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e following problem is decidable:

Input: A regular tree language L, given by a tree automaton.

Question: Is L definable by a formula with quantifier prefix 
     ∃* ∀* and also by a formula with quantifier prefix ∀*∃*



is talk is about understanding the expressive power of logics on words 
and trees. e logics involved can only define (some) regular languages.
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all regular languages

languages
definable
in logic X

Understand logic X = 
     give na algorithm to decide if a language L is definable in X
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eorem. (Schützenberger, McNaughton/Papert)
e following are equivalent for a word language:
– L is definable in first-order logic
– L is star-free
– the syntactic monoid of L is group-free

... more results, including modulo quantifiers,
the quantifier alternation hierarchy, etc.

is paper is part of a program investigating the algebra-
logic connection for trees. Eventually, we want to answer 
questions such as: 

– what is the expressive power of first-order logic on trees?
– what is a tree group?
– is there a Krohn-Rhodes decomposition theory?
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We consider forest languages 
instead of tree languages

(a forest is a sequence of trees)

a

b

a

a

a
b a a

b
a

b

 ∃* 

We use first-order formulas to describe properties of forests. 
Variables quantify over nodes. Predicates allowed are:
   “x ancestor of y”  “x lexicographically before y”   “label of x is a”
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Question: 
What forest languages can be defined in ∆2 ?
Preferably, give an algorithm that decides if L ∈ ∆2.



a word w can have two encodings:

a b b a a b a

hor(w)

a

b

b

a

a

b

a

ver(w)

Fact. if L is a word language definable in ∆2, then both 
hor(L) and ver(L) are forest languages definable in ∆2.



Our characterization is stated as an identity.
Intuitively, a forest language is definable in ∆2 iff

it admits a certain pumping lemma.
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Notion of piece for contexts.

is a piece of 
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A forest language is definable in ∆2 iff
    the following holds for all sufficiently large n

is equivalent
to

is a piece ofif , then
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is criterion is decidable.
We also have variants of the theorem for
unordered trees / forests.



Application.
e set of binary trees (every node has zero or two children)
is not definable in ∆2 

is confused with
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