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1
Presburger arithmetic

In this chapter, we show an algorithm that tells us which formulas are true the
structure (N,+) of natural numbers with equality. This structure is called
Presburger arithmetic, because the original algorithm, which is a quantifier
elimination procedure, was proposed by Mojżesz Presburger in 1929 [45].
Another name for the theory is linear integer arithmetic, which is popular in the
verification community, where it used as part of automatic theorem provers.
We are interested in the first-order theory of the natural numbers with addition,
i.e. in the formulas that are true in this structure, and are constructed using
variables (ranging over natural numbers), addition, quantification (over natural
numbers), and the Boolean connectives →, ↑, ¬. Here, we treat addition as a
function that takes two arguments, and not as a relation that takes three
arguments, although the two views are equivalent.

Example 1. [Zero] The formula

↓z↔x x + z = x

says that addition has a neutral element (zero). Having thus shown how to
define zero, we can now start using it in formulas, since each formula that uses
zero can be rewritten into an equivalent formula that does not use zero, by
replacing each occurrence of zero with its definition. In a similar way, we can
use constants for other natural numbers, such as 1 or 2. For example, 1 is the



4 P R E S B U R G E R A R I T H M E T I C

only element such that by adding something to it, we can obtain every nonzero
number. ↭

Example 2. [Linear inequalities] Although we do not have access to
multiplication, we can use multiplication by a fixed constant. For example,
instead of 3x we can write x + x + x. We can express any linear inequalities,
possibly using negative coefficients, such as

3x ↗ 2y + 4z ↗ 7 ↘ 0

This is done by putting all the negative terms on the other side of the
expression, and then expressing the order in terms of addition. ↭

Example 3. [Divisibility] We can also talk about divisibility by a fixed constant.
For example, the formula

↓y x = y + y + y

says that x is divisible by 3. ↭

Decidability. The main result of this chapter is to show that Presburger
arithmetic has a decidable theory, i.e. there is an algorithm that inputs a
first-order formula, and tells us if it is true in the structure. (The formulas have
no free variables, since otherwise they would not have a meaningful truth value
without specifying which numbers are used for the free variables.)

Theorem 1.1. The first-order theory of Presburger arithmetic is decidable.

We follow the ideas of the original proof, which shows that one can transform
every formula into an equivalent one that does not use any quantifiers. If we
want to avoid quantifiers, we will need a slightly larger vocabulary. For this
purpose, we add some new relations, which can be expressed in terms of
addition, but not without using quantifiers.

Definition 1.2. Define the extended vocabulary of Presburger arithmetic to be the
following infinite family of relations:
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• We can write any divisibility constraint, such as

x ≃ 5 mod 36

where the remainder of division is computed. There is one such constraint for
every remainder and modulus. Note that the numbers 5 and 36 are constants
which are hard-coded into the vocabulary, and they cannot be quantified.

• We can write any linear inequality such as

3x ↗ 2y + 4z ↗ 7 ↘ 0.

Again, the constants in the inequality are hard-coded and cannot be quantified,
since otherwise we would have multiplication.

In the above definition, the divisibility constraints are relations with one
argument, while the linear inequalities can take any number of arguments.
Thanks to the extended vocabulary, there are more quantifier-free formulas. As
it turns out, there are enough quantifier-free formulas to describe all other
formulas.

Theorem 1.3 (Quantifier Elimination). For every formula of Presburger arithmetic,
possibly with free variables, one can compute an equivalent formula that is
quantifier-free over the extended vocabulary.

Once we have proved quantifier elimination, decidability of the first-order
theory follows immediately. Indeed, if we want to decide if a formula without
free variables is true, we simply apply the quantifier elimination procedure to it.
Since there are no free variables, the resulting quantifier-free formula can only
use trivial linear inequalities like 5 ↘ 3 (which is true) or 3 ↘ 5 (which is false),
and its truth can easily be decided. It remains to prove quantifier elimination.

Proof. In the proof, we consider the extended vocabulary without addition as a
function symbol, i.e. the vocabulary contains only relations. We use the name
atomic formula for a relation from the vocabulary applied to some variables.
Atomic formulas are either divisibility constraints or linear inequalities.
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We prove the theorem by induction on the structure of formulas. In the
induction basis, we have atomic formulas, which are already quantifier-free.
Since quantifier-free formulas are closed under the Boolean operations, and ↔ is
complementary to ↓, it is enough to show that a single existential quantifier can
be eliminated, i.e. if

ϕ(x1, . . . , xk︸ ︷︷ ︸
call this x

, y)

is a quantifier-free formula, then the formula ↓x ϕ(x, y) can be expressed using
a quantifier-free formula that does not mention the existentially quantified
variable y. Like any quantifier-free formula, we can rewrite ϕ into an equivalent
formula in disjunctive normal form, i.e.

∨

i⇐I

∧

j⇐Ji

ϕij(x, y)

where each ϕij is an atomic formula or its negation. We also do not need the
negations of atomic formulas, since the negation of a linear inequality is also a
linear inequality, while the negation of a divisibility condition is a finite
disjunction of other divisibility conditions. Furthermore, since disjunction
distributes over the existential quantifier, i.e.

↓y
∨

i⇐I

∧

j⇐Ji

ϕij(x, y) ⇒
∨

i⇐I
↓y

∧

j⇐Ji

ϕij(x, y),

it is enough to show that an existential quantifier can be removed from a
formula that uses only a conjunction of atomic formulas. This is the content of
the following lemma, which completes the proof of the theorem.

Lemma 1.4. Let ϕ(x, y) be a conjunction of atomic formulas. Then ↓y ϕ(x, y) is
equivalent to a quantifier-free formula that uses only the variables x.

Proof. Some of the atomic formulas in ϕ are linear inequalities, some are
divisibility constraints. Let us first look at the divisibility constraints. Some of
these constraints concern the free variables x. Since they do not depend on the
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choice of y, we can move them out of the formula, and assume without loss of
generality that there are no divisibility constraints in the formula that talk
about the free variables x. Let us now look at the divisibility constraints for the
quantified variable y. There might be several such constraints, e.g. we could
have

(y ≃ 3 mod 6) → (y ≃ 2 mod 15).

Using the Chinese remainder theorem, we can replace these constraints with a
single constraint

y ≃ r mod a

which is equivalent to the conjunction of the original constraints. Also, by
replacing the quantified variable y with y + r in all linear inequalities, we can
assume without loss of generality that r is zero, i.e. the divisibility constraint is
that y is divisible by a. Summing up, we can assume without loss of generality
that in the conjunction ϕ(x, y) from the assumption of the lemma, there is only
one divisibility constraint, and it says that the quantified variable y is divisible
by some fixed a.
Let us now consider the atomic formulas that are linear inequalities. In each
such linear inequality, we put the variable y on one side of the inequality, and
all other variables and the constant on the other side, leading to an inequality
which has the same solutions, but has one of the following two forms:

by ↘ b0 + b1x1 + · · ·+ bnxn︸ ︷︷ ︸
lower bound on by

or by ⇑ b0 + b1x1 + · · ·+ bnxn︸ ︷︷ ︸
upper bound on by

.

We have the two kinds of inequalities because we insist on the coefficient b
being positive, hence we can multiply the inequality by ↗1 if necessary.
Furthermore, we want all inequalities to have the same coefficient b next to y,
which can be achieved again by multiplying both sides with suitable scaling
factors.
Summing up, we can assume that the formula ϕ(x, y) is a conjunction of lower
and upper bounds on by, for some fixed a that is used in all bounds, and the
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requirement that the quantified y to be divisible by b. In this case ↓yϕ(x, y) is
equivalent to:

(*) some number divisible by ab lies between the upper and lower bounds.

To complete the proof of the lemma, we will express (*) using a quantifier-free
formula. To answer the question in (*), it is enough to know how the lower and
upper bounds are ordered, and if there is enough space between them to fit a
number divisible by a. Here is a picture of the situation, where ab = 4:

To answer question (*), it is enough to know the remainders of the upper and
lower bounds modulo ab, and the differences between the upper and lower
bounds up to a threshold ab ↗ 1. (This particular threshold is used because
ab ↗ 1 is the biggest difference between the lower and upper bounds that is
possible without necessarily containing a number divisible by ab.) Each such
constraint can be expressed in a quantifier-free way, thus completing the proof
of the lemma. ↫

↫

1 Semilinear sets

We now show an alternative, more geometrical, characterization of the sets that
can be defined in Presburger arithmetic. This characterization uses the notion
of linear and semilinear sets, which are a variant of periodic sets.
The idea behind a linear set is that it is obtained by taking some fixed base
vector in Nd, and adding any number of copies of certain period vectors. For
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example, consider dimension d = 2, and a base vector of (2,1). To this base
vector we add any number of copies of the periods (1,2) and (3,1), resulting in
the red points of the following picture:

These ideas are formalized in the following definition.

Definition 1.5 (Semilinear sets). A linear subset of Nd is any set of the form

{a + ε1b + · · ·+ εkb | ε1, . . . , εk ⇐ N },

for some choice of base vector a ⇐ Nd and period vectors b1, . . . , bk ⇐ Nd. A
semilinear set is any finite union of linear sets (in the same dimension).

The following theorem tells us that the semilinear sets are exactly the sets that
can be defined using first-order formulas in Presburger arithmetic. When
defining a subset of Nd, we use a formula that has d free variables.

Theorem 1.6. A subset of Nd is semilinear iff it is definable in Presburger arithmetic.
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Proof. Clearly every semilinear set is definable in Presburger arithmetic, by
simply formalizing the defining condition in logic. The interesting part is that
all sets definable in Presburger arithmetic are semilinear. To prove this, we will
use the quantifier elimination result from Theorem 1.3, and the following
lemma about solutions of systems of linear equations.

Lemma 1.7. Let A be a d ⇓ n matrix with integer entries. Then for every b ⇐ Nn, the
following set is semilinear

{x ⇐ Nd | Ax = b }

Proof. Let us begin with the special case when the system is homogeneous, which
means that b is the zero vector, i.e. it has the form

Ax = 0. (1.1)

Consider the set of minimal solutions to such an system, i.e. the set of solutions
x which are minimal coordinatewise. By Dickson’s Lemma, see Claim 5.4, the
set of minimal solutions, call it S, is finite. We now claim that every other
solution can be obtained by coordinatewise addition of minimal solutions, and
therefore the set of solutions forms a linear set, where the period vectors are the
minimal solutions. This is an immediate consequence of the definition of
minimality: a non-minimal solution can be obtained by taking some minimal
solution, and adding some vector to it. The added vector is also a solution to
the homogeneous system, and therefore an inductive argument can be used to
decompose it into a sum of minimal solutions.
Consider now the general case of the lemma, where b is not necessarily the zero
vector. Again, consider the set of minimal solutions, which is finite. Every other
solution is obtained by taking a minimal solution, and adding to it some
solution of the homogeneous version of the system as in (1.1). Since the
homogeneous solutions form a linear set, we get the result. ↫

We now complete the proof of the theorem. Take any formula of Presburger
arithmetic. By the quantifier elimination result from Theorem 1.3, we can
assume that this formula is quantifier-free. We can also assume that the
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formula is in disjunctive normal form, i.e. a disjunction of conjunctions of
atomic formulas. Since semilinear sets are closed under union by definition, it
is enough to consider the case of a quantifier-free formula ϕ(x1, . . . , xn) that is a
conjunction of atomic formulas. We will reduce this formula to a system of
linear inequalities, as in the above lemma, possibly by introducing new
variables.
We first want to get rid of the divisibility constraints, such as

x ≃ 5 mod 36.

To eliminate this constraint, we introduce a new variable y, and a linear equality

x = 36y + 5.

Similarly, we can replace inequalities using equalities. For example, a linear
inequality

3x1 ↗ 2x2 + 4x3 ↗ 7 ↘ 0

can be eliminated by adding a new variable y, and writing the linear equality

3x1 ↗ 2x2 + 4x3 ↗ 7 = u.

This works, because all variables range over natural numbers. After this
elimination, we have created a new formula

ϱ(x1, . . . , xn, y1, . . . , ym)

which is a conjunction of linear equalities (and is therefore subject to
Lemma 1.7), such that the original formula is equivalent to

↓y1 · · · ↓ym ϱ(x1, . . . , xn, y1, . . . , ym).

By Lemma 1.7, the formula ϱ defines a semilinear set, in dimension d = n + m.
We now want to project this set onto the first n coordinates. This is very
straightforward to do, since semilinear sets are easily seen to be closed under
projection – simply eliminate the unused coordinates from all vectors. ↫
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Problem 1. Show that there is a formula ϕn(x) of Presburger arithmetic, using
addition only, which has size polynomial in n, but is true for only one x,
namely 2n.

Problem 2. Consider a regular language L over an alphabet with k letters.
Define its Parikh image to be the set

{(n1, . . . , nk) ⇐ Nk | there exists a word w ⇐ L such that ni is the
number of occurrences of the i-th letter in w

}.

Show that for every regular language, its Parikh image is semilinear.

Problem 3. Show that every formula of Presburger arithmetic ϕ(x) defines an
ultimately periodic set, i.e. there exists p > 0 such that

ϕ(x) ⇒ ϕ(x + p) for all sufficiently large x.

Problem 4. Show there is no formula of Presburger arithmetic ϕ(x, y, z) that
defines multiplication, i.e. it is equivalent to x · y = z.

Problem 5. Show there is no formula of Presburger arithmetic ϕ(x, y) that
defines divisibility, i.e. it is equivalent to x|y.

Problem 6. (*) Show that if we extend Presburger arithmetic with a binary
relation x|y for divisibility, then we can define multiplication.

Problem 7. Show that there is no an algorithm deciding the theory of
(N,+,⇓). (This theory is simply called arithmetic). Hint: show that if
arithmetic would be decidable, then one could decide the theory of strings with
concatenation ({0, 1}⇔, ·), and the latter theory is undecidable.



2
First-order theory of the reals

Consider the real numbers, equipped with binary functions for addition,
subtraction, multiplication, constants for zero and one, and a binary relation for
the ordering:

(R,+,↗,⇓, 0, 1,<).

The goal of this section is to prove a Theorem of Alfred Tarski, which says that
the first-order theory of this structure is decidable, i.e. there is an algorithm
which inputs a sentence of first-order logic like

↔x↓y y ⇓ y + x = 0

and says if the sentence is true in the real numbers. Remarkably, this theorem
represents a nontrivial algorithm dealing with first-order logic that was found
before the notions of “first-order logic” and “algorithm” were well defined in
the modern sense. Although apparently proved earlier, the result was
published only after the war [56].
There is some freedom in the choice of vocabulary. For example we could add
division because it is definable in first order logic by

x/y = z def
= z ⇓ y = x.
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Conversely, we could remove subtraction, because it is definable in terms of
addition, or we could remove the ordering, because it is defined by

x ⇑ y def
= ↓z x + z ⇓ z = y,

thus

x < y def
= x ↖= y → ↓z x + z ⇓ z = y.

Also, we could remove the constants for 0 and 1, because 0 is the unit for
addition and 1 is the unit for multiplication. Summing up, as long as we care
about first-order logic, the vocabulary could be reduced to have only + and ⇓.
Nevertheless, some of the above definitions are not quantifier-free, and we will
care about quantifier-free formulas, as expressed in the following theorem.

Theorem 2.1. For every formula of first-order logic over

(R,+,↗,⇓, 0, 1,<)

possibly with free variables, one can compute an equivalent (over the real numbers)
formula that is quantifier-free. In particular, one can decide if a sentence, i.e. a formula
without free variables, is true over the real numbers.

Before proving the theorem, we discuss its relation to decidability of first-order
logic for other fields and rings, such as integers or rationals.

Example 4. The first-order theory of the integers with addition, subtraction
and multiplication

(Z,+,↗,⇓, 0, 1,<)

is undecidable. This is the original undecidability result, which was proved by
Church [17, Corollary 2] and Turing [60, Section 11]. It follows that there is no
first-order formula ϕ(x) which defines the integers inside the real numbers.
(We will see another reason why the integers cannot be defined later on.) In
contrast, every single integer can be defined.
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A celebrated theorem of Julia Robinson [48, Theorem 3.1] says that there is a
first-order formula that defines the integers inside the rational numbers, and
therefore also the rational numbers cannot be defined inside the real numbers.
↭

Example 5. A complex number can be coded as two real numbers, its real and
imaginary parts. Addition, subtraction and multiplication of complex numbers
can be reduced to analogous operations on the real and imaginary parts. It
follows that the first-order theory of the complex numbers

(C,+,↗,⇓, 0, 1)

is decidable (note that order is not mentioned above, since it is not defined on
the complex numbers). ↭
The rest of this chapter is devoted to proving Theorem 2.1. The second part of
the theorem (deciding which sentences are true) is an immediate consequence
of the first part (effective quantifier elimination). Indeed, if we want to know if
a sentence is true in the real numbers, we eliminate all quantifiers using the
first part of the theorem, arriving at a formula which is a Boolean combination
of inequalities that involve values which are obtained form the constants 0 and
1 by applying the operations +,⇓,↗. Here is an example of such a formula:

((1 + 1)⇓ (1 + 1 + 0)↗ 0 ⇓ (1 + 0) > 0) ↑ (1 = 0).

A straightforward evaluation leads to the desired true/false answer. It is
therefore enough to prove the effective quantifier elimination. Here, it is
enough to show that a single existential quantifier can be eliminated, since
multiple quantifiers can then be eliminated one by one, starting with the
innermost quantifiers (and using closure of quantifier-free formulas under
Boolean operations).
Therefore, the essence of Theorem 2.1 is showing that for every formula

↓x ϕ(x, y1, . . . , yn)︸ ︷︷ ︸
quantifier-free formula using +,⇓,↗, 0, 1,<
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there exists, and can be computed, an equivalent one that is quantifier-free over
the same vocabulary, and which talks only about the free variables y1, . . . , yn.

Example 6. Consider the formula

↓x y1x2 + y2x + y3 = 0.

This formula says that the quadratic polynomial with coefficients y1, y2, y3 has a
real root. As we all remember from high school this is the same as saying that
the discriminant ∆ is non-negative, i.e.

y2
2 ↗ 4y1y3 ↘ 0.

The new condition is quantifier-free, as required. When proving the general
result, we will also obtain similar quantifier-free formulas for polynomials of
higher degree. The reader might feel uneasy about this, because we know that
there is no general “formula” for roots of polynomials of degree five or higher.
However, note that we do not need to express the roots themselves, but only the
existence of roots, which is a much easier task, and can be done in a
quantifier-free way. ↭
We first observe that the formula ϕ can be without loss of generality assumed
to be a Boolean combination of formulas of the form

p(x, y1, . . . , yn) > 0

where each p is a polynomial with integer coefficients and variables
x, y1, . . . , yn. So the goal is to understand the behaviour of the polynomials p,
once the arguments y1, . . . , yn have been fixed, as a function of the quantified
parameter x. To understand this behaviour, we will use basic operations from
calculus and algebra, like differentiation and dividing polynomials with
remainders, and then observe that the effect of these operations can be
formalised using quantifier-free formulas.
Instead of working directly with quantifier-free formulas, we introduce an
intermediate computation model for the reals and show that (a) computation in
this model can be simulated using quantifier-free formulas; and (b) quantifier
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elimination can be done using the computation model. The point of using the
computation model is that when proving (b), we can appeal to algorithmic
intuitions, like loops and conditionals, which are more cumbersome to
formalise when working directly with quantifier-free formulas. The results (a)
and (b) are presented in Sections 2.1 and 2.2 below.

2.1 Computation on the reals

Consider the following variant of a Turing machine, which we call a bss
machine, standing for Blum Shub and Smale, who introduced the model. The
purpose of a bss machine is to compute a partial function of type R⇔ ↙ R⇔,
i.e. a partial function that inputs and output lists of real numbers. The general
idea is that the machine operates on reals using the arithmetic operations

x + y x ↗ y x ⇓ y x/y,

and it is allowed to compare numbers to zero (are they zero, or positive, or
negative?). Observe that we allow division, even though our intended
application for the machines is to prove quantifier elimination without division.
The machine has a single tape, infinite in both directions (i.e. indexed by
integers), whose cells store real numbers plus a fixed number of registers that
also store real numbers. Cells of the tape and registers can be undefined. Here
is a picture of a configuration of the machine:
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At any given moment, the machine is in a state from a finite set of control
states, and has a single head which points to one of the cells on the tape. In the
initial configuration, the tape stores the input of the function (if the input has n
letters, then cells {1, . . . , n} store these letters, and the remaining cells are
undefined), the registers are all undefined, the state is a designated initial state
and the head points to the first cell of the tape. Based on the answers to the
following questions (the second question is actually several questions, one for
each of the finitely many registers):

• what the current state?

