
A robust extension of
ω-regular word languages.

Mikołaj Bojańczyk
Warsaw University

What is a regular word language?
– regular expressions
– automata
– monadic second-order logic
– closure properties
– semigroups
– Myhill-Nerode equivalence

What is a regular word language?
– regular expressions
– automata
– monadic second-order logic
– closure properties
– semigroups
– Myhill-Nerode equivalence

What about infinite words?

What is a regular word language?
– regular expressions
– automata
– monadic second-order logic
– closure properties
– semigroups
– Myhill-Nerode equivalence

What about infinite words?
ω-regular languages

What is a regular word language?
– regular expressions
– automata
– monadic second-order logic
– closure properties
– semigroups
– Myhill-Nerode equivalence

What about infinite words?
ω-regular languages

Claim: there are robust extensions of ω-regular languages

finite words infinite words

What is a regular word language?
– regular expressions
– automata
– monadic second-order logic
– closure properties
– semigroups
– Myhill-Nerode equivalence

What about infinite words?
ω-regular languages

Claim: there are robust extensions of ω-regular languages

finite words infinite words

What is a regular word language?
– regular expressions
– automata
– monadic second-order logic
– closure properties
– semigroups
– Myhill-Nerode equivalence

What about infinite words?
ω-regular languages

Claim: there are robust extensions of ω-regular languages

finite words infinite words

What is a regular word language?
– regular expressions
– automata
– monadic second-order logic
– closure properties
– semigroups
– Myhill-Nerode equivalence

What about infinite words?
ω-regular languages

Claim: there are robust extensions of ω-regular languages

A word an1 b an2 b an3 b... describes a number sequence n1 n2 n3...

A word an1 b an2 b an3 b... describes a number sequence n1 n2 n3...

Which properties of number sequences are regular?

A word an1 b an2 b an3 b... describes a number sequence n1 n2 n3...

Which properties of number sequences are regular?

– odd numbers on even positions

A word an1 b an2 b an3 b... describes a number sequence n1 n2 n3...

Which properties of number sequences are regular?

– odd numbers on even positions
– infinitely many odd numbers

A word an1 b an2 b an3 b... describes a number sequence n1 n2 n3...

Which properties of number sequences are regular?

– odd numbers on even positions
– infinitely many odd numbers
– the first number n1 is prime

A word an1 b an2 b an3 b... describes a number sequence n1 n2 n3...

Which properties of number sequences are regular?

– odd numbers on even positions
– infinitely many odd numbers
– the first number n1 is prime
– infinitely many prime numbers

A word an1 b an2 b an3 b... describes a number sequence n1 n2 n3...

Which properties of number sequences are regular?

– odd numbers on even positions
– infinitely many odd numbers
– the first number n1 is prime
– infinitely many prime numbers
– sequence is ultimately constant

A word an1 b an2 b an3 b... describes a number sequence n1 n2 n3...

Which properties of number sequences are regular?

– odd numbers on even positions
– infinitely many odd numbers
– the first number n1 is prime
– infinitely many prime numbers
– sequence is ultimately constant
– sequence is bounded

A word an1 b an2 b an3 b... describes a number sequence n1 n2 n3...

Which properties of number sequences are regular?

– odd numbers on even positions
– infinitely many odd numbers
– the first number n1 is prime
– infinitely many prime numbers
– sequence is ultimately constant
– sequence is bounded
– sequence tends to ∞

A word an1 b an2 b an3 b... describes a number sequence n1 n2 n3...

Which properties of number sequences are regular?

– odd numbers on even positions
– infinitely many odd numbers
– the first number n1 is prime
– infinitely many prime numbers
– sequence is ultimately constant
– sequence is bounded
– sequence tends to ∞
– exists a bounded subsequence

Myhill-Nerode equivalence.
Two finite words v, w are equivalent for a language L if they can
be swapped in any environment, and L will not notice.

Myhill-Nerode equivalence.
Two finite words v, w are equivalent for a language L if they can
be swapped in any environment, and L will not notice.

w
∈L

v

for finite words:

Myhill-Nerode equivalence.
Two finite words v, w are equivalent for a language L if they can
be swapped in any environment, and L will not notice.

w
∈L

v

for finite words:

for infinite words:

Myhill-Nerode equivalence.
Two finite words v, w are equivalent for a language L if they can
be swapped in any environment, and L will not notice.

w
∈L

v

for finite words:

for infinite words:

...

