
Tree Languages Definable
with One Quantifier

Alternation
Mikołaj Bojańczyk (Warszawa)

Luc Segoufin (Paris)

e following problem is decidable:

Input: A regular tree language L, given by a tree automaton.

Question: Is L definable by a formula with quantifier prefix
 ∃* ∀* and also by a formula with quantifier prefix ∀*∃*

is talk is about understanding the expressive power of logics on words
and trees. e logics involved can only define (some) regular languages.

is talk is about understanding the expressive power of logics on words
and trees. e logics involved can only define (some) regular languages.

all regular languages

languages
definable
in logic X

Understand logic X =
 give na algorithm to decide if a language L is definable in X

Why this notion of understanding?
ere is a rich theory connecting logic, regular languages, and algebra.

Why this notion of understanding?
ere is a rich theory connecting logic, regular languages, and algebra.

eorem. (Schützenberger, McNaughton/Papert)
e following are equivalent for a word language:
– L is definable in first-order logic
– L is star-free
– the syntactic monoid of L is group-free

Why this notion of understanding?
ere is a rich theory connecting logic, regular languages, and algebra.

eorem. (Schützenberger, McNaughton/Papert)
e following are equivalent for a word language:
– L is definable in first-order logic
– L is star-free
– the syntactic monoid of L is group-free

... more results, including modulo quantifiers,
the quantifier alternation hierarchy, etc.

Why this notion of understanding?
ere is a rich theory connecting logic, regular languages, and algebra.

eorem. (Schützenberger, McNaughton/Papert)
e following are equivalent for a word language:
– L is definable in first-order logic
– L is star-free
– the syntactic monoid of L is group-free

... more results, including modulo quantifiers,
the quantifier alternation hierarchy, etc.

is paper is part of a program investigating the algebra-
logic connection for trees. Eventually, we want to answer
questions such as:

– what is the expressive power of first-order logic on trees?
– what is a tree group?
– is there a Krohn-Rhodes decomposition theory?

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

b* · a · {a,b,c}*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic

b* · a · {a,b,c}*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
∃x. a(x) ∧

(
∀y < x. b(y)

)

b* · a · {a,b,c}*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

b* · a · {a,b,c}*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

b* · a · {a,b,c}*

F
(
a ∧ ¬(F−1c)

)

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

b* · a · {a,b,c}*

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

b* · a · {a,b,c}*

∀x∃y. c(x) ⇒
(
y < x ∧ a(y)

)
3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

4. Two–way ordered deterministic automata

b* · a · {a,b,c}*

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

4. Two–way ordered deterministic automata

b* · a · {a,b,c}*

b⇾a⇾

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

4. Two–way ordered deterministic automata
5. Turtle automata

b* · a · {a,b,c}*

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

4. Two–way ordered deterministic automata
5. Turtle automata

b* · a · {a,b,c}*

“go right to first a; go left to first c” fails
“go right to first a” works

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

6. Monoids in DA

4. Two–way ordered deterministic automata
5. Turtle automata

b* · a · {a,b,c}*

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

7. A type of unambiguous expression
6. Monoids in DA

4. Two–way ordered deterministic automata
5. Turtle automata

b* · a · {a,b,c}*

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

7. A type of unambiguous expression
6. Monoids in DA

4. Two–way ordered deterministic automata
5. Turtle automata

b* · a · {a,b,c}*

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃* What about

trees?

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

7. A type of unambiguous expression
6. Monoids in DA

4. Two–way ordered deterministic automata
5. Turtle automata

b* · a · {a,b,c}*

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

6. Monoids in DA

4. Two–way ordered deterministic automata
5. Turtle automata

b* · a · {a,b,c}*

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

6. Monoids in DA
5. Turtle automata

b* · a · {a,b,c}*

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

eorem. (Etessami, Schützenberger, Schwentick, érien, Vollimer, Wilke)

e following formalisms define the same word languages:

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

6. Monoids in DA

b* · a · {a,b,c}*

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

1. Two-variable first-order logic
2. Temporal logic with operators F and F-1

6. Monoids in DA

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-1

6. Monoids in DA

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-1

6. Monoids in DA

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-1

6. Monoids in DA

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-1

6. Monoids in DA

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

“two a’s”

1. Two-variable first-order logic

2. Temporal logic with operators F and F-1

6. Monoids in DA

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

“two a’s”

1. Two-variable first-order logic

2. Temporal logic with operators F and F-1

6. Monoids in DA

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

“all children of root have label a”

“two a’s”

1. Two-variable first-order logic

2. Temporal logic with operators F and F-1

6. Monoids in DA

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

“all children of root have label a”

“two a’s”

“three a’s”

1. Two-variable first-order logic

2. Temporal logic with operators F and F-1

6. Monoids in DA

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

“all children of root have label a”

“two a’s”

“three a’s”

1. Two-variable first-order logic

2. Temporal logic with operators F and F-1

6. Monoids in DA

3. Languages definable with prefix ∃* ∀*
 and also with prefix ∀* ∃*

“all children of root have label a”

“two a’s”

“three a’s”

We consider forest languages
instead of tree languages

(a forest is a sequence of trees)

a

b

a

a

a
b a a

b
a

b

 ∃*

We use first-order formulas to describe properties of forests.
Variables quantify over nodes. Predicates allowed are:
 “x ancestor of y” “x lexicographically before y” “label of x is a”

We are interested in forest languages that can be defined
in both ∀* ∃* and ∃* ∀*. We call this class ∆2.