• what are the signs of the registers (negative, zero, positive, undefined)?

the transition function of the machine indicates deterministically a new state
and an operation from the following set:

accept move the head by i ⇐ {↗1, 1} r := 1 r := s op t︸ ︷︷ ︸
op is one of the four

arithmetic operations

where r, s, t range over registers or the contents of the cell under the head. For
example, the effect of a transition can be that the contents of registers r, s are
multiplied and the result is stored in the cell under the head. If the computation
never performs the accept operation then the output of the computed function
is undefined. Otherwise, the output of the computed function is defined to be
the contents of the defined cells, read from left to right. If a division by zero is
performed, then the computation is not aborted, but the cell/register r storing
the result becomes undefined. We use this feature to erase cells, which is
necessary for functions where the output is shorter than the input. The running
time of a computation is defined to be the number of transitions that it uses.
As defined above, a bss machine computes a partial function. We can also view
bss machines as computing languages, i.e. yes/no properties of tuples of reals,
by assuming that the answer is “yes” if the function is defined and “no”
otherwise. The following lemma shows that for languages of bounded
dimension and running computation time, the bss model can only compute
quantifier-free properties.
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Lemma 2.2. If S ∝ Rn is computed by a bss machine which uses at most k
computation steps in every accepting run, then S is definable by a quantifier-free
formula using +,↗,⇓, 0, 1,<. Furthermore, this formula can be computed given the
machine and k.

Proof. Observe that the machine in the assumption of the lemma can use
division, while the quantifier-free formula in the conclusion does not use
division. By induction on the length of the computation, we can show that the
control state, head position, and signs of the registers can be determined by
asking quantifier-free queries to the input. In the induction step, we observe
that, assuming that the history (sequence of transitions) of the computation is
known, then the contents of each register/cell can be described by a term that
uses the n input numbers, integer constants, and arithmetic operations
(addition, subtraction, multiplication and addition). Furthermore, if t is such a
term, then a straightforward induction on the size of t shows that the truth sign
(negative, zero, positive) of t can be expressed using a quantifier-free formula
as in the statement of the lemma. (Note that the term t is allowed to use
division, but the quantifier-free formula is not.) For example,

x ⇔ y
x ↗ y + 1

> 0

is equivalent to the quantifier-free formula

(x ⇓ y > 0) → (x ↗ y + 1 > 0)
︸ ︷︷ ︸

enumerator and denominator are positive

↑ (x ⇓ y > 0) → (x ↗ y + 1 > 0)
︸ ︷︷ ︸

enumerator and denominator are negative

↫

2.2 Quantifier elimination

In Section 2.1 above we have shown that any bounded time procedure in the
bss model can be simulated using quantifier-free formulas. Therefore, to
complete the proof of Theorem 2.1, it is enough to show that the truth values of
formulas with one quantifier can be decided using the bss model. In principle,
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the bss model manipulates sequences of reals, but we will also use it to
manipulate more structured entities, such as polynomials or finite sets of
polynomials, implicitly using straightforward encodings as tuples of real
numbers.

Lemma 2.3. For every quantifier-free formula ϕ(x, y1, . . . , yn) there is a bss machine
which computes the following:

• Input. Real numbers a1, . . . , an.

• Output. Is ↓xϕ(x, a1, . . . , an) true in the real numbers?

Furthermore, the running time of the algorithm is bounded by a number k that depends
only on (and can be computed from) the formula ϕ, and does not depend on the
numbers a1, . . . , an.

Together with Lemmas 2.2, the above lemma completes the proof of
Theorem 2.1, and therefore the rest of this chapter is devoted to proving the
above lemma. Let ϕ and a1, . . . , an be as in the lemma. Without loss of
generality we assume that ϕ is a Boolean combination of formulas of the form

p(x, y1, . . . , yn) > 0 (2.1)

where each p is a polynomial with integer coefficients and n + 1 variables.
Given a tuple of real numbers a1, . . . , an as in the input of the problem from
Lemma 2.3, define P to be the finite set

{p(x, a1, . . . , an) : p(x, y1, . . . , yn) > 0 appears in ϕ}. (2.2)

The set P contains polynomials with one variable x and real coefficients. The
coefficients depend on the parameters a1, . . . , an, in a way that can be computed
in the bss model. Define the sign of a real number to be one of the three results
(negative, zero, or positive) of comparing the number to 0. The truth value of
the comparison in (2.1) depends only on the sign of the left side, and therefore
in order to determine if a real number a satisfies ϕ(a, a1, . . . , an), it is enough to
look at the sign of p(a) for all polynomials p ⇐ P. This observation motivates
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the following definition. In the following definition, R[x] stands for
polynomials with real coefficients and one variable x, and a nonzero
polynomial is one with at least one nonzero coefficient.

Definition 2.4 (Sign table). Let P ∝ R[x] be a finite set of nonzero polynomials, and
let

r1 < r2 < · · · < rn

be all the real numbers that are a root of at least one polynomial in P. (There are finitely
many such numbers, because a nonzero polynomial has finitely many roots.) Define the
sign table of P to be the following information:

• the number n;

• for each p ⇐ P and i ⇐ {0, . . . , n + 1}, the sign of p(ri), where the sign in

r0
def
= ↗∞ rn+1

def
= +∞

is defined by taking the limit in the natural way.

• for each p ⇐ P and i ⇐ {0, . . . , n}, what is the sign of p on the interval (ri; ri+1).

From the discussion before the above definition, it follows that the truth of

↓xϕ(x, a1, . . . , an)

can be (effectively) determined by looking at the sign table of the nonzero
polynomials in P. Therefore, Lemma 2.2 and thus also the Tarski Theorem will
follow from the following lemma.

Lemma 2.5. The sign table of a finite set P ∝ R[x] of nonzero polynomials can be
computed by a bss machine in time bounded by a function of the sum of degrees of P.

Proof. The proof is essentially the observation that the usual method of plotting
polynomials that is taught in high school can be formalised in the bss model1

We begin by observing that the bss model can run the Euclidean algorithm.

1Tarski taught mathematics in a Warsaw high school for girls. A lesser man would complain
about having to teach calculus, Tarski proved that it could be automated.
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Claim 2.6. There is a bss algorithm which inputs polynomials

p, q ⇐ R[x] with degree of q ⇑ degree of p

and outputs a polynomial r ⇐ R[x] such that

degree of r < degree of q and p = q ⇓ s + r for some s ⇐ R[x].

Proof. Define a finite sequence of polynomials

p = p0, p1, . . . , pn = r

subject to the following invariant: (a) the degrees in the sequence strictly
decrease; and (b) q divides p ↗ pn for every n. We begin with p0 = p. Suppose
that pi has been defined. If the degree of pi is strcitly smaller than the degree of
q, then we output r = pi; otherwise we define pi+1 to be the difference

pi ↗
leading coefficient of pi
leading coefficient of q

x(degree of pi)- (degree of q) · q

which preserves the invariant. This procedure can clearly be implemented in
the bss model. ↫

Apart from computing remainders using the Euclidean algorithm, we also use
derivatives of polynomials (in the usual sense of calculus). The derivative of a
polynomial p ⇐ R[x] can clearly be computed in the bss model. By repeatedly
applying derivation and the Euclidean algorithm, we can extend any finite set
of polynomials to a bigger one that is saturated in the following sense: it is
closed under derivations and applying the Euclidean algorithm. Since
computing a sign table can only get harder after adding polynomials, in order
to show the lemma, it suffices to show that sign tables can be computed for sets
P that are saturated.
Suppose then that P is a finite saturated set of polynomials. Take some p ⇐ P of
maximal degree. The set P ↗ {p} is also saturated, because p has maximal
degree, and both derivation and the Euclidean algorithm decrease degrees.
Therefore, we can use induction to compute the sign table of P ↗ {p}. Let

r0 = ↗∞ r1 < · · · < rn rn+1 = +∞
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be the numbers from the definition of a sign table, as applied to P ↗ {p}. We do
not know the exact values of these numbers, but we do know n and we also
know how the signs of the polynomials from P ↗ {p} behave in the points ri
and the intervals that separate them. Our goal is to enrich this information to
account for the polynomial p.

Claim 2.7. For each i ⇐ {0, 1, . . . , n + 1} we can compute the sign of p(ri).

Proof. For i = 0 and i = n + 1 we simply look at the sign of the leading
coefficient of p, and the parity of its degree. This information determines the
sign of p in ±∞. We are left with the case of i ⇐ {1, . . . , n}. By definition of ri,
there must be some polynomial q ⇐ P ↗ {p} which has a root in ri, and we can
use the sign table to find that polynomial. Since P is closed under applying the
Euclidean algorithm, there must be some r ⇐ P ↗ {p} such that

p = q ⇓ s + r for some s ⇐ R[x].

Since ri is a root of q, the sign of p(ri) is the same as the sign of r(ri), and the
latter sign is stored in the sign table. ↫

We now proceed to investigate the behaviour of p in the intervals separating
the roots ri. The important observation is that p does not have any turning
points in these intervals (a turning point is one where the polynomial changes
behaviour between increasing/decreasing). The reason is that a turning point is
also a root of the derivative, and all such roots are in the points r1, . . . , rn

because the derivative of p is belongs to P ↗ {p}. This observation yields the
following claim:

Claim 2.8. For every i ⇐ {0, . . . , n}, p has at most one root in the interval [ri; ri+1].

Proof. Otherwise there would be a turning point between ri and ri+1. ↫

Using the above claim, we can describe the behaviour of p in an interval of the
form (ri; ri+1). This is done using the following case analysis, which can readily
be formalised in the bss model.
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• The sign of p is zero on one of the endpoints of the interval [ri; ri+1]. By
Claim 2.8, at most one of the endpoints is zero, and there are no roots
inside the interval, as in the following picture

It follows that the sign inside this interval is the same as for the nonzero
endpoint.

• The signs of p are the same on both endpoints of the interval [ri; ri+1],
like this:

If p would have a root inside the interval, then it would also have a
turning point in this interval, and this cannot happen. Therefore, p has
no roots in this interval, and its sign in the interval is the same as in
either one of its endpoints.

• The signs of p(ri) and p(ri+1) are nonzero and different, like this:
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In this case p has exactly one root in the interval, which splits the interval
into two parts; on the left part the sign of p is as in p(ri) and on right part
the sign is as in p(ri+1).

Doing the above case analysis for all i ⇐ {0, . . . , n}, we fill in the sign table for
P. This completes the proof of Lemma 2.5, and therefore also of the Tarski
Theorem. ↫

Problem 8. Show that adding the function sin(x) to the real numbers yields an
undecidable theory.

Problem 9. Show that the following structure has a decidable first-order
theory: the universe consists of subsets of the Euclidean plane R2 that are
points, lines or circles, and there is a binary predicate for inclusion.

Problem 10. Show that every X ∝ R definable by a first-order formula with
one free variable is a finite union of points and open intervals.





3
Zero-one laws

Suppose that we want to randomly select a graph with n vertices. One way to
do this is as follows: independently for every pair of vertices, flip a coin to
decide if there is an edge or not. We are working with undirected graphs
without loops, and therefore if the graph has n vertices, then we need to flip the
coin (n

2) times, once for each possible edge. For example, the probability that
the graph is a clique is

1
2(

n
2)

because there are (n
2) edges to choose randomly, and all of them need to be

selected. We will be interested in the probability that a graph has some
property, under this particular distribution.1

Example 7. [Connectivity] Let us show that the probability that a graph is
connected tends to one, as n tends to infinity. Indeed, for each pair of vertices v
and w, the probability that they are connected using some fixed third vertex u
is equal to 1/4, since we need both of the edges vu and wu. However, if we
want to avoid such a connection for all possible choices of u, this will happen
with probability at most (3/4)n, which is exponentially small in n. Therefore,

1There are other distributions, for example the probability of having an edge could be 1/n. For
example, we could have p = 1/n. Such distributions on graphs, with various edge probabilities like
1/2, 1/n or 1/n2, are known as Erdös-Rényi random graphs [28]. In this chapter, we use p = 1/2.
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the probability of two vertices being disconnected is exponentially small, and
since a pair can be chosen in quadratically many ways, there is also an
exponentially small probability that the graph is not connected. ↭

Example 8. [Parity] The probability that there is an even number of edges is
exactly 1/2, independently of n. This is because the absence or presence of the
last edge (in some predetermined order of edges) determines the parity. ↭
As the two examples show, the probability of a graph having some property
can have some limit, such as zero or one half. There are also properties that do
not have a limit, e.g. the property “the number of vertices is even” (which does
not depend on the choice of edges), oscillates between zero and one without
any convergence. The goal of this chapter is to show that for properties which
can be defined in first-order logic, there will be a limit, and this limit will be
zero or one.
Let us begin by explaining first-order logic on graphs. The idea is to use a
formula that is built using the quantifiers ↔ and ↓, the logical connectives →, ↑,
¬, and a binary relation for the edges. Here are some examples of first-order
formulas, and the corresponding limiting probabilities.

Example 9. [Apex] The formula

↓x ↔y x ↖= y ′ edge(x, y)

says that the graph has an apex vertex, i.e. some vertex x that is connected to
every other vertex y. For any given vertex, the probability that it is an apex is
equal to 1/2n↗1. Even if we sum this probability across all n possible choices of
the apex, we will still get a probability that tends to zero with n. Therefore, the
limiting probability of having an apex vertex is zero. ↭

Example 10. [Triangle] The formula

↓x ↓y ↓z edge(x, y) → edge(y, z) → edge(z, x)

says that the graph contains a triangle as an induced subgraph. If we fix a
particular triple of vertices, then the probability that this triple is a triangle will
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be 1/8. However, if we look at n/3 disjoint triples, then the probability that
none of them is a triangle will be exponentially small. Therefore, the limiting
probability of having a triangle is one. ↭
As in the above examples, we define the limiting probability of a graph property
to be the limit, with n ↙ ∞, of the probability that a graph with n vertices
satisfies the property. The main result of this chapter is the following theorem,
which shows that the limiting probability exists and is necessarily zero or one
for properties that can be defined in first-order logic.

Theorem 3.1. Let ϕ be a first-order formula that defines a property of graphs, then its
limiting probability exists and is equal to zero or one.

Proof. The proof will be based on a certain property of graphs, which we call
the extension property. This property formalizes the idea that the graph contains
many different induced subgraphs.

Definition 3.2 (Extension property). Let k ⇐ {0, 1, . . .}. A graph G has the
k-extension property if for every induced subgraph H ∝ G with at most k vertices,
and every partition of the vertices of H into two parts V1 and V2, there is some vertex
in G ↗ H that is adjacent to all vertices in V2 and non-adjacent to all vertices in V2.

Here is a picture of the 5-extension property:

The first observation is that for every k, sufficiently large random graphs have
the k-extension property with high probability.
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Lemma 3.3. For every fixed k, the probability that a graph with n vertices has the
k-extension property tends to one as n tends to infinity.

Proof. Let n ⇐ N. Consider the probability that some particular k-tuple vertices
in the graph with n vertices is a violation of the k-extension property. This
probability is exponentially small in n, for the same reasons as in Example 7.
Since the number of k-tuples is polynomial in n, once k has been fixed, it
follows that the property that some k-tuple is a violation must tend to zero. ↫

We now show that for every formula of first-order logic, there is some k such
that all graphs with the k-extension property agree on this formula.

Lemma 3.4. Let ϕ be a formula of first-order logic. Then there is some k such that
either all graphs with the k-extension property satisfy ϕ, or all graphs with the
k-extension property do not satisfy ϕ.

Proof. The formula in the statement of the lemma does not have free variables,
since otherwise it would not be meaningful to say that a graph satisfies or does
not satisfy it, without specifying the values of the free variables. However, in
the proof we will discuss a slightly stronger statement that involves free
variables. To evaluate a formula with ω free variables, we need a graph together
with a list of ω distinguished vertices. We use the name ω-pointed graph for such
an object. The lemma follows immediately from the following claim in the case
of ω = 0.

(*) Let ϕ be a formula that has ω free variables. There is some k with the
following property: if two ω-pointed satisfy the same quantifier-free
formulas, and the underlying graphs both have the k-extension property,
then ϕ is true in both or none of them.

The claim is proved by induction on the structure of the formula. The only
interesting case is the induction step for an existential quantifier (or dually, a
universal quantifier), where we use the extension property to find a
corresponding vertex in the other graph. ↫
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Combining the above two lemmas, we get the theorem. Indeed, we take some
formula, and apply Lemma 3.4 to find some k. Either the formula holds in all
graphs with the k-extension property, or it fails in all of these graphs. By
Lemma 3.3, the probability that a random graph has the k-extension property
tends to one, so the limit in the theorem exists and is either zero or one. ↫

3.1 The infinite random graph

In this section, we discuss a variant of random graphs, in which the set of
vertices is the infinite set

ω = {1, 2, . . .}.

We use the same distribution as previously, i.e. for each (unordered) pair of
vertices, we flip a coin to decide if there is an edge or not. The main result of
this section is that, rather remarkably, we get the same graph with probability
one.

Theorem 3.5. There is some countably infinite graph G, such that if we randomly
select a graph with vertices ω, then with probability one, the selected graph is
isomorphic to G.

Thanks to the above theorem, it makes sense to talk about the infinite random
graph, since it is unique up to probability one.

Proof of Theorem 3.5. The proof is also based on the extension property.

Lemma 3.6. For every k, with probability one a randomly selected graph on vertices ω

has the k-extension property.

Proof. Same proof as previously: the probability is zero that any particular
subgraph on k vertices is a violation of the k-extension property. Since there are
countably many such subgraphs, the probability is still zero that at least one of
them is a violation. ↫
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Since an intersection of countably many events with probability one must also
have probability one, it follows that with probability one, a randomly selected
graph on vertices ω will have the k-extension property for every k. To complete
the proof of the theorem, we will show that any two such graphs will
necessarily be isomorphic.

Lemma 3.7. If two graphs on vertices ω have the k-extension property for every k,
then they are isomorphic.

Proof. We define an isomorphism piece by piece. Define a partial isomorphism
between two graphs to be an isomorphism between two induced subgraphs. To
construct the complete isomorphism from the lemma, we will use the following
observation on partial isomorphisms.

Claim 3.8. Consider two graphs G1 and G2 as in the assumption of the lemma. We
will show that for every partial isomorphism between them, and every vertex v1 in G1,
there is some vertex v2 in G2 such that the partial isomorphism can be extended with
the pair (v1, v2).

Proof. We apply the k-extension property for G2, where k is the number of
vertices that participate in the partial isomorphism (on either one of the two
sides). This allows us to find some vertex v2 that has the same connections as v1
with the vertices that are already in the partial isomorphism. This completes
the proof of the claim. ↫

Using the claim, and a symmetric version where the graphs G1 and G2 are
swapped, we can iteratively construct a sequence of partial isomorphisms,
which is growing with respect to extension, and which eventually covers every
vertex in G1 and G2. To construct this sequence, in even-numbered steps we
add a vertex from G1, and in odd-numbered steps we add a vertex from G2.
The limit of this sequence is a complete isomorphism, which completes the
proof of the lemma. ↫
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Lemmas 3.6 and 3.7 give us the theorem, since the first one says that almost all
graphs have the property that guarantees isomorphism in the second
lemma. ↫

We finish this chapter with the observation that the random graph has
quantifier elimination.

Theorem 3.9. For every first-order formula, possibly with free variables, there is a
quantifier-free formula that is equivalent to it in the random graph, i.e. it is equivalent
for all possible assignments of the free variables.

Proof. We will prove the following lemma.

Lemma 3.10. For every two tuples (x1, . . . , xk) and (y1, . . . , yk) of vertices in the
random graph, the following conditions are equivalent:

1. the two tuples satisfy the same quantifier-free formulas;

2. the two tuples satisfy the same first-order formulas;

3. x ∞↙ y can be extended to an isomorphism of the random graph with itself.

Proof. Clearly we have 2′ 1, since quantifier-free formulas are a special case of
first-order formulas. Also, we have 3 ′ 2, since isomorphism does not affect
the values of first-order formulas. Finally, 1 is the same as saying that x ↙ y is
a partial isomorphism, and this we know by Claim 3.1 can be extended to a full
isomorphism. ↫

The theorem is an immediate consequence of the above lemma, and the fact
that there are finitely many quantifier-free non-equivalent formulas, once the
number of free variables has been fixed. ↫

Problem 11. Show that the following conditions are equivalent for every
first-order formula:

1. its limiting probability is one for finite graphs;

2. it is true in the infinite random graph.
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Problem 12. Show that the quantifier elimination in Theorem 3.9 is decidable,
i.e. the equivalent quantifier-free formula not only exists, but can be effectively
computed.

