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find the nodes in an XML document d 
that satisfy an XPath unary query q.
We consider a fragment of XPath called FOXPath.

Previous algorithms:
– exponential in the document size
– quadratic in the document size (Benedikt, Koch)

We give two algorithms:
– linear in the document size: O( 2|q|·|d| ) 
– good combined complexity: O(|q|·|d|·log(|d|))

Goal:
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m. 
Let t be an FOXPath test and d an XML document.

e set of nodes in d selected by t can be computed in time 
O(|d|2|t|) as well as in time O(|d|log(|d|)|t|2) 
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Using Simon decompositions,
a fancy algebraic result



What is the Simon decomposition?
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Big news: Simon decomposition does this with constant depth!
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Summary

– We evaluate XPath queries with linear time data complexity,
improving previous quadratic algorithms.
(the constant is exponential in the query, because we use semigroup theory)

– Works for both unary and binary queries

– Preliminary results indicate that semigroups can be avoided,
    and the constant becomes polynomial in the query.

– We want to investigate more of XPath, and other languages

Future work

– Semigroups a good tool for efficient query evaluation
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