Tree Automata and Tree Logics

Mikotaj Bojanczyk
(Warsaw)




2/24



‘[ree automata

What is a Tree Automaton?
Decision Problems




Tree automata

What is a Tree Automaton?
Decision Problems

Logic
Logic for Words
Logic for Trees

Transitive Closure Logic




Tree automata

What is a Tree Automaton?
Decision Problems

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Logic
Logic for Words
Logic for Trees

Transitive Closure Logic




Tree automata

What is a Tree Automaton?
Decision Problems

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Logic
Logic for Words
Logic for Trees

Transitive Closure Logic

Tree-Walking Automata, 1

Tree-Walking Automata

Expressive Power

Pebble Automata




Tree automata

What is a Tree Automaton?
Decision Problems L .
OglC
Logic for Words
Logic for Trees

Transitive Closure Logic

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Tree-Walking Automata, 1

Tree-Walking Automata

Expressive Power

Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized




‘[ree automata

What is a Tree Automaton?
Decision Problems L .
OglC
Logic for Words
Logic for Trees

Transitive Closure Logic

Temporal Logics

Temporal Logic for Words

Temporal Logic for Trees
XPath

Tree-Walking Automata, 1

Tree-Walking Automata

Expressive Power

Pebble Automata

Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized




What is a Tree Automaton?

—definition and examples
—determinism, bottom-up vs top-down
—minimization

—closure properties

Decision Problems

—emptiness

—membership

—universality




Trees are finite and labeled.

binary tree: unranked tree
each node has 0 or 2 children




We will use automata to express properties such as...




We will use automata to express properties such as...

CCthere is at least one # in the tree??




We will use automata to express properties such as...

CCthere is at least one # in the tree??

€ every node with label 2 has at most

one b child »




We will use automata to express properties such as...

CCthere is at least one # in the tree??

€ every node with label 2 has at most

one b child »

¢ even number of nodes >’




We will use automata to express properties such as...

CCthere is at least one # in the tree??

€ every node with label 2 has at most

one b child »

(4 ¢

)
even number of nodes ““ boolean expressions with value 7 2




We will use automata to express properties such as...

CCthere is at least one # in the tree??

€ every node with label 2 has at most

one b child »

(4 ¢

)
even number of nodes ““ boolean expressions with value 7 2

..but not properties such as




We will use automata to express properties such as...

CCthere is at least one # in the tree??

€ every node with label 2 has at most

one b child »

(4 ¢

)
even number of nodes ““ boolean expressions with value 7 2

..but not properties such as

¢ humber of 4’s = number of &’s ??




We will use automata to express properties such as...

CCthere is at least one # in the tree??

€ every node with label 2 has at most

one b child »

(4 ¢

)
even number of nodes ““ boolean expressions with value 7 2

..but not properties such as

¢ humber of 4’s = number of &’s ??

¢Cbalanced trees??




A word automaton

This definition best for nondeterministic automata.

No difference between bottom-up and top-down.



A word automaton

automaton transitions

9—ay—p

This definition best for nondeterministic automata.

No difference between bottom-up and top-down.



A word automaton

automaton transitions

@ @ @

This definition best for nondeterministic automata.

No difference between bottom-up and top-down.



A word automaton

automaton transitions

@ @ @ @

a run is a labeling of edges with states consistent with the transitions

This definition best for nondeterministic automata.

No difference between bottom-up and top-down.



A word automaton

automaton transitions

@ @ @ @

a run is a labeling of edges with states consistent with the transitions

@ G @ @ @

This definition best for nondeterministic automata.
No difference between bottom-up and top-down.



A word automaton

automaton transitions

@ @ @ @

a run is a labeling of edges with states consistent with the transitions

D4 @Dr-@

This definition best for nondeterministic automata.
No difference between bottom-up and top-down.



A word automaton

automaton transitions

-G @ 1@ @

a run is a labeling of edges with states consistent with the transitions

D4 @Dr-@

A tree automaton

automaton transitions

H @ e e

This definition best for nondeterministic automata.
No difference between bottom-up and top-down.



A word automaton

automaton transitions

-G @ 1@ @

a run is a labeling of edges with states consistent with the transitions

D4 @Dr-@

A tree automaton

automaton transitions

@ @@@

g0 91 qo g

This definition best for nondeterministic automata.
No difference between bottom-up and top-down.



A word automaton

automaton transitions

-G @ 1@ @

a run is a labeling of edges with states consistent with the transitions

D4 @Dr-@

A tree automaton

automaton transitions

H @ e e

This definition best for nondeterministic automata.
No difference between bottom-up and top-down.



