First Order and Chain Definability of Regular Tree Languages

Igor Walukiewicz (LaBRI); Mikolaj Bojanczyk (Warszawa)

Quick reminder of logic and languages

- Quick reminder of logic and languages
- Overview of FOL definable word languages

- Quick reminder of logic and languages
- Overview of FOL definable word languages
- FOL definable tree languages and some characterisations

- Quick reminder of logic and languages
- Overview of FOL definable word languages
- FOL definable tree languages and some characterisations
- Chain logic and some conjectures

- Quick reminder of logic and languages
- Overview of FOL definable word languages
- FOL definable tree languages and some characterisations
- Chain logic and some conjectures
- Conclusion

Regular languages and logic

Let Σ be an alphabet and $w = a_0 \dots a_n$ a word over Σ . This word is represented as a relational structure

$$\underline{w} = (\text{dom}(w), S^w, <^w, (Q_a^w)_{a \in \Sigma})$$

called the *word model* for w, where $dom(w) = \{0, ..., n\}$, S^w is the successor relation on dom(w), $<^w$ is the natural order and $Q_a^w = \{i : a_i = a\}$.

MSOL definability

A language $L \subseteq \Sigma^*$ is *MSOL definable* iff there exists an MSOL formula ϕ_L such that

$$w \in L \Leftrightarrow \underline{w} \models \phi_L$$

MSOL definability

A language $L \subseteq \Sigma^*$ is *MSOL definable* iff there exists an MSOL formula ϕ_L such that

$$w \in L \Leftrightarrow \underline{w} \models \phi_L$$

Thm: A language is MSOL definable iff it is regular

FOL definability

A language $L \subseteq \Sigma^*$ is *FOL definable* iff there exists a FOL formula ϕ_L such that

$$w \in L \Leftrightarrow \underline{w} \models \phi_L$$

FOL definability

A language $L \subseteq \Sigma^*$ is *FOL definable* iff there exists a FOL formula ϕ_L such that

$$w \in L \Leftrightarrow \underline{w} \models \phi_L$$

The language $(ab)^*$ is FOL definable using the formula:

$$\forall x. [Q_a(x) \Leftrightarrow \exists y. (S(x,y) \land Q_b(y))]$$

FOL definability

A language $L \subseteq \Sigma^*$ is *FOL definable* iff there exists a FOL formula ϕ_L such that

$$w \in L \Leftrightarrow \underline{w} \models \phi_L$$

The language $(ab)^*$ is FOL definable using the formula:

$$\forall x. [Q_a(x) \Leftrightarrow \exists y. (S(x,y) \land Q_b(y))]$$

The language $(aa)^*$ is not FOL definable

Some characterisations of FOL definable word languages:

Some characterisations of FOL definable word languages:

1. L is star-free, that is defined by a regular expression using concatenation, sum and complementation. (McNaughton and Papert 71)

Some characterisations of FOL definable word languages:

- 1. L is star-free, that is defined by a regular expression using concatenation, sum and complementation. (McNaughton and Papert 71)
- 2. The syntactic semigroup of L contains no nontrivial subgroup (Schutzenberger 65).

Some characterisations of FOL definable word languages:

- 1. L is star-free, that is defined by a regular expression using concatenation, sum and complementation. (McNaughton and Papert 71)
- 2. The syntactic semigroup of L contains no nontrivial subgroup (Schutzenberger 65).
- 3. There is some $n \in \mathbb{N}$ such that for all $v, u, w \in \Sigma^*$

$$v(u^n)w \in L \Leftrightarrow v(u^{n+1})w \in L$$

Some characterisations of FOL definable word languages:

- 1. L is star-free, that is defined by a regular expression using concatenation, sum and complementation. (McNaughton and Papert 71)
- 2. The syntactic semigroup of L contains no nontrivial subgroup (Schutzenberger 65).
- 3. There is some $n \in \mathbb{N}$ such that for all $v, u, w \in \Sigma^*$

$$v(u^n)w \in L \Leftrightarrow v(u^{n+1})w \in L$$

4. *L* is expressible in LTL (Kamp 68)

Some characterisations of FOL definable word languages:

- 1. L is star-free, that is defined by a regular expression using concatenation, sum and complementation. (McNaughton and Papert 71)
- 2. The syntactic semigroup of L contains no nontrivial subgroup (Schutzenberger 65).
- 3. There is some $n \in \mathbb{N}$ such that for all $v, u, w \in \Sigma^*$

$$v(u^n)w \in L \Leftrightarrow v(u^{n+1})w \in L$$

4. L is expressible in LTL (Kamp 68)

Cor:[of 2,3] It is decidable whether a given regular language is FOL definable.

