Tree Languages Definable
with One Quantifier

Alternation

Mikotaj Bojanczyk (Warszawa)
Luc Segoufin (Paris)

'The following problem is decidable:

Input: A regular tree language L, given by a tree automaton.

Question: [s L definable by a formula with quantifier prefix
3* v* and also by a formula with quantifier prefix v*3*

'This talk is about understanding the expressive power of logics on words

and trees. The logics involved can only define (some) regular languages.

'This talk is about understanding the expressive power of logics on words

and trees. The logics involved can only define (some) regular languages.

Understand logic X =
give na algorithm to decide it a language L is definable in X

all regular languages

languages
definable
in logic X

Why this notion of understanding?

There is a rich theory connecting logic, regular languages, and algebra.

Why this notion of understanding?

There is a rich theory connecting logic, regular languages, and algebra.

Theorem. (Schiitzenberger, McNaughton/Papert)
The following are equivalent for a word language:
— L is definable in first-order logic

— L is star-free

— the syntactic monoid of L is group-free

Why this notion of understanding?

There is a rich theory connecting logic, regular languages, and algebra.

Theorem. (Schiitzenberger, McNaughton/Papert)
The following are equivalent for a word language:
— L is definable in first-order logic

— L is star-free

— the syntactic monoid of L is group-free

... more results, including modulo quantifiers,
the quantifier alternation hierarchy;, etc.

'This paper is part of a program investigating the algebra-
logic connection for trees. Eventually, we want to answer
questions such as:

— what is the expressive power of first-order logic on trees?
— what is a tree group?
— is there a Krohn-Rhodes decomposition theory?

— L is definable in first-order logic

— L is star-free

— the syntactic monoid of L is group-free

... more results, including modulo quantifiers,

the quantifier alternation hierarchy;, etc.

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)

The following formalisms define the same word languages:

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)

The following formalisms define the same word languages:

b*-a-{a,bct*

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)

The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

3. a(z) A (Yy < z. b(y))

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)

The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!
F(a /\ _I(F_lc))

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*
and also with prefix v* 3*
VzIy. c(z) = (y <z Aa(y))

ThCOl‘ €. (Etessami, Schiitzenberger,

Schwentick, Thérien, Vollimer, Wilke)

The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable

first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*

and also wit!

h prefix V* 3*

4. Two—way orc

ered deterministic automata

ThCOl‘ €. (Etessami, Schiitzenberger,

Schwentick, Thérien, Vollimer, Wilke)

The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable

first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*

and also wit!

h prefix V* 3*

4. Two—way orc

ered deterministic automata

a- bhs

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)

The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*

4.

lan

and also wit!

h prefix V* 3*

(WO—way Orc

ered deterministic automata

Turtle automata

€Ore€m. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke
Th E Schiitzenberger, Schwentick, Thérien, Voll lke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*

and also with prefix v* 3*

4. Two—way ordered deterministic automata

lan

5. Turtle automata
“g0 right to first 4; go left to first ¢” fails
“g0 right to first 4~ works

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*

and also with prefix v* 3*

4. Two—way ordered deterministic automata

5. Turtle automata

6. Monoids in DA

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*

and also with prefix v* 3*

4. Two—way ordered deterministic automata

5. Turtle automata
6. Monoids in DA

7. A type of unambiguous expression

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temp,\ml lacic writh Anararare Eqnd F

3. Langt P*
and 2 What about

4. Two— trees: utomata

5. Turtle ...
6. Monoids in DA

7. A type of unambiguous expression

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*

and also with prefix v* 3*

4. Two—way ordered deterministic automata

5. Turtle automata
6. Monoids in DA

7. A type of unambiguous expression

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*

and also with prefix v* 3*

4. Two—way ordered deterministic automata

5. Turtle automata

6. Monoids in DA

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

5. Turtle automata

6. Monoids in DA

ThCOl‘ €IM. (Etessami, Schiitzenberger, Schwentick, Thérien, Vollimer, Wilke)
The following formalisms define the same word languages:

b*-a-{a,bct*

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

6. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

6. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F!

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

6. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F!

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

6. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F!

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

6. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F!

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

6. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F!

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

6. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F!

“all children of root have label 2”

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

6. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F!

“all children of root have label 2”

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

“three 4’s”

6. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F!

