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Contribution 2. Effective criterion.

Contribution 1. Not the same thing as CTL    LTL.

e tree language “all paths in L” is definable in ACTL 
iff

m. [Maidl 00] Let L be a set of infinite words. 

L is definable in 



all paths begin with (ab)*a(ab)*c
LTL

ACTL
CTL

Obvious
words that begin with (ab)*a(ab)*c



all paths begin with (ab)*a(ab)*c
LTL

ACTL
CTL

Obvious
words that begin with (ab)*a(ab)*c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

c c
c

c
c

cc

c c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

b

c c
c

c
c

cc

c c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

b

c c
c

c
c

cc

c c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

...

a

a

a

a

b

c c
c

c
c

cc

c c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

...

a

a

a

a

b

c c
c

c
c

cc

c c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c



a

1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c



a

1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

a

a

a

b

b
...

a

a

a

a

b

c c
c

c
c

cc

c c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

c c
c

c
c

cc

c c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.

a

a



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c 
or

b(ab)*c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c 
or

b(ab)*c

All paths begin with 
(ab)*a(ab)*c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c 
or

b(ab)*c

All paths begin with 
(ab)*a(ab)*c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c 
or

b(ab)*c

All paths begin with 
(ab)*a(ab)*c



1. all paths begin with (ab)*a(ab)*c  or  (ab)*c

c c
c

c
c

cc

c c

2. on every path, some a before c has an a child.
3. forbidden: siblings, one with aa in subtree, one without.

a

a

(ab)*c 
or

b(ab)*c

All paths begin with 
(ab)*a(ab)*cdeepest node on 

paths with
aa and without.



e tree language “all paths in L” is definable in ACTL 
iff

m. [Maidl 00] Let L be a set of infinite words. 

L is definable in 

m. It is decidable if a language is definable in            .

generalization to infinite words
of a result of Arfi ’91.
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A language definable in              is closed under the 
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• ACTL     LTL is a proper subset of CTL    LTL.

• An effective characterization of              for infinite words.

• A simpler characterization of              for finite words.

Contribution

CTL

LTL

• Effective characterization of CTL...

• ...or at least the common fragment of CTL and LTL.

Future work


