Tree Automata and Tree Logics

Mikołaj Bojańczyk (Warsaw)

2/24

What is a Tree Automaton? Decision Problems

What is a Tree Automaton? Decision Problems

Logic for Words Logic for Trees Transitive Closure Logic

What is a Tree Automaton? Decision Problems

Logic for Words Logic for Trees Transitive Closure Logic

Temporal Logics

Temporal Logic for Words Temporal Logic for Trees XPath

What is a Tree Automaton? Decision Problems

Logic for Words Logic for Trees Transitive Closure Logic

Temporal Logics

Temporal Logic for Words Temporal Logic for Trees XPath

Tree-Walking Automata, 1

Tree-Walking Automata Expressive Power Pebble Automata

What is a Tree Automaton? Decision Problems

Logic for Words Logic for Trees Transitive Closure Logic

Temporal Logics

Temporal Logic for Words Temporal Logic for Trees XPath

Tree-Walking Automata, 1 Tree-Walking Automata

Tree-Walking Automata Expressive Power Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized

What is a Tree Automaton? Decision Problems

Logic for Words Logic for Trees Transitive Closure Logic

Temporal Logics

Temporal Logic for Words Temporal Logic for Trees XPath

Tree-Walking Automata, 1

Tree-Walking Automata Expressive Power Pebble Automata

Tree-Walking Automata Cannot Be Determinized

What is a Tree Automaton? -definition and examples -determinism, bottom-up vs top-down -minimization

-closure properties

Decision Problems

-emptiness-membership-universality

Trees are finite and labeled.

a b a a a a unranked tree

binary tree: each node has 0 or 2 children

"there is at least one *a* in the tree"

"there is at least one *a* in the tree"

every node with label a has at most
one b child >>

"there is at least one *a* in the tree"

every node with label a has at most
one b child >>

"even number of nodes"

"there is at least one *a* in the tree"

every node with label a has at most
one b child >>

"even number of nodes"

" boolean expressions with value 1 **"**

"there is at least one *a* in the tree"

every node with label a has at most
one b child >>

"even number of nodes"

" boolean expressions with value 1"

...but not properties such as

"there is at least one *a* in the tree"

every node with label a has at most
one b child >>

"even number of nodes"

" boolean expressions with value 1"

...but not properties such as

****** number of a's = number of b's ******

"there is at least one *a* in the tree"

every node with label a has at most
one b child >>

"even number of nodes"

" boolean expressions with value 1"

...but not properties such as

" number of a's = number of b's "

automaton transitions

9--p A

automaton transitions

(a) $(a)-p \quad q-(a)$ q - (a) - p

automaton transitions

(*a*)- $(a)-p \qquad q-(a)$ (a)*q* – -p

a run is a labeling of edges with states consistent with the transitions

automaton transitions

$$q - a - p \quad a - p \quad q - a \quad a$$

a run is a labeling of edges with states consistent with the transitions

$$a$$
 $-a$ $-a$ $-a$ $-a$ $-a$

automaton transitions

 $(a)-p \qquad q \left(a \right)$ *q* – (a)(a) -p

a run is a labeling of edges with states consistent with the transitions

(a)-r-(a)-p--q-(a)-p-(a)

automaton transitions

$$q - a - p \quad a - p \quad q - a \quad a$$

a run is a labeling of edges with states consistent with the transitions

$$a - q - a - p - a - r - a - p - a$$

A tree automaton

automaton transitions

automaton transitions

$$q - a - p \quad a - p \quad q - a \quad a$$

a run is a labeling of edges with states consistent with the transitions

$$a - q - a - p - a - r - a - p - a$$

A tree automaton

automaton transitions

$$q - a - p \quad a - p \quad q - a \quad a$$

a run is a labeling of edges with states consistent with the transitions

$$a - q - a - p - a - r - a - p - a$$

A tree automaton

"even number of nodes"

states: 0,1

** even number of nodes **

states: 0,1

"even number of *a*'s "

states: 0,1

Top-down

Top-down

Bottom-up

9 9 a A A A q_0 q_0 q_1 q_1

Top-down

Bottom-up

Top-down

Bottom-up

Top-down

Top-down

determined by other components

Top-down bad

determined by other components

Fact. A nondeterministic automaton can be determinized to a bottom-up one.