Problem 13. Prove that the infinite random graph is connected.

Problem 14. For n ⇐ {1, 2, . . .} consider the following graph. The vertices are
vectors x ⇐ {0, 1}n, and two vertices are connected by an edge if their scalar
product is odd (i.e. nonzero if we work in the two-element field). Show that this
graph has the k-extension property when k = n2.

Problem 15. Show that the zero-one law from Theorem 3.1 fails when, instead
of first-order logic, we use monadic second-order logic. The latter is the
extension of first-order logic where we also quantify over sets of vertices. (But
not sets of pairs of vertices, or more complicated objects.)
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Weighted automata over a field

This chapter is about automata which input words and output rational
numbers. The original definition comes from Schützenberger [51]. We show
that these automata can be minimised (even in polynomial time) and can be
tested for equivalence (again, in polynomial time), but the following version of
the emptiness problem is undecidable:

is the output 0 for some input?

Note that the dual problem,

is the output 0 for every input?

is a special case of the equivalence problem, and is therefore decidable in
polynomial time. We use the field of rational numbers, but most results would
work for other fields.
The automata discussed in this chapter can be viewed in two ways: as a
nondeterministic device with states from a finite set (we call these weighted
automata) and as a deterministic device with states from a vector space (we call
these vector space automata). Both views are useful, so we present both of
them.
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Weighted automata. In the nondeterministic view, the automaton has a state
space which is a finite set, and many possible runs. Each run has an associated
weight, and the weight of an input word is the sum of weights of all the runs.

Definition 4.1 (Weighted automaton). A weighted automaton consists of:

1. a finite set Σ, called the input alphabet;

2. a finite set P of states;

3. for each state, an initial weight and final weight, which are rational numbers;

4. a transition function from P ⇓ Σ ⇓ P to rational numbers.

Define the weight of a run of the automaton to be the product of: the initial weight of
the first state, the weights of all transitions used, and the final weight of the last state,
as in the following picture:

weights of transitions connecting consecutive states

weight of the run 1·2·3·2·4·2·3·2·3 = 1728

final weight of last stateinitial weight of first state

a
p q r

1 2 2 33 2 2 34
q p r p q

b a a b ab

Define the weight of a word to be the sum of the weights of all runs. The function
recognised by the automaton is the function that maps a word to its weight.

The above definition makes sense for an arbitrary semiring, i.e. a set equipped
with product and sum operations, such that sum is commutative and there is
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an appropriate distributivity law. If we take the semiring

( {0, 1, 2, . . . , ∞}︸ ︷︷ ︸
universe of the semiring

, min︸︷︷︸
sum of the semiring

, +︸︷︷︸
product of the semiring

)

then we recover distance automata as discussed in Chapter 13. For this chapter,
however, it will be important that we use the rational numbers, or more
generally a field, so that we can use linear algebra.

Example 11. Consider the following weighted automaton with three states.

transition of weight 1 (transitions not drawn have weight 0)

initial weight final weight

a : 1

1

a : 2

a : 1

11

The weight of a run that stays in is 1, and the weight of a run that goes from
to is 2n, where n is the number of times the run loops around . Other runs

have cost zero. If the input word has length n, then the weight of the word is

2n↗1 + 2n↗2 + · · ·+ 21
︸ ︷︷ ︸

runs from to

+ 1︸︷︷︸
loop in

= 2n

To recognise the same function an ∞↙ 2n we could also use this automaton

1

a : 2

1
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As we will see later in this chapter, weighted automata can be minimised. The
second automaton is in fact the minimal automaton – how could it be smaller?
– and there exists an automaton homomorphism (see later in the chapter for the
definition) from the first automaton to the second one, namely the function

x · + y · ∞↙ (x + y) · .

↭

Example 12. [Running example] We describe two weighted automata which
will be used as the running example in this chapter. We can view a
nondeterministic automaton as a special case of a weighted automaton, by
assuming that every arrow (including dangling arrows that indicate initial and
final states) has weight 1. In this view, the semantics of weighted automata will
map an input word to the number of accepting runs. Consider the following
two nondeterministic automata over input alphabet {a}

a 

a 

a

a

which both recognise the language “nonempty words”. Both automata are
unambiguous, i.e. on each accepted word they have exactly one run. Therefore,
if we treat the automata as weighted automata, then the recognised function
will be the characteristic function of the set of nonempty words. Note that the
semantics of weighted automata is finer, i.e. leads to more non-equivalent
automata, than the standard nondeterministic semantics. For example, the
automaton
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1

aa

a 

1

also recognises – as a nondeterministic automaton – the set of nonempty words,
but it has n runs on inputs of length n, and therefore it is not equivalent to the
unambiguous automata when seen as a weighted automaton. We will return to
the unambiguous automata later in the chapter, and show that they are
isomorphic as weighted automata. ↭

Vector space automata. We now present a deterministic view on weighted
automata. In this view, the automaton has a state space that is a vector space,
and each letter deterministically updates the state using a linear function. This
definition is almost the same as the original definition of Schützenberger [51,
Definition 1], except that the original definition also allowed control states from
a finite set. We do not use control states, because they do not contribute to
expressive power of the model (although they make constructions easier), see
the proof of Lemma 4.12.

Definition 4.2 (Vector space automaton). A vector space automaton1 consists of:

1. an input alphabet, which is a finite set Σ;

2. a set Q of states, which is a vector space of finite dimension over Q;

3. an initial state q0 ⇐ Q;

4. for each letter a ⇐ Σ, a linear map from Q to itself, denoted by q ∞↙ qa;

5. a linear map from Q to the rational numbers, called the output function.

1This definition is designed so that it can be generalised to categories other than the category of
vector spaces, see e.g. [21]
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The automaton begins in the initial state, and when reading a letter a ⇐ Σ, it updates
its state using the transition function from item 4. After reading all the letters of the
input word, the output function is applied to the last state, yielding the output of the
automaton.

The state space of a vector space automaton is isomorphic to Qn for some
n ⇐ N, since these are the vector spaces of finite dimension. Therefore, when
representing a vector space automaton for the use of algorithms, we simply
indicate the dimension n, and use matrices to represent the transitions from
item 4 and the output function from item 5.

Example 13. Without increasing the expressive power of the model, we could
allow affine functions in the transitions of a vector space automaton. The
construction is illustrated on the following example.
Consider the length function over a one letter alphabet {a}. The most natural
approach to recognise this function would be to have the one dimensional
vector space Q as the state space and use the affine function q ∞↙ q + 1 as the
transition function. However, Definition 4.2 requires linear transition functions,
so we use a workaround. The state space is Q2 and the initial state is (1, 0).
When reading a letter a, the automaton applies the function

(x, y) ∞↙ (x, x + y)

and the output function is (x, y) ∞↙ y. As an alternative to the above vector
space automaton, we can use the following weighted automaton

1

a : 1a : 1

a : 1

1

If we ignore the weights, the above picture shows a nondeterministic
automaton, which has exactly n accepting runs on a word of the form an, and
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thus using the weighted semantics, we get the length function. (This is the
weighted automaton at the end of Example 12.) ↭

Equivalence of the models. A closer inspection of the vector space
automaton and the weighted automaton used in Example 13 shows that these
are actually the same automaton, only drawn using different pictures. This
sameness is formalised in the following lemma.

Lemma 4.3. Weighted automata and vector space automata recognise the same
functions.

Proof. Actually, the proof shows something more, namely that the two
definitions of automata are just different syntaxes for the same object. To
transform between syntaxes, we use the transformation

A ⇐ weighted automata ∞↙ vecA ⇐ vector space automata,

described below, which preserves the recognised function. The transformation
is easily seen to be reversible, thus proving the lemma.
The vector space automaton vecA is defined as follows.

• The state space of vecA is QP, where P is the states of A.

• The initial state of vecA assigns to each state its initial weight.

• The output function of vecA multiplies each coordinate by its final weight.

• For each input letter a ⇐ Σ, the state update q ∞↙ qa of vecA maps a vector
q to a vector which stores the following number on coordinate p ⇐ P:

∑
r⇐P

(coordinate r of q) · (weight of transition r a↙ p in A).

An alternative view is that the linear map above is described by the
matrix which is obtained by looking at the weights of transitions that
read letter a in the automaton A.
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↫

Example 14. [Running example] Recall the two weighted automata:
a 

a 

a

a

We now show the corresponding vector space automata. The state spaces of the
automata are 2-dimensional vector spaces with bases { , } and { , },
respectively. The initial vectors are and , respectively, while the transition
functions are

(x · + y · ) · a = (x + y) · (x · + y · ) · a = x · + x · .

The output function in the first automaton is projection to coordinate and the
output function in the second automaton is projection to coordinate . ↭

4.1 Minimisation of weighted automata

In this section, we prove a Myhill-Nerode style theorem on the existence of a
minimal automaton, which is unique up to isomorphism (although the notion
of isomorphism is a bit more involved than usual).

Homomorphisms of weighted automata. Let A and B be vector space
automata over the same input alphabet Σ. A homomorphism from A to B is
defined to be a linear map from the states of A to the states of B which is
consistent with the structure of the automata, in the following sense:

(h(q))·a h(q·a)= output(h(q)) output(q)= h(initial state)initial state = 
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If there is such a homomorphism, then the functions computed by the two
automata are clearly the same. An isomorphism is a homomorphism which has
an inverse that is also a homomorphism. If a homomorphism is surjective, as a
function on state spaces, and the dimensions of the state spaces are the same,
then it is an isomorphism. This is because on vector spaces of finite dimension,
a surjective dimension preserving linear map has a linear inverse.

Example 15. [Running example] Recall these weighted automata

a 

a 

a

a

and their corresponding representations as vector space automata. We present a
homomorphism, in fact an isomorphism, from the first automaton to the
second automaton (as vector space automata). This is the function h defined by

x · + y · ∞↙ (x + y) · + y · .

Note that h is an isomorphism between the two state spaces. Clearly h maps the
initial state of the first automaton to the initial state of the second
automaton. The following diagram shows that h is consistent with the
transition functions:

x · + y ·

h
!!

q ∞↙qa in left automaton
"" (x + y) ·

h
!!

(x + y) · + y ·
q ∞↙qa in right automaton

"" (x + y) · + (x + y) ·
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The following diagram shows that h is consistent with the output functions:

x · + y ·

h
!!

output in left automaton

##(x + y) · + y ·
output in right automaton

"" y

We have thus shown that h is a homomorphism. Since it was an isomorphism
of vector spaces, its inverse is also a homomorphism of automata (the diagrams
are easily seen to invert), and therefore the two automata are isomorphic as
vector space automata. ↭
We now state the minimisation theorem. Call a vector space automaton reachable
if every state in its state space is a finite linear combination of reachable states,
i.e. states that can be reached from the initial state by reading some input word.

Theorem 4.4. Let f : Σ⇔ ↙ Q be a function recognised by a vector space automaton.
There exists a vector space automaton, called the minimal automaton of f , which
recognises f and such that every reachable vector space automaton recognising f admits
a homomorphism into the minimal automaton.

Proof. The proof is essentially the same as for the classical Myhill-Nerode
theorem. Actually, the theorem remains true for vector space automata that can
use infinite dimensional vector spaces as states.
The set of functions Σ⇔ ↙ Q can be viewed as an infinite dimensional vector
space, with functions seen as vectors indexed by input words. There is a
natural right action of words w ⇐ Σ⇔ on this vector space, defined by

q : Σ⇔ ↙ Q ∞↙ qw : Σ⇔ ↙ Q where qw is defined by v ∞↙ q(wv).

For every word w, the map q ∞↙ qw is linear, because it simply rearranges the
coordinates of q when seen as a vector.
Let f be a function as in the statement of the theorem. Define the minimal
automaton of f as follows. The state space, which is a subspace of the infinite
dimensional space Σ⇔ ↙ Q, is all finite linear combinations of functions of the
form f w for w ⇐ Σ⇔. The initial state is f . The transition function is defined
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using the right action q ∞↙ qa defined above. The output function takes a state q
to its value on the empty word. The automaton clearly recognises the function
f . We will justify below why the state space has finite dimension, and therefore
the automaton is indeed a vector space automaton as per Definition 4.2.
We now show that every reachable vector space automaton recognising f
admits a surjective homomorphism onto the minimal automaton defined above.
Let A be a vector space automaton recognising f . For a state q of A, define
[q] : Σ⇔ ↙ Q to be the function recognised by the vector space automaton
obtained from A by changing its initial state to q.

Claim 4.5. The function [ ] is a surjective homomorphism from A onto the minimal
automaton.

Proof. The function [ ] is a linear map from states of A to the vector space
Σ⇔ ↙ Q, because the state update and output functions in A are linear
functions. Note that the state space of the minimal automaton is not all of
Σ⇔ ↙ Q, but only a subspace, so we still need to show that [ ] has its state space
contained in that subspace. The function [ ] is compatible with transitions, i.e.

[qa]
︸︷︷︸

transition in A

= [q]a.
︸︷︷︸

transition in the minimal automaton

Indeed, the left side describes the function: “what A will do if it starts in state
qa and reads a word w”, while the right side describes the function “what A
will do if it starts in state q and reads a word aw”. The initial state of A, call it
q0, is mapped by [ ] to the function f recognised by the automaton A. It follows
that

[q0w] = f w for every w ⇐ Σ⇔.

By the above and the assumption on A being reachable, it follows that the
image of [ ] consists of linear combinations of functions of the form f w, and
therefore the image of [ ] is contained in – in fact, equal to – the state space of
the minimal automaton. Finally, the function [ ] is compatible with the output
functions of the automata, because the value of the output function of A on
state q is the same as [q](ε). ↫
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A surjective linear map cannot increase the dimension of a vector space, and
therefore the above claim also implies that the minimal automaton has a finite
dimensional state space, assuming that f was recognised by a vector space
automaton with a finite dimensional state space ↫

Example 16. [Running example] The function recognised by the automata in
the running example is the characteristic function of the set of nonempty
words. This function is not recognised by any vector space automaton with a
one dimensional state space (equivalently, by any weighted automaton with
one state) because if the state space has one dimension, then the recognised
function is of the form

an ∞↙ λ0 · λn, for some λ0, λ ⇐ Q

which is not the case for the characteristic function of nonempty words.
Therefore, dimension ↘ 2 is necessary to recognise the function from the
running example, and thus each of the two automata in the running example is
a minimal automaton. ↭
So far, we have only proved that a minimal automaton exists. In the next
section, we show that it can also be efficiently computed.

4.2 Algorithms for equivalence and minimisation

In this section we give polynomial time algorithms for equivalence and
minimisation of vector space automata. We use the following lemma to
implement operations of vector spaces.

Lemma 4.6. Assume that rational numbers are represented in binary notation, linear
subspaces of Qd are represented using a basis, and linear maps are represented using
matrices. The following operations on linear subspaces can be done in polynomial time:
(a) test for inclusion, (b) compute the subspace spanned by a union of two subspaces, (c)
compute the image under a linear map.
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Equivalence. We begin with a simple algorithm for finite vector space
automata: computing linear combinations of reachable states. Computing the
actual reachable states, and not their linear combinations, is a different story
and leads to undecidability, as we will see in Section 4.3. To compute linear
combinations of reachable states we use a simple saturation procedure. We
begin with Q0 ∝ Q being the vector space spanned by the singleton of the
initial state, i.e. this is the one dimensional vector space whose basis is the
initial state. Then, assuming that a vector space Qi ∝ Q has already been
defined, we define Qi+1 to be the vector space spanned by

Qi ∈
⋃

a⇐Σ
Qi · a.

A representation of Qi+1 can be computed in polynomial time from a
representation of Qi, using the toolkit from Lemma 4.6. We also use the
following observation: the coefficients in the basis for Qi · a can only grow, as
compared with the coefficients for Qi, by a constant amount depending on the
linear map q ∞↙ qa. This way we get a growing chain of linear subspaces

Q1 ∝ Q2 ∝ · · · ∝ Q.

Since the dimension cannot grow indefinitely, this sequence must stabilise after
a number of iterations that is at most the dimension of Q, and this point is the
set of reachable states.
Here is a corollary of the reachability algorithm described above.

Theorem 4.7. The following problem is in polynomial time, assuming that field
operations have unit cost:

• Input. Two vector space automata A,B.

• Question. Do they compute the same function Σ⇔ ↙ Q?

Proof. Using a product construction, compute a vector space automaton which
computes the function A↗B. In the resulting product automaton, compute the
linear combinations of reachable states. The automata A,B are equivalent if
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and only if, the function A↗B is constant zero. The latter can be tested by
computing the linear combinations of reachable states in the product
automaton, taking the image under the output function, and testing if the result
is equal to the zero-dimensional space {0}. ↫

Computing the minimal automaton. We show that the minimal automaton
from Theorem 4.4 can be computed in polynomial time from any vector space
automaton recognising the function f .

Theorem 4.8. The following problem is in polynomial time:

• Input. A vector space automaton A.

• Output. The minimal automaton of the function recognised by A.

Proof. Consider a vector space automaton A with state space Q. For
n ⇐ {0, 1, . . .}, define states q, p ⇐ Q to be n-equivalent if for every input word
w of length ⇑ n, the states qw and pw have the same values under the output
function. This equivalence relation can be seen as a subset of

En ∝ Q ⇓ Q.

By linearity of the automaton, the subset is linear. We can also compute the
equivalence relations as follows. The set E0 is the inverse image of {0} under
the linear map

(p, q) ∞↙ F(p)↗ F(q)

while the set En+1 is the intersection

En+1 =
⋂

a⇐Σ
( fa)

↗1(En) where fa is the linear map (p, q) ∞↙ (pa, qa).

We have a sequence of linear subspaces

Q ⇓ Q ∋ E0 ∋ E1 ∋ E2 ∋ · · ·
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By the same arguments as in the equivalence algorithm, the sequence above
must stabilise at some equivalence relation, call it E⇔, which can be computed
in polynomial time. This stable equivalence relation E⇔ is the Myhill-Nerode
equivalence relation, which identifies states if they produce the same outputs
on all inputs. In the terminology of the proof of Theorem 4.4, two states are
equivalent under E⇔ if and only if they have the same image under the function
[ ]. The quotient of Q under E⇔ is therefore the minimal automaton; and this
quotient can be computed in polynomial time, see Exercise 21. ↫

Example 17. [Running Example] To finish the running example, we run the
minimisation algorithm on the vector space automaton that corresponds to

a 

a 

The equivalence E0 identifies two states if they agree on the coordinate . The
equivalence E1 identifies two states

x · + y · and x△ · + y△ ·

if they are equivalent with respect to E0, i.e. y = y△, and furthermore applying a
to both states gives equivalent results with respect to E0, i.e.

(x + y) · and (x△ + y△) ·

agree on coordinate , which means that they are equal, and therefore also
x = x△. Summing up, E1 is the identity equivalence relation, and therefore the
automaton is already minimal. ↭
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4.3 Undecidable emptiness

In Theorem 4.7, we showed that equivalence of vector space automata (and
therefore also of weighted automata) is decidable in polynomial time. A
corollary is that one can decide if a weighted automaton maps all inputs to
zero. We now show that a dual problem, namely mapping some word to zero,
is undecidable. For the undecidability proof, it will be more convenient to use
the syntax of weighted automata and not that of vector space automata.

Theorem 4.9. The following problem is undecidable:

• Input. A weighted automaton.

• Question. Is some word mapped to 0?

Changing 0 to any other number would not make the problem decidable,
because if f is recognised by a weighted automaton, then so is x ∞↙ f (x)↗ c for
every constant c ⇐ Q. There are two basic ingredients in the proof: hashing
words as numbers, and composing weighted automata with nfa’s with output.
These ingredients are described below.

Hashing. A weighted automaton can map a string of digits to its
interpretation as a fraction stored in binary (or ternary, etc) notation. This
construction is described in the following lemma.

Lemma 4.10. For every alphabet Σ there is a weighted automaton which computes an
injective function from Σ⇔ to the strictly positive rational numbers.