The tree case

For a finite binary tree t a similar structure \underline{t} is considered:

$$\underline{t} = (\text{dom}(t), S_0^t, S_1^t, <^t, (Q_a^t)_{a \in \Sigma})$$

where $dom(t) \subseteq \{0,1\}^*$ is the set of nodes of the tree, S_i^t denotes the *i*-th successor relation

$$S_i^t = \{(v, v \cdot i) : v, v \cdot i \in \text{dom}(t)\}$$

and $<^t$, Q_a^t are defined as in the word case.

Thm:[Thatcher and Wright, Rabin] MSOL=regular.

Thm:[Thatcher and Wright, Rabin] MSOL=regular.

1. The tree contains an odd number of nodes (MSOL)

$$\exists X. \forall x. [\mathsf{root}(x) \lor \mathsf{leaf}(x)] \Rightarrow X(x)) \land \\ (\forall x, x_0, x_1. [S_0(x, x_0) \land S_1(x, x_1)] \Rightarrow [X(x) \Leftrightarrow \neg(X(x_0) \Leftrightarrow X(x_1))])$$

Thm:[Thatcher and Wright, Rabin] MSOL=regular.

1. The tree contains an odd number of nodes (MSOL)

$$\exists X. \forall x. [\mathsf{root}(x) \lor \mathsf{leaf}(x)] \Rightarrow X(x)) \land \\ (\forall x, x_0, x_1. [S_0(x, x_0) \land S_1(x, x_1)] \Rightarrow [X(x) \Leftrightarrow \neg(X(x_0) \Leftrightarrow X(x_1))])$$

2. There exist two nodes labelled by a (FOL)

$$\exists x, y. x \neq y \land Q_a(x) \land Q_a(y)$$

Thm:[Thatcher and Wright, Rabin] MSOL=regular.

1. The tree contains an odd number of nodes (MSOL)

$$\exists X. \forall x. [\mathsf{root}(x) \lor \mathsf{leaf}(x)] \Rightarrow X(x)) \land \\ (\forall x, x_0, x_1. [S_0(x, x_0) \land S_1(x, x_1)] \Rightarrow [X(x) \Leftrightarrow \neg(X(x_0) \Leftrightarrow X(x_1))])$$

2. There exist two nodes labelled by a (FOL)

$$\exists x, y. x \neq y \land Q_a(x) \land Q_a(y)$$

Fact: The property (1) is not FOL definable

Main question

Our unattained goal is two answer the question:

Given a regular tree language L decide whether L is FOL definable.

CTL*

CTL* formulas over the alphabet $\Sigma = \{a_0, \dots, a_n\}$ are defined by the following grammar:

$$F := \exists F | F \cup F | F \wedge F | \neg F | a_0 | \dots | a_n$$

CTL*

CTL* formulas over the alphabet $\Sigma = \{a_0, \dots, a_n\}$ are defined by the following grammar:

$$F := \exists F | F \cup F | F \wedge F | \neg F | a_0 | \dots | a_n$$

Each CTL* formula ψ is translated to a two-variable FOL formula $\llbracket \psi \rrbracket (x,y)$:

- $[\![\neg \psi]\!](x,y) = \neg [\![\psi]\!](x,y)$
- $\llbracket \psi U \varphi \rrbracket (x, y) = \exists z \leq y. \llbracket \varphi \rrbracket (z, y) \land \forall z' \in (x; z]. \llbracket \psi \rrbracket (z', z)) \rrbracket$
- $[\exists \psi](x,y) = \exists y. [[\psi](x,y)]$

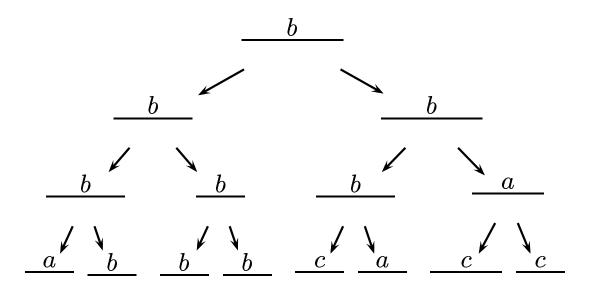
$CTL^* = FOL$

Thm: $CTL^* = FOL$, both on finite and infinite trees.

