
XPath Evaluation in
Linear Time

Mikołaj Bojańczyk, Paweł Parys
Warsaw University

find the nodes in an XML document d
that satisfy an XPath unary query q.
We consider a fragment of XPath called FOXPath.

Previous algorithms:
– exponential in the document size
– quadratic in the document size (Benedikt, Koch)

We give two algorithms:
– linear in the document size: O(2|q|·|d|)
– good combined complexity: O(|q|·|d|·log(|d|))

Goal:

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

document node,
i.e. opening tag

attribute name
attribute name

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

document node,
i.e. opening tag

attribute name
attribute name

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

XPath query: “select teams that share a player with another team”

document node,
i.e. opening tag

attribute name
attribute name

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

XPath query: “select teams that share a player with another team”

document node,
i.e. opening tag

attribute name
attribute name

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

XPath query: “select teams that share a player with another team”

document node,
i.e. opening tag

attribute name
attribute name

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

XPath query: “select teams that share a player with another team”

document node,
i.e. opening tag

attribute name
attribute name

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

XPath query: “select teams that share a player with another team”

document node,
i.e. opening tag

attribute name
attribute name

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

XPath query: “select teams that share a player with another team”

document node,
i.e. opening tag

attribute name
attribute name

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

XPath query: “select teams that share a player with another team”

document node,
i.e. opening tag

attribute name
attribute name

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

XPath query: “select teams that share a player with another team”

document node,
i.e. opening tag

attribute name
attribute name

<document>

<team name=”Borussia”>

<player name=”Kuba”></player>

<player name=”Frei”></player>
</team>

<team name=”Schalke”>
<player name=”Kuranyi”>

</team>

<team name=”Poland”>

<player name=”Kuba”></player>
<player name=”Boruc”></player>

</team>

</document>

XML Document

XPath query: “select teams that share a player with another team”
child[player]@name = sibling[team]/child[player]@name

document node,
i.e. opening tag

attribute name
attribute name

FOXPathPrograms - select node pairs.
 - child, parent, next-sibling, prev-sibling, descendant, etc.
 - any regular expression on programs is a program, e.g. child*
 - if t is a test, then [t] is a program that selects (x,x) if node x satisfies t

Tests - select single nodes.
 - any tag name a is a test that selects nodes with this tag.
 - boolean operations: or, and, not
 - if p,q are programs, and a,b attribute names, then p@a=q@b and p@a ≠ p@b are tests.

FOXPathPrograms - select node pairs.
 - child, parent, next-sibling, prev-sibling, descendant, etc.
 - any regular expression on programs is a program, e.g. child*
 - if t is a test, then [t] is a program that selects (x,x) if node x satisfies t

Tests - select single nodes.
 - any tag name a is a test that selects nodes with this tag.
 - boolean operations: or, and, not
 - if p,q are programs, and a,b attribute names, then p@a=q@b and p@a ≠ p@b are tests.

x

A node x is selected by p@a=q@b if

FOXPathPrograms - select node pairs.
 - child, parent, next-sibling, prev-sibling, descendant, etc.
 - any regular expression on programs is a program, e.g. child*
 - if t is a test, then [t] is a program that selects (x,x) if node x satisfies t

Tests - select single nodes.
 - any tag name a is a test that selects nodes with this tag.
 - boolean operations: or, and, not
 - if p,q are programs, and a,b attribute names, then p@a=q@b and p@a ≠ p@b are tests.

x

A node x is selected by p@a=q@b if
 there are some nodes y and z such that

FOXPathPrograms - select node pairs.
 - child, parent, next-sibling, prev-sibling, descendant, etc.
 - any regular expression on programs is a program, e.g. child*
 - if t is a test, then [t] is a program that selects (x,x) if node x satisfies t

Tests - select single nodes.
 - any tag name a is a test that selects nodes with this tag.
 - boolean operations: or, and, not
 - if p,q are programs, and a,b attribute names, then p@a=q@b and p@a ≠ p@b are tests.