Proof. We only show the construction when Σ has two letters {0, 1}. The idea is
that the weighted automaton maps a word w to the number represented in
binary by the word 1w. We use the leading 1 so that the representation of w
takes into account leading zeroes. Here is the automaton.
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if a position in the input word has bit 1
and is followed by i bits,  then the position

contributes 2  to the output i

if the input word has length n,
then the loop around this 

state will contribute 2 

leading 1binary representation

{ {

n

1 11

0,1 : 2 0,1 : 20,1 : 1

1 : 1

1

↫

Composition with nfa’s. To give a high-level description of the
undecidability proof, it will be convenient to compose weighted automata with
a certain kind of word-to-word functions.

Definition 4.11. An nfa with output consists of:

1. An nfa A, called the underlying automaton;

2. An output alphabet Γ;

3. For each transition of A, an associated output word in Γ⇔;

4. For each final state of A, an associated end of input word in Γ⇔.

The output of a run, which is a word over the output alphabet, is defined by
concatenating the output words for all transitions in the order that they are
used, followed by the end of input word for the last state in the run. Given a
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word w over the input alphabet, the output of the automaton A(w) consists of
the outputs of all of its accepting runs. We view A(w) as a multiset, so that if n
different runs produce the same output word, then this output word is counted
n times.

Example 18. Consider the following nfa with output where the input alphabet
is {a} and the output alphabet is {a,▽}.

output of the transition

end of input
word

a : aaa : a

a : aa

a : a

On an input word an, the automaton has 2n possible runs – and therefore also
2n output words including repetitions – because after reading each letter, the
automaton can be in either the red or white state. The function recognised by
the automaton is

an ∞↙ ∑
X∝{1,...,n}

an+|X| ▽

where sum denotes multiset addition. For example, in the multiset A(a10), the
word a12 appears (10

2 ) times. ↭
Weighted automata can be composed with nfa’s with output.

Lemma 4.12. If A is an nfa with output, which has input alphabet Σ and output
alphabet Γ, and B is a weighted automaton with input alphabet Γ, then the function
B ·A defined by

w ⇐ Σ⇔ ∞↙ ∑
v⇐A(w)

B(v)

is also recognised by a weighted automaton. In the sum above, outputs are counted with
repetitions, i.e. an output word produced n times contributes n times to the sum.
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Proof. For a run of the weighted automaton B, define its transition weight to be
the product of the weights of the transitions used in the run, without taking into
account the initial weight of the first state or the final weight of the last state.
A natural product construction does the job. Define a product automaton as
follows. States of the product automaton are pairs (state of B, state of A). The
initial weight of a pair (p, q) is defined to be 0 if q is not an initial state in A, and
otherwise it is defined to be the initial weight of p. The weight of a transition

(p, q) a↙ (p△, q△)

in the product automaton is defined to be the 0 if A does not admit a transition
q a↙ q△, otherwise it is defined to be the sum

∑
ρ

transition weight of ρ

where ρ ranges over runs of the weighted automaton B that begin in p, read the
output word labelling the transition q a↙ q△, and end in p△. The final weight of a
pair (p, q) is defined to be 0 if q is not a final state in A, and otherwise it is
defined to be

∑
ρ

(transition weight of ρ) · (final weight of last state in ρ)

where ρ ranges over runs of the weighted automaton B which begin in state p
and read the end of input word for state q in the automaton A. ↫

The multiset semantics of nfa’s with output were chosen so that the proof
above works. In our undecidability proof below, we use the above lemma in the
special case when A has at most one run over every input word, and so the
multiset semantics do not play a role. Equipped with Lemmas 4.10 and 4.12, we
prove the undecidability result from Theorem 4.9.

Proof of Theorem 4.9. We first introduce some notation and closure properties for
weighted automata. If A,A△ are weighted automata, then we write A+A△ for
the disjoint union of the automata; on the level of recognised functions this
corresponds to addition of outputs. We write ↗A for the weighted automaton
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obtained from A by multiplying all initial weights by ↗1, on the level of
recognised functions this corresponds to multiplying the output values by ↗1.
We also write A↗A△ instead of A+ (↗A△). Finally, if L is a regular language,
then there is a weighted automaton, call it char(L) which recognises the
characteristic function of L, i.e. maps words from L to 1 and other words to 0.

The proof of the theorem is by reduction from the halting problem for Turing
machines. For a Turing Machine M, we define a weighted automaton which
outputs 0 on at least one input word if and only if M has at least one halting
computation. Suppose that Σ is the work alphabet of the machine M, which
includes the blank symbol. We encode a configuration of the machine as a word
over the alphabet

∆ def
= Σ + Σ ⇓ Q

in the natural way, here is a picture:

a b b _

qcontro
l st

ate

blank symbol

cell w
ith

 symbol b

To ensure that each configuration has exactly one encoding, we assume that the
first letter and the last letter are not just blank symbols, i.e. each one contains
either the head, or a non-blank tape symbol, or both.

Define a pre-computation to be a word which is a sequence of encodings, in the
sense above, of at least two configurations, separated by a fresh separator
symbol #, such that the first configuration is initial and the last configuration is
final. Here is a picture:
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#b

q

b#a b

p

b a b

p

b # _ a b

q

b

first configuration
is initial

last configuration
is finalseparator symbol

consecutive configurations
need not be connected

by the successor relation
of the Turing machine

A halting computation of the Turing machine is a pre-computation where
consecutive configurations are connected by the successor relation on
configurations of the Turing machine.
The set of pre-computations is a regular language. It is not hard to write nfa’s
with output A1,A2 such that if the input is not a pre-computation then the
output for both A1 and A2 is the empty multiset, and if the input is a
pre-computation, as witnessed by a (unique) decomposition

w1#w2# · · · #wn w1, . . . , wn ⇐ ∆⇔

then A1,A2 have exactly one accepting run each, with respective outputs

w2#w3# · · · #wn w△
1#w△

2# · · · #w△
n↗1

where w△
i denotes the successor configuration of wi. The Turing machine has a

halting computation if and only if there is some pre-computation where A1 and
A2 produce the same output. This is equivalent to the following weighted
automaton producing 0 on at least one output:

char(words that are not pre-computations) +H ·A1 ↗H ·A2,

where H is the hashing automaton from Lemma 4.10 and the product operation
· is as in Lemma 4.12. ↫
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Problem 16. Construct weighted automata over unary alphabet, which for a
word of length n output

1. n2;

2. n2 + 2n;

3. n3;

4. nk for constant k ⇐ N;

5. p(n) for any polynomial p ⇐ Q[x], i.e. a univariate polynomial with
rational coefficients.

Problem 17. Show that for weighted automata with 2 states over a unary
alphabet, it is decidable whether the automaton assigns value 0 to some word.
Remark: for weighted automata over a unary alphabet with an arbitrary number
of states, this is an important open problem, called the Skolem Problem in [43].

Problem 18. A probabilistic automaton is a vector space automaton where the
initial state q ⇐ Qd is a probability distribution on {1, . . . , d}, the linear updates
are such that they preserve probability distributions, and the output function
sums the coordinates corresponding to some accepting subset F ∝ {1, . . . , d}.
Show that the following questions are undecidable for probabilistic automata:

1. is there some input word which produces output exactly 1/2?

2. for fixed p ⇐ (0, 1), is there some input word which produces output
exactly p?

3. is there some input word which produces output at least 1/2?

Problem 19. Show that the following question is decidable for probabilistic
automata: is there some input word which produces output equal exactly 0?

Problem 20. Show that for every weighted automaton there is an isomorphic
(using the notion of isomorphism inherited from vector space automata) one
which has one initial and one final state.
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Problem 21. Let E ∝ Qn ⇓ Qn be a linear subspace which is an equivalence
relation. Let f1, . . . , fk : Qn ↙ Qn be linear maps which respect the equivalence
relation, i.e. if inputs are equivalent, then also outputs are also equivalent.
Show that one can compute in polynomial time linear maps

h : Qn ↙ Qm f △1, . . . , f △k : Qm ↙ Qm

so that E is the kernel of h, and the diagram

Qn fi ""

h
!!

Qn

h
!!

Qm
f △i
"" Qm

commutes for every i ⇐ {1, . . . , k}.

Problem 22. Consider a more symmetric model of nfa with output, as in
Definition 4.11, where there is also a start of input word associated to each initial
state, and the output of a run begins with the start of input word for its first
state. Show that this model has the same expressive power as in Definition 4.11.

Problem 23. Call an nfa unambiguous if for every input there is at most one
accepting run. Show that equivalence – i.e. are the same input words accepted –
for unambiguous automata can be decided in polynomial time.

Problem 24. Construct an nfa with n states such that shortest rejected word
rejected has length exponential wrt. n.

Problem 25. Show that if an nfa with n states is unambiguous and rejects at
least one word, then it rejects some word of length at most n ↗ 1.

Problem 26. Show a polynomial time algorithm that decides if an nfa is
unambiguous.

Problem 27. Give a more direct proof of Theorem 4.9 which uses the Post
Correspondence Problem. Recall that the Post Correspondence Problem is the
question: given two homomorphisms f , g : Σ⇔ ↙ Γ⇔, decide if there is some
nonempty word w such that f (w) = g(w). This problem is undecidable.





5
Vector addition systems

This chapter is about vector addition systems. The definition of this device
could hardly be simpler:

Definition 5.1 (Vector Addition System). The syntax of a vector addition system
consists of a dimension d ⇐ {1, 2, . . .} and a finite set δ ∝ Zd. A run of the system is a
finite sequence of vectors in Nd (called configurations) such that every consecutive
configurations in the run form a transition as explained in the following picture for
dimension d = 2:

run

transition, i.e. a pair 

of configurations satisfying

configuration

The most famous problem for vector addition systems is reachability, i.e. given
two configurations, decide if they can be connected by a run. Reachability is
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decidable, which was first shown by Mayr in [37], although the computational
complexity of the problem remains unknown, see [49]. The reachability
algorithm is complicated and beyond the scope of this book. It is crucial that
configurations are vectors of natural numbers; for configurations that are
integer vectors the reachability problem and related problems become much
simpler, see Exercise 37.
In this chapter, we present a simple algorithm for a different problem, called
coverability.

Theorem 5.2. The following problem, called coverability, is decidable:

• Input. A vector addition system with distinguished configurations x, y.

• Question. Is there a run from x to some configuration ↘ y?

In the above theorem, ↘ refers to the coordinate-wise ordering on vectors of
natural numbers. Not only is the algorithm for the coverability problem
conceptually simple, but it represents a technique that can be used to solve
many other problems. The technique is known as well-structured transition
systems, and well quasi-orders play a prominent role. See the exercises for more
examples, and [50] for more on the topic.
Fix an input to the coverability problem, i.e. a vector addition system with
distinguished configurations x and y. Let d be the dimension. Define a
semi-algorithm for a decision problem to be an algorithm that terminates with
success for “yes” instances, and which does not terminate for “no” instances. A
decision problem is decidable if and only if both the problem and its
complement have semi-algorithms. Clearly the coverability problem has a
semi-algorithm – enumerate all runs that begin in x and terminate with success
after finding a run that reaches a configuration ↘ y. The following lemma
completes the proof of Theorem 5.2, by giving a semi-algorithm for the
complement of the coverability problem.

Lemma 5.3. There is a semi-algorithm deciding non-coverability, i.e. an algorithm that
inputs a vector addition system with configurations x, y and terminates with success if
and only if there is no run from x to any configuration ↘ y.
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Proof. Define a separator for configurations x and y to be a set of configurations
that satisfies properties (1) - (4) depicted below

(1) does not contain x 

(2) contains y 

the separator

(4) is backward closed under transitions:
      if it contains the target of a transition,
      then it also contains the source.

(3) is upward closed 
   for the coordinate-wise
   ordering on tuples of
   natural numbers

We claim that the following conditions are equivalent:

1. there is no run from x to a configuration ↘ y;

2. there is a separator for x and y.

For the top-down implication, one takes the separator to be the set of those
configurations which can reach at least one configuration ↘ y. This set is
upward closed because the target set ↘ y is upward closed, and transitions can
be moved up, i.e. if a ↙ b is a transition, then also a + c ↙ b + c is a transition,
for every c ⇐ Nd. (The remaining conditions in the definition of a separator are
easily seen to be satisfied.) For the bottom-up implication, we observe that the
separator contains all configurations that can reach at least one configuration
↘ y, and possibly other configurations as well.
To prove the lemma, it remains to show a semi-algorithm that checks if there
exists a separator. We claim that a separator, actually any upward closed set,
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can be represented in a finite way using its minimal elements. First, every
element in the separator is above some minimal element, because the order ⇑
on Nd is well-founded. Second, every set has finitely many minimal elements,
because minimal elements form an antichain (i.e. are pairwise incomparable
with respect to ⇑) and antichains are finite according to the following claim.

Claim 5.4 (Dickson’s Lemma). Antichains in Nd are finite.

Proof. We prove a slightly stronger statement: for every sequence

x1, x2, . . . ⇐ Nd

there is an infinite (not necessarily strictly) increasing subsequence,
i.e. consecutive elements in the subsequence are related by ⇑. The stronger
statement is proved by induction on d.

• Induction base d = 1. Take the first element x of the sequence such that all
following elements are ↘ x. Such an element must exist because ⇑ on N

is a well-founded total order. Put x into the subsequence, and then repeat
the process for the tail of the sequence after x.

• Induction step. Using the induction assumption, extract a subsequence
that is increasing on the first coordinate, and from that subsequence
extract another one that is increasing on the remaining coordinates.

An alternative proof would use the infinite Ramsey theorem, see
Problem 31. ↫

By Dickson’s Lemma, every upward closed set can be represented in a finite
way as the upward closure of some finite set. The semi-algorithm from the
statement of the lemma enumerates through all finite subsets S ∝ Nd, and for
each one checks if its upward closure satisfies conditions (1)-(4) in the definition
of a separator. The only interesting condition is (4), i.e. backward closure under
transitions. Consider a potential counterexample for (4), i.e. a transition a ↙ b
such that the target is in the upward closure of S, but the source is not. If the
counterexample a ↙ b is chosen minimal coordinate-wise, then
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(*) there is some c ⇐ S such that for every coordinate i ⇐ {1, . . . , d}, either the
source has 0 on coordinate i, or the target agrees with c on coordinate i.

There are finitely many transitions which satisfy (*), namely at most 2d|S|, and
we can go through all of them to check if (4) is satisfied. ↫

Problem 28. Show that the following conditions are equivalent for every
quasi-order (a binary relation that is transitive and reflexive, but not necessarily
anti-symmetric):

1. every infinite sequence contains an infinite subsequence that is increasing
(not necessarily strictly);

2. there are no infinite strictly decreasing sequences (i.e. the quasi-order is
well-founded) and no infinite antichains (an antichain is a set of pairwise
incomparable elements);

3. every upward closed set is the upward closure of a finite set.

A quasi-order that satisfies the above conditions is called a wqo.

Problem 29. Which of the following ordered sets are wqo’s?

1. N2 with lexicographic order;

2. {a, b}⇔ with lexicographic order;

3. N with divisibility order, i.e. x smaller than y if x | y;

4. Σ⇔ with prefix order;

5. Σ⇔ with infix order;

6. line segments with an order: [a, b] smaller than [c, d] if
(b < c) ↑ (a = c → b ⇑ d);

7. graphs with subgraph order (remove some edges and some vertices);
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8. trees with subtree order (remove some nodes, but keep the descendant
ordering).

Problem 30. Show that if (X,⇑X) and (Y,⇑Y) are both wqos then also
(X ⇓ Y,⇑) is wqo, where (x, y) ⇑ (x△, y△) ⇒ x ⇑X x△ → y ⇑Y y△.

Problem 31. Prove the Infinite Ramsey Theorem: in every infinite clique, with
edges coloured on finitely many colours there is an infinite monochromatic
subgraph, i.e. subgraph such that all the edges in it are coloured by the same
colour.

Problem 32. Let (X,̸) be a wqo. Show that there is no infinite growing
sequence of upward-closed subsets X, i.e. no sequence

U1 ⊋ U2 ⊋ . . . ,

s.t. for all i ⇐ N set Ui ∝ X is upward-closed wrt. ̸.

Problem 33. Show that given a d-dimensional VAS and s ⇐ Nd, one can
compute the set of all configurations from which s is coverable. Hint: use
Problem 32.

Problem 34. Show that given a vector addition system with a distinguished
source configuration, one can decide if the set of configurations reachable from
the source is finite.

Problem 35. Prove the following version of Higman’s Lemma: if Σ is a finite
alphabet, then Σ⇔ ordered by (not necessarily connected) subword is a wqo.

Problem 36. Define a rewriting system over an alphabet Σ to be finite set of pairs
w ↙ v where w, v ⇐ Σ⇔. Define ↙⇔ to be the least binary relation on Σ⇔ which
contains ↙, is transitive, and satisfies

w ↙⇔ v implies aw ↙⇔ av and wa ↙⇔ va for every a ⇐ Σ.

There exist rewriting systems where ↙⇔ is an undecidable relation. Show that
↙⇔ is decidable if the rewriting system is lossy in the following sense: for every
letter a ⇐ Σ, the rewriting system contains a ↙ ε.
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Problem 37. Define a Z-vector addition system in the same way as a vector
addition system, except that configurations are vectors in Zd. Show that the
reachability problem is decidable, i.e. one can decide if there is a run
connecting two given configurations.

Problem 38. Define a vector addition system with states to be a finite set of states
Q, a dimension d, and a finite set δ ∝ Q ⇓ Zd ⇓ Q. A configuration is an
element of Q ⇓ Nd, and a transition is a pair

(q, x) ↙ (p, y) such that (q, y ↗ x, p) ⇐ δ.

Show that the following problem is decidable: given states p, q decide if there is
a run from the configuration (p, 0) to some configuration with state q.

Problem 39. Find a vector addition system, say of dimension d, where the
reachability relation

{(x, y) : there is a run from from x to y} ∝ N2d

is not semilinear. Hint: use states and try to simulate exponentiation.

Problem 40. Find a family of vector addition systems with states, say of
dimension d (the dimension does not need to be fixed for the family), where the
reachability set

{v : there is a run from from the origin to v} ∝ Nd

is finite, but

1. of doubly exponential size,

2. of tower size

with respect to the number of transitions.





6
Polynomial automata

In this chapter, we introduce an extension of vector space automata, in which
linear updates are extended to polynomial ones. We will show that equivalence
remains decidable, but instead of using linear algebra, we will need to use
(non-linear) algebra, namely Hilbert’s Basis Theorem. The application of the
Hilbert Basis Theorem to problems in automata theory dates back at least to the
solution of the Ehrenfeucht Conjecture by Albert and Lawrence [2]. The
presentation here is inspired by the more recent results from [53] and [6].

Polynomial automata. We begin by defining the automaton model. Fix some
field F. Instead of linear maps, we use polynomial maps, which are functions

f : Fd1 ↙ Fd2

where each of the d2 output coordinates is defined by a polynomial with d1
variables corresponding to the input coordinates. Here is an example with
d1 = 3 and d2 = 2:




x
y
z



 ∞↙
(

x2 + 3yz + 7
2x + y3


.

The definition of polynomial automata is the same as the definition of vector
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space automata in Definition 4.2, except that polynomial maps are used instead
of linear ones.

Definition 6.1 (Polynomial automaton). A polynomial automaton over a field F

consists of:

1. an input alphabet, which is a finite set Σ;

2. a set of states, which is of the form Q = Fd for some d ⇐ {0, 1, . . .};

3. an initial state q0 ⇐ Q;

4. for each letter a ⇐ Σ, a polynomial map from Q to itself, denoted by q ∞↙ qa;

5. a polynomial map from Q to F, called the output function.

The semantics of the automaton, which is a function of type Σ⇔ ↙ F, is defined
like for vector space automata. We have defined the model for fields, but the
definition makes sense also in the more general case of rings or even semirings,
since we do not use division in the definition of the model. Nevertheless, the
techniques that we will apply will not work for general rings, as was the case in
Chapter 4.
By definition, polynomial automata generalise vector space automata. The
generalisation is strict. One reason is that polynomial automata can produce
bigger numbers, as explained in the following example.

Example 19. Consider a polynomial automaton over the field of rational
numbers. The input alphabet is a, and the dimension is d = 1. The automaton
begins in state 2. Upon reading an input letter, it squares its state, via the
polynomial x2, and the final function outputs the state. Upon reading a word
with n letters, the output will be 22n , which is doubly exponential in the input
length. This function cannot be computed by a vector space automaton, since
vector space automata can only produce numbers that are singly exponential in
the input length. ↭



T H E E Q U I VA L E N C E A L G O R I T H M 69

6.1 The equivalence algorithm

This chapter is devoted to showing that equivalence is decidable for polynomial
automata, assuming that the field is the rational numbers.