Myhill-Nerode equivalence.
Two finite words v, w are equivalent for a language L if they can
be swapped in any environment, and L will not notice.

w
∈L

v

for finite words:

for infinite words:

...
“infinitely many primes” has 1 equivalence class

Myhill-Nerode equivalence.
Two finite words v, w are equivalent for a language L if they can
be swapped in any environment, and L will not notice.

w
∈L

v

for finite words:

for infinite words:

...

()
ω

“infinitely many primes” has 1 equivalence class

(a+b)* bω

Büchi automaton b
b

a,b

acceptance condition:

appears infinitely often,

(a+b)* bω

 m. (McNaughton `66)
For every nondeterministic Büchi automaton, there is an equivalent
deterministic Muller automaton.

Büchi automaton b
b

a,b

acceptance condition:

appears infinitely often,

(a+b)* bω

 m. (McNaughton `66)
For every nondeterministic Büchi automaton, there is an equivalent
deterministic Muller automaton.

Büchi automaton b
b

a,b

acceptance condition:

appears infinitely often,

(a+b)* bω

b

b

a

a
acceptance condition:

appears infinitely often,

and appears finitely often

Muller automaton

Monadic second-order logic (MSO)

Monadic second-order logic (MSO)

“infinitely many a’s on even positions”

Monadic second-order logic (MSO)

“infinitely many a’s on even positions”

∃X
∀x ∃y≤x y∈X
∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

∀x ∀y≥x a(y) ∧ y∈X
{

Monadic second-order logic (MSO)

“infinitely many a’s on even positions”

∃X
∀x ∃y≤x y∈X
∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

∀x ∀y≥x a(y) ∧ y∈X
{

contains infinitely many a’s

ere is a set X of positions

contains every second position

contains the first position

Monadic second-order logic (MSO)

“infinitely many a’s on even positions”

∃X
∀x ∃y≤x y∈X
∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

∀x ∀y≥x a(y) ∧ y∈X
{

m. (Büchi `60)
Büchi automata and MSO have the same expressive power.

contains infinitely many a’s

ere is a set X of positions

contains every second position

contains the first position

Monadic second-order logic (MSO)

“infinitely many a’s on even positions”

∃X
∀x ∃y≤x y∈X
∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

∀x ∀y≥x a(y) ∧ y∈X
{

m. (Büchi `60)
Büchi automata and MSO have the same expressive power.

(Weak MSO: set quantification only over finite sets.)

Corollary of determinization.
For infinite words, MSO = Weak MSO

contains infinitely many a’s

ere is a set X of positions

contains every second position

contains the first position

Monadic second-order logic (MSO)

“infinitely many a’s on even positions”

∃X
∀x ∃y≤x y∈X
∀x ∀y suc(x,y) ⇒ (x∈X ⇔ y∉X)

∀x ∀y≥x a(y) ∧ y∈X
{

m. (Büchi `60)
Büchi automata and MSO have the same expressive power.

(Weak MSO: set quantification only over finite sets.)

Corollary of determinization.
For infinite words, MSO = Weak MSO

∀x ∃y>x ∃X ... contains infinitely many a’s

ere is a set X of positions

contains every second position

contains the first position

logic automata

MSO = WMSO Büchi, Muller

logic automata

MSO = WMSO Büchi, Muller

WMSO+U deterministic
max-automata

Max-automaton

Max-automaton

Has finite state space Q and a finite set of counters C.
e counters are only read by the acceptance condition, and not during the run.

Max-automaton

Has finite state space Q and a finite set of counters C.
e counters are only read by the acceptance condition, and not during the run.

Transitions can do counter operations:
c:=c+1
c:=0

c:=max(c,d)

Max-automaton

Has finite state space Q and a finite set of counters C.
e counters are only read by the acceptance condition, and not during the run.