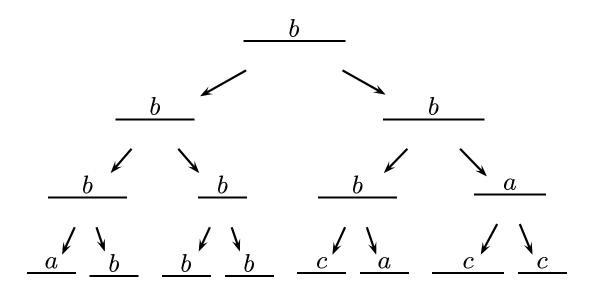
$CTL^* = FOL$

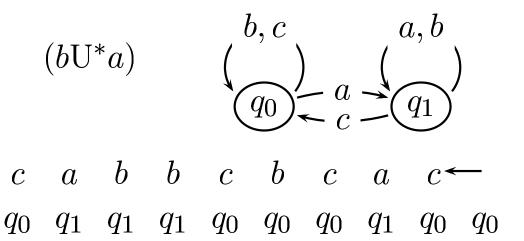
Thm: CTL* = FOL, both on finite and infinite trees.

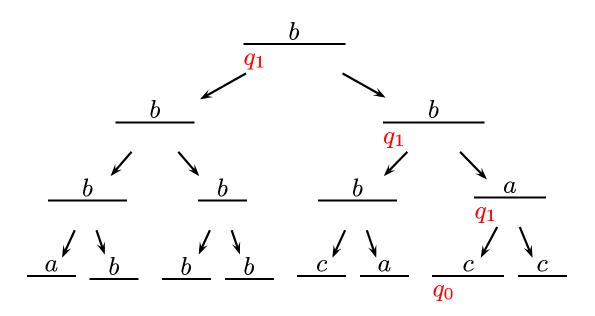
$$\exists x. Q_c(x) \land \forall y < x. \exists z > y. (Q_a(z) \land \forall (x' \in [y; z). Q_b(x'))$$
$$\psi U^* \varphi := \psi \land (\psi U \varphi)$$
$$\exists [(\exists b U^* a) U^* c]$$

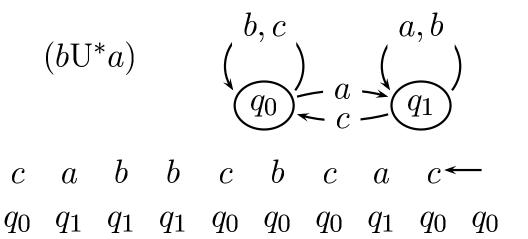


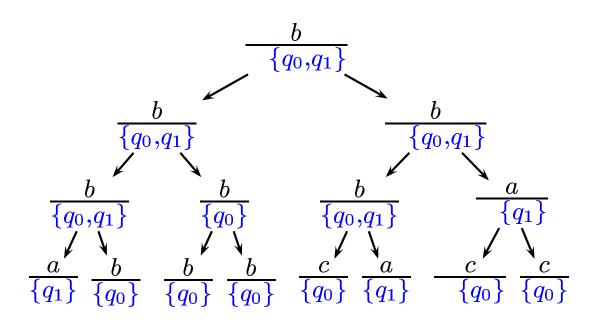
$$(bU^*a) \qquad (b,c) \qquad (a,b) \qquad (q_0) \qquad (q_1)$$

