
/24

Tree Automata and Tree Logics
Mikołaj Bojańczyk

(Warsaw)

1

/242

/24

Tree automata
What is a Tree Automaton?
Decision Problems1

2

/24

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2

2

/24

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3

2

/24

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
2

/24

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5
2

/24

Tree automata
What is a Tree Automaton?
Decision Problems1

Logic
Logic for Words
Logic for Trees
Transitive Closure Logic

2
Temporal Logics

Temporal Logic for Words
Temporal Logic for Trees
XPath

3
Tree-Walking Automata, 1

Tree-Walking Automata
Expressive Power
Pebble Automata

4
Tree-Walking Automata, 2

Tree-Walking Automata Cannot Be Determinized5
2

/243

What is a Tree Automaton?

Decision Problems

–definition and examples
–determinism, bottom-up vs top-down
–minimization
–closure properties

–emptiness
–membership
–universality

/24

Trees are finite and labeled.

a b

a

a a

a b

binary tree:
each node has 0 or 2 children

a b

a

a a

a

a

a

unranked tree

4

/24

We will use automata to express properties such as...

5

/24

We will use automata to express properties such as...

there is at least one a in the tree”“

5

/24

We will use automata to express properties such as...

every node with label a has at most
one b child ”“

there is at least one a in the tree”“

5

/24

We will use automata to express properties such as...

even number of nodes“ ”

every node with label a has at most
one b child ”“

there is at least one a in the tree”“

5

/24

We will use automata to express properties such as...

even number of nodes“ ”

every node with label a has at most
one b child ”“

there is at least one a in the tree”“ 0 ∨

∧

∧

1 0

1

boolean expressions with value 1“ ”

5

/24

We will use automata to express properties such as...

...but not properties such as

even number of nodes“ ”

every node with label a has at most
one b child ”“

there is at least one a in the tree”“ 0 ∨

∧

∧

1 0

1

boolean expressions with value 1“ ”

5

/24

We will use automata to express properties such as...

...but not properties such as

even number of nodes“ ”

every node with label a has at most
one b child ”“

there is at least one a in the tree”“

number of a’s = number of b’s ”“

0 ∨

∧

∧

1 0

1

boolean expressions with value 1“ ”

5

/24

We will use automata to express properties such as...

...but not properties such as

even number of nodes“ ”

every node with label a has at most
one b child ”“

there is at least one a in the tree”“

balanced trees”“

number of a’s = number of b’s ”“

0 ∨

∧

∧

1 0

1

boolean expressions with value 1“ ”

5

/24

A word automaton

is definition best for nondeterministic automata.
No difference between bottom-up and top-down. 6

/24

A word automaton

automaton transitions

a pq

is definition best for nondeterministic automata.
No difference between bottom-up and top-down. 6

/24

A word automaton

automaton transitions

a p aq aa pq

is definition best for nondeterministic automata.
No difference between bottom-up and top-down. 6

/24

A word automaton

automaton transitions

a run is a labeling of edges with states consistent with the transitions

a p aq aa pq

is definition best for nondeterministic automata.
No difference between bottom-up and top-down. 6

/24

A word automaton

automaton transitions

a run is a labeling of edges with states consistent with the transitions

a p aq a

a a a a a

a pq

is definition best for nondeterministic automata.
No difference between bottom-up and top-down. 6

/24

A word automaton

automaton transitions

a run is a labeling of edges with states consistent with the transitions

a p aq a

q p r pa a a a a

a pq

is definition best for nondeterministic automata.
No difference between bottom-up and top-down. 6

/24

A word automaton

automaton transitions

a run is a labeling of edges with states consistent with the transitions

a p aq a

q p r pa a a a a

A tree automaton

automaton transitions

a

q

q0 q1

a

q

aa

q0 q1

a pq

is definition best for nondeterministic automata.
No difference between bottom-up and top-down. 6

/24

A word automaton

automaton transitions

a run is a labeling of edges with states consistent with the transitions

a p aq a

q p r pa a a a a

A tree automaton

automaton transitions

a

q

q0 q1

a

q

aa

q0 q1

a a

a

aa

a a

a pq

is definition best for nondeterministic automata.
No difference between bottom-up and top-down. 6