We are interested in forest languages that can be defined
in both ∀* ∃* and ∃* ∀*. We call this class ∆2.

E.g. Trees ∈ ∆2

We are interested in forest languages that can be defined
in both ∀* ∃* and ∃* ∀*. We call this class ∆2.

E.g. Trees ∈ ∆2

every two nodes have
a common ancestor

∀x∀y∃z. z ≤ x ∧ z ≤ y

∀* ∃*

We are interested in forest languages that can be defined
in both ∀* ∃* and ∃* ∀*. We call this class ∆2.

E.g. Trees ∈ ∆2

every two nodes have
a common ancestor

∀x∀y∃z. z ≤ x ∧ z ≤ y

∀* ∃*

We are interested in forest languages that can be defined
in both ∀* ∃* and ∃* ∀*. We call this class ∆2.

E.g. Trees ∈ ∆2

∃x∀y. x ≤ y

some node is ancestor
to every node

every two nodes have
a common ancestor

∀x∀y∃z. z ≤ x ∧ z ≤ y

∃* ∀*∀* ∃*

We are interested in forest languages that can be defined
in both ∀* ∃* and ∃* ∀*. We call this class ∆2.

E.g. Trees ∈ ∆2

∃x∀y. x ≤ y

some node is ancestor
to every node

every two nodes have
a common ancestor

∀x∀y∃z. z ≤ x ∧ z ≤ y

Question:
What forest languages can be defined in ∆2 ?
Preferably, give an algorithm that decides if L ∈ ∆2.

a word w can have two encodings:

a b b a a b a

hor(w)

a

b

b

a

a

b

a

ver(w)

Fact. if L is a word language definable in ∆2, then both
hor(L) and ver(L) are forest languages definable in ∆2.

Our characterization is stated as an identity.
Intuitively, a forest language is definable in ∆2 iff

it admits a certain pumping lemma.

A context is a forest with a
hole in a leaf

a

b

a

b

a

A context is a forest with a
hole in a leaf

a

b

a

b

a a

a
b

b

a

b

a

a

a

b

b
a

b

=

A context is a forest with a
hole in a leaf

a

b

a

b

a a

a
b

b

a

b

a

a

a

b

b
a

b

=

Notion of piece for contexts.

is a piece of

Myhill-Nerode congruence for a forest language L.

Myhill-Nerode congruence for a forest language L.

Two contexts and are called L-equivalent if

Myhill-Nerode congruence for a forest language L.

Two contexts and are called L-equivalent if

for every context and every forest

Myhill-Nerode congruence for a forest language L.

Two contexts and are called L-equivalent if

for every context and every forest

∈ L iff ∈ L

Main eorem.
A forest language is definable in ∆2 iff
 the following holds for all sufficiently large n

Main eorem.
A forest language is definable in ∆2 iff
 the following holds for all sufficiently large n

is a piece ofif , then

Main eorem.
A forest language is definable in ∆2 iff
 the following holds for all sufficiently large n

is equivalent
to

is a piece ofif , then

n times {

n times { n times}

n times}

Main eorem.
A forest language is definable in ∆2 iff
 the following holds for all sufficiently large n

is equivalent
to

is a piece ofif , then

n times {

n times { n times}

n times}

is criterion is decidable.
We also have variants of the theorem for
unordered trees / forests.

Application.
e set of binary trees (every node has zero or two children)
is not definable in ∆2

is confused with

Big project: understand the
expressive power of first-order

logic on trees.

FO(≤)Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

FO(≤)

Σ1(≤) Π1(≤)

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

FO(≤)

Σ1(≤) Π1(≤)

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

Easy excercise

FO(≤)

Σ1(≤) Π1(≤)

Bool(Σ1(≤))

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

Easy excercise

FO(≤)

Σ1(≤) Π1(≤)

Bool(Σ1(≤))

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

BSS LICS

Easy excercise

FO(≤)

Σ1(≤) Π1(≤)

Bool(Σ1(≤))

Σ2(≤)

Π2(≤)

∆2(≤)

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

BSS LICS

Easy excercise

FO(≤)

Σ1(≤) Π1(≤)

Bool(Σ1(≤))

Σ2(≤)

Π2(≤)

∆2(≤)

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

BSS LICS

this paper

Easy excercise

FO(≤)

Σ1(≤) Π1(≤)

Bool(Σ1(≤))

Σ2(≤)

Π2(≤)

∆2(≤)

Big project: understand the
expressive power of first-order

logic on trees.

regular
languages

=?

=?

=?

BSS LICS

this paper

Easy excercise