Theorem 6.2. The following problem is decidable:

• Input. Two polynomial automata A,B over the field of rationals.

• Question. Do they compute the same function Σ⇔ ↙ Q?

We do not give any bounds on the complexity of the algorithm, since the proof
will use Hilbert’s Basis Theorem in a non-constructive way. Most of the proof
will work for any field, but toward the end we will need to use specific
properties of the field of rationals. In fact, the theorem also holds for any other
field, assuming that field elements can be represented in a finite way and the
field operations are computable. However, as we explain later in this chapter,
certain things become simpler if we use the rational numbers.
We begin as we did for vector space automata, by reducing the equivalence
problem A = B to the zeroness problem A = 0. This is done checking zeroness
of the difference A↗B. Once we start working with the zeroness problem, the
proof starts to bear more similarities with the coverability algorithm for vector
addition systems from Chapter 5. As in the coverability algortihm, we decide
zeroness for polynomial automata by using two semi-algorithms: (a) one which
terminates with success if and only if the automaton is nonzero; and (b) one
which terminates with success if and only if the automaton is zero. The first
semi-algorithm is easy: enumerate all input words, and stop upon finding a
word that produces a nonzero output. The interesting part is the second
semi-algorithm, which amounts to finding a finite witness for zeroness.
Similarly to the coverability algorithm, this finite witness will be a kind of
invariant, i.e. a set of states which: (1) contains the initial state; (2) is closed
under transitions; (3) contains only states on which the output function is zero;
and (4) can be represented in a finite way. In the coverability algorithm,
condition (4) was ensured by using downward closed sets. In this chapter, a
similar role will be played by algebraic varieties, as we describe next.
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Algebraic varieties. An algebraic variety is a polynomial generalisation of a
linear subspace. To see this, it is convenient to think of a linear subspace as
being defined by a system of linear equalities, e.g.

3x + 2y ↗ z = 0

2x ↗ y = 0.

In an algebraic variety, one uses systems of polynomial equalities, e.g.

x2 + yz ↗ 1 = 0

2x ↗ y3 = 0.

The formal definition is given below.

Definition 6.3 (Algebraic variety). A subset V ∝ Fd is called an algebraic variety
if there is some set of polynomials P ∝ F[x1, . . . , xd] such that a vector belongs to V if
and only if it is a root of all polynomials from P, i.e.

(x1, . . . , xd) ⇐ V ⇒ ↔p ⇐ P p(x1, . . . , xd) = 0.

The polynomials in the set P correspond to the equalities, and therefore we will
also refer to P as a system of polynomial equalities. The definition does not
stipulate that the set P is finite, but as we will see later, it can always be made
finite.

Example 20. Suppose that the dimension is d = 1, and the field is the reals.
The full set of all reals is an example of a variety, as witnessed by the empty
system of polynomial equalities. (If one insists on a nonempty system, we can
throw in the equation 0 = 0.). Also, every finite set {a1, . . . , an} of reals is a
variety, as witnessed by a single polynomial equality

(x ↗ a1) · · · (x ↗ an) = 0.

These are all the varieties, i.e. in dimension one a variety is either full or finite.
Indeed, if the system of polynomial equalities contains at least one nonzero
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polynomial, then it this polynomial will have only finitely many roots, which
will mean that the set of solutions is finite. ↭

Example 21. Let us stay with the field of reals. In dimension two, one can have
infinite varieties that are not full, e.g. the unit circle which is defined by the
polynomial equality

x2 + y2 ↗ 1 = 0.

Observe that all examples of varieties have used one equation only. This is not a
coincidence, if we use the field of reals. This is because a finite system (and all
systems can be made finite, as we will soon see) of polynomial equalities

p1 = 0, . . . , pn = 0

can be replaced by a single polynomial equality

p2
1 + · · ·+ p2

n = 0.

This trick fails in the complex numbers. ↭
The following lemma shows that systems can always be assumed to be finite.

Lemma 6.4. For every infinite system of polynomial equalities, there is a finite system
which defines the same variety.

Proof. Consider a possibly infinite set of polynomials P ∝ F[x1, . . . , xd]. Define
the ideal generated by P, denoted by 〈P∀ to be the set of polymials of the form

q1 · p1 + · · ·+ qn · pn,

where p1, . . . , pn are polynomials from P and q1, . . . , qn are arbitrary
polynomials. In other words, these are finite linear combinations of
polynomials from P that use other polynomials as coefficients. This set is an
ideal, which means that it is closed under addition inside itself and
multiplication by arbitrary polynomials. It is also easily seen to be the
inclusion-wise least ideal that contains P.
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If we replace P be its generated ideal, then the defined variety does not change.
Indeed, if a vector x ⇐ Fd is a root of all polynomials from P, then it is also a
root of all polynomials from the ideal 〈P∀. Therefore, the lemma will be a
corollary of the following result, which is known as Hilbert’s Basis Theorem:
every ideal in F[x1, . . . , xd] is finitely generated. Although Hilbert’s Basis
Theorem is a standard result in algebra, we give a self-contained proof later in
this chapter. ↫

As mentioned before, we will use algebraic varieties to define invariants which
witness zeroness of polynomial automata.

Lemma 6.5. Consider a polynomial automaton, where the state space is Q = Fd. The
automaton is zero if and only if there is an invariant, which is defined to be a variety
V ∝ Fd such that:

1. the initial state belongs to V;

2. V is closed under applying the transition functions of the automaton;

3. the output function is zero on all points from V.

Proof. Clearly if there is an invariant, then the automaton must be zero. Let us
prove the converse implication: assuming that the autmaton is zero, we will
construct an invariant. This invariant is rather straightforward: the
correspnding equalities are those which are satisfied by all reachable states.
More formally, let P ∝ F[x1, . . . , xn] be the polynomials that vanish on all
reachable states, i.e. they give zero for every reachable state in the automaton.
Define the invariant V to be the corresponding variety,

V = {x ⇐ Fd | x is a root of all polynomials in P }.

Let us argue that V satisfies the three required properties.

1. By definition, V contains all reachable states, in particular the initial state.

2. Consider a transition function a : Fd ↙ Fd of the automaton. The set P is
closed under precomposition with a. Indeed, if a polynomial vanishes on
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all reachable states, then the same will be true after precomposing it with
a, because reachable states are closed under applying a. This in turn
implies that the variety V is closed under a.

3. Since the automaton is zero, P contains the polynomial defining the
output function. Therefore, the output function is zero on all points from
V.

↫

To complete the proof of Theorem 6.2, it remains to show that we can
enumerate through candidates for an invariant, as in the above lemma, and we
can check if a candidate satisfies the three conditions from the above lemma. So
far, we have not used any assumptions on the field, and such assumptions will
only appear now. The first assumption, which is needed to write down
candidates for invariants, is that

(i) we can represent field elements in a finite way.

This assumption rules out the reals. Using this assumption, we can enumerate
through all varieties, since every variety is described by a finite system of
equations thanks to Lemma 6.4. It remains to show how to check if a given
variety satisfies the three conditions that define an invariant in Lemma 6.5. The
first condition says that the variety contains the initial state. In order to check
this condition, all we need to do is to evaluate the polynomials from the system
on the initial state, for which we need the following assumption:

(ii) the field operations are computable.

Let us now look at the second condition, which says that the invariant is closed
under transitions. This means that for every transition function a, we have the
inclusion

a(V) ∝ V.

Assume that the variety V is defined by polynomials p1, . . . , pn. The above
inclusion says that if we take a point that is a root of these polynomials, and we
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apply a to this point, then the new point must also be a root of these
polynomials:

↔x ⇐ Fd ∧

i⇐{1,...,n}
pi(x) = 0 ′

∧

i⇐{1,...,n}
pi(a(x)) = 0.

In other words, the variety defined by p1, . . . , pn is contained in the variety
defined by p1 ∃ a, . . . , pn ∃ a. Therefore, in order to check if the second condition
is satisfied, a sufficient assumption for our algorithm would be:

(iii) inclusion on varieties is decidable.

Assumption (iii) is also enough for checking the last condition in the
definintion of an invariant, which says that V is contained in the variety
defined by the output function. Summing up, if the field satisfies assumptions
(i), (ii) and (iii), then we can enumerate through candidates for invariants, and
check if they satisfy the three required conditions, and thus equivalence is
decidable for polynomial automata, as required by Theorem 6.2.
It remains to check if the rational numbers satisfy the assumptions (i), (ii) and
(iii). The first two assumptions are clearly satisfied. One can show that the third
assumption is spurious, i.e.

(i) and (ii) =′ (iii).

However, showing this implication would require more algebraic background,
namely Hilbert’s Nullstellensatz and Groebner bases, which are beyond the
scope of this book. Therefore, in the interest of a self-contained presentation,
we will take a different approach to (iii), by drawing on the decidability of the
first-order theory of the reals from Theorem 2.1. We will show that the rational
numbers can be extended to a field which satisfies conditions (i), (ii) and (iii).
This will complete the proof of the theorem. Indeed, if equivalence of
polynomial automata is decidable over this bigger field, then it is also decidable
over the smaller field of rational numbers, since polynomial automata over a
smaller field are a special case of polynomial automata over a bigger field.
Therefore, it remains to prove the following lemma.
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Lemma 6.6. There is a field which contains the rational numbers and satisfies
assumptions (i), (ii) and (iii).

Proof. We intend to use the decidability of the first-order theory of the field of
real numbers from Theorem 2.1. We cannot simply use the field of reals, since
these cannot be finitely represented, as required by assumptions (i) and (ii).
However, there is a simple work-around, which is to consider only reals that
can be represented in a finite way in first-order logic. More formally, a real
number is called definable if there is a formula of first-order logic ϕ(x) over the
reals which is true for this number and no other numbers. For example,

¬
2 is

defined by the formula

x2 = 2 → x > 0,

and hence
¬

2 is a definable real. It is easy to see that the definable reals are a
field – i.e. they are closed under addition, multiplication and inverses. (One can
also show without much difficulty that the definable reals are the same as the
algebraic numbers which are real, i.e. have no complex part. This, however, is
not needed here.) By definition, a definable real has a finite representation,
namely the formula that defines it. There might be several different
representations, but using decidability of the theory of the reals, we can check if
two representations define the same number. Summing up, the definable reals
satisfy assumptions (i) and (ii).
It remains to show that the definable reals also satisfy assumption (iii). As
explained before, inclusion on varieties can be phrased as a formula of the form

↔x ⇐ Fd ∧

p⇐P
p(x) = 0 ′

∧

q⇐Q
q(x) = 0,

for some finite sets of polynomials P and Q. This is a first-order formula, and
therefore we can appeal to Theorem 2.1 to decide if this formula is true. There
is, however a subtle point: the quantification over x in our intended application
refers to definable reals, while Theorem 2.1 decides formulas where
quantification ranges over reals which are not necessarily definable. The
following claim shows that this is not a problem, since the change of
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quantification does not affect the truth value, i.e. the same sentences are true in
the reals as in the definable reals.

Claim 6.7. The definable reals have the same first-order theory as the reals.

Proof. The main observation is that if a formula ϕ(x) of first-order logic over
the reals is true for some real number x, then it is also true for some x that is a
definable real. Indeed, by the quantifier elimination result in Theorem 2.1, the
set of reals x which make the formula ϕ(x) true is a finite union of intervals. If
one of these intervals is an isolated point, then this point is definable (as one of
the finitely many isolated points which make the formula true). Otherwise, one
(in fact, every one) of these intervals contains a rational number, and rational
numbers are definable.
Using the observation from the previous paragraph, we show that the truth
value of a formula does not change if it is interpreted over the reals or over the
definable reals. To prove the statement by induction, we extend it to formulas
with free variables. We show that for every first-order formula ϕ(x1, . . . , xn)

and definable reals a1, . . . , an, we have

R |= ϕ(a1, . . . , an) ⇒ Rdef︸︷︷︸
definable reals

|= ϕ(a1, . . . , an).

The only interesting case in the induction is the case of a quantifier, where we
use the observation from the previous paragraph. ↫

The above lemma completes the proof of Theorem 6.2. For the sake of clarity,
we recapitulate the proof. First, we reduce the equivalence problem to zeroness,
by subtracting the two automata. Next, we think of the polynomial automaton
as being over the field of definable reals, which does not change the answer to
the zeroness problem, since the outputs produced do not change. To solve the
zeroness problem, we search for either: (a) an input word that witnesses
non-zeroness; or (b) an invariant that witnesses zeroness. Each of these is a
finite object, and therefore a witness of one of the two kinds must exist. For
witnesses of the second kind, we use decidability of the first-order theory of the
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reals to check if a variety is an invariant. This completes the proof of
Theorem 6.2. ↫

6.2 A proof of Hilbert’s Basis Theorem

We finish this chapter with a self-contained proof of Hilbert’s Basis Theorem,
which was used in the proof of Lemma 6.4.

Theorem 6.8 (Hilbert’s Basis Theorem). Let F be a field. Every ideal in
F[x1, . . . , xd] is finitely generated.

Proof. Recall that a monomial is a product of variables with exponents,
e.g. x3

1x2
2x5

3 is a monomial in three variables. We consider two orders on
monomials.

1. The first one is the divisibility order, in which a monomial is increased by
multiplying it by another monomial, i.e. increasing the exponents. If we
think of monomials as being vectors in Nd, then the divisibility order is
the same as the coordinate-wise order that was used in Chapter 5.

2. The second order is called the monomial order. In this order, we first order
monomials by the total degree, i.e. the sum of all exponents, then we
order them by the exponent next to x1, then by the exponent next to x2,
and so on. Here is an example:

x3
1x2

2x5
3 > x2

1x1
2x7

3 > x5
1x1

2x1
3.

This divisibility order is not total, since there can be incomparable monomials.
The monomial order is total, and it refines the divisibility order, i.e. it has more
comparable pairs. For a polynomial, define its leading monomial to be the
biggest monomial with respect to the monomial ordering. Here is an example:

3 x3
1x2

2x5
3︸ ︷︷ ︸

leading monomial

+7x2
1x1

2x7
3 ↗ 2x5

1x1
2x1

3
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Using the above orders, we prove the theorem. Let I be an ideal. Define a
sequence of polynomials

p1, p2, . . . ⇐ I

as follows. Suppose that p1, . . . , pn have already been defined. If these
polynomials generate the ideal I, then we stop, since we have shown that I is
finitely generated. Otherwise, take some polynomial pn+1 ⇐ I that is not in the
ideal generated by p1, . . . , pn, and choose it so that its leading monomial is the
least possible in the monomial ordering. We will show that the sequence
defined this way stops at some point, and so the ideal is finitely generated.
Toward a contradiction, suppose that the sequence is infinite. Since the
divisibility order is a well quasi-ordering, there must be some i < j such that
the leading monomial of pi is less than or equal to the leading monomial of pj
in the divisibility order. This means that there is some monomial m such that

m · (leading monomial of pi) = leading monomial of pj.

Since multiplying by m preserves the monomial ordering, it follows that

(leading monomial of m · pi) = leading monomial of pj.

This means that leading monomial of pj ↗ m · pi is strictly smaller than the
leading monomial of pj, and thus pj ↗ m · pi should have been used instead of
pj. ↫

Problem 41. Which of the following structures are rings:

1. (N,+, ·, 0);

2. (Z,+, ·, 0);

3. (R,+, ·, 0);

4. ({0},+,+, 0);

5. (Z[x1, . . . , xn],+, ·, 0);
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6. (Q[x1, . . . , xn],+, ·, 0);

7. (Z, max,+, 0);

8. (N, max,+, 0);

9. (Sn, ·, ·, id);

10. (Zn,+, ·, 0) for n ⇐ N.

Problem 42. Let (R,+, ·, 0) be a ring. A subset I ∝ R is called an ideal if the
following two conditions hold: 1) for all i, j ⇐ I it holds i + j ⇐ I, 2) for all
i ⇐ I, r ⇐ R it holds i · r, r · i ⇐ I. Find all ideals in the following rings:

1. (Z,+, ·, 0);

2. (Q,+, ·, 0).

Generalize the second case to any field.

Problem 43. A ring congruence is an equivalence relation ≃ such that x1 ≃ y1,
x2 ≃ y2 implies x1 ⇔ x2 ≃ y1 ⇔ y2 for ⇔ ⇐ {+, ·}. For an ideal I ∝ R and r1, r2 ⇐ R
we say that r1 ≃I r2 if r1 ↗ r2 ⇐ I. In case of the ring of integers all the ≃I are
actually ≃n, so in particular ring congruences. Show that for every ideal I, the
relation ≃I is a ring congruence.

Problem 44. Show that every ideal in Q[x] is generated by one element.

Problem 45. Is every ideal in the following rings generated by one element:

1. Z[x]?

2. Q[x, y]?

Problem 46. Is there a constant c ⇐ N such that every ideal in Z[x] is generated
by at most c elements?

Problem 47. Show that for every ring R the following conditions are equivalent:
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1. every ideal in R is finitely generated;

2. every growing sequence of ideals I1 ⊋ I2 ⊋ . . . is finite.

Problem 48. Prove the Hilbert’s Basis Theorem in the following formulation: if
R is a ring where every ideal in R is finitely generated, then also every ideal in
R[x] is finitely generated.

Problem 49. Show that for every set A ∝ F the set pol(A) is an ideal.

Problem 50. Consider the closure operation from P(Q) to P(Q) defined for
A ∝ Q as A = zero(pol(A)). Show that the following conditions are true for
every A, B ∝ Q:

• A ∝ A;

• if A ∝ B then A ∝ B;

• A = A.

Problem 51. Consider the field of rational numbers Q. Show that for every
finite set of variables X and every ideal I ∝ Q[X], there is an ideal J ∝ Q[x]
generated by a single polynomial such that zero(I) = zero(J).

Problem 52. Assume that a closed set A ∝ Fn is represented by a finite basis
for the ideal pol(A). Show that closed sets are effectively closed under products
and inverse images of polynomials, i.e. if A, B are closed and p is a polynomial,
then the sets A ⇓ B and p↗1(A) are closed, and their representations can be
computed.

Problem 53. Show that the following problem is decidable: given a polynomial
grammar and a finite set X ∝ Q, decide if the language generated by the
grammar is equal to X.



7
Orbit-finite automata

In this chapter, we study regular languages over infinite alphabets.

The simplest possible idea for a regular language over an infinite alphabet is
that it is recognised by a finite automaton with finitely many states. This is not
an interesting idea, since this kind of model cannot have non-trivial access to
the infinity of the alphabet. More formally, we consider two input letters a and
b equivalent if

q a↙ p is a transition ⇒ q b↙ p is a transition

holds for all states p and q. There are finitely many possible equivalence classes
of letters, and equivalent letters are indistinguishable by the automaton.
Therefore, up to all intents and purposes, the input alphabet is also finite.

In this chapter, we study a more interesting notion of regularity for infinite
alphabets. It is based on the idea that the automata have access to equality on
the alphabet, but nothing else1. We fix for the rest of this chapter some infinite
alphabet, which we denote by A. We think of the letters in the alphabet as

1This idea dates back to the work of Kaminski and Francez [35], and has been developed in many
subsequent papers, see e.g. the lecture notes [11].
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being names2, such as

A = {John, Eve, Tom, . . .}.

Examples of languages that we care about include

{w ⇐ A⇔ | the first letter is equal to the last letter }. (7.1)

{w ⇐ A⇔ | some letter appears at least twice }. (7.2)

To recognise such languages, we use automata that have some kind of finite
memory, and which can store letters from A. For example, the language (7.1) is
recognised by an automaton which loads the first letter into its state, and then
toggles acceptance depending on comparison of the state with the current input
letter. The language (7.2) is recognised by an automaton which
nondeterministically guesses a position, stores its letter, and then waits for this
letter to appear again. These automata will be described in more detail in
Examples 22 and 23.

Equivariance. Before giving a definition of the automata involved, we begin
by a formal definition of what it means for a language to “depend only on
equality”. The general idea is that if a language contains a word such as the
following three-letter word

John · Eve · John,

then it must also contain any other word which has the same equality patterns,
such as the following one:

Tom · John · Tom.

This idea is formalised by applying permutations of the alphabet, since
choosing different names amounts to applying a permutation on the alphabet.

2Although we use names of people as examples, a more relevant application for computer science
is variable names in programs. Based on this analogy, the sets discussed in this chapter are called
nominal sets in the literature on semantics of programming languages [44].
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Definition 7.1 (Equivariant language). A language L ∝ A⇔ is called equivariant if

w ⇐ L ⇒ π(w) ⇐ L

holds for every permutation π of the alphabet A.

