Piecewise Testable Tree

Languages

Mikotaj Bojanczyk, Luc Segoutin, Howard Straubing




'This talk is about understanding the expressive power of logics on words

and trees. The logics involved can only define (some) regular languages.




'This talk is about understanding the expressive power of logics on words

and trees. The logics involved can only define (some) regular languages.

Understand logic X =
give na algorithm to decide it a language L is definable in X

all regular languages

languages
definable
in logic X




'This talk is about understanding the expressive power of logics on words

and trees. The logics involved can only define (some) regular languages.

Understand logic X =
give na algorithm to decide it a language L is definable in X

all regular languages

languages
definable
in logic X

Theorem. (I. Simon, 1975)
A word language is piecewise testable
ift

its syntactic monoid is /-trivial.




a c b a c



is a piece of a c b a c




is a piece of a c b a c

Definition.
A word language is called piecewise testable if it is a boolean
combination of languages “words that contain w as a piece”




is a piece of a c b a c

Definition.
A word language is called piecewise testable if it is a boolean
combination of languages “words that contain w as a piece”

{abc} = contains piece abc, but no piece of length 4
a*b* = no piece ba

a*b*a* = no piece bab




is a piece of a c b a c

Definition.
A word language is called piecewise testable if it is a boolean
combination of languages “words that contain w as a piece”

{abc} = contains piece abc, but no piece of length 4
a*b* = no piece ba

a*b*a* = no piece bab

Fact. A language is piecewise testable ift it can be defined

by a boolean combination of ¥ (<) formulas.

Jrxdy a(x) Nb(y) ANx <y



Theorem. (I. Simon, 1975)

A word language is piecewise testable

ift

its syntactic monoid is /-trivial.




Syntactic monoid of L C X7




Syntactic monoid of L C X7

Consider the two-sided Myhill-Nerode congruence

w ~Lw
holds if for every u#,0 € 2*
uwv € [, ift uwv € L




Syntactic monoid of L C X7

Consider the two-sided Myhill-Nerode congruence

w ~Lw
holds if for every u#,0 € 2*
uwv € [, ift uwv € L

Elements of the syntactic monoid are equivalence classes of

this congruence, the monoid operation is concatenation.




Syntactic monoid of L C X7

Consider the two-sided Myhill-Nerode congruence

w ~Lw
holds if for every u#,0 € 2*
uwv € [, ift uwv € L

Elements of the syntactic monoid are equivalence classes of
this congruence, the monoid operation is concatenation.

Language [ts syntactic monoid

(aa)™ (aa)*  alaa)*

2%ba* a* a*ba* a*ba*b(a+b)*




Theorem. (I. Simon, 1975)

A word language is piecewise testable

ift

its syntactic monoid is /-trivial.




Infix relation in a2 monoid

For s,t,u € M , we say s is an infix of #su

We say s,tc M are in the same J-class if they are mutual infixes

Example. 'The syntactic monoid of (24)* has two elements,

(aa)* and a(aa)*, which are in the same /-class.

A monoid is /-trivial if each /-class has one element.




Theorem. (I. Simon, 1975)

A word language is piecewise testable
ift

its syntactic monoid is /-trivial.




Language

[ts syntactic monoid

(aa)*

(aa)*  alaa)*

a*ba*

a* a*ba* a*ba*b(a+b)*

a(a+b)*

a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)

A word language is piecewise testable
ift

its syntactic monoid is /-trivial.



Language

[ts syntactic monoid

(aa)*

(aa)*  alaa)*

a*ba*

a* a*ba* a*ba*b(a+b)*

a(a+b)*

a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)

A word language is piecewise testable
ift

its syntactic monoid is /-trivial.



Language

[ts syntactic monoid

(aa)*

(aa)*  alaa)*

a*ba*

a* a*ba* a*ba*b(a+b)*

a(a+b)*

a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)

A word language is piecewise testable
ift

its syntactic monoid is /-trivial.



Language

[ts syntactic monoid

(aa)*

(aa)*  alaa)*

a*ba*

a* a*ba* a*ba*b(a+b)*

a(a+b)*

a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)

A word language is piecewise testable
ift

its syntactic monoid is /-trivial.



Language

[ts syntactic monoid

(aa)*

(aa)*  alaa)*

a*ba*

a* a*ba* a*ba*b(a+b)*

a(a+b)*

a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)

A word language is piecewise testable
ift

its syntactic monoid is /-trivial.