x

p
y

A node x is selected by p@a=q@b if

the pair (x,y) is selected by p.

 there are some nodes y and z such that

FOXPathPrograms - select node pairs.
 - child, parent, next-sibling, prev-sibling, descendant, etc.
 - any regular expression on programs is a program, e.g. child*
 - if t is a test, then [t] is a program that selects (x,x) if node x satisfies t

Tests - select single nodes.
 - any tag name a is a test that selects nodes with this tag.
 - boolean operations: or, and, not
 - if p,q are programs, and a,b attribute names, then p@a=q@b and p@a ≠ p@b are tests.

x

p
y

q
z

A node x is selected by p@a=q@b if

the pair (x,y) is selected by p.

the pair (x,z) is selected by q.

 there are some nodes y and z such that

FOXPathPrograms - select node pairs.
 - child, parent, next-sibling, prev-sibling, descendant, etc.
 - any regular expression on programs is a program, e.g. child*
 - if t is a test, then [t] is a program that selects (x,x) if node x satisfies t

Tests - select single nodes.
 - any tag name a is a test that selects nodes with this tag.
 - boolean operations: or, and, not
 - if p,q are programs, and a,b attribute names, then p@a=q@b and p@a ≠ p@b are tests.

x

p
y

q
z

A node x is selected by p@a=q@b if

the pair (x,y) is selected by p.

the pair (x,z) is selected by q.

the attribute values
y@a and z@b are the same.

 there are some nodes y and z such that

FOXPathPrograms - select node pairs.
 - child, parent, next-sibling, prev-sibling, descendant, etc.
 - any regular expression on programs is a program, e.g. child*
 - if t is a test, then [t] is a program that selects (x,x) if node x satisfies t

Tests - select single nodes.
 - any tag name a is a test that selects nodes with this tag.
 - boolean operations: or, and, not
 - if p,q are programs, and a,b attribute names, then p@a=q@b and p@a ≠ p@b are tests.

x

p
y

q
z

A node x is selected by p@a=q@b if

the pair (x,y) is selected by p.

the pair (x,z) is selected by q.

the attribute values
y@a and z@b are the same.

 there are some nodes y and z such that

m.
Let t be an FOXPath test and d an XML document.

e set of nodes in d selected by t can be computed in time
O(|d|2|t|) as well as in time O(|d|log(|d|)|t|2)

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

2. for each class, find nodes that are witnessed by
 that class

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

2. for each class, find nodes that are witnessed by
 that class

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

2. for each class, find nodes that are witnessed by
 that class

p@a

q@a

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

2. for each class, find nodes that are witnessed by
 that class

p@a

q@a

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

2. for each class, find nodes that are witnessed by
 that class

p@a

q@a

p@a

q@a

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

2. for each class, find nodes that are witnessed by
 that class

p@a

q@a

p@a

q@a

Goal: avoid repetition
– do a constant number of operations per node
– or at least logarithmic

find nodes that satisfy p@a = q@a
1. decompose trees into classes
 (class = set of nodes with same value of atribute a)

High level overview

2. for each class, find nodes that are witnessed by
 that class

p@a

q@a

p@a

q@a

Goal: avoid repetition
– do a constant number of operations per node
– or at least logarithmic

Using Simon decompositions,
a fancy algebraic result

What is the Simon decomposition?

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

A an automaton recognizing L, and Q its state space.
Each word u induces a tranformation on states .

a b b a a b b a

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

A an automaton recognizing L, and Q its state space.
Each word u induces a tranformation on states .

a b b a a b b a

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

½

A an automaton recognizing L, and Q its state space.
Each word u induces a tranformation on states .

a b b a a b b a

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

½

¼

A an automaton recognizing L, and Q its state space.
Each word u induces a tranformation on states .

a b b a a b b a

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

½

¼

⅛

A an automaton recognizing L, and Q its state space.
Each word u induces a tranformation on states .

a b b a a b b a

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

½

¼

⅛

A an automaton recognizing L, and Q its state space.
Each word u induces a tranformation on states .