Acceptance condition: boolean combination of clauses
“counter c is bounded”

Transitions can do counter operations:
c:=c+1
c:=0

c:=max(c,d)

m. Emptiness decidable for max-automata.

finite prefix

m. Emptiness decidable for max-automata.

finite prefix

m. Emptiness decidable for max-automata.
For a max-automaton, the accepting condition says some

counters are bounded, and some are not.

finite prefix

m. Emptiness decidable for max-automata.
For a max-automaton, the accepting condition says some

counters are bounded, and some are not.

finite prefix

loop that makes an unbounded
counter c accepting. No reset on

c, at least one increment.

for bounding counters:
every loop with an increment

also contains a reset.

m. Emptiness decidable for max-automata.
For a max-automaton, the accepting condition says some

counters are bounded, and some are not.

What is the logic for max-automata?

Extend weak MSO with the following quantifier:

Extend weak MSO with the following quantifier:

UX φ(X)

“ φ(X) holds for finite sets X of arbitrarily large size”

 φ(X) ∧ n<|X|<∞∧
n

which is the same as

which is the same as

Extend weak MSO with the following quantifier:

Example: {an1 b an2 b an3 b... : n1 n2 n3... is not bounded}

UX φ(X)

“ φ(X) holds for finite sets X of arbitrarily large size”

 φ(X) ∧ n<|X|<∞∧
n

which is the same as

which is the same as

Extend weak MSO with the following quantifier:

Example: {an1 b an2 b an3 b... : n1 n2 n3... is not bounded}
UX “X is a set of consecutive a’s”

UX φ(X)

“ φ(X) holds for finite sets X of arbitrarily large size”

 φ(X) ∧ n<|X|<∞∧
n

which is the same as

which is the same as

m. Deterministic max-automata recognize the same
langauges as weak MSO with the unbounding quantifier.

m. Deterministic max-automata recognize the same
langauges as weak MSO with the unbounding quantifier.

Proof. Effective translations both ways.

m. Deterministic max-automata recognize the same
langauges as weak MSO with the unbounding quantifier.

ω-regular

WMSO+U

Proof. Effective translations both ways.

m. Deterministic max-automata recognize the same
langauges as weak MSO with the unbounding quantifier.

ω-regular

WMSO+U

“ n1 n2 n3... is
bounded”

Proof. Effective translations both ways.

–logic
–automata
–decidability
–?

Myhill-Nerode equivalence.

...

ω()

Myhill-Nerode equivalence.

...

Prop. Languages recognized by max-automata have finitely many
equivalence classes. Each class is a regular language of finite words.

ω()

Myhill-Nerode equivalence.

...

Prop. Languages recognized by max-automata have finitely many
equivalence classes. Each class is a regular language of finite words.

Proof sketch. Equivalence class of depends on state
transformations, which counters are incremented (but not how
much), and which counters are reset.

ω()

Myhill-Nerode equivalence.

...

Prop. Languages recognized by max-automata have finitely many
equivalence classes. Each class is a regular language of finite words.

Proof sketch. Equivalence class of depends on state
transformations, which counters are incremented (but not how
much), and which counters are reset.

() () (
also works for:

ω()

What about full MSO with the unbounding quantifier?

What about full MSO with the unbounding quantifier?

m. MSO+U is strictly more expressive than WMSO+U

What about full MSO with the unbounding quantifier?

m. MSO+U is strictly more expressive than WMSO+U

 separating language L={an1 b an2 b an3 b... : n1 n2 n3... tends to ∞}

What about full MSO with the unbounding quantifier?

m. MSO+U is strictly more expressive than WMSO+U

 separating language L={an1 b an2 b an3 b... : n1 n2 n3... tends to ∞}

L ∈ MSO+U

What about full MSO with the unbounding quantifier?

m. MSO+U is strictly more expressive than WMSO+U

 separating language L={an1 b an2 b an3 b... : n1 n2 n3... tends to ∞}

complement of L : exists a bounded subsequence.
L ∈ MSO+U

What about full MSO with the unbounding quantifier?

m. MSO+U is strictly more expressive than WMSO+U

 separating language L={an1 b an2 b an3 b... : n1 n2 n3... tends to ∞}

complement of L : exists a bounded subsequence.
L ∈ MSO+U

L ∉ WMSO+U

What about full MSO with the unbounding quantifier?

m. MSO+U is strictly more expressive than WMSO+U

 separating language L={an1 b an2 b an3 b... : n1 n2 n3... tends to ∞}

complement of L : exists a bounded subsequence.
L ∈ MSO+U

L ∉ WMSO+U topological argument.

