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Definition. 
A word language is called piecewise testable if it is a boolean 
combination of languages “words that contain w as a piece”

{ abc }   =    contains piece abc, but no piece of length 4 
a*b*   =    no piece ba

a*b*a*   =    no piece bab

Fact. A language is piecewise testable iff it can be defined 
by a boolean combination of              formulas.Σ1(≤)

∃x∃y a(x) ∧ b(y) ∧ x ≤ y
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Infix relation in a monoid

For s,t,u          , we say s is an infix of tsu∈ M

We say s,t          are in the same J-class if they are mutual infixes∈ M

Example. e syntactic monoid of (aa)* has two elements,
(aa)* and a(aa)*, which are in the same J-class.

A monoid is J-trivial if each J-class has one element. 
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If s and t are in the same J-class, then for any n one can find 
representatives of s and t with the same pieces of size n.
w        uwv       u’uwvv’       uu’uwvv’v        u’uu’uwvv’vv’v
s t ts s ...
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Several arguments, all difficult.
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eorem. (Schützenberger, McNaughton/Papert)
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– L is definable in first-order logic
– L is star-free
– the syntactic monoid of L is group-free

eorem. (Schützenberger, érien / Wilke)
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... more results, including modulo quantifiers,
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What about trees?
is paper is part of a program to extend

the algebra-logic connection to trees
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Definition. 
A forest language is called piecewise testable if it is a boolean 
combination of languages “forests that contain t as a piece”

Fact. A forest language is piecewise testable iff it can be  
defined by a boolean combination of                       formulas.Σ1(≤,≤lex)
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eorem. (I. Simon, )
A word language is piecewise testable

iff
its syntactic monoid is J-trivial.

What is a syntactic monoid for forest languages?

Although a definition exists (forest algebra), here
we will only talk about Myhill-Nerode equivalence.

We want the forest extension of:
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Myhill-Nerode congruence for a forest language L.

Two contexts and are called L-equivalent if

for every context and every forest

∈ L iff ∈ L
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is equivalent
to

is a piece ofif , then
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is criterion is decidable.
We also have variants of the theorem for
– tree languages
– commutative pieces
– pieces with closest common ancestor



e language 

is confused with

* has a J-trivial syntactic monoid, 
          but is not piecewise testable
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