A robust extension of

w-regular word languages.

Mikotaj Bojanczyk

Warsaw University

What is a regular word language?

— regular expressions

— automata

— monadic second-order logic
— closure properties

— semigroups

— Myhill-Nerode equivalence

What is a regular word language?

— regular expressions

— automata

— monadic second-order logic
— closure properties

— semigroups

— Myhill-Nerode equivalence

What about infinite words?

What is a regular word language?

— regular expressions

— automata

— monadic second-order logic
— closure properties

— semigroups

— Myhill-Nerode equivalence

What about infinite words?

w-regular languages

What is a regular word language?

— regular expressions

— automata

— monadic second-order logic
— closure properties

— semigroups

— Myhill-Nerode equivalence

What about infinite words?

w-regular languages

Claim: there are robust extensions of w-regular languages

What is a regular word language?

— regular expressions

— automata

— monadic second-order logic finite words infinite words
— closure properties

— semigroups

— Myhill-Nerode equivalence

What about infinite words?

w-regular languages

Claim: there are robust extensions of w-regular languages

What is a regular word language?

— regular expressions

— automata

— monadic second-order logic finite words infinite words
— closure properties

— semigroups

— Myhill-Nerode equivalence

What about infinite words?

w-regular languages

Claim: there are robust extensions of w-regular languages

What is a regular word language?

— regular expressions

— automata

— monadic second-order logic finite words infinite words
— closure properties

— semigroups

— Myhill-Nerode equivalence

What about infinite words?

w-regular languages

Claim: there are robust extensions of w-regular languages

A word a™b amb a5 b... describes a number sequence 7; 72 73...

A word a™b amb a5 b... describes a number sequence 7; 72 73...

Which properties of number sequences are regular?

A word a™b amb a5 b... describes a number sequence 7; 72 73...

Which properties of number sequences are regular?

— odd numbers on even positions

A word a™b amb a5 b... describes a number sequence 7; 72 73...

Which properties of number sequences are regular?

— odd numbers on even positions
— infinitely many odd numbers

A word a™b amb a5 b... describes a number sequence 7; 72 73...

Which properties of number sequences are regular?

— odd numbers on even positions
— infinitely many odd numbers
— the first number 7, is prime

A word a™b amb a5 b... describes a number sequence 7; 72 73...

Which properties of number sequences are regular?

— odd numbers on even positions
— infinitely many odd numbers

— the first number 7, is prime

— infinitely many prime numbers

A word a™b amb a5 b... describes a number sequence 7; 72 73...

Which properties of number sequences are regular?

— odd numbers on even positions
— infinitely many odd numbers

— the first number 7, is prime

— infinitely many prime numbers
— sequence is ultimately constant

A word a™b amb a5 b... describes a number sequence 7; 72 73...

Which properties of number sequences are regular?

— odd numbers on even positions
— infinitely many odd numbers

— the first number 7, is prime

— infinitely many prime numbers
— sequence is ultimately constant
— sequence is bounded

A word a™b amb a5 b... describes a number sequence 7; 72 73...

Which properties of number sequences are regular?

— odd numbers on even positions
— infinitely many odd numbers

— the first number 7, is prime

— infinitely many prime numbers
— sequence is ultimately constant
— sequence is bounded

— sequence tends to oo

A word a™b amb a5 b... describes a number sequence 7; 72 73...

Which properties of number sequences are regular?

— odd numbers on even positions
— infinitely many odd numbers

— the first number 7, is prime

— infinitely many prime numbers
— sequence is ultimately constant
— sequence is bounded

— sequence tends to oo
— exists a bounded subsequence

Myhill-Nerode equivalence.

Two finite words v, w are equivalent for a language L if they can

be swapped in any environment, and Z will not notice.

Myhill-Nerode equivalence.

Two finite words v, w are equivalent for a language L if they can

be swapped in any environment, and Z will not notice.

for finite words: w

00,00, e00 010,0,0,0,0,0;0, el

0000
v

Myhill-Nerode equivalence.

Two finite words v, w are equivalent for a language L if they can

be swapped in any environment, and Z will not notice.

for finite words: w

00,00, e00 010,0,0,0,0,0;0, el

0000
v

for infinite words:

Myhill-Nerode equivalence.

Two finite words v, w are equivalent for a language L if they can

be swapped in any environment, and Z will not notice.

for finite words: w

00,00, e00 010,0,0,0,0,0;0, el

0000
v

for infinite words:

OO00O e00 0i0,0/0,0;0,0.0,

Myhill-Nerode equivalence.

