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What is a Tree Automaton?

Decision Problems

–definition and examples
–determinism, bottom-up vs top-down
–minimization
–closure properties

–emptiness
–membership
–universality
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Trees are finite and labeled.

a b

a

a a

a b

binary tree:
each node has 0 or 2 children

a b

a

a a

a

a

a

unranked tree
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We will use automata to express properties such as...

...but not properties such as

even number of nodes“ ”

every node with label a has at most 
one b child ”“

there is at least one a in the tree”“
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P ⊆ Q

set of possible states
for all possible runs

a
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P = { p :  a

p

p0 p1

holds for some p0 ∈ P0 , p1 ∈ P1 }

Q state space of nondeterministic automaton.
P(Q) state space of deterministic bottom-up automaton.

Standard subset construction works
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Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.
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Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

a

P

P0 P1

subset construction fails
for top-down
determinism
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Top-down determinism, continued.
regular

b
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a

b

a

a

q

b

the run is accepting,
if every leaf state is 

consistent with its leaf.

what does the leaf 
state depend on?

Fact. e following are equivalent for a tree language L:
– L is recognized by a deterministic top-down tree automaton
– L is equivalent to “all paths in K”, for a regular word language K ⊆ (Σ×{0,1})*

Bool(TDD)

languages of the form: all paths .., some path ...

It is not difficult to give an algorithm deciding L∈ TDD.
Open problem: give an algorithm deciding   L∈ Bool(TDD).

TDD

12



/24

Minimal automata
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q

q0 q1
a

q
(ese transitions                                    work if the node is the root or not)

for the purpose of minimal automata, we change the definition. 

a

q0 q1
aWe remove transitions

  and add accepting states. A run must have an accepting state at the root.

Reason: in the old definition, the language 
is recognized by an automaton with 0 states.

a{ }

Tuple definition:     (Q, Σ , δ : Q×Σ×Q  →  Q,  I : Σ  →  Q, F ⊆Q)

13
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Proposition. For every regular tree language, there is a unique (up to isomorphism)
minimal deterministic bottom-up tree automaton. 
e minimal automaton can be obtained from any other automaton in polynomial time.

States of the minimal automaton: equivalence classes of the Myhill-Nerode congruence.

Minimalization

14
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a
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a
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Myhill-Nerode congruence for tree languages

Two trees
a b

a

a a

a b

a

a a

and

are L-equivalent if for every context
a b

a

a a

a

a b

a

a a

a

a b

a

a a

a b

a

a a

a

a b

a

a a

∈L ∈L

iff
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Myhill-Nerode congruence for tree languages, examples

“two a’s”

0=“zero a’s”
1=“one a”

2=“two a’s”
3=“three or more a’s”

classes of the Myhill-Nerode
congruence:

balanced binary tree

infinitely many classes:

“unbalanced tree”

“balanced tree of depth n”

depth 3

this context distinguishes a balanced tree of 
depth 3 from any other tree.

16
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Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
– automaton model

– efficient algorithms
– closure properties (logic)

– regular expressions

...but there are also some similarities to context-free languages
17
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Fact. A word language is context-free iff it is the yield of some regular tree language.

Let A be a nondeterministic, top-down
tree automaton. e grammar G(A) has
states of A as nonterminals, and rules:
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Fact. A word language is context-free iff it is the yield of some regular tree language.

Let A be a nondeterministic, top-down
tree automaton. e grammar G(A) has
states of A as nonterminals, and rules:

a

q

q0 q1

automaton
transition

grammar 
rule

q               q0 q1

a

q
q               a

from grammars to automata from automata to grammars

Regular tree languages are similar to context-free languages.
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m. Emptiness for tree automata is PTIME-complete.

A transition a

P

P0 P1

can be reached if both states P0 and P1  can be reached.

A state p can be reached if some transition  a

P

P0 P1

can be reached.

∧
∨

∧

∧

∨

∨

reachability in AND-OR graphs
hardness:

Tree automata emptiness can be tested in linear time.20
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