'The common fragment of ACTL and CTL

Mikotaj Bojaniczyk

Warsaw University

Logics that talk about transition systems

Logics that talk about transition systems

N Linear time logic.

Q every finite path in 2* + 25
a
2
b (O
Q —

@
O

a

Logics that talk about transition systems

N Linear time logic.

Q every finite path in 2* + 25
a
2
b (O
Q —

@
O

a

Branching time logic.

after every a™* prefix, 4 is possible

Logics that talk about transition systems

N Linear time logic.

Q every finite path in 2* + 25
a
2
b (O
Q —

@
O

a

has the same
paths as

Branching time logic.

after every a™* prefix, 4 is possible

Logics that talk about transition systems

N Linear time logic.

Q every finite path in 2* + 25
a
2
b (O
Q —

) z N\
has the same
a paths as

Branching time logic.

after every a™* prefix, 4 is possible

Instead of transition systems, we use labeled trees.

The results generalize to transition systems.

Instead of transition systems, we use labeled trees.
The results generalize to transition systems.

LTL

Languages of the form:
every path satishies ¢

© a word property defined in LTL, e.g. GF «

Here, instead of LTL, we use regular expressions for

the word languages, e.g. ((b+c)*a)”

Instead of transition systems, we use labeled trees.
The results generalize to transition systems.

LTL

Languages of the form:
every path satishies ¢

© a word property defined in LTL, e.g. GF «

Here, instead of LTL, we use regular expressions for

the word languages, e.g. ((b+c)*a)”

CTL
Ap U :one every path ®holds until holds.

AG ¢ : on every path, ¥ holds globally.
AX ¢ : on every path, ¢ holds in the next position.

label tests and boolean operations.

Instead of transition systems, we use labeled trees.
The results generalize to transition systems.

LTL

Languages of the form:
every path satishies ¢

© a word property defined in LTL, e.g. GF «

Here, instead of LTL, we use regular expressions for

the word languages, e.g. ((b+c)*a)”

CTL
AU :one every path @holds until holds.

AG ¢ : on every path, ¥ holds globally.
AX ¢ : on every path, ¢ holds in the next position.

label tests and boolean operations.

What is the common fragment?

What is the common fragment?

Input:
CTL formula.

Question:

[sitin LTL?

even number of 4’s

CTL

at least one «

LTL
every path (ab)*

common

tree automata, u-calculus

Input:

Tree automaton.

Question:

Is it in the common fragment?

Input:
LTL formula.

Question:

[sitin CTL?

Thm.
[t is decidable it a given regular language is in LTL.

Thm. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

Thm.
[t is decidable it a given regular language is in LTL.

Thm. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

ACTL

CTL without negation,
only “on all paths...”

Thm.
[t is decidable it a given regular language is in LTL.

Thm. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

Main contribution.
ACTLNLIL € CITLNLIL

decidable membership

ACTL

CTL without negation,
only “on all paths...”

Thm.
[t is decidable it a given regular language is in LTL.

Thm. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

Main contribution.

ACTLNLTL € CTLNLIL all paths begin with (a6)*a(ab)*c

decidable membership

ACTL

CTL without negation,
only “on all paths...”

Thm. [Maidl 00] Let L be a set of infinite words.
The tree language “all paths in L” is definable in ACTL

iff
L is definable in 115 (<)

Thm. [Maidl 00] Let L be a set of infinite words.
The tree language “all paths in L” is definable in ACTL

iff
L is definable in 115 (<)

quantifier-free, using labels and <

g@(xl,...,xn,yl,...,ym)

On every path, every 4 is followed by some 4.

Vedy a(x) = (z <y A b(y)) AG(a=>AaUb)

Thm. [Maidl 00] Let L be a set of infinite words.

The tree language “all paths in L” is definable in ACTL
iff
L is definable in 115 (<)

quantifier-free, using labels and <

ga(xl,...,xn,yl,...,ym)

Thm. [Maidl 00] Let L be a set of infinite words.
The tree language “all paths in L” is definable in ACTL

iff
L is definable in 115 (<)

Contribution 1. Not the same thing as CTL NLT'L.

Thm. [Maidl 00] Let L be a set of infinite words.
The tree language “all paths in L” is definable in ACTL

iff
L is definable in 115 (<)

Contribution 2. Effective criterion.

¢ CTL
ACTL 2 all paths begin with (ab)*a(ab)*c

\ ¢ LTL
words that begin with (26)*a(ab)*c ¢ 115(<) \

Obvious

¢ CTL
ACTL 2 all paths begin with (ab)*a(ab)*c

\ ¢ LTL
words that begin with (26)*a(ab)*c ¢ 115(<) \

Obvious

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

2. on every path, some a before ¢ has an « child.

1. all paths begin with (a6)*a(ab)*c or (ab)*c

2. on every path, some a before ¢ has an « child.

1. all paths begin with (a6)*a(ab)*c or (ab)*c

2. on every path, some a before ¢ has an « child.

1. all paths begin with (a6)*a(ab)*c or (ab)*c

2. on every path, some a before ¢ has an « child.

3. forbidden: siblings, one with a4 in subtree, one without.

1. all paths begin with (a6)*a(ab)*c or (ab)*c

2. on every path, some a before ¢ has an « child.

3. forbidden: siblings, one with a4 in subtree, one without.

1. all paths begin with (a6)*a(ab)*c or (ab)*c

2. on every path, some a before ¢ has an « child.

3. forbidden: siblings, one with a4 in subtree, one without.

All paths begin with
(ab)*a(ab)c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

2. on every path, some a before ¢ has an « child.

3. forbidden: siblings, one with a4 in subtree, one without.

A\

All paths begin with
(ab)*a(ab)c

1. all paths begin with (a6)*a(ab)*c or (ab)*c

2. on every path, some a before ¢ has an « child.

3. forbidden: siblings, one with a4 in subtree, one without.

ARV

All paths begin with
(ab)*a(ab)c

1. all paths begin with (a6)*a(ab)*c or (ab)*c
2. on every path, some a before ¢ has an « child.

3. forbidden: siblings, one with a4 in subtree, one without.

ARV

deepest node on All paths begin with
Pf)aths with (ab)*a(ab)’c

aa and Without.\

Thm. [Maidl 00] Let L be a set of infinite words.
The tree language “all paths in L” is definable in ACTL
iff
L is definable in [T, (<)

Thm. It is decidable if a language is definable in II2(<).

generalization to infinite words

of a result of Arfi ’91.

go(xl,...,xn,yl,...,ym)

A language definable in ¥5(<) is closed under the

following rewriting rules.

go(xl,...,xn,yl,...,ym)

A language definable in ¥5(<) is closed under the

following rewriting rules.

wrk —— wk v wk
if £ is large, and v is a subword of w.

QO(.CIZ‘l,...,.CIZ‘n,yl,...,ym)

A language definable in ¥5(<) is closed under the

following rewriting rules.

wrk —— wk v wk
if £ is large, and v is a subword of w.

w — wrlovu®
if £ is large, and 2, are subwords of w.

Contribution

e ACTL M LTL is a proper subset of CTL M LTL.

 An effective characterization of Ils (<) for infinite words.

* A simpler characterization of Il;(<) for finite words.

CTL

Future work

e Effective characterization of CTL...

e ...or at least the common fragment of CTL and LTL.