“all children of root have label 2”

3. Languages definable with prefix 3* v*
and also with prefix v* 3*

“three 4’s”

6. Monoids in DA

1. Two-variable first-order logic

2. Temporal logic with operators F and F-!

“all children of root have label 2”

6. Monoids in DA

We consider forest languages @ (a) (b) (2)
instead of tree languages (2)

2RO
(a forest is a sequence of trees) © (B @

We use first-order formulas to describe properties of forests.
Variables quantify over nodes. Predicates allowed are:
“x ancestor of y” “x lexicographically before y” “label of x is 2

We are interested in forest languages that can be defined
in both v* 3* and 3* v*. We call this class A».

We are interested in forest languages that can be defined
in both v* 3* and 3* v*. We call this class A».

E.g. Trees € A;

We are interested in forest languages that can be defined
in both v* 3* and 3* v*. We call this class A».

E.g. Trees € A;

every two nodes have

d common ancestor

VeVydz. 2 <z Nz <y

We are interested in forest languages that can be defined
in both v* 3* and 3* v*. We call this class A».

E.g. Trees € A;

every two nodes have

d common ancestor

VeVydz. z <x ANz <y
v* 3*

We are interested in forest languages that can be defined
in both v* 3* and 3* v*. We call this class A».

E.g. Trees € A;

every two nodes have some node is ancestor

d common ancestor (o Cvery node

VaeVydz. z < ax Nz <y JxVy. x < y
v* 3*

We are interested in forest languages that can be defined
in both v* 3* and 3* v*. We call this class A».

E.g. Trees € A;

every two nodes have some node is ancestor

d common ancestor (o Cvery node

VaeVydz. z < ax Nz <y JxVy. x < y

Question:

What forest languages can be defined in A;?
Preferably, give an algorithm that decides it L € Ao.

a word w can have two encodings:

ORONORORORORO,
hor(w)

Fact. if L is a word language definable in A, then both
hor(L) and ver(L) are forest languages definable in As.

Our characterization is stated as an identity.

Intuitively, a forest language is definable in A ift

it admits a certain pumping lemma.

A context is a forest with a

hole in a leaf

A context is a forest with a

hole in a leaf

A context is a forest with a
hole in a leaf

@@

Notion of piece for contexts.

@/OSOO is a piece of %%@

Myhill-Nerode congruence for a forest language L.

Myhill-Nerode congruence for a forest language L.

‘Two contexts ./:; :\. and %ﬁ\%@are called Z-equivalent if

Myhill-Nerode congruence for a forest language L.

‘Two contexts ./:; :\. and %@Qare called Z-equivalent if
for every context EEQ\O and every forest 8 8 %:EQ

Myhill-Nerode congruence for a forest language L.

‘Two contexts ./:; :\. and %7%\%@3&3 called Z-equivalent if
for every context EEO\O and every forest 8 8 %:EQ

IORE
6e®de i <L

303

Main Theorem.

A forest language is definable in A; iff

the following holds for all sufhciently large 7

Main Theorem.

A forest language is definable in A; iff

the following holds for all sufhciently large 7

if O/O g 0 © | isa piece of %ﬁ\%@ , then

Main Theorem.

A forest language is definable in A; iff

the following holds for all sufhciently large 7

if O/O g 0 © | isa piece of QE%%\%Q , then

: alent
%\%\Q 1S equtlova en O/@g o

Main Theorem.

A forest language is defi
the following holds ff

'This criterion is decidable.
We also have variants of the theorem for

. Q/Qg 0® ' isa unordered trees / forests.

: alent
%\%\Q 1S equtlova en Q/Qg X .

Application.
The set of binary trees (every node has zero or two children)
is not definable in A;

is confused with

Big project: understand the
expressive power of first-order

logic on trees.

Big project: understand the FO(<)

expressive power of first-order
logic on trees.

regular

languages

Big project: understand the FO(<)

expressive power of first-order
logic on trees.

regular

languages

Big project: understand the FO(<)

expressive power of first-order
logic on trees.

Easy excercise

regular

languages

Big project: understand the FO(<)

expressive power of first-order
logic on trees.

Easy excercise

regular

languages

Big project: understand the FO(<)

expressive power of first-order
logic on trees.

BSS LICS 08

Easy excercise

regular

languages

Big pr.oject: understand the FO(<)
expressive power of first-order
logic on trees.

BSS LICS o8

Lasy excercise

regular

languages

Big pr.oject: understand the FO(<)
expressive power of first-order
logic on trees.

BSS LICS o8

this paper

Lasy excercise

regular

languages

Big pr.oject: understand the FO(<)
expressive power of first-order
logic on trees.

— 2

BSS LICS o8

this paper

Lasy excercise

regular

languages