a b b a a b b a

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

½

¼

⅛

A an automaton recognizing L, and Q its state space.
Each word u induces a tranformation on states .

a b b a a b b a

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

½

¼

⅛

A an automaton recognizing L, and Q its state space.
Each word u induces a tranformation on states .

a b b a a b b a

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

½

¼

⅛

A an automaton recognizing L, and Q its state space.
Each word u induces a tranformation on states .

ji

a b b a a b b a

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

½

¼

⅛

A an automaton recognizing L, and Q its state space.
Each word u induces a tranformation on states .

ji

a b b a a b b a

L a regular word language.
Do a linear time precomputation on w=a1a2...an

For any infix, membership ai...aj L can be computed in time log n

½

¼

⅛

A an automaton recognizing L, and Q its state space.
Each word u induces a tranformation on states .

ji

Big news: Simon decomposition does this with constant depth!

Back to XPath evaluation...

To simplify, consider a special case of XPath:

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

To simplify, consider a special case of XPath:
- words not trees

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

To simplify, consider a special case of XPath:
- words not trees
- a test p@a =q@a

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

To simplify, consider a special case of XPath:
- words not trees
- a test p@a =q@a

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

To simplify, consider a special case of XPath:
- words not trees
- a test p@a =q@a

p q

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

To simplify, consider a special case of XPath:
- words not trees
- a test p@a =q@a

- each attribute value appears exactly twice

p q

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

To simplify, consider a special case of XPath:
- words not trees
- a test p@a =q@a

- each attribute value appears exactly twice

p q

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

To simplify, consider a special case of XPath:
- words not trees
- a test p@a =q@a

- programs p,q have no nested tests, except label tests
- each attribute value appears exactly twice

p q

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

To simplify, consider a special case of XPath:
- words not trees
- a test p@a =q@a

- programs p,q have no nested tests, except label tests
- p only goes left, q only goes right

- each attribute value appears exactly twice

p q

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

To simplify, consider a special case of XPath:
- words not trees
- a test p@a =q@a

- programs p,q have no nested tests, except label tests
- p only goes left, q only goes right

- each attribute value appears exactly twice

p q

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

L Kx

∈ E

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

Naive algorithm.
 For every match (y, z) ∈ E

∈ E

y z

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

Naive algorithm.
 For every match (y, z) ∈ E

∈ E

y z

Find nodes x such that w[y..x] ∈ L w[x..z] ∈ K

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

Naive algorithm.
 For every match (y, z) ∈ E

∈ E

y zx x x x x xx

Find nodes x such that w[y..x] ∈ L w[x..z] ∈ K

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

Naive algorithm.
 For every match (y, z) ∈ E

∈ E

y zx x x x x xx

Find nodes x such that w[y..x] ∈ L w[x..z] ∈ K time O(n2)

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

Naive algorithm.
 For every match (y, z) ∈ E

∈ E

y zx x x x x xx

Find nodes x such that w[y..x] ∈ L w[x..z] ∈ K

Divide and conquer dynamic algorithm.
 Solves the problem in time O(n log(n))

time O(n2)

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

Naive algorithm.
 For every match (y, z) ∈ E

∈ E

y zx x x x x xx

Find nodes x such that w[y..x] ∈ L w[x..z] ∈ K

Divide and conquer dynamic algorithm.
 Solves the problem in time O(n log(n))

An algorithm that uses the Simon decomposition
 Solves the problem in time O(n)

time O(n2)

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

Divide and conquer dynamic algorithm.

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

Divide and conquer dynamic algorithm.

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

∈ E

y z

 For every match (y, z) ∈ E

Find nodes x such that w[y..x] ∈ L w[x..z] ∈ K

Divide and conquer dynamic algorithm.