Examples

7/24



Examples

¢ even number of nodes >’

states: 0,1




Examples

¢C ¢C J

even number of nodes 2? even number of 2s >

states: 0,1 states: 0,1




Examples

¢C ¢C J

even number of nodes 2? even number of 2s >

¢¢ boolean expressions

with value 7 ??
states: 0,1 states: 0,1

states: 0,1




Deterministic automata




Deterministic automata

Top-down




Deterministic automata

Top-down




Deterministic automata

Top-down




Deterministic automata

Top-down




Deterministic automata

Top-down

9

OBNONONO

determined by other components




Deterministic automata

Top-down Bottom-up

9

OBNONONO

determined by other components




Deterministic automata

Top-down Bottom-up

9

OBNONONO

determined by other components




Deterministic automata

Top-down Bottom-up

9

OBNONONO

determined by other components




Deterministic automata

Top-down Bottom-up

9

OBNONONO

determined by other components




Deterministic automata

Top-down Bottom-up

@ @@@ @ @@@

qo0 41 qo0 41 qo0 41 4o 41

determined by other components determined by other components




Deterministic automata

Top-down bad go()d Bottom-up

9 9

OBNONONO ONNOIONO

determined by other components determined by other components




Bottom-up determinism

Fact. A nondeterministic automaton can be determinized to a bottom-up one.




Bottom-up determinism

Fact. A nondeterministic automaton can be determinized to a bottom-up one.

Standard subset construction works

Q state space of nondeterministic automaton.
P(Q) state space of deterministic bottom-up automaton.




Bottom-up determinism

Fact. A nondeterministic automaton can be determinized to a bottom-up one.

Standard subset construction works

Q state space of nondeterministic automaton.
P(Q) state space of deterministic bottom-up automaton.

set of possible states
for all possible runs

PcQ
(45




Bottom-up determinism

Fact. A nondeterministic automaton can be determinized to a bottom-up one.

Standard subset construction works

Q state space of nondeterministic automaton.
P(Q) state space of deterministic bottom-up automaton.

set of possible states P

for all possible runs
P C Q

e P Py P
(¢) (&

P={p: @ holds for some po € Py, p1 € Py }

ORO po b




Def. A regular tree language is one recognized by

a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.




Def. A regular tree language is one recognized by

a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

P

subset construction fails
for top-down
determinism

Py P




Top-down determinism

Fact. Top-down deterministic automata are not closed under union.




Top-down determinism

Fact. Top-down deterministic automata are not closed under union.

L={ %}




Top-down determinism

Fact. Top-down deterministic automata are not closed under union.

L={ %}




Top-down determinism

Fact. Top-down deterministic automata are not closed under union.




Top-down determinism

Fact. Top-down deterministic automata are not closed under union.

L”KZ{ ’ eaa




Top-down determinism

Fact. Top-down deterministic automata are not closed under union.

L”KZ{ ’ eaa

There must be a transition,

)

P9




Top-down determinism

Fact. Top-down deterministic automata are not closed under union.

L”KZ{ ’ eaa

There must be a transition,

)

P9

and hence also

P9




Top-down determinism

Fact. Top-down deterministic automata are not closed under union.

L”KZ{ ’ eea

There must be a transition,

)

P9

and hence also
1o
J4 @q
...but then: @ @

11/24



Top-down determinism, continued.

regular




Top-down determinism, continued.

regular

the run is accepting,
if every leaf state is
consistent with its leaf.




Top-down determinism, continued.

regular

the run is accepting,
if every leaf state is
consistent with its leaf.

what does the leaf
state depend on?




Top-down determinism, continued.

regular

the run is accepting,
if every leaf state is
consistent with its leaf.

what does the leaf
state depend on?




Top-down determinism, continued.

regular

the run is accepting,
if every leaf state is
consistent with its leaf.

what does the leaf
state depend on?

Fact. The following are equivalent for a tree language L:
— L is recognized by a deterministic top-down tree automaton

— L is equivalent to “all paths in K7, for a regular word language K C (£x{0,1})*




Top-down determinism, continued.

regular

the run is accepting, TDD
if every leaf state is
consistent with its leaf. Bool(TDD)

languages of the form: all paths .., some path ...

what does the leaf
state depend on?

Fact. The following are equivalent for a tree language L:
— L is recognized by a deterministic top-down tree automaton

— L is equivalent to “all paths in K7, for a regular word language K C (£x{0,1})*




Top-down determinism, continued.

regular
the run is accepting, TDD
if every leaf state is
consistent with its leaf. / Bool(TDD)

languages of the form: all paths .., some path ...

what does t

state depen
It is not difhicult to give an algorithm deciding L€ TDD.

