Tree Languages Definable with One Quantifier Alternation

Mikołaj Bojańczyk (Warszawa)
Luc Segoufin (Paris)

The following problem is decidable:

Input: A regular tree language L, given by a tree automaton.
Question: Is L definable by a formula with quantifier prefix $\exists^{*} \nabla^{*}$ and also by a formula with quantifier prefix $\forall^{*} \exists^{*}$

This talk is about understanding the expressive power of logics on words and trees. The logics involved can only define (some) regular languages.

This talk is about understanding the expressive power of logics on words and trees. The logics involved can only define (some) regular languages.

Understand $\operatorname{logic} X=$ give na algorithm to decide if a language L is definable in X

```
all regular languages
```

```
languages
definable
in logic }
```


Why this notion of understanding?

There is a rich theory connecting logic, regular languages, and algebra.

Why this notion of understanding?

There is a rich theory connecting logic, regular languages, and algebra.

Theorem. (Schützenberger, McNaughton/Papert) The following are equivalent for a word language:
$-L$ is definable in first-order logic

- L is star-free
- the syntactic monoid of L is group-free

Why this notion of understanding?

There is a rich theory connecting logic, regular languages, and algebra.

Theorem. (Schützenberger, McNaughton/Papert) The following are equivalent for a word language:

- L is definable in first-order logic
$-L$ is star-free
- the syntactic monoid of L is group-free
... more results, including modulo quantifiers, the quantifier alternation hierarchy, etc.

This paper is part of a program investigating the algebralogic connection for trees. Eventually, we want to answer questions such as:

- what is the expressive power of first-order logic on trees?
- what is a tree group?
- is there a Krohn-Rhodes decomposition theory?
- L is definable in first-order logic
- L is star-free
- the syntactic monoid of L is group-free
... more results, including modulo quantifiers, the quantifier alternation hierarchy, etc.

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic

$$
\exists x . a(x) \wedge(\forall y<x . b(y))
$$

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}

$$
\mathrm{F}\left(a \wedge \neg\left(\mathrm{~F}^{-1} c\right)\right)
$$

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$

$$
\forall x \exists y \cdot c(x) \Rightarrow(y<x \wedge a(y))
$$

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Two-way ordered deterministic automata

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Two-way ordered deterministic automata

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Two-way ordered deterministic automata
5. Turtle automata

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Two-way ordered deterministic automata
5. Turtle automata
"go right to first a; go left to first c " fails
"go right to first a " works

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Two-way ordered deterministic automata
5. Turtle automata
6. Monoids in DA

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Two-way ordered deterministic automata
5. Turtle automata
6. Monoids in DA
7. A type of unambiguous expression

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Tempomil lomic with onemanom F and F^{-1}
3. Langu ages definable with prefix $\mathrm{J}^{*} \forall^{*}$
and a what about
4. Two-v vay ordere trees? ministic utomata
5. Turtle
6. Monoids in DA
7. A type of unambiguous expression

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Two-way ordered deterministic automata
5. Turtle automata
6. Monoids in DA
7. A type of unambiguous expression

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Two-way ordered deterministic automata
5. Turtle automata
6. Monoids in DA

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Turtle automata
5. Monoids in DA

Theorem. (Etessami, Schützenberger, Schwentick, Thérien, Vollimer, Wilke) The following formalisms define the same word languages:

$$
b^{*} \cdot a \cdot\{a, b, c\}^{*}
$$

1. Two-variable first-order logic
2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Monoids in DA
5. Two-variable first-order logic
6. Temporal logic with operators F and F^{-1}
7. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
8. Monoids in DA
9. Two-variable first-order logic
10. Temporal logic with operators F and F^{-1}
11. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
12. Monoids in DA
13. Two-variable first-order logic
14. Temporal logic with operators F and F^{-1}
15. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
16. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F^{-1}
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F^{-1}
"two a 's"
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F^{-1}
```
"two a's"
```

3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F^{-1} "all children of root have label a "
```
"two a's"
```

3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F^{-1}
"all children of root have label $a "$
"two a 's"
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F^{-1}
"all children of root have label a "
3. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
4. Monoids in DA
5. Two-variable first-order logic
6. Temporal logic with operators F and F^{-1} "all children of root have label a "
7. Languages definable with prefix $\exists^{*} \forall^{*}$ and also with prefix $\forall^{*} \exists^{*}$
8. Monoids in DA

We consider forest languages instead of tree languages

(a forest is a sequence of trees)

We use first-order formulas to describe properties of forests. Variables quantify over nodes. Predicates allowed are: " x ancestor of y " " x lexicographically before y " "label of x is a "

We are interested in forest languages that can be defined in both $\forall^{*} \exists^{*}$ and $\exists^{*} \forall^{*}$. We call this class Δ_{2}.

