
e common fragment of ACTL and CTL

Mikołaj Bojańczyk
Warsaw University

Logics that talk about transition systems

aa

a

b

a

Logics that talk about transition systems

Linear time logic.
every finite path in a* + a*b

aa

a

b

a

Logics that talk about transition systems

Linear time logic.
every finite path in a* + a*b

Branching time logic.
after every a* prefix, b is possible

aa

a

b

a

Logics that talk about transition systems

Linear time logic.
every finite path in a* + a*b

Branching time logic.
after every a* prefix, b is possible

aa

a

b

a
has the same

paths as

Logics that talk about transition systems

Linear time logic.
every finite path in a* + a*b

Branching time logic.
after every a* prefix, b is possible

aa

a

b

a

a

a
b

has the same
paths as

Instead of transition systems, we use labeled trees.
e results generalize to transition systems.

Instead of transition systems, we use labeled trees.
e results generalize to transition systems.

a

a

b a

c c

c

LTL
Languages of the form:
every path satisfies

a word property defined in LTL, e.g. GF a

Here, instead of LTL, we use regular expressions for
the word languages, e.g. ((b+c)*a)

Instead of transition systems, we use labeled trees.
e results generalize to transition systems.

CTL
A U : one every path holds until holds.
AG : on every path, holds globally.
AX : on every path, holds in the next position.

label tests and boolean operations.
ac

a

b a

b c

c

a

a

b a

c c

c

LTL
Languages of the form:
every path satisfies

a word property defined in LTL, e.g. GF a

Here, instead of LTL, we use regular expressions for
the word languages, e.g. ((b+c)*a)

A b U c

Instead of transition systems, we use labeled trees.
e results generalize to transition systems.

CTL
A U : one every path holds until holds.
AG : on every path, holds globally.
AX : on every path, holds in the next position.

label tests and boolean operations.
ac

a

b a

b c

c

a

a

b a

c c

c

LTL
Languages of the form:
every path satisfies

a word property defined in LTL, e.g. GF a

Here, instead of LTL, we use regular expressions for
the word languages, e.g. ((b+c)*a)

CTL LTL

tree automata, -calculus

at least one a
every path (ab)*

even number of a’s

co
m

m
on

fra
gm

en
t

What is the common fragment?

CTL LTL

tree automata, -calculus

at least one a
every path (ab)*

even number of a’s

co
m

m
on

fra
gm

en
t

What is the common fragment?

Input:
CTL formula.
Question:
Is it in LTL?

Input:
LTL formula.
Question:
Is it in CTL?

Input:
Tree automaton.
Question:
Is it in the common fragment?

CTL

LTL

m.
It is decidable if a given regular language is in LTL.

m. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

CTL

LTL

m.
It is decidable if a given regular language is in LTL.

m. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

CTL

LTL
ACTL

ACTL
CTL without negation,
only “on all paths...”

m.
It is decidable if a given regular language is in LTL.

m. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

CTL

LTL

Main contribution.

ACTL LTL CTL LTL

decidable membership

ACTL
ACTL
CTL without negation,
only “on all paths...”

m.
It is decidable if a given regular language is in LTL.

m. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

CTL

LTL

all paths begin with (ab)*a(ab)*c
Main contribution.

ACTL LTL CTL LTL

decidable membership

ACTL
ACTL
CTL without negation,
only “on all paths...”

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

quantifier-free, using labels and <

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

quantifier-free, using labels and <

On every path, every a is followed by some b.
AG a A a U b

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

Contribution 2. Effective criterion.

Contribution 1. Not the same thing as CTL LTL.

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

all paths begin with (ab)*a(ab)*c
LTL

ACTL
CTL

Obvious
words that begin with (ab)*a(ab)*c

all paths begin with (ab)*a(ab)*c
LTL

ACTL
CTL

Obvious
words that begin with (ab)*a(ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

a

1. all paths begin with (ab)*a(ab)*c or (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

a

1. all paths begin with (ab)*a(ab)*c or (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.

a

a

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c
or

b(ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c
or

b(ab)*c

All paths begin with
(ab)*a(ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c
or

b(ab)*c

All paths begin with
(ab)*a(ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c
or

b(ab)*c

All paths begin with
(ab)*a(ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c
or

b(ab)*c

All paths begin with
(ab)*a(ab)*cdeepest node on

paths with
aa and without.

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

m. It is decidable if a language is definable in .

generalization to infinite words
of a result of Arfi ’91.

A language definable in is closed under the
following rewriting rules.

wk wk v wk
if k is large, and v is a subword of w.

A language definable in is closed under the
following rewriting rules.

wk wk v wk
if k is large, and v is a subword of w.

if k is large, and v,u are subwords of w.
w wk v u

A language definable in is closed under the
following rewriting rules.

• ACTL LTL is a proper subset of CTL LTL.

• An effective characterization of for infinite words.

• A simpler characterization of for finite words.

Contribution

CTL

LTL

• Effective characterization of CTL...

• ...or at least the common fragment of CTL and LTL.

Future work

