
Piecewise Testable Tree
Languages

Mikołaj Bojańczyk, Luc Segoufin, Howard Straubing

is talk is about understanding the expressive power of logics on words
and trees. e logics involved can only define (some) regular languages.

is talk is about understanding the expressive power of logics on words
and trees. e logics involved can only define (some) regular languages.

all regular languages

languages
definable
in logic X

Understand logic X =
 give na algorithm to decide if a language L is definable in X

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

is talk is about understanding the expressive power of logics on words
and trees. e logics involved can only define (some) regular languages.

all regular languages

languages
definable
in logic X

Understand logic X =
 give na algorithm to decide if a language L is definable in X

a c a cb

a cb a ca bis a piece of

a cb a ca bis a piece of

Definition.
A word language is called piecewise testable if it is a boolean
combination of languages “words that contain w as a piece”

a cb a ca bis a piece of

Definition.
A word language is called piecewise testable if it is a boolean
combination of languages “words that contain w as a piece”

{ abc } = contains piece abc, but no piece of length 4
a*b* = no piece ba

a*b*a* = no piece bab

a cb a ca bis a piece of

Definition.
A word language is called piecewise testable if it is a boolean
combination of languages “words that contain w as a piece”

{ abc } = contains piece abc, but no piece of length 4
a*b* = no piece ba

a*b*a* = no piece bab

Fact. A language is piecewise testable iff it can be defined
by a boolean combination of formulas.Σ1(≤)

∃x∃y a(x) ∧ b(y) ∧ x ≤ y

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

Syntactic monoid of L ⊆ Σ∗

Syntactic monoid of L ⊆ Σ∗

Consider the two-sided Myhill-Nerode congruence

 w w’ ∼L

holds if for every u,v ∈ Σ∗

uwv iff uw’v∈ L ∈ L

Syntactic monoid of L ⊆ Σ∗

Consider the two-sided Myhill-Nerode congruence

 w w’ ∼L

holds if for every u,v ∈ Σ∗

uwv iff uw’v∈ L ∈ L

Elements of the syntactic monoid are equivalence classes of
this congruence, the monoid operation is concatenation.

Syntactic monoid of L ⊆ Σ∗

Consider the two-sided Myhill-Nerode congruence

 w w’ ∼L

holds if for every u,v ∈ Σ∗

uwv iff uw’v∈ L ∈ L

Elements of the syntactic monoid are equivalence classes of
this congruence, the monoid operation is concatenation.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

Infix relation in a monoid

For s,t,u , we say s is an infix of tsu∈ M

We say s,t are in the same J-class if they are mutual infixes∈ M

Example. e syntactic monoid of (aa)* has two elements,
(aa)* and a(aa)*, which are in the same J-class.

A monoid is J-trivial if each J-class has one element.

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

✗

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

✗

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

✓

✗

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

✓

✗

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

✓

✗

✗

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

✓

✗

✗

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

✓

✗

✗

If s and t are in the same J-class, then for any n one can find
representatives of s and t with the same pieces of size n.
w uwv u’uwvv’ uu’uwvv’v u’uu’uwvv’vv’v
s t ts s ...

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

✓

✗

✗

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

✓

✗

✗

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

(aa)*

a*ba*

(aa)* a(aa)*

a* a*ba* a*ba*b(a+b)*

Language Its syntactic monoid

a(a+b)* ε a(a+b)* b(a+b)*

✓

✗

✗

Several arguments, all difficult.

What’s the point of all this?
ere is a rich theory connecting logic, regular languages, and algebra.

What’s the point of all this?
ere is a rich theory connecting logic, regular languages, and algebra.

eorem. (Schützenberger, McNaughton/Papert)
e following are equivalent for a word language:
– L is definable in first-order logic
– L is star-free
– the syntactic monoid of L is group-free

What’s the point of all this?
ere is a rich theory connecting logic, regular languages, and algebra.

eorem. (Schützenberger, McNaughton/Papert)
e following are equivalent for a word language:
– L is definable in first-order logic
– L is star-free
– the syntactic monoid of L is group-free

eorem. (Schützenberger, érien / Wilke)
e following are equivalent for a word language:
– L is definable in two-variable first-order logic
– L can be defined by a type of unambiguous expression
– the syntactic monoid of L is in DA

What’s the point of all this?
ere is a rich theory connecting logic, regular languages, and algebra.

eorem. (Schützenberger, McNaughton/Papert)
e following are equivalent for a word language:
– L is definable in first-order logic
– L is star-free
– the syntactic monoid of L is group-free

eorem. (Schützenberger, érien / Wilke)
e following are equivalent for a word language:
– L is definable in two-variable first-order logic
– L can be defined by a type of unambiguous expression
– the syntactic monoid of L is in DA

... more results, including modulo quantifiers,
the quantifier alternation hierarchy, etc.

What’s the point of all this?
ere is a rich theory connecting logic, regular languages, and algebra.

eorem. (Schützenberger, McNaughton/Papert)
e following are equivalent for a word language:
– L is definable in first-order logic
– L is star-free
– the syntactic monoid of L is group-free

eorem. (Schützenberger, érien / Wilke)
e following are equivalent for a word language:
– L is definable in two-variable first-order logic
– L can be defined by a type of unambiguous expression
– the syntactic monoid of L is in DA

... more results, including modulo quantifiers,
the quantifier alternation hierarchy, etc.