The goal of this chapter is to define certain automata models that recognise
equivariant languages. Let us now describe in more detail two automata for the
languages that were mentioned before.

Example 22. Consider the language from (7.1), i.e. the set of words where the
first letter is equal to the last letter. We describe a deterministic automaton that
recognises this language. The state space of this automaton will be

A + A︸ ︷︷ ︸
two disjoint copies

+ {ε}︸︷︷︸
initial
state

.

In the above, and also elsewhere in this chapter, we use + to represent disjoint
union. Elements of the first disjoint copy of A will be denoted by 1(a) with
a ⇐ A, while elements of the second disjoint copy will be denoted by 2(a). The
transitions of the automaton are as follows. When reading a letter a ⇐ A in the
initial state ε, the automaton stores this letter in its state, using the first copy, as
explained in the following set of transitions:

ε
a↙ 1(a) for every a ⇐ A.

From now on, this atom will be kept in the state forever. However, the
automaton will toggle between 1(a) and 2(a), depending on whether the
current input letter is equal to the stored atom or not:

i(a) b↙





1(a) if a = b

2(a) if a ↖= b
for every i ⇐ {1, 2} and a, b ⇐ A.

Therefore, the accepting states are all states of the form 1(a), for a ⇐ A. ↭

Example 23. Let us now consider the language from (7.2), i.e. the set of words
where some letter appears at least twice. We describe a nondeterministic
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automaton that recognises this language. The state space of this automaton will
be

A︸︷︷︸
candidate

for repetition

+ {ε,∅}︸ ︷︷ ︸
initial and final

states

.

When the automaton is in the initial state, it can choose to ignore the input
letter, which means that it expects the repeated letter to appear later. This is
represented by transitions of the form

ε
a↙ ε for every a ⇐ A.

Eventually, the automaton guesses nondeterministically that the current input
letter a is the one that will appear twice, and stores it in its state:

ε
a↙ a for every a ⇐ A.

Once this choice has been made, the behaviour of the automaton is
deterministic:

a b↙





∅ if a = b

a if a ↖= b
for every a, b ⇐ A.

The only accepting state is ∅. ↭

7.1 Orbit-finite sets

The automata in Examples 22 and 23 use their state space to store some finite
information (e.g. one of the two copies in Example 22) and a constant number
of letters (in the above examples, the state stores at most one letter, but two or
more letters could also be stored). This idea could be formalised using an
automaton model that has a state of the form (element of a finite set, tuple of
letters from A); this is the approach used in [35]. In this chapter, we choose a
slightly more abstract approach, following [11]. Instead of defining a new
notion of automaton, we define a new notion of “finite set”, and then the
automata are defined to be those that use this new notion.
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Definition 7.2 (Orbit-finite sets). An orbit-finite set3 is any set of the form

Ad1 + · · ·+ Adn ,

for some natural numbers d1, . . . , dn ⇐ {0, 1, . . .}.

For example, the state space in Example 22 can be seen as an orbit-finite set of
the form

A1 + A1 + A0,

since the set {ε} can be seen as a singleton set, just like A0.
Let us explain the name “orbit-finite”. The name is chosen because, from a
mathematical point of view, an orbit-finite set is equipped with an action of the
group of atom permutations, and it will have finitely many orbits under this
action. Let us explain this in more detail, and using elementary terminology.
For an orbit-finite set as in Definition 7.2, an element can be written as

i(a1, . . . , adi ),

where i ⇐ {1, . . . , n} identifies the summand Adi , and a1, . . . , adi are the atoms
used in the corresponding tuple of atoms. To such an element we can apply a
permutation of the atoms: the summand i will remain unchanged, but the
atoms will be changed according to the permutation. We say that two elements
of an orbit-finite set are in the same orbit if one can be obtained from the other
by applying a permutation of the atoms. Being in the same orbit is an
equivalence relation, and therefore each orbit-finite set is partitioned into orbits.
As we will see in a moment, this partition has finitely many parts. First, let us
look at some examples of orbits.

Example 24. Let us have a look at some examples of orbits. Consider first an
orbit-finite set without any atoms, which is achieved by using the copies of A0,
as in the following example:

A0 + A0 + A0.

3The notion of orbit-finiteness used in [11] is slightly stronger than the one used here. However,
the weaker notion used here (which is called polynomial orbit-finite sets in [11]) is simpler while
retaining many interesting applications, so we stick to it in this chapter.



86 O R B I T- F I N I T E A U T O M ATA

This set contains three elements 1(), 2(), 3(), and each of these elements is in its
own orbit, since there are no atoms to permute, and summands are not
changed when applying atom permutations. Therefore, this set has three orbits,
each one with a single element. This way, we can view finite sets as a special
case of orbit-finite sets. ↭

Example 25. Let us now consider the orbits in a set of the form Ad with d > 0.

1. In the set A1, all elements are in the same orbit, since any letter can be
mapped to any other letter by an appropriate permutation of the atoms.

2. In the set A2, there are two orbits, which are represented by

(John, John)︸ ︷︷ ︸
equal pairs

(John, Eve)︸ ︷︷ ︸
non-equal pairs

.

3. In the set A3, there are five orbits, which are represented by

(John, John, John)︸ ︷︷ ︸
all equal

(John, Eve, Mary)
︸ ︷︷ ︸

all different

(John, John, Eve) (John, Eve, John) (Eve, John, John).︸ ︷︷ ︸
two equal one different

↭

Lemma 7.3. An orbit-finite set has only finitely many orbits.

Proof. In a general orbit-finite set

Ad1 + · · ·+ Adn ,

the number of orbits is the sum of the number of orbits in each summand Adi ,
because applying an atom permutation does not change the summand.
Therefore, it remains to show that each summand has finitely many orbits. As
explained in Example 25, the number of orbits in Ad is equal to the number of
possible equality patterns on d elements, which is given by the d-th Bell
number. In particular, this number is finite. ↫
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Equivariance. We will use orbit-finite sets instead of finite sets when defining
automata. In order to make the definition meaningful, the way that these sets
are manipulated by the automata must also be compatible with the idea that
only equality is relevant. This is captured by the following definition.

Definition 7.4. A subset Y of an orbit-finite set X is called equivariant if

x ⇐ Y ⇒ π(x) ⇐ Y for every x ⇐ X and atom permutation π.

An equivariant set is the same as some union of orbits, since if it contains one
element of an orbit, then it must contain all elements of this orbit. It follows
that an orbit-finite set can have only finitely many equivariant subsets. For
example, the set A3 has 32 = 25 equivariant subsets, since it has five orbits, and
each of these orbits can either be included in the subset, or not.
We can generalise the notion of equivariance to relations

(x1, . . . , xn) ⇐ R ⇒ (π(x1), . . . , π(xn)) ⇐ R.

In fact, this is essentially a special case of the original notion, since a relation
can be seen as a subset of the product X1 ⇓ · · ·⇓ Xn, and orbit-finite sets are
closed under finite products. We can also generalise equivariance to functions

f (x) = y ⇒ f (π(x)) = π(y).

This again is not a new notion, since a function can be seen as a special kind of
relation, in which every input has a unique output.

Example 26. There is only one equivariant function of type A ↙ A, which is
the identity function. Indeed, consider some function that is not the identity,
i.e. there exist a ↖= b such that f (a) = b. By equivariance, the output b could be
replaced by any other atom that is not equal to a, which would contradict
functionality. Using the same kind of argument, one can show that if f : X ↙ Y
is an equivariant function between two orbit-finite sets, then every atom which
appears in the output f (x) must also appear in the input x. ↭
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7.2 Orbit-finite automata

As mentioned in the previous section, our automata will use orbit-finite sets
instead of finite ones, with all structure being equivariant, as in the following
definition.

Definition 7.5 (Orbit-finite automata). A nondeterministic orbit-finite
automaton is defined in the same way as a nondeterministic finite automaton, except
that all sets are orbit-finite, and all subsets and functions are equivariant:

orbit-finite︷ ︸︸ ︷
Q︸︷︷︸

states

Σ︸︷︷︸
input

alphabet

equivariant︷ ︸︸ ︷
I ∝ Q︸ ︷︷ ︸
initial
states

F ∝ Q︸ ︷︷ ︸
final
states

∆ ∝ Q ⇓ Σ ⇓ Q︸ ︷︷ ︸
transitions

.

A deterministic orbit-finite automaton is the special case which has exactly one
initial state, and where the transition relation is a function.

The automata in Examples 22 and 23 were examples of deterministic and
nondeterministic orbit-finite automata, respectively. As one can imagine, this
approach can be applied to other notions, e.g. one can have orbit-finite graphs,
orbit-finite Turing machines, orbit-finite systems of equations, etc. Such ideas
are discussed at length in [11].
As we have mentioned before, orbit-finite sets generalise finite sets. A set with
n letters can be seen as the orbit-finite set

A0 + · · ·+ A0
︸ ︷︷ ︸

n times

.

Since sets of this form do not contain any atoms, the equivariance condition is
trivial, and any relation or function between such sets is equivariant. Therefore,
orbit-finite automata that use such input alphabets and state spaces are
equivalent to ordinary finite automata.
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7.3 Determinisation

In some ways, orbit-finite automata are similar to ordinary finite automata.
Some constructions transfer without difficulty to the orbit-finite setting, such as
the product construction A⇓B which is used to show that languages
recognised by automata are closed under intersections and unions. This is
because the product of two orbit-finite sets is again orbit-finite.
However, some constructions do not transfer. An important example is
complementation for nondeterministic automata. This is usually proved by
determinisation, which itself is proved using a powerset construction. The
powerset construction fails for orbit-finite automata, and in fact no construction
works, as stated in the following theorem.

Theorem 7.6.

1. Languages recognised by nondeterministic orbit-finite automata are not closed
under complementation.

2. Deterministic orbit-finite automata are strictly less expressive than
nondeterministic orbit-finite automata.

Proof. The first item implies the second one, since deterministic orbit-finite
automata are closed under complementation. It remains to prove the first item.
The witnessing language is

{w ⇐ A⇔ | some letter appears twice }.

As we have seen in Example 23, this language is recognised by a
nondeterministic orbit-finite automaton. Let us show that its complement is not.
Suppose toward a contradiction that there is a nondeterministic orbit-finite
automaton A that recognises the complement language, i.e. the words where
each letter appears at most once. Let d ⇐ {0, 1, . . .} be the maximal number of
atoms that can be stored in a state of this automaton. Consider an input word
with 2d + 2 pairwise different letters, and let w1 and w2 be its first and second
halves, respectively. The automaton A must accept w1w2. In the witnessing run,
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consider the first and last states, as well as the state that is used between the
two halves:

p w1↙ q w2↙ r.

The middle state q can store at most d atoms, and therefore we can find atoms
a1, a2 ⇐ A such that (1) a1 appears in w1 but not in q, and (2) a2 appears in w2

but not in q. Let π be an atom permutation that swaps a1 with a2. Since neither
a1 nor a2 appear in the middle state, this permutation does not affect q. Since
the automaton is invariant under atom permutations, we can apply the
permutation π to the second part of the run, but not the first one, and we will
still get a valid run, because the middle state is the same:

p w1↙ q = π(q)
π(w2)↙ π(r).

Therefore, the automaton also has an accepting run on the input word
w1π(w2). This input contains a repetition, since a1 appears both in w1 and in
π(w2). The desired contradiction follows. ↫

7.4 Emptiness

In this section, we show that the emptiness problem is decidable for orbit-finite
automata. This theorem is meant to illustrate the idea that orbit-finite sets can
be manipulated algorithmically, despite being infinite.

Theorem 7.7. The emptiness problem for orbit-finite automata is decidable.

Proof. To make the problem well-defined, we have to explain how an
orbit-finite automaton is represented as input, which requires a representation
of orbit-finite sets and their equivariant subsets.

Representation of orbit-finite sets and equivariant subsets. For orbit-finite
sets, Definition 7.2 already comes with a representation: we need to give a list
of powers [d1, . . . , dn]. For equivariant subsets, there are several possibilities,
but in this chapter we use a finite list of example elements, with one example
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for each orbit. More formally, for an orbit-finite set X and a finite subset Y ∝ X,
define

〈Y∀ = {π(y) | y ⇐ Y and π is an atom permutation }.

In other words, this is the least equivariant subset of X that contains Y. Every
equivariant subset of an orbit-finite set is generated by a finite subset in this
way, and thus we can use expressions of the form 〈Y∀ as representations of
equivariant subsets. (This assumes that one can write down individual
elements of orbit-finite sets, which in turn assumes that we can write down
atoms. This is indeed the case, since we can think of atoms as being natural
numbers, or strings over some finite alphabet.) As we have already mentioned,
relations and functions can be represented as special kinds of subsets, so these
can also be represented. For example, the function of type A2 ↙ A that
projects onto the first coordinate is represented as

〈 (Eve, John) ∞↙ Eve, (Eve, Eve) ∞↙ Eve ∀.

Basic operations on equivariant subsets. Using this representation, we can
easily implement a membership test

x ⇐ 〈Y∀,

since this amounts to checking if x is equivalent, up to atom permutations, to
one of the finitely many elements in Y. Using the membership test, we can
implement an inclusion test

〈Z∀ ∝ 〈Y∀,

since this amounts to checking membership for each of the finitely many
representatives in Z. Using inclusions, we can also implement equality on
subsets, since this is the same as mutual inclusion.

Emptiness algorithm. Having explained the representation and the basic
operations on it, we can now explain the algorithm for emptiness. The idea is
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similar to the standard algorithm for emptiness of ordinary finite automata,
which computes the set of reachable states. Let us write Qn for the set of states
that can be reached by reading some input word of length at most n. Observe
that this set is equivariant: if we take a run that witnesses membership q ⇐ Qn,
then applying an atom permutation π to this entire run will also witness
membership π(q) ⇐ Qn. Therefore, each set Qn can be represented using the
representation of equivariant subsets that we have explained above. The
algorithm computes these sets as described in the following procedure.

• Initial step. The set Q0 is the set of initial states, which is given in the
representation of the automaton.

• Inductive step. Suppose that we have computed Qn. We compute Qn+1
as follows. First, we add all states from Qn to Qn+1. Next, we look at the
representatives of the transitions, which are given in the representation of
the automaton. For each such transition

p a↙ q,

we check if the source state p is in Qn, using the membership test (this
amounts to checking if p is in the same orbit as one of the finitely many
representatives that we have stored for Qn). If this is the case, then we
add the target state q to Qn+1. It is not hard to see that this will give us a
list of representatives for all states in Qn+1, since every transition will be
considered up to atom permutations.

• Stopping condition. The chain is guaranteed to eventually stabilise with
Qn+1 = Qn. This is because the set of states has finitely many orbits, and
therefore there are only finitely many possible equivariant subsets.

Once the chain stabilises, we check if Qn contains some final state. Since the set
of accepting states is equivariant, this boils down to checking if one of the
finitely many representatives of Qn belongs to the final set, which can be done
using the membership test. The result of this test gives the answer to the
emptiness problem. ↫
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The above procedure even runs in polynomial time, assuming the
representation used in the proof. This is because the running time is bounded
by the number of orbits in the state space and the transition relation, and these
numbers are polynomial in the size of the representation. However, the
complexity of the algorithm depends on the choice of representations, and the
one that we have used is particularly verbose (which makes the running time
look quick). For more succinct representations the complexity can go up,
e.g. the problem is PSPACE-complete for a representation using registers [35].
Not all problems for orbit-finite automata are decidable. For example,
universality is undecidable [11, Section 2.2].





8
Star-free languages

In this chapter, we describe an alternative approach to regular languages, which
uses monoids instead of automata. This approach will be illustrated by a
characterisation of the languages that can be recognised by monoid which do
not contain groups.
Let us begin with the definition of a monoid. This is like a group, except that
we do not require inverses.

Definition 8.1 (Monoid). A monoid is a set M equipped with a binary multiplication
operation, which we denote multiplicatively by m · n, subject to:

• associativity: (m · n) · k = m · (n · k) for all m, n, k ⇐ M; and

• identity element: there is some 1 ⇐ M such that 1 · m = m · 1 = m for all
m ⇐ M.

We often abuse notation, and use the same letter M to denote both the monoid
and its underlying set. For example, we will write m ⇐ M for a monoid to mean
that m is an element of the underlying set of the monoid.

Example 27. [Example monoids]

1. For every alphabet Σ, the set of all words Σ⇔ is a monoid under
concatenation, with the empty word as the neutral element. This monoid
is called the free monoid over alphabet Σ.
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2. For every set Q, the set of functions f : Q ↙ Q is a monoid. The monoid
operation is function composition, and the identity element is the identity
function.

3. For every set Q, the set of binary relations R ∝ Q ⇓ Q is a monoid. The
monoid operation is relation composition

R ∃ S = {(p, q) | (p, t) ⇐ R and (t, q) ⇐ S for some t ⇐ Q }.

The neutral element is the identity relation, which happens to be a
function.

Observe that the monoid from item 2 is contained in the monoid from item 3.
↭
When describing a monoid, it is not necessary to describe the identity element.
This is because if the identity element exists, then it is unique. Indeed, by
multiplying two candidates for the identity element, we would get the “real”
identity. Therefore, from now on we will no longer mention the identity
element when describing monoids.
The appropriate notion of function between monoids is that of a monoid
homomorphism, as defined below.

Definition 8.2 (Homomorphism). A monoid homomorphism h : M ↙ N between
two monoids is a function between their underlying sets which preserves the monoid
operation

h(m · n) = h(m) · h(n)

and which maps the monoid identity in M to the monoid identity in N.

Example 28. [Parity] Consider the monoid Z2 where the underlying set is
{0, 1}, and the monoid operation is addition modulo two. An example of a
monoid homomorphism is the function

h : Σ⇔ ↙ Z2
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which tells us the parity of occurrences of some chosen letter a ⇐ Σ. ↭

Example 29. [Free monoid homomorphisms] Consider an alphabet Σ and a
monoid homomorphism

h : Σ⇔ ↙ M.

This monoid homomorphism is uniquely defined by its values on the letters,
since the letters generate the input monoid. Furthermore, there are no
constraints on the values of the letters, i.e. any function of type Σ ↙ M will
extend to a monoid homomorphism. This is the reason why the monoid Σ⇔ is
called the free monoid. ↭

Example 30. [Monoid for a dfa] Consider a deterministic finite automaton
with input alphabet Σ and states Q. Define a function

h : Σ⇔ ↙ (Q ↙ Q),

which maps a word w to its corresponding state transformation, i.e. the
function that maps each state q to the state reached from q after reading w. This
function is easily seen to be a monoid homomorphism, if we view the inputs as
the free monoid, and the outputs as the monoid of functions from Q to Q (see
Example 27). ↭
As far as this chapter is concerned, the purpose of monoids is to recognise
languages, similarly to automata.

Definition 8.3 (Recognising by a monoid). We say that a language L ∝ Σ⇔ is
recognised by a monoid M if there is a monoid homomorphism

h : Σ⇔ ↙ M

such that membership w ⇐ L depends only on the value h(w) ⇐ M. In other words,
there is some accepting subset F ∝ M such that

w ⇐ L ⇒ h(w) ⇐ F for all w ⇐ Σ⇔.
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Example 31. [Recognising b⇔] Take the finite monoid M where the underlying
set is {0, 1}, the monoid operation is minimum, and the identity element is 1.
Consider the monoid homomorphism

h : {a, b}⇔ ↙ M,

which maps a to 0 and b to 1. If we take the accepting set to be {1}, then the
recognised language is b⇔. ↭
The following theorem shows that finite monoids can be used instead of finite
automata to define regular languages.

Theorem 8.4. A language is regular if and only if it is recognised by a finite monoid.

Proof. In Example 30, we have shown how a deterministic finite automaton
yields a homomorphism into a finite monoid, thus proving implication ′ in the
theorem. For the converse implication ℜ, if we take a monoid homomorphism

h : Σ⇔ ↙ M,

then we can construct a deterministic finite automaton whose states are the
elements of M, the initial state is the monoid identity, the transition function is
defined by (m, a) ∞↙ m · h(a). ↫

8.1 Green’s relations

One of the advantages of using monoids instead of automata is that monoids
have a better structure theory than automata. This structure is based on Green’s
relations, which generalise the natural notions of prefix, suffix, and infix to
monoids, as described in the following definition.

Definition 8.5 (Green’s relations). Consider two elements m, n in a monoid M.

• We say that m is a prefix of n if mx = n for some x ⇐ M.

• We say that m is a suffix of n if ym = n for some y ⇐ M.