Language

[ts syntactic monoid

(aa)*

(aa)*  alaa)*

a*ba*

a* a*ba* a*ba*b(a+b)*

a(a+b)*

a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)

A word language is piecewise testable
ift

its syntactic monoid is /-trivial.



Language

[ts syntactic monoid

(aa)*

(aa)*  alaa)*

a*ba*

a* a*ba* a*ba*b(a+b)*

a(a+b)*

a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)

A word language is piecewise testable
ift

its syntactic monoid is /-trivial.



Language [ts syntactic monoid

(aa)™ (aa)*  alaa)*

2*ha* a* a*ba* a*ba*b(a+b)*

a(a+b)* a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)

ift

l A word language is piecewise testable
its syntactic monoid is /-trivial.




Language [ts syntactic monoid

(aa)™ (aa)*  alaa)*

2*ha* a* a*ba* a*ba*b(a+b)*

a(a+b)* a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)

ift

l A word language is piecewise testable
its syntactic monoid is /-trivial.

[f s and 7 are in the same /-class, then for any 7 one can find
representatives of s and ¢ with the same pieces of size 7.

W UV UWUHWVY UUUIWVV T UUUHWVV VDY
S A k) 4 )




Language

[ts syntactic monoid

(aa)*

(aa)*  alaa)*

a*ba*

a* a*ba* a*ba*b(a+b)*

a(a+b)*

a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)

A word language is piecewise testable
ift

its syntactic monoid is /-trivial.



Language

[ts syntactic monoid

(aa)*

(aa)*  alaa)*

a*ba*

a* a*ba* a*ba*b(a+b)*

a(a+b)*

a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)

A word language is piecewise testable
ift

its syntactic monoid is /-trivial.



Language

[ts syntactic monoid

(aa)*

(aa)*  alaa)*

a*ba*

a* a*ba* a*ba*b(a+b)*

a(a+b)*

a(a+b)* b(a+b)*

Theorem. (I. Simon, 1975)
A word language is piecewise testable
ift

its syntactic monoid is /-trivial.

Several arguments, all difhcult.



What's the point of all this?

There is a rich theory connecting logic, regular languages, and algebra.




What's the point of all this?

There is a rich theory connecting logic, regular languages, and algebra.

Theorem. (Schiitzenberger, McNaughton/Papert)
'The following are equivalent for a word language:
— L is definable in first-order logic

— L is star-free

— the syntactic monoid of L is group-free




What's the point of all this?

There is a rich theory connecting logic, regular languages, and algebra.

Theorem. (Schiitzenberger, McNaughton/Papert)
'The following are equivalent for a word language:
— L is definable in first-order logic

— L is star-free

— the syntactic monoid of L is group-free

Theorem. (Schiitzenberger, Thérien / Wilke)

'The following are equivalent for a word language:

— L is definable in two-variable first-order logic

— L can be defined by a type of unambiguous expression
— the syntactic monoid of L is in DA




What's the point of all this?

There is a rich theory connecting logic, regular languages, and algebra.

Theorem. (Schiitzenberger, McNaughton/Papert)
'The following are equivalent for a word language:
— L is definable in first-order logic

— L is star-free

— the syntactic monoid of L is group-free

Theorem. (Schiitzenberger, Thérien / Wilke)

'The following are equivalent for a word language:

— L is definable in two-variable first-order logic

— L can be defined by a type of unambiguous expression
— the syntactic monoid of L is in DA

... more results, including modulo quantifiers,

the quantifier alternation hierarchy, etc.



What's the point of all this?

There is a rich theory connecting logic, regular languages, and algebra.

Theorem. (Schiitzenberger, McNaughton/Papert)
'The following are equivalent for a word language:
— L is definable in first-order logic

— L is star-free

— the syntactic monoid
What about trees?

Theorem. (Schiitzenbe
'The following are equi
— L is definable in two-

— L can be defined by :
— the syntactic monoid of L is in DA

... more results, including modulo quantifiers,

the quantifier alternation hierarchy, etc.



What's the point of all this?

There is a rich theory connecting logic, regular languages, and algebra.

Theorem. (Schiitzenberger, McNaughton/Papert)
'The following are equivalent for a word language:
— L is definable in first-order logic

— L is star-free

— the syntactic monoid
What about trees?

Theorem. (Schiitzenbe This paper 1s part of a program to extend

The following are equi the algebra-logic connection to trees
— L is definable in two-

— L can be defined by :
— the syntactic monoid of L is in DA

... more results, including modulo quantifiers,

the quantifier alternation hierarchy, etc.