Two finite words v, w are equivalent for a language L if they can

be swapped in any environment, and Z will not notice.

for finite words: w

00,00, e00 010,0,0,0,0,0;0, el

0000
v

for infinite words:

OO00O e00 0i0,0/0,0;0,0.0,

“infinitely many primes” has 1 equivalence class

Myhill-Nerode equivalence.
Two finite words v, w are equivalent for a language L if they can
be swapped in any environment, and Z will not notice.

for finite words: w

00,00, e00 010,0,0,0,0,0;0, el

0000
v

for infinite words:

OO00O e00 0i0,0/0,0;0,0.0,

“infinitely many primes” has 1 equivalence class

0000 (
0000

OO000000 Y°

(a+b)* b

acceptance condition:

@ appears infinitely often,

acceptance condition:

@ appears infinitely often,

Thm. (McNaughton "66)

For every nondeterministic Biichi automaton, there is an equivalent
deterministic Muller automaton.

acceptance condition:

@ appears infinitely often,

Thm. (McNaughton "66)

For every nondeterministic Biichi automaton, there is an equivalent
deterministic Muller automaton.

b @

Muller automaton acceptance condition:
o Q%“

O) ' appears infinitely often,

and @ appears finitely often

a

Monadic second-order logic (MSO)

Monadic second-order logic (MSO)

“infinitely many 4’s on even positions”

Monadic second-order logic (MSO)

“infinitely many 4’s on even positions”

Vx Iy<x yeX

3X { VxVy suclxy) = (x€X & ygX)

Vx Vyzx a(y) A yeX

Monadic second-order logic (MSO)

“infinitely many 4’s on even positions”

contains the first position
There is a set X of positions

contains every second position

Vx Iy<x yeX

3X { VxVy suclxy) = (x€X & ygX)

Vx Vyzx a(y) A yeX

contains infinitely many &’s

Monadic second-order logic (MSO)

“infinitely many 4’s on even positions”

contains the first position
There is a set X of positions

contains every second position

Vx Iy<x yeX

3X { VxVy suclxy) = (x€X & ygX)

Vx Vyzx a(y) A yeX

contains infinitely many &’s

Thm. (Biichi "60)

Biichi automata and MSO have the same expressive power.

Monadic second-order logic (MSO)

“infinitely many 4’s on even positions”

contains the first position
There is a set X of positions

contains every second position

Vx Iy<x yeX

3X { VxVy suclxy) = (x€X & ygX)

Vx Vyzx a(y) A yeX

contains infinitely many &’s

Thm. (Biichi "60)

Biichi automata and MSO have the same expressive power.

Corollary of determinization.

For infinite words, MSO = Weak MSO

(Weak MSQ: set quantification only over finite sets.)

Monadic second-order logic (MSO)

“infinitely many 4’s on even positions”

contains the first position
There is a set X of positions

contains every second position

Vx Iy<x yeX _
3X { Vx Vy xeX & yeX)

Vx Vyzx a(y) A yeX

Vx 3)/ >x 3X ... contains infinitely many &’s

Thm. (Biichi "60)

Biichi automata and MSO have the same expressive power.

Corollary of determinization.

For infinite words, MSO = Weak MSO

(Weak MSQ: set quantification only over finite sets.)

logic automata

MSO = WMSO Biichi, Muller

logic automata

MSO = WMSO Biichi, Muller

WMSO+U deterministic

max-automarta

Max-automaton

Max-automaton

Has finite state space (Q and a finite set of counters C.

The counters are only read by the acceptance condition, and not during the run.

Max-automaton

Has finite state space (Q and a finite set of counters C.

The counters are only read by the acceptance condition, and not during the run.

Transitions can do counter operations:

c:=Cc+1
c:=0

c:=max(c,d)

Max-automaton

Has finite state space (Q and a finite set of counters C.

The counters are only read by the acceptance condition, and not during the run.

Transitions can do counter operations:
c:=c+1
c:=0

c:=max(c,d)

Acceptance condition: boolean combination of clauses
“counter ¢ is bounded”

Thm. Emptiness decidable for max-automata.

Thm. Emptiness decidable for max-automata.

O

OO0O0O0O00OO0OOOO
finite prefix

O
Q
O
O
O
O
O
O

O
OO
O

Thm. Emptiness decidable for max-automata.

For a max-automaton, the accepting condition says some
counters are bounded, and some are not.

O

OO0O0O0O00OO0OOOO
finite prefix

O
Q
O
O
O
O
O
O

O
OO
O

Thm. Emptiness decidable for max-automata.