Open problem: give an algorithm deciding Z€ Bool(TDD).

Fact. The following are equivalent for a tree language L:
— L is recognized by a deterministic top-down tree automaton

— L is equivalent to “all paths in K7, for a regular word language K C (£x{0,1})*

12/24



Minimal automata

for the purpose of minimal automata, we change the definition.

We remove transitions @ @

90 91

and add accepting states. A run must have an accepting state at the root.

9

9
('These transitions @ i work if the node is the root or not)

qgo 41




Minimal automata

for the purpose of minimal automata, we change the definition.

We remove transitions @ @

90 91

and add accepting states. A run must have an accepting state at the root.

9

9
('These transitions @ i work if the node is the root or not)

qgo 41

Reason: in the old definition, the language {@ }

is recognized by an automaton with 0 states.




Minimal automata

for the purpose of minimal automata, we change the definition.

We remove transitions @ @

90 91

and add accepting states. A run must have an accepting state at the root.

9

9
('These transitions @ i work if the node is the root or not)

qgo 41

Reason: in the old definition, the language {@ }

is recognized by an automaton with 0 states.

Tuple definition: (Q, 2, 9: 9xEXxQ > Q, I: X » Q, FCQ)




Minimalization

Proposition. For every regular tree language, there is a unique (up to isomorphism)
minimal deterministic bottom-up tree automaton.
The minimal automaton can be obtained from any other automaton in polynomial time.

States of the minimal automaton: equivalence classes of the Myhill-Nerode congruence.




Myhill-Nerode congruence for tree languages

context

substitution

/

"Two trees

are L-equivalent if for every context () (@)




Myhill-Nerode congruence for tree languages, examples




Myhill-Nerode congruence for tree languages, examples

classes of the Myhill-Nerode

congrucnce:

0="“zero 4’s”
(€4 »
l1="one a4
2=“two a’s’

3=“three or more 4’s”




Myhill-Nerode congruence for tree languages, examples

classes of the Myhill-Nerode

congrucnce:

0="“zero 4’s”
(€4 »
l1="one a4
2=“two a’s’

3=“three or more 4’s”

balanced binary tree

infinitely many classes:

“unbalanced tree”

“balanced tree of depth 7”




Myhill-Nerode congruence for tree languages, examples

classes of the Myhill-Nerode

congrucnce:

0="“zero 4’s”
(€4 »
l1="one a4
2=“two a’s’

3=“three or more 4’s”

balanced binary tree

infinitely many classes:

“anbalanced tree”

“balanced tree of depth 7”

this context distinguishes a balanced tree of
depth 3 from any other tree.

16/24



Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.




Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:




Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
— automaton model




Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
— automaton model
— efhcient algorithms




Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
— automaton model
— efhcient algorithms
— closure properties (logic)




Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
— automaton model
— efhcient algorithms
— closure properties (logic)
— regular expressions




Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
— automaton model
— efhcient algorithms
— closure properties (logic)
— regular expressions

...but there are also some similarities to context-free languag
1224




Regular tree languages are similar to context-free languages.




Regular tree languages are similar to context-free languages.

Fact. A word language is context-free iff it is the yield of some regular tree language.




Regular tree languages are similar to context-free languages.

Fact. A word language is context-free iff it is the yield of some regular tree language.

Yield of a tree: word with leaf labels, left-to-right.




Regular tree languages are similar to context-free languages.

Fact. A word language is context-free iff it is the yield of some regular tree language.




Regular tree languages are similar to context-free languages.

Fact. A word language is context-free iff it is the yield of some regular tree language.

from grammars to automata from automata to grammars




Regular tree languages are similar to context-free languages.

Fact. A word language is context-free iff it is the yield of some regular tree language.

from grammars to automata from automata to grammars




Regular tree languages are similar to context-free languages.

Fact. A word language is context-free iff it is the yield of some regular tree language.

from grammars to automata from automata to grammars




Regular tree languages are similar to context-free languages.

Fact. A word language is context-free iff it is the yield of some regular tree language.

from grammars to automata from automata to grammars




Regular tree languages are similar to context-free languages.

Fact. A word language is context-free iff it is the yield of some regular tree language.

from grammars to automata from automata to grammars

Let A be a nondeterministic, top-down
tree automaton. The grammar G(A4) has
states of 4 as nonterminals, and rules:




Regular tree languages are similar to context-free languages.

Fact. A word language is context-free iff it is the yield of some regular tree language.

from grammars to automata from automata to grammars

Let A be a nondeterministic, top-down
tree automaton. The grammar G(A4) has
states of 4 as nonterminals, and rules:

qutomaton grammar
transition rule

9

=

qgo 41




What is a Tree Automaton?

