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A word a™b amb a5 b... describes a number sequence 7; 72 73...

Which properties of number sequences are regular?

— odd numbers on even positions
— infinitely many odd numbers

— the first number 7, is prime

— infinitely many prime numbers
— sequence is ultimately constant
— sequence is bounded

— sequence tends to oo
— exists a bounded subsequence
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b @

Muller automaton acceptance condition:
o Q%“

O ) ' appears infinitely often,

and @ appears finitely often

a
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The counters are only read by the acceptance condition, and not during the run.

Transitions can do counter operations:
c:=c+1
c:=0

c:=max(c,d)

Acceptance condition: boolean combination of clauses
“counter ¢ is bounded”
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Thm. Emptiness decidable for max-automata.

For a max-automaton, the accepting condition says some
counters are bounded, and some are not.

for bounding counters:
every loop with an increment
also contains a reset.

OO0O0O0O00OO0OOOO
finite prefix

loop that makes an unbounded
counter ¢ accepting. No reset on

¢, at least one increment.
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which is the same as

“ 9(X) holds for finite sets X of arbitrarily large size”

which is the same as

N () A n<|X]<oo

Example: {a716 a72b a7 b... : n;n2ns... is not bounded}

UX “Xisasetof consecutive 2s”
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Prop. Languages recognized by max-automata have finitely many
equivalence classes. Each class is a regular language of finite words.

Proof sketch. Equivalence class of @ @@@- depends on state
transformations, which counters are incremented (but not how
much), and which counters are reset.

also works for:

0000 ( ooe
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What about full MSO with the unbounding quantifier?

Thm. MSO+U is strictly more expressive than WMSO+U

separating language L={a" b a”2b a5 b... : n;n2ns... tends to oo}

L € MSO+U

complement of L : exists a bounded subsequence.

L ¢ WMSO+U topological argument.

acceptance condition “7; 7> ns... is bounded”
p

is a countable union of closed sets (X,)
“sequence bounded by V" is a closed set

Prop. A language recognized by a max automaton is a
boolean combination of 2, sets, while L is not.
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New robust class of languages extending w-regular languages.

(automata, logic, decidability)

Future work

— Full MSO+U
— Tree extensions

— Algebra

— Regular expressions
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Let w be a word over alphabet 2, and X a set of positions.
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Weak existential quantification
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automaton, then so is {w : w|X|€L for arbitrarily large X} € 3
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“even number of 25 has a . s :
two transition functions:

decomposition of depth 5 even (0) and odd (1)

0 0 0 0

a b b a a a a b b a a b b a a b

Thm. (Colcombet ’07)

The decomposition can be output by a deterministic finite
state transducer.
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Prop. If LC (£x{0,1})%is recognized by a deterministic max-
automaton, then so is {w : w| X]€L for arbitrarily large X} C =

given a word weX®, how can a deterministic automaton tell

if w|X|eL holds for arbitrarily large X?

2N 01010101010101010/0101010/010/010,01010101010]0101010/010.0

1. compute Simon decomposition for well chosen automaton
(a modification of the automaton for )

2. find large boxes