For a max-automaton, the accepting condition says some
counters are bounded, and some are not.

OO0O0O0O00OO0OOOO
finite prefix

Thm. Emptiness decidable for max-automata.

For a max-automaton, the accepting condition says some
counters are bounded, and some are not.

for bounding counters:
every loop with an increment
also contains a reset.

OO0O0O0O00OO0OOOO
finite prefix

loop that makes an unbounded
counter ¢ accepting. No reset on

¢, at least one increment.

What is the logic for max-automata?

Extend weak MSO with the following quantifier:

Extend weak MSO with the following quantifier:

UX o(X)

which is the same as

“ 9(X) holds for finite sets X of arbitrarily large size”

which is the same as

N () A n<|X]<oo

Extend weak MSO with the following quantifier:

UX o(X)

which is the same as

“ 9(X) holds for finite sets X of arbitrarily large size”

which is the same as

N () A n<|X]<oo

Example: {a716 a72b a7 b... : n;n2ns... is not bounded}

Extend weak MSO with the following quantifier:

UX o(X)

which is the same as

“ 9(X) holds for finite sets X of arbitrarily large size”

which is the same as

N () A n<|X]<oo

Example: {a716 a72b a7 b... : n;n2ns... is not bounded}

UX “Xisasetof consecutive 2s”

Thm. Deterministic max-automata recognize the same
langauges as weak MSO with the unbounding quantifier.

Thm. Deterministic max-automata recognize the same
langauges as weak MSO with the unbounding quantifier.

Proof. Effective translations both ways.

Thm. Deterministic max-automata recognize the same
langauges as weak MSO with the unbounding quantifier.

Proof. Effective translations both ways.

WMSO+U

Thm. Deterministic max-automata recognize the same
langauges as weak MSO with the unbounding quantifier.

Proof. Effective translations both ways.

WMSO+U

¢

‘“ninons.. is

bounded”

—logic

—automata
—decidability
_

Myhill-Nerode equivalence. OO0 (

6))
oooo)

00,00, e00 0,0,0,0,0,0,0;0,

Prop. Languages recognized by max-automata have finitely many
equivalence classes. Each class is a regular language of finite words.

Myhill-Nerode equivalence. OO0 (

6))
oooo)

00,00, e00 0,0,0,0,0,0,0;0,

Prop. Languages recognized by max-automata have finitely many
equivalence classes. Each class is a regular language of finite words.

Proof sketch. Equivalence class of @ @@@- depends on state
transformations, which counters are incremented (but not how
much), and which counters are reset.

Myhill-Nerode equivalence. OO0 (

6))
oooo)

00,00, e00 0,0,0,0,0,0,0;0,

Prop. Languages recognized by max-automata have finitely many
equivalence classes. Each class is a regular language of finite words.

Proof sketch. Equivalence class of @ @@@- depends on state
transformations, which counters are incremented (but not how
much), and which counters are reset.

also works for:

0000 (ooe

0000)(0000) (

What about full MSO with the unbounding quantifier?

What about full MSO with the unbounding quantifier?

Thm. MSO+U is strictly more expressive than WMSO+U

What about full MSO with the unbounding quantifier?

Thm. MSO+U is strictly more expressive than WMSO+U

separating language L={a" b a”2b a5 b... : n;n2ns... tends to oo}

What about full MSO with the unbounding quantifier?

Thm. MSO+U is strictly more expressive than WMSO+U

separating language L={a" b a”2b a5 b... : n;n2ns... tends to oo}

L € MSO+U

What about full MSO with the unbounding quantifier?

Thm. MSO+U is strictly more expressive than WMSO+U

separating language L={a" b a”2b a5 b... : n;n2ns... tends to oo}

L € MSO+U

complement of L : exists a bounded subsequence.

What about full MSO with the unbounding quantifier?

Thm. MSO+U is strictly more expressive than WMSO+U

separating language L={a" b a”2b a5 b... : n;n2ns... tends to oo}

L € MSO+U

complement of L : exists a bounded subsequence.

L ¢ WMSO+U

What about full MSO with the unbounding quantifier?

Thm. MSO+U is strictly more expressive than WMSO+U

separating language L={a" b a”2b a5 b... : n;n2ns... tends to oo}

L € MSO+U

complement of L : exists a bounded subsequence.

L ¢ WMSO+U topological argument.

What about full MSO with the unbounding quantifier?