• We say that m is an infix of n if xmy = n for some x, y ⇐ M.
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All three relations defined above define pre-orders, i.e. they are reflexive and
transitive, which is easy to see. In a free monoid Σ⇔, these relations are
anti-symmetric, i.e. one cannot have non-trivial comparisons in both directions.
However, in general monoids these relations need not be anti-symmetric. For
example, in a group, all elements are prefixes of each other, and likewise for
infixes and suffixes
A prefix is a special case of an infix. Therefore, every prefix class is contained in
some infix class. One could imagine that it is possible to grow in the prefix
ordering while staying in the same infix class. As the following lemma shows,
this is not possible in a finite monoid, and therefore all prefix classes contained
in the same infix class must be incomparable in the prefix ordering.

Lemma 8.6. Consider a finite monoid M, and let m, n ⇐ M be such that m and n are
infix equivalent, and m is a prefix of n. Then m and n are prefix equivalent.

Proof. By the assumption that m is a prefix of n, one can obtain n from m by
multiplying to the right by some x ⇐ M. By the assumption that n is an infix of
m, one can obtain m from n by multiplying to the right by some y ⇐ M and
multiplying to the left by some z ⇐ M. By iterating this process in a loop, we
see that

zim(xy)i = m and zim(xy)ix = n for all i ⇐ {0, 1, . . .}.

Since the monoid is finite, there must be some i < j such that (xy)i = (xy)j.
Therefore,

n = zim(xy)ix is a prefix of zjm(xy)i = zjm(xy)j = m.

This proves that n is a prefix of m, and therefore they are prefix equivalent. ↫

There are other results about Green’s relations, which identify a very
well-behaved structure inside each infix class. A description of some of this
structure can be found in [10, Section 1]. For the purposes of this chapter, the
above lemma will be sufficient.
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8.2 Star-free languages and aperiodic monoids

To illustrate the power of monoids, we will use them to describe star-free
languages. These are defined by using regular expressions which cannot use
the Kleene star operation, but which are allowed to use complementation.

Definition 8.7 (Star-free language). A language L ∝ Σ⇔ is called star-free if it can
be generated from finite languages (i.e. languages containing finitely many words)
using concatenation L · K, as well as the Boolean operations of union, intersection, and
complement.

Example 32. The full language Σ⇔ is star-free, since it is the complement of the
empty language, which is finite. Also, if we take some letter a ⇐ Σ, then the
language a⇔ is star-free, since it can be obtained as the complement of the
language

Σ⇔ · (Σ ↗ {a}) · Σ⇔.

↭

Example 33. As we will see later in this chapter, the language (aa)⇔ is not
star-free. The intuitive reason is that this language requires counting modulo
two, which goes beyond the capabilities of star-free expressions. ↭
The main result of this chapter is the following theorem, which characterises
star-free languages in terms of a monoid property called aperiodicity.

Theorem 8.8. A language L ∝ Σ⇔ is star-free if and only if it is recognised by a finite
monoid M which has the following aperiodicity property:

↓ω ⇐ {1, 2, . . .} ↔m ⇐ M mω = mω+1.

Before proving the theorem, let us discuss some of its consequences.
The first consequence is an alternative description of aperiodicity, which is
expressed in terms of groups. We say that a monoid M contains a group G if the
group is a subset of the monoid and the group operation is inherited from the
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monoid operation. Importantly, the group identity does not need to be
inherited from the monoid operation. For example, if we take a group G, and
we adjoin a new neutral element to it (different from the group identity in G),
then the new monoid will contain G.

Fact 8.9. A finite monoid is aperiodic if and only if it does not contain any non-trivial
group (i.e. a group with more than one element).

Proof. For the implication ′, take some hypothetical group G contained in the
monoid M. We know that

gω = gω+1,

which by using group cancellation implies that g is the identity of the group.
Therefore, the group is trivial. Consider now the opposite implication ℜ. Take
some monoid element m ⇐ M, and consider its powers

m1, m2, m3, . . . .

Since the monoid is finite, these powers start to cyclically repeat, which means
that some tail of the sequence of powers defines a cyclic group. This group
must be trivial, and therefore the powers stabilise. Therefore, for every m there
is some ωm such that

mω = mωm+1.

By taking ω to be the maximum of all ωm, we obtain the aperiodicity. ↫

Thanks to the above fact, an alternative statement of Theorem 8.8 is that a
language is star-free if and only if it is recognised by a finite monoid that does
not contain any non-trivial group. This is particularly pleasing, since it relates a
language property (star-freeness) to a purely algebraic property (absence of
non-trivial groups). Things get even better, since star-freeness is also equivalent
to other conditions, such as definability in first-order logic or the temporal logic
LTL, as explained in [10, Chapter 2.2], but we do not discuss these other
characterisations here.
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Let us state another consequence of Theorem 8.8, which is that star-freeness is a
decidable property of regular languages. On its own, Theorem 8.8 does not give
such a decision procedure, since it might seem that we need to check all
possible recognising monoids for a given language, and some of these monoids
might not be aperiodic. However, as the following corollary shows, it is
sufficient to check one monoid only, which leads to decidability.

Corollary 8.10. Given a regular language, one can decide if it is star-free.

Proof of Corollary 8.10. Suppose that we are given a regular language, given by a
monoid homomorphism

h : Σ⇔ ↙ M

and an accepting set F ∝ M. Let us begin by minimising this homomorphism.
Define an equivalence relation ℑ on the monoid M by identifying two monoid
elements m, m△ ⇐ M if

xmy ⇐ F ⇒ xm△y ⇐ F for all x, y ⇐ M.

This equivalence relation can be computed. If this is a non-trivial equivalence
relation, then we can reduce the size of the monoid, by fusing equivalent
monoid elements, as in the Myhill-Nerode Theorem. Therefore, we can assume
that the monoid M is minimal, i.e. no two distinct monoid elements are
equivalent under ℑ. Also, as in the proof of the Myhill-Nerode Theorem, the
minimal monoid is unique up to isomorphism, and it can be obtained from any
other recognising monoids by a fusion process as described above. Since
aperiodicity is preserved under minimisation, it follows that

some recognising monoid is aperiodic =′ minimal one is aperiodic.

This leads to an algorithm: minimise the monoid, and then check if it is
aperiodic. This algorithm runs in polynomial time, assuming that we use
monoids as the representation of regular languages. ↫

For example, if we take the language (aa)⇔, then its minimal monoid is {0, 1}
with addition modulo 2, which is not aperiodic. Therefore, the language is not
star-free, as we have asserted in Example 33.
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Proof of Theorem 8.8. We begin with the implication

star-free =′ aperiodic monoid.

The proof is by induction on the structure of the star-free expression. It is not
hard to see that finite languages are recognised by aperiodic monoids, and that
the class of languages recognised by aperiodic monoids is closed under union,
intersection, and complement. For the complement, we simply change the
accepting set, which does not affect the monoid, and for union and intersection
we take the product of two monoids, which is an operation that preserves
aperiodicity. The only interesting part is concatenation.

Lemma 8.11. The class of languages recognised by aperiodic monoids is closed under
concatenation.

Proof. We will prove this by using a certain monoid construction, which
corresponds to concatenation of languages, and which preserves aperiodicity.
Consider two languages L1, L2 ∝ Σ⇔, which are recognised by two
homomorphisms

hi : Σ⇔ ↙ Mi, i = 1, 2,

into two finite aperiodic monoids M1 and M2. To recognise the concatenation,
we will use a new monoid, which stores the following information: (a) the
values in the original two monoids; and (b) the set of possible pairs of values,
ranging over factorisations into two parts. More precisely, consider the function

h : Σ⇔ ↙ M1 ⇓ M2 ⇓ P(M1 ⇓ M2)︸ ︷︷ ︸
call this set M

which maps an input word to its values under M1 and M2 as well as the set of
pairs (h1(w1), h2(w2)), ranging over factorisations w1w2 of the input. It is not
hard to see that the set M can be equipped with a monoid structure such that h
is a homomorphism. The monoid operation is

(m1, m2, S) · (n1, n2, T) = (m1n1, m2n2, Sn2 ∈ m1T),
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where Sn2 appends n2 to the second component of each pair in S, and similarly
for m1T. The homomorphism h recognises the concatenation L1L2, with the
accepting set consisting of monoid elements where the set component contains
some pair which is accepting in both M1 and M2.
The construction described above works for the concatenation of any two
regular languages, without any assumptions on aperiodicity. We will now show
that if the original two monoids were aperiodic, then the new monoid is also
aperiodic. Consider then some element m = (m1, m2, S) ⇐ M. We want to show
that the powers

m1, m2, m3, . . .

stabilise at some value. Clearly these powers stabilise on the first two
components, by assumption on aperiodicity of M1 and M2. Consider now the
last component, which is equal to

{(mi1
1 x, ymi2

2 ) | (x, y) ⇐ S and i1 + i2 + 1 = i }.

By aperiodicity of M1 and M2, there is a number ω ⇐ {1, 2, . . .} that witnesses
aperiodicity in both monoids. If we take i to be sufficiently large, then the
decomposition in i1 + i2 + 1 can have at most one number that is smaller than
ω, and the other number will be equal to ω. Therefore, the third component
will also stabilise for sufficiently large i. ↫

We now turn to the implication

aperiodic monoid =′ star-free,

which is the heart of the proof. Consider a homomorphism into an aperiodic
monoid

h : Σ⇔ ↙ M.

We will show that every language recognised by this homomorphism is
star-free. The interesting case is when the accepting set is a single monoid
element m ⇐ M, in which case the recognised language is

Lm = {w ⇐ Σ⇔ | h(w) = m }.
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In the following lemma, we will show that this language is star-free. This will
extend to all other languages recognised by the homomorphism, thus
completing the proof of Theorem 8.8, since all languages recognised by the
homomorphism are finite unions of languages of the form Lm.

Lemma 8.12. For every m ⇐ M, the language Lm is star-free.

Proof. The lemma is proved by induction on the position of m in the infix
ordering. Suppose that we want to prove the lemma for some m ⇐ M, and we
have already proved it for all monoid elements that are proper prefixes of m.
Define Km to be the set of words which:

1. have a prefix whose value in the monoid is in the prefix class of m; and

2. have a suffix whose value in the monoid is in the suffix class of m.

We begin by showing that this property is star-free.

Claim 8.13. The language Km is star-free.

Proof. Consider first the special case when m is in the prefix class of the monoid
identity. In this case, Km is the set of all words, since the corresponding prefixes
and suffixes in the definition of Km can be taken to be the empty word.
We are left with the case when m is not equivalent to the monoid identity,
which means that the monoid identity is a proper prefix of m. For a word
w ⇐ Km, consider the shortest prefix of w whose value in the monoid is in the
prefix class of m. Since we have assumed that m is not prefix equivalent to the
identity, this shortest prefix is non-empty, and therefore it is of the form ua,
where a is a letter and u has a value in the monoid that is strictly smaller than
m in the prefix ordering. Thanks to Lemma 8.6, the value of u is smaller not
only in the prefix ordering, but also in the infix ordering. Therefore, we can use
the induction assumption. Summing up, the property “some prefix is in the
prefix class of m” can be expressed using the star-free expression

⋃

n,a
Ln · a · Σ⇔,



106 S TA R - F R E E L A N G U A G E S

where n ranges over monoid elements that are strictly smaller than m in the
infix ordering, and a ranges over letters such that n · h(a) is in the prefix class of
m. A similar construction works for suffixes. Intersecting the two, we get the
desired star-free expression Km. ↫

In the following claim, we show that the language Km is closely related to the
language Lm that we want to describe in the present lemma.

Claim 8.14. The language Km satisfies the following inclusions

Lm ∝ Km ∝ Lm ∈ L>m,

where L>m consists of words whose value is strictly bigger than m in the infix ordering.

Proof. Clearly the first inclusion holds, since every word with value m has a
prefix (e.g. the entire word) whose value is in the prefix class of m, and
similarly for suffixes.
Consider now the second inclusion. Take some w ⇐ Km. Since w has a prefix
whose value in the monoid is in the prefix class of m, the value of w is either
equal to m, or strictly bigger than m in the prefix ordering. By Lemma 8.6, if the
value is strictly bigger than m in the prefix ordering, then it is also strictly
bigger in the infix ordering. Using this observation and a similar one for
suffixes, we know that the value of w ⇐ Km is either: (a) equivalent to m in both
the prefix and suffix orderings; or (b) strictly bigger than m in the infix ordering.
In case (b), we have membership in L>m. It remains to prove that in case (a), the
value is actually equal to m, and not some other element of its prefix class and
suffix class. This is because there are no other such elements, as we now show:

(*) If n ⇐ M is both prefix and suffix equivalent to m, then n = m.

To prove (*), we use aperiodicity of the monoid. (The statement fails for general
monoids, e.g. in a group all elements are prefix and suffix equivalent to each
other.) If n is prefix equivalent to m, then there exist x, y ⇐ M such that

mx = n and yn = m.
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This means that if we start with m, and then we multiply in alternation by x to
the right and by y to the left, we will alternate in values between m and n:

yimxi = m and yimxi+1 = n.

By aperiodicity of the monoid, at some point there will be no difference
between xi and xi+1, and hence m = n. ↫

Thanks to the above lemma, in the language Km we have all the words with
value m, and some extra words with value strictly bigger than m in the infix
ordering. The following claim shows what these extra words look like.

Claim 8.15. The following inclusion holds:

Km ↗ Lm ∝
⋃

n,a
Kn · a · Σ⇔,

where n ⇐ M in the union ranges over monoid elements that are prefixes of m, and
a ⇐ Σ ranges over letters such that n · h(a) is not a prefix of m.

Proof. Consider a word in the left-hand side of the inequality. By Claim 8.14,
this word is in L>m, and therefore it has some prefix (for example, the entire
word) whose value is strictly bigger than m in the infix ordering. If we take the
shortest such prefix, then it will be in Ln · a for some n and a that satisfy the
conditions described in the claim. Since Ln ∝ Kn, we are done. ↫

We are now ready to complete the proof of the lemma, by defining Lm using a
star-free expression. Consider the expression on the right-hand side of the
inequality from the above claim. This is a star-free expression, since we have
proved that each Kn is a star-free expression. Formally speaking, we have
proved it only for Km, but in the same step we can prove it for all Kn with n
being a prefix – and even infix – of m, since these monoid elements occupy the
same or lower position in the induction order. Therefore, by removing the
right-hand side of Claim 8.15 from Km, we get a star-free expression for Lm, as
required in the statement of the lemma. ↫

↫





9
The factorisation forest theorem

In this chapter, we prove the Factorisation Forest Theorem of Imre Simon [55],
which is a powerful tool for describing how a word can be evaluated in a finite
monoid.

An algorithmic motivation. The theorem can be viewed as describing a
certain data structure, which is similar to a binary interval tree. Before
presenting this data structure, we motivate it from an algorithmic perspective.
Consider the following problem. We fix a regular language L ∝ Σ⇔. Given an
input word, we want to build a data structure which allows us to answer
efficiently the following query: given an interval of positions in the input word,
does the corresponding infix belong to the language L? Here is a picture of
such a query

Example 34. Suppose that the regular language is Σ⇔aΣ⇔. The corresponding
queries ask if the interval contains the letter a. This can be solved by the
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following data structure: for each position in the input word, we store the
number of occurrences of the letter a up to this position. Then, to answer a
query for an interval, we just need to check if the numbers at the endpoints of
the interval differ. The data structure can be built in linear time, and each query
can be answered in constant time. The same data structure works for the
language “even number of appearances of a”. ↭
Let us begin with a straightforward divide-and-conquer solution to this
problem, which works in the general case of any regular language. In this
solution, as elsewhere in this chapter, we will use monoids instead of automata.
Suppose that the language is recognised by a monoid homomorphism

h : Σ⇔ ↙ M

into a finite monoid, as explained in Chapter 8.2. Let us build an interval tree
over the input word, as explained in the following picture (the picture uses the
monoid homomorphism that counts occurrences of a modulo 2):

As usual for such pictures, it is convenient to assume that the length of the
input word is a power of two, but this is not necessary. Formally speaking, an
interval tree is defined as follows.
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Definition 9.1 (Interval tree). An interval tree for a word w is a family of intervals
with the following properties:

1. all singleton intervals are in the family; and

2. the full interval is in the family; and

3. every two intervals are either disjoint or one contains the other.

The intervals in an interval tree can be seen as nodes in a tree, and we will
adopt tree terminology when talking about them: child, sibling, parent, leaf,
root etc. For the moment, we are interested in an interval tree that is binary,
i.e. each node has either zero or two children. Such a tree can be built in linear
time, with logarithmic height. For each node in the tree, we store the value of
the homomorphism h on the infix corresponding to this node. This data
structure can be built in linear time. Once we have the data structure, we can
answer the queries in time O(log n), by multiplying the semigroup elements
from nodes of the tree that correspond to the given interval, as explained in the
following picture:
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9.1 Simon trees

As we have seen above, using a binary interval tree, we can achieve logarithmic
query time. The purpose of this chapter is to improve this to constant time. This
data structure was found by Imre Simon [55, Theorem 6.1], and for this reason
we call it a Simon tree. A Simon tree is also a tree of intervals, however it is no
longer binary and it can have nodes of unbounded degree. The general idea is
that such nodes will be restricted to intervals whose value in the monoid is an
idempotent, i.e. an element e satisfying e2 = e. Here is the formal definition.

Definition 9.2 (Simon tree). Consider a monoid homomorphism

h : Σ⇔ ↙ M

into a finite monoid. A Simon tree for an input word w ⇐ Σ⇔ is an interval tree with
the following property: if a node has n > 2 children, then all these children are mapped
by h to the same monoid element, and this element is an idempotent.

The main result of this chapter, see Theorem 9.3, will be that we can find a
Simon tree whose height is bounded by a constant that depends only on the
monoid homomorphism, and not on the input word. Before stating and proving
the theorem, let us begin with an example of how the tree is constructed, and
also with an explanation of how it can be used in our algorithmic application.

Example 35. Consider the monoid homomorphism

h : {a, b}⇔ ↙ {0, 1}

which counts the occurrences of a modulo 2. We begin by replacing each letter
by its value in the monoid:
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In this monoid, the only idempotent is 0, and therefore idempotent nodes can
only be used to group intervals with value 0. This is what we do now: we
consider groups of consecutive 0’s which have length at least two. Each such
group can be grouped into a single node, as in the following picture:

In the next step, we use binary nodes to group each 1 with the preceding block
of 0’s:

At this stage, the maximal intervals all have value 1, except for possibly a last
interval with value 0. We group the maximal intervals with value 1 into pairs,
so that they get value 0:
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The intervals created in the previous step all have value 0, and therefore they
can be grouped using an idempotent step into a single interval:

At this stage, we have at most three top level intervals: one big interval on the
left that has value 0, possibly followed by intervals with values 1 and 0. The
latter two can be joined without increasing the height of the tree, and then
finally we can create a single root node:
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All in all, we have built a Simon tree of height at most 6, for an arbitrary input
word. ↭

The algorithmic application of a Simon tree is the same as for binary trees.
Suppose that we have access to a Simon tree, and that we are given an interval
query. Similarly to the binary case, the interval can be decomposed into
intervals that correspond to the tree. The difference with respect to the binary
tree is that now the decomposition can use two kinds of intervals: (a) nodes in
the tree; or (b) unions of consecutive siblings in the tree. (In fact, the first kind
is a special case of the second one.) The number of intervals in this
decomposition is bounded by the height of the tree. Here is a picture:
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For the intervals that are in the tree, their value is stored in the tree. For the
unions of consecutive children, the interesting case is when there are at least
three of them. In this case, the values of these intervals must all be the same
idempotent e, and therefore the value of their union will also be the same
idempotent e. Summing up, using the Simon tree we can compute the value of
each interval in time that is proportional to the height of the tree.
It remains to prove that Simon trees of bounded height exist.

Theorem 9.3 (Factorisation Forest Theorem, Simon [55]). Consider a monoid
homomorphism

h : Σ⇔ ↙ M

into a finite monoid. There exists a constant k ⇐ {1, 2, . . .} such that for every input
word w ⇐ Σ⇔ there exists a Simon tree of height at most k.

Proof. The proof will also come with an algorithm for constructing the tree in
linear time, which is relevant for the algorithmic applications.
We work with Green’s relations, which were introduced in Chapter 8.2. There
will be three steps: (1) we first prove the theorem in the special case when the
monoid is a group; (2) then we prove the theorem in the special case where all
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intervals have a value in the same infix class; and (3) finally we prove the
general case.

