Tree Automata and Tree Logics

Mikotaj Bojanczyk
(Warsaw)




2/24



‘[ree automata

What is a Tree Automaton?
Decision Problems




Tree automata

What is a Tree Automaton?
Decision Problems

Logic
Logic for Words
Logic for Trees

Transitive Closure Logic




Tree automata

What is a Tree Automaton?
Decision Problems

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Logic
Logic for Words
Logic for Trees

Transitive Closure Logic




Tree automata

What is a Tree Automaton?
Decision Problems

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Logic
Logic for Words
Logic for Trees

Transitive Closure Logic

Tree-Walking Automata, 1

Tree-Walking Automata

Expressive Power

Pebble Automata




Tree automata

What is a Tree Automaton?
Decision Problems L .
OglC
Logic for Words
Logic for Trees

Transitive Closure Logic

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Tree-Walking Automata, 1

Tree-Walking Automata

Expressive Power

Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized




‘[ree automata

What is a Tree Automaton?
Decision Problems L .
OglC
Logic for Words
Logic for Trees

Transitive Closure Logic

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Tree-Walking Automata, 1

Tree-Walking Automata

Expressive Power

Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized




What is a Tree Automaton?

—definition and examples
—determinism, bottom-up vs top-down
—minimization

—closure properties

Decision Problems

—emptiness

—membership

—universality




Trees are finite and labeled.

binary tree: unranked tree
each node has 0 or 2 children
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We will use automata to express properties such as...

CCthere is at least one # in the tree??

€ every node with label 2 has at most

one b child »

(4 ¢

)
even number of nodes ““ boolean expressions with value 7 2

..but not properties such as

¢ humber of 4’s = number of &’s ??

¢Cbalanced trees??
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Deterministic automata

Top-down bad go()d Bottom-up

9 9
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determined by other components determined by other components
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Bottom-up determinism

Fact. A nondeterministic automaton can be determinized to a bottom-up one.

Standard subset construction works

Q state space of nondeterministic automaton.
P(Q) state space of deterministic bottom-up automaton.

set of possible states P

for all possible runs
P C Q

e P Py P
(¢) (&

P={p: @ holds for some po € Py, p1 € Py }

ORO po b
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Def. A regular tree language is one recognized by

a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

P

subset construction fails
for top-down
determinism

Py P
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Top-down determinism

Fact. Top-down deterministic automata are not closed under union.

L”KZ{ ’ eea

There must be a transition,

)

P9

and hence also
1o
J4 @q
...but then: @ @
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Top-down determinism, continued.

regular
the run is accepting, TDD
if every leaf state is
consistent with its leaf. / Bool(TDD)

languages of the form: all paths .., some path ...

what does t

state depen
It is not difhicult to give an algorithm deciding L€ TDD.

Open problem: give an algorithm deciding Z€ Bool(TDD).

Fact. The following are equivalent for a tree language L:
— L is recognized by a deterministic top-down tree automaton

— L is equivalent to “all paths in K7, for a regular word language K C (£x{0,1})*
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for the purpose of minimal automata, we change the definition.

We remove transitions @ @

90 91

and add accepting states. A run must have an accepting state at the root.

9

9
('These transitions @ i work if the node is the root or not)

qgo 41

Reason: in the old definition, the language {@ }

is recognized by an automaton with 0 states.

Tuple definition: (Q, 2, 9: 9xEXxQ > Q, I: X » Q, FCQ)




Minimalization

Proposition. For every regular tree language, there is a unique (up to isomorphism)
minimal deterministic bottom-up tree automaton.
The minimal automaton can be obtained from any other automaton in polynomial time.

States of the minimal automaton: equivalence classes of the Myhill-Nerode congruence.




Myhill-Nerode congruence for tree languages

context

substitution

/

"Two trees

are L-equivalent if for every context () (@)
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Myhill-Nerode congruence for tree languages, examples

classes of the Myhill-Nerode

congrucnce:

0="“zero 4’s”
(€4 »
l1="one a4
2=“two a’s’

3=“three or more 4’s”

balanced binary tree

infinitely many classes:

“anbalanced tree”

“balanced tree of depth 7”

this context distinguishes a balanced tree of
depth 3 from any other tree.
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Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
— automaton model
— efhcient algorithms
— closure properties (logic)
— regular expressions

...but there are also some similarities to context-free languag
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Regular tree languages are similar to context-free languages.

Fact. A word language is context-free iff it is the yield of some regular tree language.

from grammars to automata from automata to grammars

Let A be a nondeterministic, top-down
tree automaton. The grammar G(A4) has
states of 4 as nonterminals, and rules:

qutomaton grammar
transition rule

9

=

qgo 41
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Thm. Emptiness for tree automata is PTIME-complete.

hardness:

reachability in AND-OR graphs

P
A transition @ can be reached if both states Ppand P; can be reached.

Py P P

A state p can be reached if some transition @ can be reached.
Py P;

Tree automata emptiness can be tested in linear tispey
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Proof. For every Turing machine M, and every 7z one can write a polynomial size automaton A, with:

The machine M has a an accepting computation that uses » memory cells.
iff
The automaton A4, rejects some word.

A, accepts incorrect encodings, and correct encodings of nonaccepting runs.
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by
&
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2
©
(2)
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instead of a computation word...

...we have a computation tree.




