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e tree language “all paths in L” is definable in ACTL 
iff

m. [Maidl 00] Let L be a set of infinite words. 

L is definable in 

m. It is decidable if a language is definable in            .

generalization to infinite words
of a result of Arfi ’91.
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• ACTL     LTL is a proper subset of CTL    LTL.

• An effective characterization of              for infinite words.

• A simpler characterization of              for finite words.

Contribution

CTL

LTL

• Effective characterization of CTL...

• ...or at least the common fragment of CTL and LTL.

Future work


