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A word language is called piecewise testable if it is a boolean
combination of languages “words that contain w as a piece”

{abc} = contains piece abc, but no piece of length 4
a*b* = no piece ba

a*b*a* = no piece bab

Fact. A language is piecewise testable ift it can be defined

by a boolean combination of ¥ (<) formulas.

Jrxdy a(x) Nb(y) ANx <y
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Infix relation in a2 monoid

For s,t,u € M , we say s is an infix of #su

We say s,tc M are in the same J-class if they are mutual infixes

Example. 'The syntactic monoid of (24)* has two elements,

(aa)* and a(aa)*, which are in the same /-class.

A monoid is /-trivial if each /-class has one element.
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ift

l A word language is piecewise testable
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[f s and 7 are in the same /-class, then for any 7 one can find
representatives of s and ¢ with the same pieces of size 7.
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Several arguments, all difhcult.
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Theorem. (Schiitzenbe This paper 1s part of a program to extend

The following are equi the algebra-logic connection to trees
— L is definable in two-

— L can be defined by :
— the syntactic monoid of L is in DA

... more results, including modulo quantifiers,

the quantifier alternation hierarchy, etc.
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Definition.
A forest language is called piecewise testable it it is a boolean
combination of languages “forests that contain # as a piece”

Fact. A forest language is piecewise testable ift it can be
defined by a boolean combination of ¥}, (<, <;,,.) formulas.
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Theorem. (I. Simon, 1975)
A word language is piecewise testable

ift

its syntactic monoid is /-trivial.

What is a syntactic monoid for forest languages?

Although a definition exists (forest algebra), here
we will only talk about Myhill-Nerode equivalence.
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Main Theorem.

A forest language is piecew| This criterion is decidable.
the following holds for 4 We also have variants of the theorem for
— tree languages
— commutative pleces
if Q/O g ©© ' isapid — pieces with closest common ancestor

71 times { %g\%\o }n times

: alent
1S equtlova en Q/Qg i o

7 times { %g\%\o }n times




The language O/% * has a J-trivial syntactic monoid,

but is not piecewise testable

O

is confused with
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