What about full MSO with the unbounding quantifier?

m. MSO+U is strictly more expressive than WMSO+U

 separating language L={an1 b an2 b an3 b... : n1 n2 n3... tends to ∞}

complement of L : exists a bounded subsequence.
L ∈ MSO+U

L ∉ WMSO+U topological argument.
acceptance condition “n1 n2 n3... is bounded”

What about full MSO with the unbounding quantifier?

m. MSO+U is strictly more expressive than WMSO+U

 separating language L={an1 b an2 b an3 b... : n1 n2 n3... tends to ∞}

complement of L : exists a bounded subsequence.
L ∈ MSO+U

L ∉ WMSO+U topological argument.
acceptance condition “n1 n2 n3... is bounded”
is a countable union of closed sets (Σ2)

What about full MSO with the unbounding quantifier?

m. MSO+U is strictly more expressive than WMSO+U

 separating language L={an1 b an2 b an3 b... : n1 n2 n3... tends to ∞}

complement of L : exists a bounded subsequence.
L ∈ MSO+U

L ∉ WMSO+U topological argument.
acceptance condition “n1 n2 n3... is bounded”
is a countable union of closed sets (Σ2)

“sequence bounded by N” is a closed set

What about full MSO with the unbounding quantifier?

m. MSO+U is strictly more expressive than WMSO+U

 separating language L={an1 b an2 b an3 b... : n1 n2 n3... tends to ∞}

complement of L : exists a bounded subsequence.
L ∈ MSO+U

L ∉ WMSO+U topological argument.
acceptance condition “n1 n2 n3... is bounded”
is a countable union of closed sets (Σ2)

“sequence bounded by N” is a closed set

Prop. A language recognized by a max automaton is a
boolean combination of Σ2 sets, while L is not.

ω-regular

WMSO+U
ω-regular

WMSO+U
ω-regular

“ n1 n2 n3... is
bounded”

MSO+U

WMSO+U
ω-regular

“ n1 n2 n3... is
bounded”

MSO+U

WMSO+U
ω-regular

“ n1 n2 n3... is
bounded”

n1 n2 n3... tends to ∞

MSO+U

BS-automata (B, Colcombet LICS ’06)

WMSO+U
ω-regular

“ n1 n2 n3... is
bounded”

n1 n2 n3... tends to ∞

MSO+U

BS-automata (B, Colcombet LICS ’06)

WMSO+U
ω-regular

“ n1 n2 n3... is
bounded”

n1 n2 n3... tends to ∞
infinitely many numbers
appear infinitely often

New robust class of languages extending ω-regular languages.
(automata, logic, decidability)

Conclusion

New robust class of languages extending ω-regular languages.
(automata, logic, decidability)

Conclusion

Future work

New robust class of languages extending ω-regular languages.
(automata, logic, decidability)

Conclusion

Future work
– Full MSO+U

New robust class of languages extending ω-regular languages.
(automata, logic, decidability)

Conclusion

Future work
– Full MSO+U
– Tree extensions

New robust class of languages extending ω-regular languages.
(automata, logic, decidability)

Conclusion

Future work
– Full MSO+U
– Tree extensions
– Algebra

New robust class of languages extending ω-regular languages.
(automata, logic, decidability)

Conclusion

Future work
– Full MSO+U
– Tree extensions
– Algebra
– Regular expressions

a bit about the proofs

WMSO+U deterministic max-automata

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Boolean operations: free for a deterministic automaton.

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Boolean operations: free for a deterministic automaton.

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Weak existential quantification

Unbounding quantification

Let w be a word over alphabet Σ, and X a set of positions.
w[X] : word over alphabet Σ×{0,1}

Boolean operations: free for a deterministic automaton.

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Weak existential quantification

Unbounding quantification

Let w be a word over alphabet Σ, and X a set of positions.
w[X] : word over alphabet Σ×{0,1}

Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for some finite set X} ⊆ Σω

Boolean operations: free for a deterministic automaton.

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Weak existential quantification

Unbounding quantification

Let w be a word over alphabet Σ, and X a set of positions.
w[X] : word over alphabet Σ×{0,1}

Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for some finite set X} ⊆ Σω

Boolean operations: free for a deterministic automaton.

