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'The following problem is decidable:

Input: A regular tree language L, given by a tree automaton.

Question: [s L definable by a formula with quantifier prefix
3* v* and also by a formula with quantifier prefix v*3*
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'This paper is part of a program investigating the algebra-
logic connection for trees. Eventually, we want to answer
questions such as:

— what is the expressive power of first-order logic on trees?
— what is a tree group?
— is there a Krohn-Rhodes decomposition theory?

— L is definable in first-order logic

— L is star-free

— the syntactic monoid of L is group-free

... more results, including modulo quantifiers,

the quantifier alternation hierarchy;, etc.
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We consider forest languages @ (a) (b) (2)
instead of tree languages (2)

2RO
(a forest is a sequence of trees) © (B @

We use first-order formulas to describe properties of forests.
Variables quantify over nodes. Predicates allowed are:
“x ancestor of y” “x lexicographically before y” “label of x is 2
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Question:

What forest languages can be defined in A;?
Preferably, give an algorithm that decides it L € Ao.




a word w can have two encodings:

ORONORORORORO,
hor(w)

Fact. if L is a word language definable in A, then both
hor(L) and ver(L) are forest languages definable in As.




Our characterization is stated as an identity.

Intuitively, a forest language is definable in A ift

it admits a certain pumping lemma.
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A context is a forest with a
hole in a leaf

@@

Notion of piece for contexts.

@/OSOO is a piece of %%@
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IORE
6e®de i <L

303
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Main Theorem.

A forest language is defi
the following holds ff

'This criterion is decidable.
We also have variants of the theorem for

. Q/Qg 0® ' isa unordered trees / forests.

: alent
%\%\Q 1S equtlova en Q/Qg X .




Application.
The set of binary trees (every node has zero or two children)
is not definable in A;

is confused with
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