Fact. A nondeterministic automaton can be determinized to a bottom-up one.

Standard subset construction works

Q state space of nondeterministic automaton. P(Q) state space of deterministic bottom-up automaton.

Fact. A nondeterministic automaton can be determinized to a bottom-up one.

Standard subset construction works

Q state space of nondeterministic automaton. P(Q) state space of deterministic bottom-up automaton.

set of possible states for all possible runs

Fact. A nondeterministic automaton can be determinized to a bottom-up one.

Standard subset construction works

Q state space of nondeterministic automaton. P(Q) state space of deterministic bottom-up automaton.

Def. A *regular* tree language is one recognized by a nondeterministic tree automaton or, equivalently, by a deterministic bottom up tree automaton.

Def. A *regular* tree language is one recognized by a nondeterministic tree automaton or, equivalently, by a deterministic bottom up tree automaton.

> subset construction fails Pfor top-down determinism P_0 P_1

Fact. Top-down deterministic automata are not closed under union.

 $L = \left\{ \begin{array}{c} a \\ a \\ b \end{array} \right\}$

 $L \cup K = \left\{ \begin{array}{c} a \\ a \\ b \end{array}, \begin{array}{c} a \\ b \\ b \\ a \end{array} \right\}$

Fact. Top-down deterministic automata are not closed under union.

There must be a transition,

Fact. Top-down deterministic automata are not closed under union.

 $L \cup K = \left\{ \begin{array}{c} (a) \\ (a) \\ (a) \\ (b) \end{array} \right\}, \begin{array}{c} (a) \\ (b) \\ (b) \end{array}$ A a

There must be a transition,

and hence also

 $L \cup K = \left\{ \begin{array}{c} a \\ a \\ b \end{array}, \begin{array}{c} b \\ b \end{array} \right\}$ A ' b' a

There must be a transition,

and hence also

regular	
TDD	

the run is accepting, if every leaf state is consistent with its leaf.

regular	
TDD	

regular	
TDD	

a the run is accepting, if every leaf state is a consistent with its leaf. a what does the leaf state depend on?

regular	
TDD	

regular	
TDD	

state depend on?

Fact. The following are equivalent for a tree language *L*: -L is recognized by a deterministic top-down tree automaton - L is equivalent to "all paths in K", for a regular word language $K \subseteq (\Sigma \times \{0,1\})^*$

Fact. The following are equivalent for a tree language *L*: – *L* is recognized by a deterministic top-down tree automaton – *L* is equivalent to "all paths in *K*", for a regular word language $K \subseteq (\Sigma \times \{0,1\})^*$

Fact. The following are equivalent for a tree language L:

- -L is recognized by a deterministic top-down tree automaton
- *L* is equivalent to "all paths in *K*", for a regular word language $K \subseteq (\Sigma \times \{0,1\})^*$

Minimal automata

for the purpose of minimal automata, we change the definition.

We remove transitions

and add accepting states. A run must have an accepting state at the root.

Minimal automata

for the purpose of minimal automata, we change the definition.

We remove transitions

and add accepting states. A run must have an accepting state at the root.

Reason: in the old definition, the language $\{a, \}$ is recognized by an automaton with 0 states.

Minimal automata

for the purpose of minimal automata, we change the definition.

and add accepting states. A run must have an accepting state at the root.

Reason: in the old definition, the language $\{a, \}$ is recognized by an automaton with 0 states.

Tuple definition: $(Q, \Sigma, \delta: Q \times \Sigma \times Q \rightarrow Q, I: \Sigma \rightarrow Q, F \subseteq Q)$

Minimalization

Proposition. For every regular tree language, there is a unique (up to isomorphism) minimal deterministic bottom-up tree automaton. The minimal automaton can be obtained from any other automaton in polynomial time.

States of the minimal automaton: equivalence classes of the Myhill-Nerode congruence.