What about trees?

What’s the point of all this?
ere is a rich theory connecting logic, regular languages, and algebra.

eorem. (Schützenberger, McNaughton/Papert)
e following are equivalent for a word language:
– L is definable in first-order logic
– L is star-free
– the syntactic monoid of L is group-free

eorem. (Schützenberger, érien / Wilke)
e following are equivalent for a word language:
– L is definable in two-variable first-order logic
– L can be defined by a type of unambiguous expression
– the syntactic monoid of L is in DA

... more results, including modulo quantifiers,
the quantifier alternation hierarchy, etc.

What about trees?
is paper is part of a program to extend

the algebra-logic connection to trees

a

b

a

a

a

b a a

b

b
a

b

A tree is finite, unranked
and labeled

a

b

a

a

a

b a a

b

b
a

b

A tree is finite, unranked
and labeled

A forest is a sequence of trees

a

b

a

a

a

b a a

b
a

b

a

b

a

a

a

b a a

b

b
a

b

A tree is finite, unranked
and labeled

A forest is a sequence of trees

a

b

a

a

a

b a a

b
a

b

A context is a forest with a
hole in a leaf

a

b

a

b

a

a

b

a

a

a

b a a

b

b
a

b

A tree is finite, unranked
and labeled

A forest is a sequence of trees

a

b

a

a

a

b a a

b
a

b

A context is a forest with a
hole in a leaf

a

b

a

b

a a

a
b

b

a

b

a

a

a

b

b
a

b

=

Notion of piece for forests and contexts.

is a piece of

is a piece of

Notion of piece for forests and contexts.

is a piece of

is a piece of

Definition.
A forest language is called piecewise testable if it is a boolean
combination of languages “forests that contain t as a piece”

Notion of piece for forests and contexts.

is a piece of

is a piece of

Definition.
A forest language is called piecewise testable if it is a boolean
combination of languages “forests that contain t as a piece”

Fact. A forest language is piecewise testable iff it can be
defined by a boolean combination of formulas.Σ1(≤,≤lex)

{ }
contains piece

contains no piece with 5 nodes

{ }
contains piece

contains no piece with 5 nodes

all leaves are contains no piece

{ }
contains piece

contains no piece with 5 nodes

all leaves are contains no piece

forest is a word (vertically) contains no piece

{ }
contains piece

contains no piece with 5 nodes

all leaves are contains no piece

forest is a word (vertically) contains no piece

forest is a word (horizontally) contains no piece

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

We want the forest extension of:

eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

What is a syntactic monoid for forest languages?

Although a definition exists (forest algebra), here
we will only talk about Myhill-Nerode equivalence.

We want the forest extension of:

Myhill-Nerode congruence for a forest language L.

Myhill-Nerode congruence for a forest language L.

Two contexts and are called L-equivalent if

Myhill-Nerode congruence for a forest language L.

Two contexts and are called L-equivalent if

for every context and every forest

Myhill-Nerode congruence for a forest language L.

Two contexts and are called L-equivalent if

for every context and every forest

∈ L iff ∈ L

Main eorem.
A forest language is piecewise testable iff
 the following holds for all sufficiently large n

Main eorem.
A forest language is piecewise testable iff
 the following holds for all sufficiently large n

is a piece ofif , then

Main eorem.
A forest language is piecewise testable iff
 the following holds for all sufficiently large n

is equivalent
to

is a piece ofif , then

n times {

n times { n times}

n times}

Main eorem.
A forest language is piecewise testable iff
 the following holds for all sufficiently large n

is equivalent
to

is a piece ofif , then

n times {

n times { n times}

n times}

is criterion is decidable.
We also have variants of the theorem for
– tree languages
– commutative pieces
– pieces with closest common ancestor

e language

is confused with

* has a J-trivial syntactic monoid,
 but is not piecewise testable

Big project: understand the
expressive power of first-order

logic on trees.

FO(≤)Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

FO(≤)

Σ1(≤) Π1(≤)

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

FO(≤)

Σ1(≤) Π1(≤)

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

Easy excercise

FO(≤)

Σ1(≤) Π1(≤)

Bool(Σ1(≤))

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

Easy excercise

FO(≤)

Σ1(≤) Π1(≤)

Bool(Σ1(≤))

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

is paper

Easy excercise

FO(≤)

Σ1(≤) Π1(≤)

Bool(Σ1(≤))

Σ2(≤)

Π2(≤)

∆2(≤)

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

is paper

Easy excercise

FO(≤)

Σ1(≤) Π1(≤)

Bool(Σ1(≤))

Σ2(≤)

Π2(≤)

∆2(≤)

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

is paper

BS, ICALP 

Easy excercise

FO(≤)

Σ1(≤) Π1(≤)

Bool(Σ1(≤))

Σ2(≤)

Π2(≤)

∆2(≤)

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

=?

=?

=?

is paper

BS, ICALP 

Easy excercise