/24

A word automaton

automaton transitions

a run is a labeling of edges with states consistent with the transitions

a p aq a

q p r pa a a a a

A tree automaton

automaton transitions

a

q

q0 q1

a

q

aa

q0 q1

q

p r

p

p q

a a

a

aa

a a

a pq

is definition best for nondeterministic automata.
No difference between bottom-up and top-down. 6

/24

Examples

7

/24

Examples

1

1 1

1

1 1

states: 0,1

even number of nodes“ ”

7

/24

Examples

1

1 1

1

1 1

states: 0,1

even number of nodes“ ”

0

1 1

1

0 1

a

a

a

a

states: 0,1

even number of a’s“ ”

7

/24

Examples

1

1 1

1

1 1

states: 0,1

even number of nodes“ ”

0

1 1

1

0 1

a

a

a

a

states: 0,1

even number of a’s“ ” boolean expressions
 with value 1“ ”

∧

1 0

1 1

∨

0 1
∧

1 0
1

1

states: 0,1

7

/24

Deterministic automata

8

/24

Deterministic automata

Top-down

8

/24

Deterministic automata

Top-down

8

/24

Deterministic automata

Top-down

8

/24

Deterministic automata

Top-down

8

/24

Deterministic automata

Top-down

a

q

q0 q1

a

q

aa

q0 q1

determined by other components
8

/24

Bottom-up

Deterministic automata

Top-down

a

q

q0 q1

a

q

aa

q0 q1

determined by other components
8

/24

Bottom-up

Deterministic automata

Top-down

a

q

q0 q1

a

q

aa

q0 q1

determined by other components
8

/24

Bottom-up

Deterministic automata

Top-down

a

q

q0 q1

a

q

aa

q0 q1

determined by other components
8

/24

Bottom-up

Deterministic automata

Top-down

a

q

q0 q1

a

q

aa

q0 q1

determined by other components
8

/24

Bottom-up

Deterministic automata

Top-down

a

q

q0 q1

a

q

aa

q0 q1

determined by other components

a

q

q0 q1

a

q

aa

q0 q1

determined by other components
8

/24

Bottom-up

Deterministic automata

Top-down

a

q

q0 q1

a

q

aa

q0 q1

determined by other components

a

q

q0 q1

a

q

aa

q0 q1

determined by other components

goodbad

8

/24

Bottom-up determinism
Fact. A nondeterministic automaton can be determinized to a bottom-up one.

9

/24

Bottom-up determinism
Fact. A nondeterministic automaton can be determinized to a bottom-up one.

Q state space of nondeterministic automaton.
P(Q) state space of deterministic bottom-up automaton.

Standard subset construction works

9

/24

Bottom-up determinism
Fact. A nondeterministic automaton can be determinized to a bottom-up one.

b

a a

a b

P ⊆ Q

set of possible states
for all possible runs

Q state space of nondeterministic automaton.
P(Q) state space of deterministic bottom-up automaton.

Standard subset construction works

9

/24

Bottom-up determinism
Fact. A nondeterministic automaton can be determinized to a bottom-up one.

b

a a

a b

P ⊆ Q

set of possible states
for all possible runs

a

P

P0 P1

P = { p : a

p

p0 p1

holds for some p0 ∈ P0 , p1 ∈ P1 }

Q state space of nondeterministic automaton.
P(Q) state space of deterministic bottom-up automaton.

Standard subset construction works

9

/24

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

10

/24

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

a

P

P0 P1

subset construction fails
for top-down
determinism

10

/24

Top-down determinism
Fact. Top-down deterministic automata are not closed under union.

11

/24

Top-down determinism
Fact. Top-down deterministic automata are not closed under union.

a b

a
{ }L=

11

/24

Top-down determinism
Fact. Top-down deterministic automata are not closed under union.

a b

a
p q

a b

a
{ }L=

11

/24

Top-down determinism
Fact. Top-down deterministic automata are not closed under union.

a b

a
p q

a b

a
{ }L=

b a

a
{ }K=

11

/24

Top-down determinism
Fact. Top-down deterministic automata are not closed under union.

a b

a
p q

a b

a
{ }L=

b a

a
{ }K=

a b

a
{ }L∪K=

b a

a
,

11

/24

Top-down determinism
Fact. Top-down deterministic automata are not closed under union.