Thm. MSO+U is strictly more expressive than WMSO+U

separating language L={a" b a”2b a5 b... : n;n2ns... tends to oo}

L € MSO+U

complement of L : exists a bounded subsequence.

L ¢ WMSO+U topological argument.

acceptance condition “7; 72 n3... is bounded”

What about full MSO with the unbounding quantifier?

Thm. MSO+U is strictly more expressive than WMSO+U

separating language L={a" b a”2b a5 b... : n;n2ns... tends to oo}

L € MSO+U

complement of L : exists a bounded subsequence.

L ¢ WMSO+U topological argument.

acceptance condition “7; 72 n3... is bounded”

is a countable union of closed sets (X,)

What about full MSO with the unbounding quantifier?

Thm. MSO+U is strictly more expressive than WMSO+U

separating language L={a" b a”2b a5 b... : n;n2ns... tends to oo}

L € MSO+U

complement of L : exists a bounded subsequence.

L ¢ WMSO+U topological argument.

acceptance condition “7; 7> ns... is bounded”
p

is a countable union of closed sets (X,)
“sequence bounded by V" is a closed set

What about full MSO with the unbounding quantifier?

Thm. MSO+U is strictly more expressive than WMSO+U

separating language L={a" b a”2b a5 b... : n;n2ns... tends to oo}

L € MSO+U

complement of L : exists a bounded subsequence.

L ¢ WMSO+U topological argument.

acceptance condition “7; 7> ns... is bounded”
p

is a countable union of closed sets (X,)
“sequence bounded by V" is a closed set

Prop. A language recognized by a max automaton is a
boolean combination of 2, sets, while L is not.

¢

“n;nonz... is

bounded”

¢

“n;nonz... is

bounded”

77 712 713... tends to oo

¢

“n;nonz... is

bounded”

7] 12 n3... tends to oo

¢

“n;nonz... is

bounded”

infinitely many numbers
7] 12 n3... tends to oo

appear infinitely often

¢

“n;nonz... is

bounded”

Conclusion

New robust class of languages extending w-regular languages.

(automata, logic, decidability)

Conclusion

New robust class of languages extending w-regular languages.

(automata, logic, decidability)

Future work

Conclusion

New robust class of languages extending w-regular languages.

(automata, logic, decidability)

Future work

— Full MSO+U

Conclusion

New robust class of languages extending w-regular languages.

(automata, logic, decidability)

Future work

— Full MSO+U

— Tree extensions

Conclusion

New robust class of languages extending w-regular languages.

(automata, logic, decidability)

Future work

— Full MSO+U
— Tree extensions

— Algebra

Conclusion

New robust class of languages extending w-regular languages.

(automata, logic, decidability)

Future work

— Full MSO+U
— Tree extensions

— Algebra

— Regular expressions

a bit about the proofs

WMSO+U deterministic max-automata

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Boolean operations: free for a deterministic automaton.

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Boolean operations: free for a deterministic automaton.

Weak existential quantification

Unbounding quantification

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Boolean operations: free for a deterministic automaton.

Let w be a word over alphabet 2, and X a set of positions.

w|X] : word over alphabet ~x10,1}

Weak existential quantification

Unbounding quantification

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Boolean operations: free for a deterministic automaton.

Let w be a word over alphabet 2, and X a set of positions.

w|X] : word over alphabet ~x10,1}

Weak existential quantification
Prop. If LC (£x{0,1})% is recognized by a deterministic max-
automaton, then so is {w : w|X]|€L for some finite set X} C >

Unbounding quantification

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Boolean operations: free for a deterministic automaton.

Let w be a word over alphabet 2, and X a set of positions.

w|X] : word over alphabet ~x10,1}

Weak existential quantification
Prop. If LC (£x{0,1})% is recognized by a deterministic max-
automaton, then so is {w : w|X]|€L for some finite set X} C >

Unbounding quantification
Prop. If LC (£x10,1})% is recognized by a deterministic max-
automaton, then so is {w : w|X|€L for arbitrarily large X} € 3

WMSO+U deterministic max-automata

Proof strategy: Automata are closed under all operations in the logic.

Boolean operations: free for a deterministic automaton.

Let w be a word over alphabet 2, and X a set of positions.

w|X] : word over alphabet ~x10,1}

Weak existential quantification
Prop. If LC (£x{0,1})% is recognized by a deterministic max-
automaton, then so is {w : w|X]|€L for some finite set X} C >

Unbounding quantification
Prop. If LC (£x10,1})% is recognized by a deterministic max-
automaton, then so is {w : w|X|€L for arbitrarily large X} € 3

'The proof uses a combinatoric theorem of I. Simon.