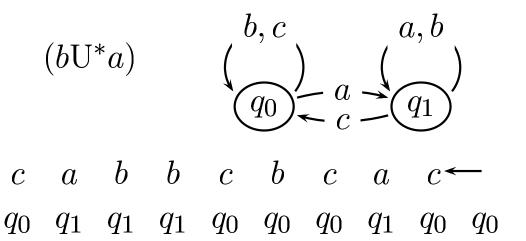












Word-sum automata

Consider a deterministic word automaton $\mathcal{A} = \langle Q, q_0, \delta \rangle$ over the alphabet $\Sigma \times \{0,1\}$. Let $Q \cdot (a,i) = \{\delta(q,(a,i)) : q \in Q\}$. The automaton $\mathcal{A}_{ws} = \langle \mathrm{P}(Q), \{q_0\}, \delta' \rangle$ is a automaton over Σ -labelled trees whose transition function δ' is defined as follows:

$$Q_0 \cdot (a,0) \cup Q_1 \cdot (a,1)$$

$$a$$

$$/ \setminus$$

$$Q_0 \quad Q_1$$

Word-sum automata

Consider a deterministic word automaton $\mathcal{A} = \langle Q, q_0, \delta \rangle$ over the alphabet $\Sigma \times \{0,1\}$. Let $Q \cdot (a,i) = \{\delta(q,(a,i)) : q \in Q\}$. The automaton $\mathcal{A}_{ws} = \langle \mathrm{P}(Q), \{q_0\}, \delta' \rangle$ is a automaton over Σ -labelled trees whose transition function δ' is defined as follows:

$$Q_0 \cdot (a,0) \cup Q_1 \cdot (a,1)$$

$$a$$

$$/ \setminus$$

$$Q_0 \quad Q_1$$

Df:A tree automaton \mathcal{A} is a *word-sum* automaton iff $\mathcal{A} = \mathcal{A}'_{ws}$ for some word automaton \mathcal{A}' . The automaton \mathcal{A} is an *aperiodic* word-sum automaton if \mathcal{A}' is aperiodic.

Word-sum automata, continued

For a tree language L, the following are equivalent:

ullet L is definable by some word-sum automaton.

Word-sum automata, continued

For a tree language L, the following are equivalent:

- ullet L is definable by some word-sum automaton.
- L is a boolean combination of deterministic top-bottom automata

For a tree language L, the following are equivalent:

- L is definable by some word-sum automaton.
- L is a boolean combination of deterministic top-bottom automata
- L admits a certain slicing characterisation

For a tree language L, the following are equivalent:

- L is definable by some (aperiodic) word-sum automaton.
- L is a boolean combination of deterministic top-bottom (aperiodic) automata
- L admits a certain slicing (aperiodic) characterisation

For a tree language L, the following are equivalent:

- L is definable by some (aperiodic) word-sum automaton.
- L is a boolean combination of deterministic top-bottom (aperiodic) automata
- L admits a certain slicing (aperiodic) characterisation

Fact: Aperiodic word-sum automata recognize precisely CTL* formulas of ∃-depth 1.

For a tree language L, the following are equivalent:

- L is definable by some (aperiodic) word-sum automaton.
- L is a boolean combination of deterministic top-bottom (aperiodic) automata
- L admits a certain slicing (aperiodic) characterisation

Fact: Aperiodic word-sum automata recognize precisely CTL* formulas of ∃-depth 1.

Thm: It is decidable whether a given language is word-sum definable.

Wreath product

Let $\mathcal{A} = \langle Q, q_s, \delta \rangle$ be an automaton over Σ labelled trees and $\mathcal{A}' = \langle Q', q_s', \delta' \rangle$ an automaton over $\Sigma \times Q$ labelled trees. Assume that both are bottom-up deterministic.

Wreath product

Let $\mathcal{A} = \langle Q, q_s, \delta \rangle$ be an automaton over Σ labelled trees and $\mathcal{A}' = \langle Q', q_s', \delta' \rangle$ an automaton over $\Sigma \times Q$ labelled trees. Assume that both are bottom-up deterministic.

Df: The *wreath* product of \mathcal{A}' and \mathcal{A} is the automaton $\mathcal{A}' \circ \mathcal{A} = \langle Q \times Q', (q_s, q_s'), \delta_{\circ} \rangle$ over Σ labelled trees whose transition function is defined as follows:

$$\delta_{\circ}((q_0, q'_0), a, (q_1, q'_1) = (q, q')$$

where $q = \delta(q_0, q_1)$ and $q' = \delta'(q'_0, (a, q), q'_1)$.