a b

a
p q

a b

a
{ }L=

b a

a
{ }K=

a b

a
{ }L∪K=

b a

a
,

a
p q

ere must be a transition,

11

/24

Top-down determinism
Fact. Top-down deterministic automata are not closed under union.

a b

a
p q

a b

a
{ }L=

b a

a
{ }K=

a b

a
{ }L∪K=

b a

a
,

a

q

a

p
and hence also

a
p q

ere must be a transition,

11

/24

Top-down determinism
Fact. Top-down deterministic automata are not closed under union.

a b

a
p q

a b

a
{ }L=

b a

a
{ }K=

a b

a
{ }L∪K=

b a

a
,

a

q

a

p
and hence also

a
p q

ere must be a transition,

a

a
p q

a...but then:

11

/24

Top-down determinism, continued.
regular

TDD

12

/24

Top-down determinism, continued.
regular

b

a

a

b

a

a

q

b

the run is accepting,
if every leaf state is

consistent with its leaf.

TDD

12

/24

Top-down determinism, continued.
regular

b

a

a

b

a

a

q

b

the run is accepting,
if every leaf state is

consistent with its leaf.

what does the leaf
state depend on?

TDD

12

/24

Top-down determinism, continued.
regular

b

a

a

b

a

a

q

b

the run is accepting,
if every leaf state is

consistent with its leaf.

what does the leaf
state depend on?

TDD

12

/24

Top-down determinism, continued.
regular

b

a

a

b

a

a

q

b

the run is accepting,
if every leaf state is

consistent with its leaf.

what does the leaf
state depend on?

Fact. e following are equivalent for a tree language L:
– L is recognized by a deterministic top-down tree automaton
– L is equivalent to “all paths in K”, for a regular word language K ⊆ (Σ×{0,1})*

TDD

12

/24

Top-down determinism, continued.
regular

b

a

a

b

a

a

q

b

the run is accepting,
if every leaf state is

consistent with its leaf.

what does the leaf
state depend on?

Fact. e following are equivalent for a tree language L:
– L is recognized by a deterministic top-down tree automaton
– L is equivalent to “all paths in K”, for a regular word language K ⊆ (Σ×{0,1})*

Bool(TDD)

languages of the form: all paths .., some path ...

TDD

12

/24

Top-down determinism, continued.
regular

b

a

a

b

a

a

q

b

the run is accepting,
if every leaf state is

consistent with its leaf.

what does the leaf
state depend on?

Fact. e following are equivalent for a tree language L:
– L is recognized by a deterministic top-down tree automaton
– L is equivalent to “all paths in K”, for a regular word language K ⊆ (Σ×{0,1})*

Bool(TDD)

languages of the form: all paths .., some path ...

It is not difficult to give an algorithm deciding L∈ TDD.
Open problem: give an algorithm deciding L∈ Bool(TDD).

TDD

12

/24

Minimal automata

a

q

q0 q1
a

q
(ese transitions work if the node is the root or not)

for the purpose of minimal automata, we change the definition.

a

q0 q1
aWe remove transitions

 and add accepting states. A run must have an accepting state at the root.

13

/24

Minimal automata

a

q

q0 q1
a

q
(ese transitions work if the node is the root or not)

for the purpose of minimal automata, we change the definition.

a

q0 q1
aWe remove transitions

 and add accepting states. A run must have an accepting state at the root.

Reason: in the old definition, the language
is recognized by an automaton with 0 states.

a{ }

13

/24

Minimal automata

a

q

q0 q1
a

q
(ese transitions work if the node is the root or not)

for the purpose of minimal automata, we change the definition.

a

q0 q1
aWe remove transitions

 and add accepting states. A run must have an accepting state at the root.

Reason: in the old definition, the language
is recognized by an automaton with 0 states.

a{ }

Tuple definition: (Q, Σ , δ : Q×Σ×Q → Q, I : Σ → Q, F ⊆Q)

13

/24

Proposition. For every regular tree language, there is a unique (up to isomorphism)
minimal deterministic bottom-up tree automaton.
e minimal automaton can be obtained from any other automaton in polynomial time.

States of the minimal automaton: equivalence classes of the Myhill-Nerode congruence.