Myhill-Nerode congruence for tree languages

Myhill-Nerode congruence for tree languages, examples

16/24

Myhill-Nerode congruence for tree languages, examples

classes of the Myhill-Nerode congruence:

0= "zero *a*'s"

- 1="one *a*"
- 2="two *a*'s"

3= "three or more *a*'s"

Myhill-Nerode congruence for tree languages, examples

classes of the Myhill-Nerode congruence: 0="zero *a*'s" 1="one *a*" 2="two *a*'s" 3="three or more *a*'s"

"two a's"

balanced binary tree

infinitely many classes:

"unbalanced tree"

"balanced tree of depth n"
Myhill-Nerode congruence for tree languages, examples

classes of the Myhill-Nerode congruence: 0="zero *a*'s" 1="one *a*"

"two a's"

2="two *a*'s"

3= "three or more *a*'s"

balanced binary tree

infinitely many classes:

"unbalanced tree"

"balanced tree of depth n"

this context distinguishes a balanced tree of depth 3 from any other tree.

Def. A *regular* tree language is one recognized by a nondeterministic tree automaton or, equivalently, by a deterministic bottom up tree automaton.

Def. A *regular* tree language is one recognized by a nondeterministic tree automaton or, equivalently, by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:

Def. A *regular* tree language is one recognized by a nondeterministic tree automaton or, equivalently, by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages: – automaton model

Def. A *regular* tree language is one recognized by a nondeterministic tree automaton or, equivalently, by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages: – automaton model – efficient algorithms

Def. A *regular* tree language is one recognized by a nondeterministic tree automaton or, equivalently, by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages: – automaton model – efficient algorithms – closure properties (logic)

Def. A *regular* tree language is one recognized by a nondeterministic tree automaton or, equivalently, by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages: – automaton model – efficient algorithms – closure properties (logic) – regular expressions

Def. A *regular* tree language is one recognized by a nondeterministic tree automaton or, equivalently, by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages: – automaton model – efficient algorithms – closure properties (logic) – regular expressions

...but there are also some similarities to context-free languag $\frac{17}{24}$

Fact. A word language is context-free iff it is the yield of some regular tree language. Yield of a tree: word with leaf labels, left-to-right.

from grammars to automata	from automata to grammars

from automata to grammars

Fact. A word language is context-free iff it is the yield of some regular tree language.

from automata to grammars

Let A be a nondeterministic, top-down tree automaton. The grammar G(A) has states of A as nonterminals, and rules:

What is a Tree Automaton? -definition and examples -determinism, bottom-up vs top-down

-minimization

-closure properties

Decision Problems

-emptiness-membership-universality

What is a Tree Automaton? -definition and examples -determinism, bottom-up vs top-down -minimization -closure properties

Decision Problems

-emptiness-membership-universality

Thm. Emptiness for tree automata is PTIME-complete.

Tree automata emptiness can be tested in linear ti $\mathfrak{M}\mathfrak{S}_4$

Thm. Emptiness for tree automata is PTIME-complete.

Tree automata emptiness can be tested in linear ti $\mathfrak{m}\mathfrak{S}_4$

Thm. Emptiness for tree automata is PTIME-complete.

Thm. Emptiness for tree automata is PTIME-complete.

Thm. Emptiness for tree automata is PTIME-complete.

A transition P A transition A transition A can be reached if both states P_0 and P_1 can be reached. $P_0 P_1$

Thm. Emptiness for tree automata is PTIME-complete.

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

This problem can be solved in log(n) space, i.e. in LOGSPACE.

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

$$2 \log(n) \log(n) = n \log(n)$$

This problem can be solved in log(n) space, i.e. in LOGSPACE.

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

This problem can be solved in log(n) space, i.e. in LOGSPACE.

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

This problem can be solved in log(n) space, i.e. in LOGSPACE.

we will keep a stack of states of height log(n)and one pointer to a node.

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

This problem can be solved in log(n) space, i.e. in LOGSPACE.

we will keep a stack of states of height log(n)and one pointer to a node.

consider a balanced binary tree.

