nodes”
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Proof.

Pebbles are ordered the same way, and the distances between 
consecutive pebbles are either equal, or at least 2i.

Strategy: preserve the following invariant, when i rounds are le.

7 6 4 8

6 6 6 9

if there are i=2 rounds le, Duplicator will survive.

Lemma. If L is a language definable in first-order logic, then there is some 
m such that for any word w, the words wm  and wm+1 are equivalent.
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A word belongs  to (aa)* iff its satisfies the following formula:

there is a set of 
positions

that contains every second position, 

and contains the first position,

but does not contain the last position

MSO is the extension of first-order logic with set quantification.
Contrary to what the above suggests, MSO is more succint than regular expressions.
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For every regular language, there is an equivalent MSO formula of the form

first-order

Corollary of the proof:

For every regular language, there is an equivalent MSO formula of the form

first-order

By encoding states in binary, we only need log(n) set variables.

X X X X X X X X X X X X X X X X X X X X X X X

length encodes state

an first-order formula can check 
consistency for consecutive states

Actually, we only need one.
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which are an aperiodic set.
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definition
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transitive closure logic for words...
...and for trees
regular expressions for trees



/22

Transitive closure logic

21



/22

Transitive closure logic

21



/22

Transitive closure logic

21



/22

Transitive closure logic

21



/22

Transitive closure logic

21



/22

Transitive closure logic

21

even



/22

Transitive closure logic

21

even

Fact.
Transitive closure logic is a fragment of MSO.



/22

Transitive closure logic

21

even

X is closed under 

iff

Fact.
Transitive closure logic is a fragment of MSO.



/22

Transitive closure logic

21

even

Fact.
Transitive closure logic is a fragment of MSO.



/22

Transitive closure logic

21

even

Fact.
Transitive closure logic is a fragment of MSO.

For every regular expression (on words), there is an equivalent formula of 
transitive closure logic. Hence, transitive closure logic = MSO for words.
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Transitive closure logic

m. ten Cate, Segoufin `08
For trees, transitive closure logic is less expressive than MSO.

For trees, transitive closure logic is closely related to tree-walking 
pebble automata, and shares their weaknesses.

Meta-Corollary.
ere is no nice regular expression syntax for regular tree languages.


