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Regular languagesand logic

Let

�

be an alphabet and � � �� � � � ��� a word over
�

. This
word is represented as a relational structure

� � �	 
 � � � � � � � � �� �� � � � � �

called the word model for �, where

	 
 � � � � � ��  � � �  � �

,

� �

is the successor relation on

	 
 � � � � , � �
is the natural order

and

� �� � ���� ��� � � �

.
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MSOL definability

A language

� � �  

is MSOL definable iff there exists an
MSOL formula

!#" such that

� $ � % � & � !'"

Thm: A language is MSOL definable iff it is regular
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FOL definability

A language

� � �  

is FOL definable iff there exists a FOL
formula

!#" such that

� $ � % � & � !'"

The language is FOL definable using the formula:

The language is not FOL definable
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FOL definability criteria

Some characterisations of FOL definable word languages:

1. is star-free, that is defined by a regular expression
using concatenation, sum and complementation.
(McNaughton and Papert 71)

2. The syntactic semigroup of contains no nontrivial
subgroup (Schutzenberger 65).

3. There is some such that for all

4. is expressible in LTL (Kamp 68)

Cor:[of 2,3] It is decidable whether a given regular language
is FOL definable.
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The tr eecase

For a finite binary tree

9

a similar structure

9

is considered:

9 � �	 
 � � 9 � � :�  � : 8; � : �� : � � � � � �
where

	 
 � � 9 � � ��  < �  

is the set of nodes of the tree,

� :�

denotes the

�

-th successor relation

� :� � � � 5 5>= � �� 5 5= � $ 	 
 � � 9 � �

and � :, � : � are defined as in the word case.
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MSOL and FOL tr ee languages

Thm:[Thatcher and Wright, Rabin] MSOL=regular.

1. The tree contains an odd number of nodes (MSOL)

root leaf

2. There exist two nodes labelled by (FOL)

Fact: The property (1) is not FOL definable
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Main question

Our unattained goal is two answer the question:

Given a regular tree language

�

decide whether

�

is FOL definable.
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CTL

E

CTL

 

formulas over the alphabet

� � � ��  � � �  ��� �
are

defined by the following grammar:

F� � - F & FG F & F/ F &B F & �� & � � � & ���

Each CTL formula is translated to a two-variable FOL
formula :
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F� � - F & FG F & F/ F &B F & �� & � � � & ���

Each CTL

 

formula

H

is translated to a two-variable FOL
formula

, , H3 3 � *  . �

:, , �� 3 3 � *  . � � � �I � * �

, , H/ J3 3 � *  . � � , , H3 3 � *  . � / , , J3 3 � *  . �

, ,B H3 3 � *  . � � B , , H3 3 � *  . �

, , H G J3 3 � *  . � � -+K L . � , , , J3 3 � K  . � / )K M $ � *N K 3 � , , H3 3 � K M K � �3

, , - H3 3 � *  . � � -+. � , , , H3 3 � *  . �3

First Order and Chain Definability of Regular Tree Languages – p.10/30



CTL

E

= FOL

Thm: CTL

 

= FOL, both on finite and infinite trees.
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= FOL

Thm: CTL
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- * � �PO � * �/ ). � * � -+K Q . � �� � � K �0/ ) � * M $ ,. N K � � �R1 � * M �

H G  J� � H/ � H G J �

- , � - (G  � � G  TS 3
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Word-sum automata

Consider a deterministic word automaton � `�  Y�  a b
over

the alphabet

�dc ��  < �

. Let

� = � � � � � � a � Y � � � � �� Y $ � �

.
The automaton �e � `f �� � � Y� � a M b

is a automaton over�

-labelled trees whose transition function
a M

is defined as
follows: � � = � � � �0g � 8 = � � < �

�

� � � 8

Df:A tree automaton is a word-sum automaton iff
for some word automaton . The automaton is an
aperiodic word-sum automaton if is aperiodic.
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Word-sum automata, continued

For a tree language

�

, the following are equivalent:�

is definable by some word-sum automaton.

is a boolean combination of deterministic top-bottom
automata

admits a certain slicing characterisation

Fact: Aperiodic word-sum automata recognize precisely
CTL formulas of -depth 1.