Let A be an automaton with state space Q)

'Two rules for splitting words.

Let A be an automaton with state space Q)

'Two rules for splitting words.

Simon Theorem. For fixed A, there is a splitting depth K such that
every word can be split in depth K down to single letters.

Let A be an automaton with state space Q)

'Two rules for splitting words.

Rule 1. split into two parts

abaabbbababbbabba bbabbbabbbabbaba

Simon Theorem. For fixed A, there is a splitting depth K such that
every word can be split in depth K down to single letters.

Let A be an automaton with state space Q)

'Two rules for splitting words.

Rule 1. split into two parts

abaabbbababbbabba bbabbbabbbabbaba

Rule 2. split into many parts, each with the same transformation ¢ : Q — @

abaab bbababb babba bba bbbabb babba ba
)))))))

Simon Theorem. For fixed A, there is a splitting depth K such that
every word can be split in depth K down to single letters.

Let A be an automaton with state space Q)

'Two rules for splitting words.

Rule 1. split into two parts

abaabbbababbbabba bbabbbabbbabbaba

Rule 2. split into many parts, each with the same transformation ¢ : Q — @

abaab bbababb babba bba bbbabb babba ba
)))))))

000 =20

Simon Theorem. For fixed A, there is a splitting depth K such that
every word can be split in depth K down to single letters.

“even number of 25 has a . s :
two transition functions:

decomposition of depth 5 even (0) and odd (1)

“even number of 25 has a . s :
two transition functions:

decomposition of depth 5 even (0) and odd (1)

a b b a a a a b b a a b b a a b

“even number of 25 has a . s :
two transition functions:

decomposition of depth 5 even (0) and odd (1)

0 0 0 0

a b b a a a a b b a a b b a a b

“even number of 25 has a . s :
two transition functions:

decomposition of depth 5 even (0) and odd (1)

0 0 0 0

a b b a a a a b b a a b b a a b

“even number of 25 has a . s :
two transition functions:

decomposition of depth 5 even (0) and odd (1)

0 0 0 0

a b b a a a a b b a a b b a a b

“even number of 25 has a . :
two transition functions:

decomposition of depth 5 even (0) and odd (1)

.---b

“even number of 25 has a . :
two transition functions:

decomposition of depth 5 even (0) and odd (1)

“even number of 25 has a . s :
two transition functions:

decomposition of depth 5 even (0) and odd (1)

0 0 0 0

a b b a a a a b b a a b b a a b

Thm. (Colcombet ’07)

The decomposition can be output by a deterministic finite
state transducer.

Prop. If LC (£x{0,1})%is recognized by a deterministic max-
automaton, then so is {w : w| X]€L for arbitrarily large X} C =

Prop. If LC (£x{0,1})%is recognized by a deterministic max-
automaton, then so is {w : w| X]€L for arbitrarily large X} C =

given a word weX®, how can a deterministic automaton tell

if w|X|eL holds for arbitrarily large X?

Prop. If LC (£x{0,1})%is recognized by a deterministic max-
automaton, then so is {w : w| X]€L for arbitrarily large X} C =

given a word weX®, how can a deterministic automaton tell

if w|X|eL holds for arbitrarily large X?

w= 0000000000 O0OOOOOOOOOOOOOOOOOOO

Prop. If LC (£x{0,1})%is recognized by a deterministic max-
automaton, then so is {w : w| X]€L for arbitrarily large X} C =

given a word weX®, how can a deterministic automaton tell

if w|X|eL holds for arbitrarily large X?

w= 0000000000 O0OOOOOOOOOOOOOOOOOOO

1. compute Simon decomposition for well chosen automaton
(a modification of the automaton for)

Prop. If LC (£x{0,1})%is recognized by a deterministic max-
automaton, then so is {w : w| X]€L for arbitrarily large X} C =

given a word weX®, how can a deterministic automaton tell

if w|X|eL holds for arbitrarily large X?

2N 01010101010101010/0101010/010/010,01010101010]0101010/010.0

1. compute Simon decomposition for well chosen automaton
(a modification of the automaton for)

Prop. If LC (£x{0,1})%is recognized by a deterministic max-
automaton, then so is {w : w| X]€L for arbitrarily large X} C =

given a word weX®, how can a deterministic automaton tell

if w|X|eL holds for arbitrarily large X?

2N 01010101010101010/0101010/010/010,01010101010]0101010/010.0

1. compute Simon decomposition for well chosen automaton
(a modification of the automaton for)

2. find large boxes