—definition and examples
—determinism, bottom-up vs top-down
—minimization

—closure properties

Decision Problems

—emptiness

—membership

—universality




What is a Tree Automaton?

—definition and examples
—determinism, bottom-up vs top-down
—minimization

—closure properties

Decision Problems

—emptiness

—membership

—universality




Emptiness

Thm. Emptiness for tree automata is PTIME-complete.

Tree automata emptiness can be tested in linear tispey



Emptiness

Thm. Emptiness for tree automata is PTIME-complete.

hardness:

reachability in AND-OR graphs

Tree automata emptiness can be tested in linear tispey



Emptiness

Thm. Emptiness for tree automata is PTIME-complete.

hardness:

reachability in AND-OR graphs

Tree automata emptiness can be tested in linear tispey



Emptiness

Thm. Emptiness for tree automata is PTIME-complete.

hardness:

reachability in AND-OR graphs

Tree automata emptiness can be tested in linear tispey



Emptiness

Thm. Emptiness for tree automata is PTIME-complete.

hardness:

reachability in AND-OR graphs

Tree automata emptiness can be tested in linear tispey



Emptiness

Thm. Emptiness for tree automata is PTIME-complete.

hardness:

reachability in AND-OR graphs

Tree automata emptiness can be tested in linear tispey



Emptiness

Thm. Emptiness for tree automata is PTIME-complete.

hardness:

reachability in AND-OR graphs

Tree automata emptiness can be tested in linear tispey



Emptiness

Thm. Emptiness for tree automata is PTIME-complete.

hardness:

reachability in AND-OR graphs

P
A transition @ can be reached if both states Ppand P; can be reached.

Py P

Tree automata emptiness can be tested in linear tispey



Emptiness

Thm. Emptiness for tree automata is PTIME-complete.

hardness:

reachability in AND-OR graphs

P
A transition @ can be reached if both states Ppand P; can be reached.

Py P P

A state p can be reached if some transition @ can be reached.
Py P;

Tree automata emptiness can be tested in linear tispey



Membership

Fix a tree automaton A4 (deterministic, bottom up).
Input: tree # with 7z nodes.
Question: does A accept ¢¢




Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree # with 7z nodes.
Question: does A accept ¢¢

This problem can be solved in Jog(7) space, i.e. in LOGSPACE.




Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree # with 7z nodes.

o . ?
Question: does A accept ¢ 2 log(n) log(n) = 4, log(n)

This problem can be solved in Jog(7) space, i.e. in LOGSPACE.




Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree # with 7z nodes.
Question: does A accept ¢¢

This problem can be solved in Jog(7) space, i.e. in LOGSPACE.




Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree # with 7z nodes.
Question: does A accept ¢¢

This problem can be solved in Jog(7) space, i.e. in LOGSPACE.

we will keep a stack of
states of height /og(#)

and one pointer to a node.




Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree # with 7z nodes.
Question: does A accept ¢¢

This problem can be solved in Jog(7) space, i.e. in LOGSPACE.

we will keep a stack of
states of height /og(#)

and one pointer to a node.

consider a balanced
binary tree.




Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree # with 7z nodes.
Question: does A accept ¢¢

This problem can be solved in Jog(7) space, i.e. in LOGSPACE.

we will keep a stack of
states of height /og(#)

and one pointer to a node.

consider a balanced
binary tree.

we visit nodes in a DFS



Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree # with 7z nodes.
Question: does A accept ¢¢

This problem can be solved in Jog(7) space, i.e. in LOGSPACE.

we will keep a stack of
states of height /og(#)

and one pointer to a node.

consider a balanced
binary tree.

we visit nodes in a DFS



Universality




Universality

Thm. Universality for nondeterministic tree automata is EXPTIME-complete.




Universality

Thm. Universality for nondeterministic tree automata is EXPTIME-complete.

Upper bound.

Determinize automaton, complement it, check for emptiness.




Universality

Thm. Universality for nondeterministic tree automata is EXPTIME-complete.

Upper bound.

Determinize automaton, complement it, check for emptiness.

Lower bound.
Similar to




Universality

Thm. Universality for nondeterministic tree automata is EXPTIME-complete.

Upper bound.

Determinize automaton, complement it, check for emptiness.

Lower bound.
Similar to

Thm. Universality for nondeterministic word automata is PSPACE-hard.




Thm. Universality for nondeterministic word automata is PSPACE-hard.




Thm. Universality for nondeterministic word automata is PSPACE-hard.

