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A word  an1 b an2 b an3 b... describes a number sequence n1 n2 n3...

Which properties of number sequences are regular?

– odd numbers on even positions
– infinitely many odd numbers
– the first number n1 is prime
– infinitely many prime numbers
– sequence is ultimately constant
– sequence is bounded
– sequence tends to ∞
– exists a bounded subsequence
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(Weak MSO: set quantification only over finite sets.)

Corollary of determinization. 
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Max-automaton

Has finite state space Q and a finite set of counters C.
e counters are only read by the acceptance condition, and not during the run.

Acceptance condition: boolean combination of clauses
“counter c is bounded”

Transitions can do counter operations:
c:=c+1
c:=0

c:=max(c,d)
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counter c accepting. No reset on 

c, at least one increment. 

for bounding counters:
every loop with an increment

also contains a reset.
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Extend weak MSO with the following quantifier:

Example: {an1 b an2 b an3 b... : n1 n2 n3... is not bounded}
UX   “X is a set of consecutive a’s” 

UX   φ(X) 

“ φ(X) holds for finite sets X of arbitrarily large size”

   φ(X) ∧  n<|X|<∞∧
n

which is the same as

which is the same as
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What about full MSO with the unbounding quantifier?

m.  MSO+U is strictly more expressive than WMSO+U

 separating language  L={an1 b an2 b an3 b... : n1 n2 n3... tends to ∞}

complement of L : exists a bounded subsequence.
L ∈ MSO+U

L ∉ WMSO+U topological argument.
acceptance condition “n1 n2 n3...  is bounded”
is a countable union of closed sets (Σ2)

“sequence bounded by N” is a closed set

Prop. A language recognized by a max automaton is a 
boolean combination of Σ2 sets, while L is not.
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BS-automata (B, Colcombet LICS ’06)

WMSO+U
ω-regular

“ n1 n2 n3... is 
bounded”

n1 n2 n3... tends to ∞
infinitely many numbers 
appear infinitely often
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New robust class of languages extending ω-regular languages.
(automata, logic, decidability)

Conclusion

Future work
– Full MSO+U
– Tree extensions
– Algebra
– Regular expressions
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WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Weak existential quantification

Unbounding quantification
Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for arbitrarily large X} ⊆ Σω

e proof uses a combinatoric theorem of I. Simon.
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0

0 0 0 0

“even number of a’s” has a 
decomposition of depth 5

m. (Colcombet ’07)
e decomposition can be output by a deterministic finite
state transducer.

two transition functions:
even (0) and odd (1)

a b b a a a a b b a a b b a a b    
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Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for arbitrarily large X} ⊆ Σω

given a word w∈Σω, how can a deterministic automaton tell
if w[X]∈L holds for arbitrarily large X?

...w=

1. compute Simon decomposition for well chosen automaton
 (a modification of the automaton for L)

2. find large boxes