Minimalization

14

/24

a b

a

a a

a

context

substitution

a b

a

a a

a

a b

a

a a

Myhill-Nerode congruence for tree languages

Two trees
a b

a

a a

a b

a

a a

and

are L-equivalent if for every context
a b

a

a a

a

a b

a

a a

a

a b

a

a a

a b

a

a a

a

a b

a

a a

∈L ∈L

iff

15

/24

Myhill-Nerode congruence for tree languages, examples

16

/24

Myhill-Nerode congruence for tree languages, examples

“two a’s”

0=“zero a’s”
1=“one a”

2=“two a’s”
3=“three or more a’s”

classes of the Myhill-Nerode
congruence:

16

/24

Myhill-Nerode congruence for tree languages, examples

“two a’s”

0=“zero a’s”
1=“one a”

2=“two a’s”
3=“three or more a’s”

classes of the Myhill-Nerode
congruence:

balanced binary tree

infinitely many classes:

“unbalanced tree”

“balanced tree of depth n”

16

/24

Myhill-Nerode congruence for tree languages, examples

“two a’s”

0=“zero a’s”
1=“one a”

2=“two a’s”
3=“three or more a’s”

classes of the Myhill-Nerode
congruence:

balanced binary tree

infinitely many classes:

“unbalanced tree”

“balanced tree of depth n”

depth 3

this context distinguishes a balanced tree of
depth 3 from any other tree.

16

/24

Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

17

/24

Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:

17

/24

Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
– automaton model

17

/24

Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
– automaton model

– efficient algorithms

17

/24

Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
– automaton model

– efficient algorithms
– closure properties (logic)

17

/24

Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
– automaton model

– efficient algorithms
– closure properties (logic)

– regular expressions

17

/24

Regular languages

Def. A regular tree language is one recognized by
a nondeterministic tree automaton or, equivalently,
by a deterministic bottom up tree automaton.

Regular tree languages share many properties of regular word languages:
– automaton model

– efficient algorithms
– closure properties (logic)

– regular expressions

...but there are also some similarities to context-free languages
17

/24

Regular tree languages are similar to context-free languages.

18

/24

Fact. A word language is context-free iff it is the yield of some regular tree language.

Regular tree languages are similar to context-free languages.

18

/24

Fact. A word language is context-free iff it is the yield of some regular tree language.
Yield of a tree: word with leaf labels, le-to-right.

Regular tree languages are similar to context-free languages.

18

/24

Fact. A word language is context-free iff it is the yield of some regular tree language.

Regular tree languages are similar to context-free languages.

18

/24

Fact. A word language is context-free iff it is the yield of some regular tree language.

from grammars to automata from automata to grammars

Regular tree languages are similar to context-free languages.

18

/24

X c | aXb

Fact. A word language is context-free iff it is the yield of some regular tree language.

from grammars to automata from automata to grammars

Regular tree languages are similar to context-free languages.

18

/24

X c | aXb

a

X

b

a

X

b

a

X

b
c

Fact. A word language is context-free iff it is the yield of some regular tree language.

from grammars to automata from automata to grammars

Regular tree languages are similar to context-free languages.

18

/24

X c | aXb

a

X

b

a

X

b

a

X

b
c

Fact. A word language is context-free iff it is the yield of some regular tree language.

from grammars to automata from automata to grammars

Regular tree languages are similar to context-free languages.

18

/24

X c | aXb

a

X

b

a

X

b

a

X

b
c

Fact. A word language is context-free iff it is the yield of some regular tree language.

Let A be a nondeterministic, top-down
tree automaton. e grammar G(A) has
states of A as nonterminals, and rules:

from grammars to automata from automata to grammars

Regular tree languages are similar to context-free languages.

18

/24

X c | aXb

a

X

b

a

X

b

a

X

b
c

Fact. A word language is context-free iff it is the yield of some regular tree language.

Let A be a nondeterministic, top-down
tree automaton. e grammar G(A) has
states of A as nonterminals, and rules:

a

q

q0 q1

automaton
transition

grammar
rule

q q0 q1

a

q
q a

from grammars to automata from automata to grammars

Regular tree languages are similar to context-free languages.

18

/2419

What is a Tree Automaton?

Decision Problems

–definition and examples
–determinism, bottom-up vs top-down
–minimization
–closure properties

–emptiness
–membership
–universality

/2419

What is a Tree Automaton?