Thm: It is decidable whether a given language is word-sum
definable.
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Wr eathproduct

Let � `�  Ye  a b

be an automaton over

�

labelled trees andM � `� M Y Me  a M b

an automaton over

�c �

labelled trees.
Assume that both are bottom-up deterministic.

Df: The wreath product of and is the automaton
over labelled trees whose

transition function is defined as follows:

where and .
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Another characterisation

Thm: A language is FOL definable iff it is recognized by a
wreath product of aperiodic word-sum languages

Since wreath product can simulate boolean combinations
we also have:
Thm: A language is FOL definable iff it is recognized by a
wreath product of aperiodic top-bottom deterministic
languages

Question: What if the word-sum languages are not
aperiodic?

Thm: A language is chain definable iff it is recognized by a
wreath product of word-sum languages.
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Chain logic

Df: A set of tree vertices

m

is a chain iff it is totally ordered
by the relation

L

.
Chain logic (CL) has the same syntax as monadic second
order logic, but the semantics for the monadic quantifier

-

are different:

9 & � -? � H

iff there is a chain

m
such that

9 ,? � � m3 & � H

Obviously FOL CL MSOL.

A tree property definable in CL (but not in FOL) is:
“there exists a path of even length”.

A regular tree property not definable in CL is: “the tree
has an even number of vertices”.

First Order and Chain Definability of Regular Tree Languages – p.17/30



Chain logic

Df: A set of tree vertices

m

is a chain iff it is totally ordered
by the relation

L

.
Chain logic (CL) has the same syntax as monadic second
order logic, but the semantics for the monadic quantifier

-

are different:

9 & � -? � H

iff there is a chain

m
such that

9 ,? � � m3 & � H

Obviously FOL

�

CL

�
MSOL.

A tree property definable in CL (but not in FOL) is:
“there exists a path of even length”.

A regular tree property not definable in CL is: “the tree
has an even number of vertices”.

First Order and Chain Definability of Regular Tree Languages – p.17/30



Chain logic

Df: A set of tree vertices

m

is a chain iff it is totally ordered
by the relation

L

.
Chain logic (CL) has the same syntax as monadic second
order logic, but the semantics for the monadic quantifier

-

are different:

9 & � -? � H

iff there is a chain

m
such that

9 ,? � � m3 & � H

Obviously FOL

�

CL

�
MSOL.

A tree property definable in CL (but not in FOL) is:
“there exists a path of even length”.

A regular tree property not definable in CL is: “the tree
has an even number of vertices”.

First Order and Chain Definability of Regular Tree Languages – p.17/30



Chain logic

Df: A set of tree vertices

m

is a chain iff it is totally ordered
by the relation

L

.
Chain logic (CL) has the same syntax as monadic second
order logic, but the semantics for the monadic quantifier

-

are different:

9 & � -? � H

iff there is a chain

m
such that

9 ,? � � m3 & � H

Obviously FOL

�

CL

�
MSOL.

A tree property definable in CL (but not in FOL) is:
“there exists a path of even length”.

A regular tree property not definable in CL is: “the tree
has an even number of vertices”.

First Order and Chain Definability of Regular Tree Languages – p.17/30



Plan B

Our unattained plan B is two answer the question:

Given a regular tree language

�

decide whether

�

is chain definable.
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Aperiodic tr eelanguages

9 ,3

: a tree with a hole.

: the substitution of some tree into the hole

Given a tree with a hole , we define ,

Df:A language is aperiodic if there is some such that
for every tree with a hole and every tree , the trees
and have the same type.

Fact:[Potthoff 95] All FOL definable languages are aperiodic.

Fact:[Potthoff 95] Not all aperiodic languages are FOL
definable.
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Potthoff example(simplified)
One operator p. Leaves labelled with

�

,

<

. All triples but the
below two evaluate to

q

, which propagates.8r
� �

� r
< <

Let be the set of trees evaluating to .

is the language of trees such that either: the
leftmost path is of even length and ends in or is of odd
length and ends in .

is the language of trees such that some vertex within
has one son in and the other in .