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

∈ E

y z

 For every match (y, z) ∈ E

Find nodes x such that w[y..x] ∈ L w[x..z] ∈ K

Divide and conquer dynamic algorithm.

but only do logarithmically many operations each time

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

∈ E

y z

 For every match (y, z) ∈ E

Find nodes x such that w[y..x] ∈ L w[x..z] ∈ K

Divide and conquer dynamic algorithm.

but only do logarithmically many operations each time

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

∈ E

y z

 For every match (y, z) ∈ E

Find nodes x such that w[y..x] ∈ L w[x..z] ∈ K

Divide and conquer dynamic algorithm.

but only do logarithmically many operations each time

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

∈ E

y z

 For every match (y, z) ∈ E

Find nodes x such that w[y..x] ∈ L w[x..z] ∈ K

Divide and conquer dynamic algorithm.

but only do logarithmically many operations each time

abaabaabbabababbababbabbababbababbabbbababbbabbababbabbbabaababbabba

Problem. Fix a set of tag names and regular word languages

Input. matching

Output. Set of nodes x with

a1 · · · an ∈ Σ∗ E ⊆ {1, . . . , n}2

Σ L,K ⊆ Σ∗

∈ E

y z

 For every match (y, z) ∈ E

Find nodes x such that w[y..x] ∈ L w[x..z] ∈ K

Divide and conquer dynamic algorithm.

but only do logarithmically many operations each time

Summary

Summary

– We evaluate XPath queries with linear time data complexity,
improving previous quadratic algorithms.
(the constant is exponential in the query, because we use semigroup theory)

Summary

– We evaluate XPath queries with linear time data complexity,
improving previous quadratic algorithms.
(the constant is exponential in the query, because we use semigroup theory)

– Works for both unary and binary queries

Summary

– We evaluate XPath queries with linear time data complexity,
improving previous quadratic algorithms.
(the constant is exponential in the query, because we use semigroup theory)

– Works for both unary and binary queries

– Semigroups a good tool for efficient query evaluation

Summary

– We evaluate XPath queries with linear time data complexity,
improving previous quadratic algorithms.
(the constant is exponential in the query, because we use semigroup theory)

– Works for both unary and binary queries

Future work

– Semigroups a good tool for efficient query evaluation

Summary

– We evaluate XPath queries with linear time data complexity,
improving previous quadratic algorithms.
(the constant is exponential in the query, because we use semigroup theory)

– Works for both unary and binary queries

– Preliminary results indicate that semigroups can be avoided,
 and the constant becomes polynomial in the query.

Future work

– Semigroups a good tool for efficient query evaluation

Summary

– We evaluate XPath queries with linear time data complexity,
improving previous quadratic algorithms.
(the constant is exponential in the query, because we use semigroup theory)

– Works for both unary and binary queries

– Preliminary results indicate that semigroups can be avoided,
 and the constant becomes polynomial in the query.

– We want to investigate more of XPath, and other languages

Future work

– Semigroups a good tool for efficient query evaluation

Let A be an automaton with state space Q
Two rules for splitting words.

Let A be an automaton with state space Q
Two rules for splitting words.

Simon eorem. For fixed A, there is a splitting depth K, such that
every word can be split in depth K down to single letters.

Let A be an automaton with state space Q
Two rules for splitting words.

Simon eorem. For fixed A, there is a splitting depth K, such that
every word can be split in depth K down to single letters.

abaabbbababbbabba bbabbbabbbabbaba

Rule 1. split into two parts

Let A be an automaton with state space Q
Two rules for splitting words.

Simon eorem. For fixed A, there is a splitting depth K, such that
every word can be split in depth K down to single letters.

abaabbbababbbabba bbabbbabbbabbaba

Rule 1. split into two parts

Rule 2. split into many parts, each with the same transformation

abaab bbababb babba bba bbbabb babba ba

Let A be an automaton with state space Q
Two rules for splitting words.

Simon eorem. For fixed A, there is a splitting depth K, such that
every word can be split in depth K down to single letters.

abaabbbababbbabba bbabbbabbbabbaba

Rule 1. split into two parts

Rule 2. split into many parts, each with the same transformation

abaab bbababb babba bba bbbabb babba ba