Proof. For every Turing machine M, and every 7z one can write a polynomial size automaton A, with:

The machine M has a an accepting computation that uses » memory cells.
iff

The automaton A4, rejects some word.




Thm. Universality for nondeterministic word automata is PSPACE-hard.

Proof. For every Turing machine M, and every 7z one can write a polynomial size automaton A, with:

The machine M has a an accepting computation that uses » memory cells.
iff

The automaton A4, rejects some word.

A, accepts incorrect encodings, and correct encodings of nonaccepting runs.




Thm. Universality for nondeterministic word automata is PSPACE-hard.

Proof. For every Turing machine M, and every 7z one can write a polynomial size automaton A, with:
The machine M has a an accepting computation that uses » memory cells.

ift

The automaton A4, rejects some word.

A, accepts incorrect encodings, and correct encodings of nonaccepting runs.

configuration 1 configuration 2 configuration 3

HDO®D -00PD@E - OO




Thm. Universality for nondeterministic word automata is PSPACE-hard.

Proof. For every Turing machine M, and every 7z one can write a polynomial size automaton A, with:
The machine M has a an accepting computation that uses » memory cells.

ift

The automaton A4, rejects some word.

A, accepts incorrect encodings, and correct encodings of nonaccepting runs.

configuration 1 configuration 2 configuration 3

HDO®D -00PD@E - OO

incorrect syntax:




Thm. Universality for nondeterministic word automata is PSPACE-hard.

Proof. For every Turing machine M, and every 7z one can write a polynomial size automaton A, with:

The machine M has a an accepting computation that uses » memory cells.
iff
The automaton A4, rejects some word.

A, accepts incorrect encodings, and correct encodings of nonaccepting runs.

configuration 1 configuration 2 configuration 3

HDO®D -00PD@E - OO

incorrect syntax:

Yy (O0x0'@0""e0'@0""@(C @)

i=1,..,n
a+b




Thm. Universality for nondeterministic word automata is PSPACE-hard.

Proof. For every Turing machine M, and every 7z one can write a polynomial size automaton A, with:

The machine M has a an accepting computation that uses » memory cells.
iff
The automaton A4, rejects some word.

A, accepts incorrect encodings, and correct encodings of nonaccepting runs.

configuration 1 configuration 2 configuration 3

HDO®D -00PD@E - OO

incorrect syntax:

Yy (O0x0'@0""e0'@0""@(C @)

i=1,.,n
a+b

and some other similar properties




Thm. Universality for nondeterministic word automata is PSPACE-hard.

Proof. For every Turing machine M, and every 7z one can write a polynomial size automaton A, with:

The machine M has a an accepting computation that uses » memory cells.
iff
The automaton A4, rejects some word.

A, accepts incorrect encodings, and correct encodings of nonaccepting runs.

configuration 1 configuration 2 configuration 3

HDO®D -00PD@E - OO

incorrect syntax:

Yy (O0x0'@0""e0'@0""@(C @)

and some other similar properties

not accepting:




Thm. Universality for nondeterministic word automata is PSPACE-hard.

Proof. For every Turing machine M, and every 7z one can write a polynomial size automaton A, with:

The machine M has a an accepting computation that uses » memory cells.
iff
The automaton A4, rejects some word.

A, accepts incorrect encodings, and correct encodings of nonaccepting runs.

configuration 1 configuration 2 configuration 3

HDO®D -00PD@E - OO

incorrect syntax: " , n ; it ] x
’ 7-1 -
Y (OO O@O0" @000 @0 @)

i=1,..,n

and some other similar properties
a+b

not accepting:

y (Cepdade




Universality for nondeterminstic tree automata is EXPTIME-hard.




Universality for nondeterminstic tree automata is EXPTIME-hard.
Reduction from APSPACE.




Universality for nondeterminstic tree automata is EXPTIME-hard.
Reduction from APSPACE.

instead of a computation word...




Universality for nondeterminstic tree automata is EXPTIME-hard.
Reduction from APSPACE.

configuration 1 configuration

<
<

DO@D -0O® @@

instead of a computation word...




Universality for nondeterminstic tree automata is EXPTIME-hard.
Reduction from APSPACE.

configuration 1 configuration

<
<

DO@D -0O® @@

instead of a computation word...

...we have a computation tree.




Universality for nondeterminstic tree automata is EXPTIME-hard.
Reduction from APSPACE.

configuration 0

configuration 0-0

by
&
O

e configuration 0-1

\Y

2
©
(2)

) configuration 1 oy configuration
OJOMENON JORTAO

instead of a computation word...

...we have a computation tree.