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic word-sum languages

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic word-sum languages

Since wreath product can simulate boolean combinations we also have:

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic top-bottom deterministic languages

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic word-sum languages

Since wreath product can simulate boolean combinations we also have:

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic top-bottom deterministic languages

Question: What if the word-sum languages are not aperiodic?

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic word-sum languages

Since wreath product can simulate boolean combinations we also have:

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic top-bottom deterministic languages

Question: What if the word-sum languages are not aperiodic?

Thm: A language is chain definable iff it is recognized by a wreath product of word-sum languages.

Df: A set of tree vertices C is a *chain* iff it is totally ordered by the relation \leq .

Chain logic (CL) has the same syntax as monadic second order logic, but the semantics for the monadic quantifier \exists are different:

 $t \models \exists X. \psi$ iff there is a chain C such that $t[X := C] \models \psi$

Df: A set of tree vertices C is a *chain* iff it is totally ordered by the relation \leq .

Chain logic (CL) has the same syntax as monadic second order logic, but the semantics for the monadic quantifier \exists are different:

 $t \models \exists X. \psi$ iff there is a chain C such that $t[X := C] \models \psi$

• Obviously FOL \subseteq CL \subseteq MSOL.

Df: A set of tree vertices C is a *chain* iff it is totally ordered by the relation \leq .

Chain logic (CL) has the same syntax as monadic second order logic, but the semantics for the monadic quantifier \exists are different:

 $t \models \exists X. \psi$ iff there is a chain C such that $t[X := C] \models \psi$

- Obviously FOL \subseteq CL \subseteq MSOL.
- A tree property definable in CL (but not in FOL) is: "there exists a path of even length".

Df: A set of tree vertices C is a *chain* iff it is totally ordered by the relation \leq .

Chain logic (CL) has the same syntax as monadic second order logic, but the semantics for the monadic quantifier \exists are different:

 $t \models \exists X. \psi$ iff there is a chain C such that $t[X := C] \models \psi$

- Obviously FOL \subseteq CL \subseteq MSOL.
- A tree property definable in CL (but not in FOL) is: "there exists a path of even length".
- A regular tree property not definable in CL is: "the tree has an even number of vertices".

Plan B

Our unattained plan B is two answer the question:

Given a regular tree language L decide whether L is chain definable.

 \bullet t[]: a tree with a hole.

- t[]: a tree with a hole.
- t[t']: the substitution of some tree t' into the hole

- t[]: a tree with a hole.
- t[t']: the substitution of some tree t' into the hole
- Given a tree with a hole t[], we define $t^1[] = t[]$, $t^n[] = t[t^{n-1}[]]$

- t[]: a tree with a hole.
- t[t']: the substitution of some tree t' into the hole
- Given a tree with a hole t[], we define $t^1[] = t[]$, $t^n[] = t[t^{n-1}[]]$

Df:A language is *aperiodic* if there is some $n \in \mathbb{N}$ such that for every tree with a hole t[] and every tree t', the trees $t^n[t']$ and $t^{n+1}[t']$ have the same type.

- t[]: a tree with a hole.
- t[t']: the substitution of some tree t' into the hole
- Given a tree with a hole t[], we define $t^1[] = t[]$, $t^n[] = t[t^{n-1}[]]$

Df:A language is *aperiodic* if there is some $n \in \mathbb{N}$ such that for every tree with a hole t[] and every tree t', the trees $t^n[t']$ and $t^{n+1}[t']$ have the same type.

Fact:[Potthoff 95] All FOL definable languages are aperiodic.

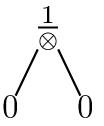
- t[]: a tree with a hole.
- t[t']: the substitution of some tree t' into the hole
- Given a tree with a hole t[], we define $t^1[] = t[]$, $t^n[] = t[t^{n-1}[]]$

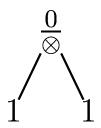
Df:A language is *aperiodic* if there is some $n \in \mathbb{N}$ such that for every tree with a hole t[] and every tree t', the trees $t^n[t']$ and $t^{n+1}[t']$ have the same type.

Fact:[Potthoff 95] All FOL definable languages are aperiodic.

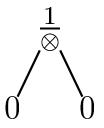
Fact: [Potthoff 95] Not all aperiodic languages are FOL definable.