We are interested in forest languages that can be defined in both $\forall^{*} \exists^{*}$ and $\exists^{*} \forall^{*}$. We call this class Δ_{2}.

$$
\text { E.g. Trees } \in \Delta_{2}
$$

We are interested in forest languages that can be defined in both $\forall^{*} \exists^{*}$ and $\exists^{*} \forall^{*}$. We call this class Δ_{2}.

$$
\text { E.g. Trees } \in \Delta_{2}
$$

every two nodes have a common ancestor
$\forall x \forall y \exists z . z \leq x \wedge z \leq y$

We are interested in forest languages that can be defined in both $\forall^{*} \exists^{*}$ and $\exists^{*} \forall^{*}$. We call this class Δ_{2}.

$$
\text { E.g. Trees } \in \Delta_{2}
$$

every two nodes have a common ancestor
$\forall x \forall y \exists z . z \leq x \wedge z \leq y$

$$
\forall^{*} \exists^{*}
$$

We are interested in forest languages that can be defined in both $\forall^{*} \exists^{*}$ and $\exists^{*} \forall^{*}$. We call this class Δ_{2}.

$$
\text { E.g. Trees } \in \Delta_{2}
$$

every two nodes have a common ancestor
$\forall x \forall y \exists z . z \leq x \wedge z \leq y$

$$
\forall^{*} \exists^{*}
$$

some node is ancestor to every node
$\exists x \forall y . x \leq y$

We are interested in forest languages that can be defined in both $\forall^{*} \exists^{*}$ and $\exists^{*} \forall^{*}$. We call this class Δ_{2}.

$$
\text { E.g. Trees } \in \Delta_{2}
$$

every two nodes have a common ancestor
$\forall x \forall y \exists z . z \leq x \wedge z \leq y$

$$
\forall^{*} \exists^{*}
$$

some node is ancestor to every node

$$
\begin{aligned}
& \exists x \forall y . x \leq y \\
& \exists^{*} \forall^{*}
\end{aligned}
$$

Question:

What forest languages can be defined in Δ_{2} ?
Preferably, give an algorithm that decides if $L \in \Delta_{2}$.
a word w can have two encodings:

Fact. if L is a word language definable in Δ_{2}, then both $\operatorname{hor}(L)$ and $\operatorname{ver}(L)$ are forest languages definable in Δ_{2}.

Our characterization is stated as an identity. Intuitively, a forest language is definable in Δ_{2} iff it admits a certain pumping lemma.

A context is a forest with a hole in a leaf

A context is a forest with a hole in a leaf

A context is a forest with a hole in a leaf

Notion of piece for contexts.

Myhill-Nerode congruence for a forest language L.

Myhill-Nerode congruence for a forest language L.

Two contexts $0900^{\text {and }} 090$ are called L-equivalent if

Myhill-Nerode congruence for a forest language L.

Myhill-Nerode congruence for a forest language L.

$\in L$
iff

Main Theorem.

A forest language is definable in Δ_{2} iff the following holds for all sufficiently large n

Main Theorem.

A forest language is definable in Δ_{2} iff the following holds for all sufficiently large n

Main Theorem.

A forest language is definable in Δ_{2} iff the following holds for all sufficiently large n

Main Theorem.

A forest language is defi the following holds f

This criterion is decidable.
We also have variants of the theorem for unordered trees / forests.

is equivalent to

Application.

The set of binary trees (every node has zero or two children) is not definable in Δ_{2}

Big project: understand the expressive power of first-order logic on trees.

Big project: understand the expressive power of first-order logic on trees.
regular
languages

Big project: understand the expressive power of first-order logic on trees.

$$
\Sigma_{1}(\leq) \quad \Pi_{1}(\leq)
$$

regular languages

Big project: understand the expressive power of first-order logic on trees.

Easy excercise $\longrightarrow \Sigma_{1}(\leq)$

$\Pi_{1}(\leq)$

regular
languages

Big project: understand the expressive power of first-order logic on trees.

$\operatorname{Bool}\left(\Sigma_{1}(\leq)\right)$

Easy excercise $\quad \Sigma_{1}(\leq)$

$$
\Pi_{1}(\leq)
$$

regular

languages

Big project: understand the expressive power of first-order logic on trees.

BSS LICS o8
$\operatorname{Bool}\left(\Sigma_{1}(\leq)\right)$

Easy excercise $\quad \Sigma_{1}(\leq)$
$\Pi_{1}(\leq)$
regular
languages

Big project: understand the expressive power of first-order logic on trees.
$F O(\leq)$

$$
\Sigma_{2}(\leq)
$$

BSS LICS o8

Easy excercise
 $\operatorname{Bool}\left(\Sigma_{1}(\leq)\right)$
regular languages

$$
\Pi_{2}(\leq)
$$

Big project: understand the expressive power of first-order
$F O(\leq)$

logic on trees.

$$
\Sigma_{2}(\leq)
$$

BSS LICS o8
this paper
Easy excercise
regular languages

$$
\Pi_{2}(\leq)
$$

Big project: understand the expressive power of first-order
$F O(\leq)=$?

logic on trees.

$$
\Sigma_{2}(\leq)=?
$$

BSS LICS o8
this paper
Easy excercise
regular languages

$$
\Pi_{2}(\leq)=?
$$

