
e common fragment of ACTL and CTL

Mikołaj Bojańczyk
Warsaw University

Logics that talk about transition systems

aa

a

b

a

Logics that talk about transition systems

Linear time logic.
every finite path in a* + a*b

aa

a

b

a

Logics that talk about transition systems

Linear time logic.
every finite path in a* + a*b

Branching time logic.
after every a* prefix, b is possible

aa

a

b

a

Logics that talk about transition systems

Linear time logic.
every finite path in a* + a*b

Branching time logic.
after every a* prefix, b is possible

aa

a

b

a
has the same

paths as

Logics that talk about transition systems

Linear time logic.
every finite path in a* + a*b

Branching time logic.
after every a* prefix, b is possible

aa

a

b

a

a

a
b

has the same
paths as

Instead of transition systems, we use labeled trees.
e results generalize to transition systems.

Instead of transition systems, we use labeled trees.
e results generalize to transition systems.

a

a

b a

c c

c

LTL
Languages of the form:
every path satisfies

a word property defined in LTL, e.g. GF a

Here, instead of LTL, we use regular expressions for
the word languages, e.g. ((b+c)*a)

Instead of transition systems, we use labeled trees.
e results generalize to transition systems.

CTL
A U : one every path holds until holds.
AG : on every path, holds globally.
AX : on every path, holds in the next position.

label tests and boolean operations.
ac

a

b a

b c

c

a

a

b a

c c

c

LTL
Languages of the form:
every path satisfies

a word property defined in LTL, e.g. GF a

Here, instead of LTL, we use regular expressions for
the word languages, e.g. ((b+c)*a)

A b U c

Instead of transition systems, we use labeled trees.
e results generalize to transition systems.

CTL
A U : one every path holds until holds.
AG : on every path, holds globally.
AX : on every path, holds in the next position.

label tests and boolean operations.
ac

a

b a

b c

c

a

a

b a

c c

c

LTL
Languages of the form:
every path satisfies

a word property defined in LTL, e.g. GF a

Here, instead of LTL, we use regular expressions for
the word languages, e.g. ((b+c)*a)

CTL LTL

tree automata, -calculus

at least one a
every path (ab)*

even number of a’s

co
m

m
on

fra
gm

en
t

What is the common fragment?

CTL LTL

tree automata, -calculus

at least one a
every path (ab)*

even number of a’s

co
m

m
on

fra
gm

en
t

What is the common fragment?

Input:
CTL formula.
Question:
Is it in LTL?

Input:
LTL formula.
Question:
Is it in CTL?

Input:
Tree automaton.
Question:
Is it in the common fragment?

CTL

LTL

m.
It is decidable if a given regular language is in LTL.

m. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

CTL

LTL

m.
It is decidable if a given regular language is in LTL.

m. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

CTL

LTL
ACTL

ACTL
CTL without negation,
only “on all paths...”

m.
It is decidable if a given regular language is in LTL.

m. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

CTL

LTL

Main contribution.

ACTL LTL CTL LTL

decidable membership

ACTL
ACTL
CTL without negation,
only “on all paths...”

m.
It is decidable if a given regular language is in LTL.

m. [Maidl 00]
Complexity is PSPACE-complete if input is given in CTL.

CTL

LTL

all paths begin with (ab)*a(ab)*c
Main contribution.

ACTL LTL CTL LTL

decidable membership

ACTL
ACTL
CTL without negation,
only “on all paths...”

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

quantifier-free, using labels and <

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

quantifier-free, using labels and <

On every path, every a is followed by some b.
AG a A a U b

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

Contribution 2. Effective criterion.

Contribution 1. Not the same thing as CTL LTL.

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

all paths begin with (ab)*a(ab)*c
LTL

ACTL
CTL

Obvious
words that begin with (ab)*a(ab)*c

all paths begin with (ab)*a(ab)*c
LTL

ACTL
CTL

Obvious
words that begin with (ab)*a(ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

a

1. all paths begin with (ab)*a(ab)*c or (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

a

1. all paths begin with (ab)*a(ab)*c or (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.

a

a

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c
or

b(ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c
or

b(ab)*c

All paths begin with
(ab)*a(ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c
or

b(ab)*c

All paths begin with
(ab)*a(ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c
or

b(ab)*c

All paths begin with
(ab)*a(ab)*c

1. all paths begin with (ab)*a(ab)*c or (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c
or

b(ab)*c

All paths begin with
(ab)*a(ab)*cdeepest node on

paths with
aa and without.

e tree language “all paths in L” is definable in ACTL
iff

m. [Maidl 00] Let L be a set of infinite words.

L is definable in

m. It is decidable if a language is definable in .

generalization to infinite words
of a result of Arfi ’91.

A language definable in is closed under the
following rewriting rules.

wk wk v wk
if k is large, and v is a subword of w.

A language definable in is closed under the
following rewriting rules.

wk wk v wk
if k is large, and v is a subword of w.

if k is large, and v,u are subwords of w.
w wk v u

A language definable in is closed under the
following rewriting rules.

• ACTL LTL is a proper subset of CTL LTL.

• An effective characterization of for infinite words.

• A simpler characterization of for finite words.

Contribution

CTL

LTL

• Effective characterization of CTL...

• ...or at least the common fragment of CTL and LTL.

Future work