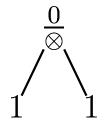
One operator \otimes . Leaves labelled with 0, 1. All triples but the below two evaluate to \bot , which propagates.





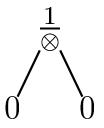
One operator \otimes . Leaves labelled with 0, 1. All triples but the below two evaluate to \perp , which propagates.

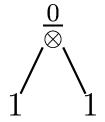




• Let L_{τ} be the set of trees evaluating to $\tau \in \{0, 1, \bot\}$.

One operator \otimes . Leaves labelled with 0, 1. All triples but the below two evaluate to \perp , which propagates.



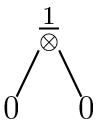


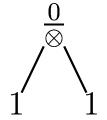
- Let L_{τ} be the set of trees evaluating to $\tau \in \{0, 1, \bot\}$.
- $L_1 \cup L_{\perp}$ is the language of trees such that either: the leftmost path is of even length and ends in 0 or is of odd length and ends in 1.

One operator \otimes . Leaves labelled with 0, 1. All triples but the below two evaluate to \perp , which propagates.

- Let L_{τ} be the set of trees evaluating to $\tau \in \{0, 1, \bot\}$.
- $L_1 \cup L_{\perp}$ is the language of trees such that either: the leftmost path is of even length and ends in 0 or is of odd length and ends in 1.
- L_{\perp} is the language of trees such that some vertex within has one son in $L_1 \cup L_{\perp}$ and the other in $L_0 \cup L_{\perp}$.

One operator \otimes . Leaves labelled with 0, 1. All triples but the below two evaluate to \perp , which propagates.





- Let L_{τ} be the set of trees evaluating to $\tau \in \{0, 1, \bot\}$.
- $L_1 \cup L_{\perp}$ is the language of trees such that either: the leftmost path is of even length and ends in 0 or is of odd length and ends in 1.
- L_{\perp} is the language of trees such that some vertex within has one son in $L_1 \cup L_{\perp}$ and the other in $L_0 \cup L_{\perp}$.
- $L_0 = (L_0 \cup L_\perp) \setminus L_\perp$

One operator \otimes . Leaves labelled with 0, 1. All triples but the below two evaluate to \perp , which propagates.

- Let L_{τ} be the set of trees evaluating to $\tau \in \{0, 1, \bot\}$.
- $L_1 \cup L_{\perp}$ is the language of trees such that either: the leftmost path is of even length and ends in 0 or is of odd length and ends in 1.
- L_{\perp} is the language of trees such that some vertex within has one son in $L_1 \cup L_{\perp}$ and the other in $L_0 \cup L_{\perp}$.
- $L_0 = (L_0 \cup L_\perp) \setminus L_\perp$

Fact: L_0 is in CL, not in FOL and is aperiodic.

Fact: L_0 is in CL, not in FOL and is aperiodic.

Fact: L_0 is in CL, not in FOL and is aperiodic.

The Potthoff example contradicts the following conjectures:

Fact: L_0 is in CL, not in FOL and is aperiodic.

The Potthoff example contradicts the following conjectures:

A language is FOL definable iff it is aperiodic

Fact: L_0 is in CL, not in FOL and is aperiodic.

The Potthoff example contradicts the following conjectures:

- A language is FOL definable iff it is aperiodic
- A chain definable language is FOL definable iff it is aperiodic

Confusion

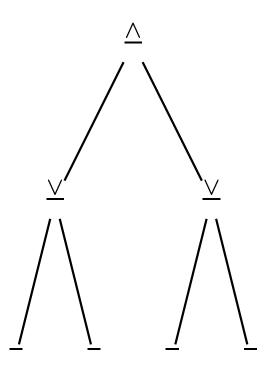
Let $\mathcal{A} = \langle Q, q_0, \delta \rangle$ be a deterministic bottom-up automaton. Consider a tree t with a designated subsset of leaves V and a function $\sigma: V \to Q$. $t[s] \in Q$ is defined as the state assumed by \mathcal{A} in the root of t starting from state $\sigma(v)$ in leaves $v \in V$ and from q_0 in the remaining vertices.