Decision Problems

–definition and examples
–determinism, bottom-up vs top-down
–minimization
–closure properties

–emptiness
–membership
–universality

/24

Emptiness

m. Emptiness for tree automata is PTIME-complete.

Tree automata emptiness can be tested in linear time.20

/24

Emptiness

m. Emptiness for tree automata is PTIME-complete.

∧
∨

∧

∧

∨

∨

reachability in AND-OR graphs
hardness:

Tree automata emptiness can be tested in linear time.20

/24

Emptiness

m. Emptiness for tree automata is PTIME-complete.

∧
∨

∧

∧

∨

∨

reachability in AND-OR graphs
hardness:

Tree automata emptiness can be tested in linear time.20

/24

Emptiness

m. Emptiness for tree automata is PTIME-complete.

∧
∨

∧

∧

∨

∨

reachability in AND-OR graphs
hardness:

Tree automata emptiness can be tested in linear time.20

/24

Emptiness

m. Emptiness for tree automata is PTIME-complete.

∧
∨

∧

∧

∨

∨

reachability in AND-OR graphs
hardness:

Tree automata emptiness can be tested in linear time.20

/24

Emptiness

m. Emptiness for tree automata is PTIME-complete.

∧
∨

∧

∧

∨

∨

reachability in AND-OR graphs
hardness:

Tree automata emptiness can be tested in linear time.20

/24

Emptiness

m. Emptiness for tree automata is PTIME-complete.

∧
∨

∧

∧

∨

∨

reachability in AND-OR graphs
hardness:

Tree automata emptiness can be tested in linear time.20

/24

Emptiness

m. Emptiness for tree automata is PTIME-complete.

A transition a

P

P0 P1

can be reached if both states P0 and P1 can be reached.

∧
∨

∧

∧

∨

∨

reachability in AND-OR graphs
hardness:

Tree automata emptiness can be tested in linear time.20

/24

Emptiness

m. Emptiness for tree automata is PTIME-complete.

A transition a

P

P0 P1

can be reached if both states P0 and P1 can be reached.

A state p can be reached if some transition a

P

P0 P1

can be reached.

∧
∨

∧

∧

∨

∨

reachability in AND-OR graphs
hardness:

Tree automata emptiness can be tested in linear time.20

/24

Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

21

/24

Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

is problem can be solved in log(n) space, i.e. in LOGSPACE.

21

/24

Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

is problem can be solved in log(n) space, i.e. in LOGSPACE.

2 log(n) log(n) = n log(n)

21

/24

Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

is problem can be solved in log(n) space, i.e. in LOGSPACE.

21

/24

Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

is problem can be solved in log(n) space, i.e. in LOGSPACE.

we will keep a stack of
states of height log(n)

and one pointer to a node.

21

/24

Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

is problem can be solved in log(n) space, i.e. in LOGSPACE.

consider a balanced
binary tree.

we will keep a stack of
states of height log(n)

and one pointer to a node.

21

/24

Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

is problem can be solved in log(n) space, i.e. in LOGSPACE.

consider a balanced
binary tree.

we will keep a stack of
states of height log(n)

and one pointer to a node.

we visit nodes in a DFS 21

/24

Membership

Fix a tree automaton A (deterministic, bottom up).
Input: tree t with n nodes.
Question: does A accept t?

is problem can be solved in log(n) space, i.e. in LOGSPACE.

?
?

?
p

q

q
p

rconsider a balanced
binary tree.

we will keep a stack of
states of height log(n)

and one pointer to a node.

we visit nodes in a DFS 21

/24

Universality

22

/24

Universality
m. Universality for nondeterministic tree automata is -complete.

22

/24

Universality
m. Universality for nondeterministic tree automata is -complete.

Upper bound.
Determinize automaton, complement it, check for emptiness.

22

/24

Universality
m. Universality for nondeterministic tree automata is -complete.

Upper bound.
Determinize automaton, complement it, check for emptiness.

Lower bound.
Similar to

22

/24

Universality
m. Universality for nondeterministic tree automata is -complete.

Upper bound.
Determinize automaton, complement it, check for emptiness.

Lower bound.
Similar to

m. Universality for nondeterministic word automata is -hard.