A tree is finite, unranked

and labeled




A tree is finite, unranked A forest is a sequence of trees

and labeled




A tree is finite, unranked A forest is a sequence of trees

and labeled

A context is a forest with a
hole in a leaf




A tree is finite, unranked A forest is a sequence of trees

and labeled

A context is a forest with a
hole in a leaf




Notion of piece for forests and contexts.

@/OEOO is a piece of %@Q

O/@ o isa piece of




Notion of piece for forests and contexts.

@/OEOO is a piece of

O/@ o isa piece of

Definition.
A forest language is called piecewise testable it it is a boolean
combination of languages “forests that contain # as a piece”




Notion of piece for forests and contexts.

@/OEOO is a piece of %@Q

O/@ o isa piece of

Definition.
A forest language is called piecewise testable it it is a boolean
combination of languages “forests that contain # as a piece”

Fact. A forest language is piecewise testable ift it can be
defined by a boolean combination of ¥}, (<, <;,,.) formulas.







. : O
contains piece

contains no piece with 5 nodes




: : O
contains piece

contains no piece with 5 nodes

{ng}

all leaves are @ contains no piece g




: : O
contains piece

contains no piece with 5 nodes

{030}

all leaves are @ contains no piece g

forest is a word (vertically) contains no piece O O




: : O
contains piece

contains no piece with 5 nodes

{030}

all leaves are @ contains no piece g

forest is a word (vertically) contains no piece O O

forest is a word (horizontally) contains no piece g




We want the forest extension of:

Theorem. (I. Simon, 1975)

A word language is piecewise testable

ift

its syntactic monoid is /-trivial.




We want the forest extension of:

Theorem. (I. Simon, 1975)
A word language is piecewise testable

ift

its syntactic monoid is /-trivial.

What is a syntactic monoid for forest languages?

Although a definition exists (forest algebra), here
we will only talk about Myhill-Nerode equivalence.




Myhill-Nerode congruence for a forest language L.




Myhill-Nerode congruence for a forest language L.

‘Two contexts ./:; :\. and %ﬁ\%@are called Z-equivalent if




Myhill-Nerode congruence for a forest language L.

‘Two contexts ./:; :\. and %@Qare called Z-equivalent if
for every context EEQ\O and every forest 8 8 %:EQ




Myhill-Nerode congruence for a forest language L.

‘Two contexts ./:; :\. and %7%\%@3&3 called Z-equivalent if
for every context EEO\O and every forest 8 8 %:EQ

IORE
6e®de i <L

303




Main Theorem.
A forest language is piecewise testable ift

the following holds for all sufhciently large 7




Main Theorem.
A forest language is piecewise testable ift

the following holds for all sufhciently large 7

if O/O g 0 © | isa piece of QE%%\%Q , then




Main Theorem.
A forest language is piecewise testable ift

the following holds for all sufhciently large 7

if O/O g 0 © | isa piece of QE%%\%Q , then

: alent
%\%\Q 1S equtlova en O/@g o




Main Theorem.

A forest language is piecew| This criterion is decidable.
the following holds for 4 We also have variants of the theorem for
— tree languages
— commutative pleces
if Q/O g ©© ' isapid — pieces with closest common ancestor

71 times { %g\%\o }n times

: alent
1S equtlova en Q/Qg i o

7 times { %g\%\o }n times




The language O/% * has a J-trivial syntactic monoid,

but is not piecewise testable

O

is confused with




Big project: understand the
expressive power of first-order

logic on trees.




Big project: understand the FO(<)

expressive power of first-order
logic on trees.

regular

languages



Big project: understand the FO(<)

expressive power of first-order
logic on trees.

regular

languages



Big project: understand the FO(<)

expressive power of first-order
logic on trees.

Easy excercise

regular

languages



Big project: understand the FO(<)

expressive power of first-order
logic on trees.

Easy excercise

regular

languages



Big pr.oject: understand the FO(<)
expressive power of first-order
logic on trees.

'This paper \
Bool(>1(<))

Easy excercise Y1 (L) 11 (<)

regular

languages



Big project: understand the FO(<)
expressive power of first-order
logic on trees.

'This paper

Lasy excercise

regular

languages




Big project: understand the FO(<)
expressive power of first-order
logic on trees.

'This paper
BS, ICALP o8

Lasy excercise

regular

languages




Big project: understand the FO(<)
expressive power of first-order
logic on trees.

— 2

'This paper
BS, ICALP o8

Lasy excercise

regular

languages