Confusion

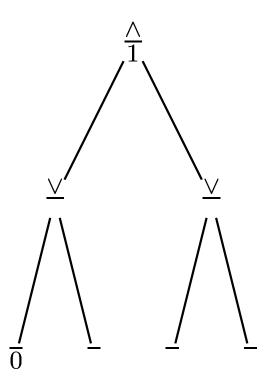
Let $\mathcal{A}=\langle Q,q_0,\delta\rangle$ be a deterministic bottom-up automaton. Consider a tree t with a designated subsset of leaves V and a function $\sigma:V\to Q$. $t[s]\in Q$ is defined as the state assumed by \mathcal{A} in the root of t starting from state $\sigma(v)$ in leaves $v\in V$ and from q_0 in the remaining vertices.

Df: Let $R \subseteq Q$. We say \mathcal{A} contains R-confusion if there is a tree t with a designated set of leaves V such that for every $v \in V$ and every $q, q' \in R$, there is some assignment $\sigma: V \to R$ such that $t[\sigma[v := q]] = q'$.

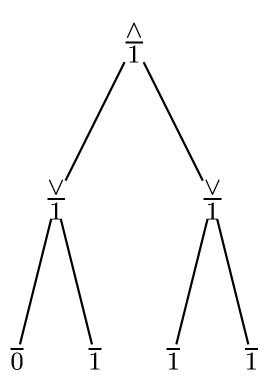
Example of confusion



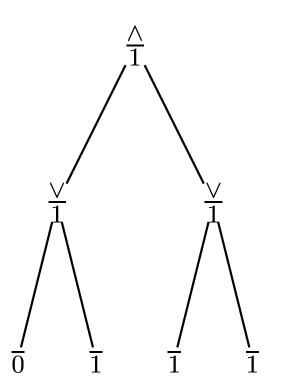
Example of confusion

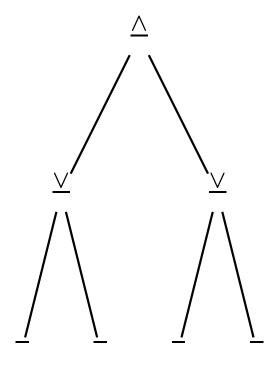


Example of confusion

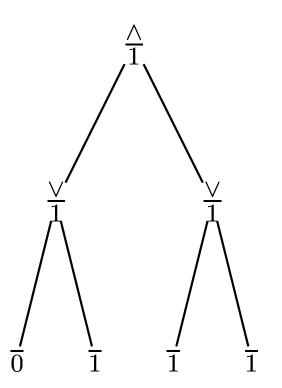


Example of confusion



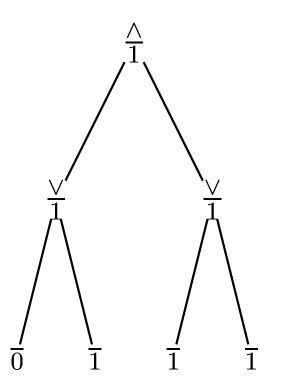


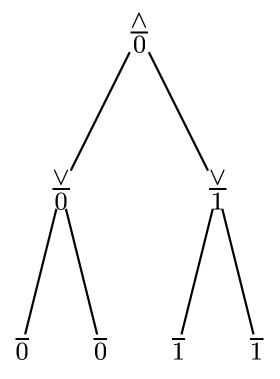
Example of confusion





Example of confusion





Confusion conjecture

Df: A language L contains confusion if the minimal deterministic bottom-up automaton recognizing L contains confusion. Otherwise L is *non-confusing*.

Confusion conjecture

Df: A language L contains confusion if the minimal deterministic bottom-up automaton recognizing L contains confusion. Otherwise L is non-confusing.

Thm: A chain definable language is non-confusing

Confusion conjecture

Df: A language L contains confusion if the minimal deterministic bottom-up automaton recognizing L contains confusion. Otherwise L is non-confusing.

Thm: A chain definable language is non-confusing

Conjecture: A language is chain definable iff it is non-confusing

 Works for languages with two types (i. e. whose minimal deterministic bottom-up automaton has two states)

- Works for languages with two types (i. e. whose minimal deterministic bottom-up automaton has two states)
- Works for yield languages

- Works for languages with two types (i. e. whose minimal deterministic bottom-up automaton has two states)
- Works for yield languages
- Nonconfusion behaves like a logic.