Fact: is in CL, not in FOL and is aperiodic.
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Potthoff examplecontinued

Fact:

�� is in CL, not in FOL and is aperiodic.

The Potthoff example contradicts the following conjectures:

A language is FOL definable iff it is aperiodic

A chain definable language is FOL definable iff it is
aperiodic
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Confusion

Let � `�  Y�  a b

be a deterministic bottom-up automaton.
Consider a tree

9

with a designated subsset of leaves

x

and
a function y� x z � .

9 ,|{ 3 $ � is defined as the state
assumed by in the root of

9

starting from state y � 5 � in
leaves 5 $ x

and from Y� in the remaining vertices.

Df: Let . We say contains -confusion if there is a
tree with a designated set of leaves such that for every

and every , there is some assignment
such that .
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Exampleof confusion
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Confusionconjectur e

Df: A language

�

contains confusion if the minimal
deterministic bottom-up automaton recognizing

�
contains

confusion. Otherwise

�

is non-confusing.

Thm: A chain definable language is non-confusing

Conjecture: A language is chain definable iff it is
non-confusing
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Ar guments in favor of the conjecture

Works for languages with two types (i. e. whose minimal
deterministic bottom-up automaton has two states)

Works for yield languages

Nonconfusion behaves like a logic.
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Yield languages

Df: The yield � � 9 � of a tree

9

is the word consisting of the
labels in the leaves of

9

, read from left to right.

Df: Let

�

be a word language. A tree language of the form� 9� � � 9 � $ � �

is called a yield language.

Thm: A yield language is in CL iff it is in FOL iff it is
non-confusing.
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Nonconfusion behaveslik ea logic

Thm: Nonconfusing languages are closed under
homomorphic images, direct and wreath products.

Cor: Nonconfusing languages are closed under boolean
operations and chain quantification.
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Simplealgebras

1. Take the minimal deterministic bottom-up automaton
recognizing

�

. is non-confusing.

2. Find a congruence in . Then for some
automaton . Both automata , have fewer
states. is non-confusing iff both and are
chain definable.

3. Go back to 1.

The base case: There is no congruence in ( is a simple
algebra).

First Order and Chain Definability of Regular Tree Languages – p.28/30



Simplealgebras

1. Take the minimal deterministic bottom-up automaton
recognizing

�

. is non-confusing.

2. Find a congruence � in . Then � Mih ��� for some
automaton

M

. Both automata

M

, ��� have fewer
states.

�

is non-confusing iff both
� � M �

and

� � ��� �

are
chain definable.

3. Go back to 1.

The base case: There is no congruence in ( is a simple
algebra).

First Order and Chain Definability of Regular Tree Languages – p.28/30



Simplealgebras

1. Take the minimal deterministic bottom-up automaton
recognizing

�

. is non-confusing.

2. Find a congruence � in . Then � Mih ��� for some
automaton

M

. Both automata

M

, ��� have fewer
states.

�

is non-confusing iff both
� � M �

and

� � ��� �

are
chain definable.

3. Go back to 1.

The base case: There is no congruence in ( is a simple
algebra).

First Order and Chain Definability of Regular Tree Languages – p.28/30



Simplealgebras

1. Take the minimal deterministic bottom-up automaton
recognizing

�

. is non-confusing.

2. Find a congruence � in . Then � Mih ��� for some
automaton

M

. Both automata

M

, ��� have fewer
states.

�

is non-confusing iff both
� � M �

and

� � ��� �

are
chain definable.

3. Go back to 1.

The base case: There is no congruence in ( is a simple
algebra).

First Order and Chain Definability of Regular Tree Languages – p.28/30



Separation

The

�

-type of a tree

9

is the state assummed in the root of

9

by the minimal deterministic bottom-up automaton
recognizing

�

.
An automaton separates two types u y if accepts all
trees of type u and rejects all trees of type y.

Conjecture If no deterministic top-bottom automaton can
separate any two types then no chain logic formula can
separate any two types.

Fact: If no deterministic top-bottom automaton can separate
any two types then boolean combination of such automata
can do it.
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Summary and futur ework

Try to characterise other logics such as CTL, MPL

Understand simple algebras

Understand word-sum automata (the order approach)

Do something easier
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