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

This problem can be solved in log(n) space, i.e. in LOGSPACE.

we will keep a stack of states of height log(n)and one pointer to a node.

consider a balanced binary tree.

we visit nodes in a DFS
Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

This problem can be solved in log(n) space, i.e. in LOGSPACE.

we will keep a stack of states of height log(n)and one pointer to a node.

consider a balanced binary tree.

Thm. Universality for nondeterministic tree automata is EXPTIME-complete.

Thm. Universality for nondeterministic tree automata is EXPTIME-complete.

Upper bound.

Determinize automaton, complement it, check for emptiness.

Thm. Universality for nondeterministic tree automata is EXPTIME-complete.

Upper bound.

Determinize automaton, complement it, check for emptiness.

Lower bound. Similar to

Thm. Universality for nondeterministic tree automata is EXPTIME-complete.

Upper bound.

Determinize automaton, complement it, check for emptiness.

Lower bound.

Similar to

Thm. Universality for nondeterministic word automata is PSPACE-hard.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton A_n with:

The machine M has a an accepting computation that uses n memory cells. iff The automaton A_n rejects some word.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton A_n with:

The machine M has a an accepting computation that uses n memory cells. iff The automaton A_n rejects some word.

 A_n accepts incorrect encodings, and correct encodings of nonaccepting runs.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton A_n with:

The machine M has a an accepting computation that uses n memory cells. iff The automaton A_n rejects some word.

 A_n accepts incorrect encodings, and correct encodings of nonaccepting runs.

configuration 1		c	onfiguration 2	_	configuration 3	
(b,p) (b) (a)	<u>a</u>	b a,p	e) (a)	ba	a,r	

Proof. For every Turing machine M, and every n one can write a polynomial size automaton A_n with:

The machine M has a an accepting computation that uses n memory cells. iff The automaton A_n rejects some word.

 A_n accepts incorrect encodings, and correct encodings of nonaccepting runs.

configuration 1		← confi	guration 2	configuration 3	
b,p b a	<u>a</u>	b a,p a	<u>a</u>	b a a,r	

incorrect syntax:

Proof. For every Turing machine M, and every n one can write a polynomial size automaton A_n with:

The machine M has a an accepting computation that uses n memory cells. iff The automaton A_n rejects some word.

 A_n accepts incorrect encodings, and correct encodings of nonaccepting runs.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton A_n with:

The machine M has a an accepting computation that uses n memory cells. iff The automaton A_n rejects some word.

 A_n accepts incorrect encodings, and correct encodings of nonaccepting runs.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton A_n with:

The machine M has a an accepting computation that uses n memory cells. iff The automaton A_n rejects some word.

 A_n accepts incorrect encodings, and correct encodings of nonaccepting runs.

 $\underbrace{\begin{array}{c} configuration 1 \\ \hline b,p \ b \ a \\ \hline \cdots \\ a \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ \hline a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ \hline a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ \hline a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ \hline a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ \hline a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ \hline a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ \hline a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline b \ a \\ a,p \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline a \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline a \\ a \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline a \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline a \\ \hline \end{array}} \underbrace{\begin{array}{c} configuration 2 \\ \hline$

not accepting:

Proof. For every Turing machine M, and every n one can write a polynomial size automaton A_n with:

The machine M has a an accepting computation that uses n memory cells. iff The automaton A_n rejects some word.

 A_n accepts incorrect encodings, and correct encodings of nonaccepting runs.

configuration 2 configuration 1 configuration 3 a ... incorrect syntax: $\sum \left(\bigcirc^* \bigcirc \right) * \bigcirc^i a \bigcirc^{n-i+1} \bigcirc \bigcirc^i b \bigcirc^{n-i+1} \bigcirc \left(\bigcirc^* \bigcirc \right) *$ i=1,..,n and some other similar properties a≠b not accepting: $\sum \left(\bigcirc^{\uparrow} \bigcirc \right) * \bigcirc^{*} a, p \bigcirc^{*} \bigcirc$ p∉F a∈∑

Universality for nondeterminstic tree automata is EXPTIME-hard.

instead of a computation word...

instead of a computation word...

instead of a computation word...

...we have a computation tree.