22

m. Universality for nondeterministic word automata is -hard.

m. Universality for nondeterministic word automata is -hard.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton An with:

e machine M has a an accepting computation that uses n memory cells.
iff

e automaton An rejects some word.

m. Universality for nondeterministic word automata is -hard.

An accepts incorrect encodings, and correct encodings of nonaccepting runs.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton An with:

e machine M has a an accepting computation that uses n memory cells.
iff

e automaton An rejects some word.

m. Universality for nondeterministic word automata is -hard.

An accepts incorrect encodings, and correct encodings of nonaccepting runs.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton An with:

e machine M has a an accepting computation that uses n memory cells.
iff

e automaton An rejects some word.

b a... b a...a a b ...a

configuration 1 configuration 2 configuration 3

b,p a,p a,r

m. Universality for nondeterministic word automata is -hard.

An accepts incorrect encodings, and correct encodings of nonaccepting runs.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton An with:

e machine M has a an accepting computation that uses n memory cells.
iff

e automaton An rejects some word.

incorrect syntax:

b a... b a...a a b ...a

configuration 1 configuration 2 configuration 3

b,p a,p a,r

m. Universality for nondeterministic word automata is -hard.

An accepts incorrect encodings, and correct encodings of nonaccepting runs.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton An with:

e machine M has a an accepting computation that uses n memory cells.
iff

e automaton An rejects some word.

incorrect syntax:

b a... b a...a a b ...a

configuration 1 configuration 2 configuration 3

b,p a,p a,r

∑
i=1,..,n

a≠b

() i a n-i+1 i b n-i+1 *()*

m. Universality for nondeterministic word automata is -hard.

An accepts incorrect encodings, and correct encodings of nonaccepting runs.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton An with:

e machine M has a an accepting computation that uses n memory cells.
iff

e automaton An rejects some word.

incorrect syntax:

b a... b a...a a b ...a

configuration 1 configuration 2 configuration 3

b,p a,p a,r

∑
i=1,..,n

a≠b

() i a n-i+1 i b n-i+1 *()*
and some other similar properties

m. Universality for nondeterministic word automata is -hard.

An accepts incorrect encodings, and correct encodings of nonaccepting runs.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton An with:

e machine M has a an accepting computation that uses n memory cells.
iff

e automaton An rejects some word.

incorrect syntax:

not accepting:

b a... b a...a a b ...a

configuration 1 configuration 2 configuration 3

b,p a,p a,r

∑
i=1,..,n

a≠b

() i a n-i+1 i b n-i+1 *()*
and some other similar properties

m. Universality for nondeterministic word automata is -hard.

An accepts incorrect encodings, and correct encodings of nonaccepting runs.

Proof. For every Turing machine M, and every n one can write a polynomial size automaton An with:

e machine M has a an accepting computation that uses n memory cells.
iff

e automaton An rejects some word.

incorrect syntax:

not accepting:

b a... b a...a a b ...a

configuration 1 configuration 2 configuration 3

b,p a,p a,r

* **()*∑
p∉F
a∈∑

a,p

∑
i=1,..,n

a≠b

() i a n-i+1 i b n-i+1 *()*
and some other similar properties

Universality for nondeterminstic tree automata is EXPTIME-hard.

Universality for nondeterminstic tree automata is EXPTIME-hard.
Reduction from APSPACE.

Universality for nondeterminstic tree automata is EXPTIME-hard.
Reduction from APSPACE.

instead of a computation word...

Universality for nondeterminstic tree automata is EXPTIME-hard.
Reduction from APSPACE.

b a... b ...a a

configuration 1 configuration 2

b,p a,p

instead of a computation word...

Universality for nondeterminstic tree automata is EXPTIME-hard.
Reduction from APSPACE.

b a... b ...a a

configuration 1 configuration 2

b,p a,p

instead of a computation word...

...we have a computation tree.

Universality for nondeterminstic tree automata is EXPTIME-hard.
Reduction from APSPACE.

b a... b ...a a

configuration 1 configuration 2

b,p a,p
b

a

...
a

configuration 0

b,p

b

a

...
a

b,p b

a

...
a

b,q

b

a

b,p b

a

b,qb

a

b,p

b

a

b,q

∧

∧ ∨

configuration 0·0 configuration 0·1

instead of a computation word...

...we have a computation tree.