Yield languages

Df: The *yield* y(t) of a tree t is the word consisting of the labels in the leaves of t, read from left to right.

Df: Let L be a word language. A tree language of the form $\{t: y(t) \in L\}$ is called a *yield language*.

Yield languages

Df: The *yield* y(t) of a tree t is the word consisting of the labels in the leaves of t, read from left to right.

Df: Let L be a word language. A tree language of the form $\{t: y(t) \in L\}$ is called a *yield language*.

Thm: A yield language is in CL iff it is in FOL iff it is non-confusing.

Nonconfusion behaves like a logic

Thm: Nonconfusing languages are closed under homomorphic images, direct and wreath products.

Nonconfusion behaves like a logic

Thm: Nonconfusing languages are closed under homomorphic images, direct and wreath products.

Cor: Nonconfusing languages are closed under boolean operations and chain quantification.

1. Take the minimal deterministic bottom-up automaton \mathcal{A} recognizing L. \mathcal{A} is non-confusing.

- 1. Take the minimal deterministic bottom-up automaton \mathcal{A} recognizing L. \mathcal{A} is non-confusing.
- 2. Find a congruence \simeq in \mathcal{A} . Then $\mathcal{A} = \mathcal{A}' \circ \mathcal{A}_{/\simeq}$ for some automaton \mathcal{A}' . Both automata \mathcal{A}' , $\mathcal{A}_{/\simeq}$ have fewer states. L is non-confusing iff both $L(\mathcal{A}')$ and $L(\mathcal{A}_{/\simeq})$ are chain definable.

- 1. Take the minimal deterministic bottom-up automaton \mathcal{A} recognizing L. \mathcal{A} is non-confusing.
- 2. Find a congruence \simeq in \mathcal{A} . Then $\mathcal{A} = \mathcal{A}' \circ \mathcal{A}_{/\simeq}$ for some automaton \mathcal{A}' . Both automata \mathcal{A}' , $\mathcal{A}_{/\simeq}$ have fewer states. L is non-confusing iff both $L(\mathcal{A}')$ and $L(\mathcal{A}_{/\simeq})$ are chain definable.
- 3. Go back to 1.

- 1. Take the minimal deterministic bottom-up automaton \mathcal{A} recognizing L. \mathcal{A} is non-confusing.
- 2. Find a congruence \simeq in \mathcal{A} . Then $\mathcal{A} = \mathcal{A}' \circ \mathcal{A}_{/\simeq}$ for some automaton \mathcal{A}' . Both automata \mathcal{A}' , $\mathcal{A}_{/\simeq}$ have fewer states. L is non-confusing iff both $L(\mathcal{A}')$ and $L(\mathcal{A}_{/\simeq})$ are chain definable.
- 3. Go back to 1.

The base case: There is no congruence in \mathcal{A} (\mathcal{A} is a simple algebra).

Separation

The L-type of a tree t is the state assummed in the root of t by the minimal deterministic bottom-up automaton recognizing L.

An automaton A separates two types τ, σ if A accepts all trees of type τ and rejects all trees of type σ .

Separation

The L-type of a tree t is the state assummed in the root of t by the minimal deterministic bottom-up automaton recognizing L.

An automaton A separates two types τ, σ if A accepts all trees of type τ and rejects all trees of type σ .

Conjecture If no deterministic top-bottom automaton can separate any two types then no chain logic formula can separate any two types.

Separation

The L-type of a tree t is the state assummed in the root of t by the minimal deterministic bottom-up automaton recognizing L.

An automaton A separates two types τ, σ if A accepts all trees of type τ and rejects all trees of type σ .

Conjecture If no deterministic top-bottom automaton can separate any two types then no chain logic formula can separate any two types.

Fact: If no deterministic top-bottom automaton can separate any two types then boolean combination of such automata can do it.

Try to characterise other logics such as CTL, MPL

- Try to characterise other logics such as CTL, MPL
- Understand simple algebras

- Try to characterise other logics such as CTL, MPL
- Understand simple algebras
- Understand word-sum automata (the order approach)

- Try to characterise other logics such as CTL, MPL
- Understand simple algebras
- Understand word-sum automata (the order approach)
- Do something easier