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Weak existential quantification

Unbounding quantification
Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for arbitrarily large X} ⊆ Σω

Let w be a word over alphabet Σ, and X a set of positions.
w[X] : word over alphabet Σ×{0,1}

Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for some finite set X} ⊆ Σω

Boolean operations: free for a deterministic automaton.

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Weak existential quantification

Unbounding quantification
Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for arbitrarily large X} ⊆ Σω

e proof uses a combinatoric theorem of I. Simon.

Let A be an automaton with state space Q
Two rules for splitting words.

Let A be an automaton with state space Q
Two rules for splitting words.

Simon eorem. For fixed A, there is a splitting depth K, such that
every word can be split in depth K down to single letters.

Let A be an automaton with state space Q
Two rules for splitting words.

Simon eorem. For fixed A, there is a splitting depth K, such that
every word can be split in depth K down to single letters.

abaabbbababbbabba bbabbbabbbabbaba

Rule 1. split into two parts

Let A be an automaton with state space Q
Two rules for splitting words.

Simon eorem. For fixed A, there is a splitting depth K, such that
every word can be split in depth K down to single letters.

abaabbbababbbabba bbabbbabbbabbaba

Rule 1. split into two parts

Rule 2. split into many parts, each with the same transformation

abaab bbababb babba bba bbbabb babba ba

Let A be an automaton with state space Q
Two rules for splitting words.

Simon eorem. For fixed A, there is a splitting depth K, such that
every word can be split in depth K down to single letters.

abaabbbababbbabba bbabbbabbbabbaba

Rule 1. split into two parts

Rule 2. split into many parts, each with the same transformation

abaab bbababb babba bba bbbabb babba ba

“even number of a’s” has a
decomposition of depth 5

two transition functions:
even (0) and odd (1)

“even number of a’s” has a
decomposition of depth 5

two transition functions:
even (0) and odd (1)

a b b a a a a b b a a b b a a b

0 0 0 0

“even number of a’s” has a
decomposition of depth 5

two transition functions:
even (0) and odd (1)

a b b a a a a b b a a b b a a b

0 0 0 0

“even number of a’s” has a
decomposition of depth 5

two transition functions:
even (0) and odd (1)

a b b a a a a b b a a b b a a b

0 0 0 0

“even number of a’s” has a
decomposition of depth 5

two transition functions:
even (0) and odd (1)

a b b a a a a b b a a b b a a b

0

0 0 0 0

“even number of a’s” has a
decomposition of depth 5

two transition functions:
even (0) and odd (1)

a b b a a a a b b a a b b a a b

0

0 0 0 0

“even number of a’s” has a
decomposition of depth 5

two transition functions:
even (0) and odd (1)

a b b a a a a b b a a b b a a b

0

0 0 0 0

“even number of a’s” has a
decomposition of depth 5

m. (Colcombet ’07)
e decomposition can be output by a deterministic finite
state transducer.

two transition functions:
even (0) and odd (1)

a b b a a a a b b a a b b a a b

Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for arbitrarily large X} ⊆ Σω

Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for arbitrarily large X} ⊆ Σω

given a word w∈Σω, how can a deterministic automaton tell
if w[X]∈L holds for arbitrarily large X?

Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for arbitrarily large X} ⊆ Σω

given a word w∈Σω, how can a deterministic automaton tell
if w[X]∈L holds for arbitrarily large X?

...w=

Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for arbitrarily large X} ⊆ Σω

given a word w∈Σω, how can a deterministic automaton tell
if w[X]∈L holds for arbitrarily large X?

...w=

1. compute Simon decomposition for well chosen automaton
 (a modification of the automaton for L)

Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for arbitrarily large X} ⊆ Σω

given a word w∈Σω, how can a deterministic automaton tell
if w[X]∈L holds for arbitrarily large X?

...w=

1. compute Simon decomposition for well chosen automaton
 (a modification of the automaton for L)

Prop. If L⊆ (Σ×{0,1})ω is recognized by a deterministic max-
automaton, then so is {w : w[X]∈L for arbitrarily large X} ⊆ Σω

given a word w∈Σω, how can a deterministic automaton tell
if w[X]∈L holds for arbitrarily large X?

...w=

1. compute Simon decomposition for well chosen automaton
 (a modification of the automaton for L)

2. find large boxes

