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What is the common fragment?

Input:
CTL formula.

Question:

[sitin LTL?

even number of 4’s

CTL

at least one «

LTL
every path (ab)*

common

tree automata, u-calculus

Input:

Tree automaton.

Question:

Is it in the common fragment?

Input:
LTL formula.

Question:

[sitin CTL?
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Contribution 1. Not the same thing as CTL NLT'L.

Thm. [Maidl 00] Let L be a set of infinite words.
The tree language “all paths in L” is definable in ACTL

iff
L is definable in 115 (<)

Contribution 2. Effective criterion.
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Thm. [Maidl 00] Let L be a set of infinite words.
The tree language “all paths in L” is definable in ACTL
iff
L is definable in [T, (<)

Thm. It is decidable if a language is definable in II2(<).

generalization to infinite words

of a result of Arfi ’91.
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A language definable in ¥5(<) is closed under the

following rewriting rules.

wrk —— wk v wk
if £ is large, and v is a subword of w.

w —  wrlovu®
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Contribution

e ACTL M LTL is a proper subset of CTL M LTL.

 An effective characterization of Ils (<) for infinite words.

* A simpler characterization of Il;(<) for finite words.

CTL

Future work

e Effective characterization of CTL...

e ...or at least the common fragment of CTL and LTL.