Step 1. Groups. We begin by proving the theorem in the special case when
the monoid is a group. In this step, the Simon tree for an input word w is
constructed based on the size of the set

P(w) = {h(v) | v is a non-trivial prefix of w },

where a non-trivial prefix is defined to be one that is neither empty nor full.
Since this set is a subset of the group, the height of the induction will be
bounded by the size of the group. Each induction step will increase the height
of the tree by at most 3, thus leading to a Simon tree whose height is at most 3
times the size of the group.
The induction base is when the set P(w) is empty. This means that there are no
non-trivial prefixes, i.e. the word has length at most one. In this case a trivial
Simon tree with zero or one node suffices.
Consider now the induction step. Choose some element g ⇐ P(w). Consider all
the non-trivial prefixes of the input word whose value is equal to g, as in the
following picture:

We can cut the word along the ends of these prefixes, leading to a factorisation
as in the following picture, with the corresponding infixes being called
w1, . . . , wn:
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The following claim shows that we can apply the induction assumption to each
of these infixes.

Claim 9.4. For each i ⇐ {1, . . . , n}, the set P(wi) is strictly smaller than P(w).

Proof. For the first infix w1, this is clearly true, since it is a prefix of w, and it
was chosen so that it does not have any non-trivial prefixes with value g. For
the remaining infixes, we have a similar situation, except that the group
element needs to be prepended:

g · P(wi) ∝ P(w)↗ {g}.

Since multiplying to the left by g does not change the size of a set, it follows
that each P(wi) is strictly smaller than P(w). ↫

The Simon tree for w is constructed as follows. For each of the infixes
w1, . . . , wn, the above claim shows that we use the induction assumption to
build a Simon tree. Then, we combine these trees three additional levels as
follows. For each i ⇐ {2, . . . , n ↗ 1}, the value h(wi) must be the group identity,
since it satisfies

g · h(wi) = g.

In particular, this value is an idempotent. Therefore, we can group the intervals
corresponding to w2, . . . , wn↗1 using a single idempotent node. The first and
last intervals w1 and wn can then be added using two binary nodes, thus
adding three levels to the height of the tree from the induction assumption.

Step 2. Single infix class. Recall the notion of infix class that was used in
Chapter 8.2. In this step, we consider the special case when the input word
satisfies the following assumption:

(*) all nonempty intervals in the input word have their value in the same
infix class, call it J ∝ M.
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In this case, the proof is by induction on the number of windows of size two:

{(a, b) ⇐ M2 | a and b are values of two consecutive letters in w }

As previously, the induction basis is when there are no such windows, in which
case the word has length at most one, and a trivial Simon tree suffices. Let us
consider the induction step. Choose some window (a, b) in the input word.
Consider all occurrences of this window, as in the following picture:

We can cut the word along the middle of each window, which leads to a
factorisation as in the following picture:

Let w1, . . . , wn be the infixes which arise from the factorisation defined above.
All of these infixes have a smaller induction parameter, since they avoid the
window (a, b), and therefore we can find Simon trees for them. We now need to
put them together. For this, the crucial observation is that if we ignore the first
infix w1 and the last infix wn, then the remaining infixes have values in a group,
and we can use the construction from the previous step. Indeed, each of the
infixes w2, . . . , wn↗1 has b as a prefix and a as a suffix. The following claim
shows that these infixes form a group.

Claim 9.5. Let J be an infix class, and let a, b ⇐ J be such that ba ⇐ J. Then

G = {m ⇐ J | m has b as a prefix and a as a suffix }

is a group, with multiplication inherited from M, but with some possibly new choice of
identity element.
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Proof. We prove progressively finding more and more group structure in G.

1. Sub-semigroup. Let us first show that the set G is a sub-semigroup of M,
i.e. it is closed under multiplication. Consider two elements f , g ⇐ G.
Since all elements in G are infix equivalent and a is a suffix of f , we can
use Lemma 8.6 from the previous chapter to conclude that f is suffix
equivalent to a. In particular, there is some x ⇐ M such that x · f = a.
Similarly, we can find some y ⇐ M such that g · y = b. It follows that f · g
belongs to J since it sits infix-wise between f and

x · f · g · y = a · b ⇐ J.

Since f · g begins with b and ends with a, we conclude that it belongs to
G.

2. Idempotent. We now show that G contains some idempotent. This
follows from a more general result: every finite semigroup contains an
idempotent. Indeed, we take any semigroup element g ⇐ G, and consider
its powers gn for n ⇐ {1, 2, . . .}. By finiteness, there must be some
repetition, i.e. n and n + k will give the same power for some k > 0. This
remains true if we increase n to any number in the set
{n, n + 1, n + 2, . . .}, and if we replace k by some multiple of k. Therefore,
we can choose n and k so that they are equal to each other. As a result, gn

will be an idempotent.

3. Identity element. Let e be the idempotent found above. We will show
that this is an identity in the semigroup G, which in particular implies
that it is unique. Since e belongs to G, it has b as a prefix. Therefore, also
b has e as a prefix, and by Lemma 8.6, and therefore every element of G
has an e as a prefix. This implies that e is a left identity, since e · g holds
for every element g that has e as a prefix, by idempotence of e. A
symmetric argument shows that e is also a right identity.

4. Inverses. Finally, we show that every element of G has an inverse.
Consider some g ⇐ G. Since g is in the prefix class of e, as we have just
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shown, it follows that there is some x ⇐ M such that g · x = e. We can
also improve this x so that it falls into G, by pre- and post-multiplying it
with e. This gives us a right inverse for g. Similarly, we get a left inverse.
Finally, in a group the left and right inverses must coincide, since

g2 = e · g2 = g1︸︷︷︸
left

inverse

·g · g2︸︷︷︸
right

inverse

= g1 · e = g1.

↫

Thanks to the above claim, we can use the construction from Step 1 to combine
the Simon trees for w2, . . . , wn↗1. The first and last infixes w1 and wn can then
be added using two binary nodes, thus adding three levels to the height of the
tree from the induction assumption.

Step 3. General case. We now turn to the general case, where we do not have
any assumptions on the input word. In the proof, we no longer distinguish
between input letters and monoid elements. In other words, we think of the
letters as being monoid elements, with the homomorphism being multiplication
in the monoid. This is no different from the general case, since the only relevant
information about a letter is its value under the homomorphism. The Simon
tree is constructed by induction on the following parameter for a word w ⇐ M⇔:

{m ⇐ M | some letter in w is an infix of m }.

Choose some infix class J that is represented by some letter in the input word,
and choose this infix class to be minimal, i.e. there is no input letter that is a
proper infix of J. Define a J-interval to be an interval that has value J. By
minimality of J, we know that all sub-intervals in a J-interval are also
J-intervals. The key observation is in the following claim.

Claim 9.6. If two J-intervals overlap, then their union is a J-interval.

Proof. Consider two overlapping J-intervals, and the following three elements
of the monoid:
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We know that all three monoid elements belong to the infix class J. By
Lemma 8.6, we know that a · b is in the suffix class of b, and therefore there is
some x such that x · a · b = b. It follows that x · a · b · c = b · c, and therefore
a · b · c belongs to the infix class J. ↫

Thanks to the above claim, the maximal inclusionwise J-intervals are pairwise
disjoint. In each such interval, we can use the construction from Step 2 to build
a Simon tree, since all of its sub-intervals have value in J. We can now collapse
these maximal intervals into single letters, and as a result they will have one
letter only. These letters can then be paired with the next letter using binary
nodes, and as a result there is no longer any occurrence of the infix class J in
the input word, and only bigger infix classes remain. The induction assumption
can then be used to build a Simon tree for the remaining word. ↫



10
Determinisation of ω-automata

In this chapter, we discuss automata for ω-words, i.e. infinite words of the form

a1a2a3 · · ·

We write Σω for the set of ω words over alphabet Σ. The topic of this chapter is
McNaughton’s Theorem, which shows that automata over ω-words can be
determinised. A more in depth account of automata (and logic) for ω words
can be found in [58].

10.1 Automata models for ω-words

A nondeterministic Büchi automaton is a type of automaton for ω-words. Its
syntax is typically defined to be the same as that of a nondeterministic finite
automaton: a set of states, an input alphabet, initial and accepting subsets of
states, and a set of transitions. For our presentation it is more convenient to use
accepting transitions, i.e. the accepting set is a set of transitions, not a set of
states. An infinite word is accepted by the automaton if there exists a run which
begins in one of the initial states, and visits some accepting transition infinitely
often.

Example 36. Consider the set of words over alphabet {a, b} where the letter a
appears finitely often. This language is recognised by a nondeterministic Büchi
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automaton like this (we adopt the convention that accepting transitions are red
edges):

a,b b

b

↭
This chapter is about determinising Büchi automata. One simple idea would be
to use the standard powerset construction, and accept an input word if
infinitely often one sees a subset (i.e. a state of the powerset automaton) which
contains at least one accepting transition. This idea does not work, as witnessed
by the following picture describing a run of the automaton from Example 36:

a,b
b

b

an accepting transition is seen infinitely often

the
automaton the runs of the automaton over (bba)

b b a b b a b b a b b a

...

ω

In fact, Büchi automata cannot be determinised using any construction.

Fact 10.1. Nondeterministic Büchi automata recognise strictly more languages than
deterministic Büchi automata.

Proof. Take the automaton from Example 36. Suppose that there is a
deterministic Büchi automaton that is equivalent, i.e. recognises the same
language. Let us view the set of all possible inputs as an infinite tree, where the
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vertices are prefixes {a, b}⇔. Since the automaton is deterministic, to each edge
of this tree one can uniquely assign a transition of the automaton. Every vertex
v ⇐ {a, b}⇔ of this tree has an accepting transition in its subtree, because the
word vbω should have an accepting run. Therefore, we can find an infinite path
in this tree which has a infinitely often and uses accepting transitions infinitely
often. ↫

The above fact shows that if we want to determinise automata for ω-words, we
need something more powerful than the Büchi condition. One solution is called
the Muller condition, and is described below. Later we will see another
(equivalent) solution, which is called the parity condition.

Muller automata. The syntax of a Muller automaton is the same as for a
Büchi automaton, except that the accepting set is different. Suppose that ∆ is
the set of transitions. Instead of being a set F ∝ ∆ of transitions, the accepting
set in a Muller automaton is a family F ∝ P(∆) of sets of transitions. A run is
defined to be accepting if the set of transitions visited infinitely often belongs to
the family F.

Example 37. Consider this automaton

a b

b
a

Suppose that we set F to be all subsets which contain only transitions that enter
the blue state, as in the following picture.
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a a

a a{ }, ,
a set of transitions
is visualised as the 

part of the automaton
that only uses transitions

from that set

it is impossible to see
this particular set

of transitions (and no
others) infinitely often

In this case, the automaton will accept words which contain infinitely many a’s
and finitely many b’s. If we set F to be all subsets which contain at least one
transition that enters the blue state, then the automaton will accept words
which contain infinitely many a’s. ↭
Deterministic Muller automata are clearly closed under complement – it
suffices to replace the accepting family by P(∆)↗ F. This lecture is devoted to
proving the following determinisation result.

Theorem 10.2 (McNaughton’s Theorem). For every nondeterministic Büchi
automaton there exists an equivalent (accepting the same ω-words) deterministic
Muller automaton.

The converse of the theorem, namely that deterministic Muller (even
nondeterministic) automata can be transformed into equivalent
nondeterministic Büchi automata is more straightforward, see Exercise 60. It
follows from the above discussion that

• nondeterministic Büchi automata

• nondeterministic Muller automata

• deterministic Muller automata

have the same expressive power, but deterministic Büchi automata are weaker.
Theorem 10.2 was first proved by McNaughton in [38]. The proof here is
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similar to one by Muller and Schupp [41]. An alternative proof method is the
Safra Construction, see e.g. [58].
The proof strategy is as follows. We first define a family of languages, called
universal Büchi languages, and show that the McNaughton’s theorem boils
down to recognising these languages with deterministic Muller automata. Then
we do that.

The universal Büchi language. For n ⇐ N, define a width n dag to be a
directed acyclic graph where the nodes are pairs {1, . . . , n}⇓ {1, 2, . . .} and
every edge is of the form

(q, i) ↙ (p, i + 1) for some p, q ⇐ {1, . . . , n} and i ⇐ {1, 2, . . .}.

Furthermore, every edge is either red or black, with red meaning “accepting”.
We assume that there are no multiple edges (i.e. there is at most one edge
connecting a given source and target). Here is a picture of a width 3 dag:

......

In the pictures, we adopt the convention that the i-th column stands for the set
of vertices {1, . . . , n}⇓ {i}. The top left corner of the picture, namely the vertex
(1, 1) is called the initial vertex.
The essence of McNaughton’s theorem is showing that for every n, there is a
deterministic Muller automaton which inputs a width n dag and says if it
contains a path that begins in the initial vertex and visits infinitely many red
(accepting) edges. In order to write such an automaton, we need to encode as a
width n dag as an ω-word over some finite alphabet. This is done using an
alphabet, which we denote by [n], where the letters look like this:
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Formally speaking, [n] is the set of functions

{1, . . . , n}⇓ {1, . . . , n} ↙ {no edge, non-accepting edge, accepting edge}.

Define the universal n state Büchi language to be the set of words w ⇐ [n]ω which,
when treated as a width n dag, contain a path that starts in the initial vertex
and visits accepting edges infinitely often. The key to McNaughton’s theorem is
the following proposition.

Proposition 10.3. For every n ⇐ N there is a deterministic Muller automaton
recognising the universal n state Büchi language.

Before proving the proposition, let us show how it implies McNaughton’s
theorem. To make this and other proofs more transparent, it will be convenient
to use transducers. Define a sequential transducer to be a deterministic finite
automaton, without accepting states, where each transition is additionally
labelled by a word over some output alphabet. In this section, we only care
about the special case when the output words have exactly one letter; this is
sometimes called a letter-to-letter transducer. The name ”transducer” refers to
an automaton which outputs more than just yes/no; later in this book we will
see other (and more powerful) types of transducers, with names like rational
transducer or regular transducer. If the input alphabet is Σ and the output
alphabet is Γ, then a sequential transducer defines a function

f : Σω ↙ Γω.

Example 38. Here is a picture of a sequential transducer which inputs a word
over {a, b} and replaces letters on even-numbered positions by a.
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a/a
b/b

a/a
b/a

a transition a/b means that
letter a is input, and letter b is output

↭

Lemma 10.4. Languages recognised by deterministic Muller automata are closed
under inverse images of sequential letter-to-letter transducers, i.e. if A in the diagram
below is a deterministic Muller automaton and f is a sequential transducer, there is a
deterministic Muller automaton B which makes the following diagram commute:

Σω f
""

B $$

Γω

A

!!
{yes, no}

Proof. A straightforward product construction. The states of automaton B are
pairs (state of the transducer f , state of the automaton A). If the automaton is
in state (p, q) and reads letter a ⇐ Σ, then it does the following. Suppose that
the transition of f when in state p and when reading letter a is

p a/b↙ p△,

i.e. the output produced is b ⇐ Γ and the new state is p△. Suppose that the
transition of A when in state q and when reading letter b is

q b↙ q△.

Then the automaton B has a transition of the form

(p, q) a↙ (p△, q△).



130 D E T E R M I N I S AT I O N O F ω - A U T O M ATA

Note how each transition in B corresponds to two transitions, one in f and one
in A. The Muller condition is inherited from the automaton A, i.e. a set of
transitions in B is accepting if the corresponding set of transitions in A is
accepting.

(The assumption that the transducer is letter-to-letter is not necessary, but then
defining the Muller condition for B becomes a bit more complicated, because
each transition of B corresponds to several transitions in A.) ↫

Let us continue with the proof of McNaughton’s theorem. We claim that every
language recognised by a nondeterministic Büchi automaton reduces to a
universal Büchi language via some transducer. Let A be a nondeterministic
Büchi automaton with input alphabet Σ. We assume without loss of generality
that the states are numbers {1, . . . , n} and the initial state is 1. By simply
copying the transitions of the automaton, one obtains a sequential transducer

f : Σω ↙ [n]ω

such that a word w ⇐ Σω is accepted by A if and only if f (w) contains a path
from the initial vertex with infinitely many accepting edges. Here is a picture:

......

a b a c a a

f

b c c b a

The sequential transducer does even need states, i.e. one state is enough:
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a/

b/c/

Using Lemma 10.4, we compose the transducer with the automaton from
Proposition 10.3, getting a deterministic Muller automaton equivalent to A.
It now remains to show the proposition, i.e. that the n state universal Büchi
language can be recognised by a Muller automaton. The proof has two steps.
The first step is stated in Lemma 10.5 and says that a deterministic transducer
can replace an arbitrary width n dag by an equivalent tree. Here we use the
name tree for a width n dag, where every non-isolated node other than (1,1) has
exactly one incoming edge. Here is a picture of such a tree, with the isolated
nodes not drawn:

...

Lemma 10.5. There is a sequential transducer

f : [n]ω ↙ [n]ω

which outputs only trees and is invariant with respect to the universal Büchi language,
i.e. if the input contains a path with infinitely many accepting edges, then so does the
output and vice versa.

The second step is showing that a deterministic Muller automaton can test if a
tree contains an accepting path.

Lemma 10.6. There exists a deterministic Muller automaton with input alphabet [n]
such that for every w ⇐ [n]ω that is a tree, the automaton accepts w if and only if w
contains a path from the root with infinitely many accepting edges.
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Combining the two lemmas using Lemma 10.4, we get Proposition 10.3, and
thus finish the proof of McNaughton’s theorem. Lemma 10.5 is proved in
Section 10.2 and Lemma 10.6 is proved in Section 10.3.

10.2 Pruning the graph of runs to a tree

We begin by proving Lemma 10.5, which says that a sequential transducer can
convert a width n dag into a tree, while preserving the existence of a path from
the initial vertex with infinitely many accepting edges. The transducer is simply
going to remove edges.

Profiles. For a path π in a width n dag, define its profile to be the word of
same length over the two-letter alphabet

{accepting, non-accepting}

which is obtained by replacing each edge with its appropriate type. We order
profiles lexicographically, with ”accepting” smaller than ”non-accepting”.

<
<

A finite path π in a width n dag is called profile optimal if it begins in the initial
vertex, and its profile is lexicographically least among profiles of paths in w
that begin in the initial vertex and have the same target as π.

Lemma 10.7. There is a sequential transducer

f : [n]ω ↙ [n]ω

such that if the input is w, then f (w) is a tree with the same reachable (from the initial
vertex) vertices as in w, and such that every finite path in f (w) that begins in the root
is a profile optimal path in w.
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Proof. The key observation is that the prefix of a profile optimal path is also
profile optimal. Therefore, if we want to do find a profile optimal path that
leads to a vertex (q, i), we need to do the following. Consider all paths from the
initial vertex to (q, i), decomposed as π · e where e is the last edge of the path
and π is the remaining part of the path from the initial vertex to column i ↗ 1.
Because profile optimal paths are closed under prefixes, if we want π · e to be
profile optimal, then π should be profile optimal. Since profiles are sorted
lexicographically, then the profile of π should be optimal among profiles of
paths that go from the initial vertex to some neighbour of (q, i) in the previous
column i ↗ 1. If there are several candidates for π · e with the same profile of π,
then we should use those that have a smaller profile for e (i.e. is it “accepting”
is preferred over “non-accepting”). In the end there might be several paths π · e
that meet all of these criteria, and all of them are profile optimal.

Based on the discussion above, we describe a sequential transducer as in the
statement of the lemma. After reading the first i letters, the automaton keeps in
its memory the following information:

1. which vertices of the form (i, q) are targets of profile optimal paths,
i.e. which ones are reachable from the initial vertex;

2. if both (i, q) and (i, p) are targets of profile optimal paths, then how are
these profiles ordered.

The above information can be kept in the finite state space of the sequential
transducer, since it consists of a subset of {1, . . . , n} together with an ordering
on it (a total, transitive, reflexive but not necessarily antisymmetric relation).
The information can be maintained by the automaton (i.e. it is enough to know
the old information and the new letter to get the new information), and it is
also enough to produce the output tree. Here is a picture of the construction:
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1

2

3

1 2 3

1 2 3

4

The reachable vertices are

and the least profiles for 
reaching them are ordered as

<=

The state of the tranducer is
this information:

input 

output

↫

Lemma 10.8. Let f be the sequential transducer from Lemma 10.7. If the input to f
contains a path with infinitely many accepting edges, then so does the output.

Proof. Assume that the dag w, which is an input for the transducer f , contains a
path with infinitely many accepting edges. We use the name accepting path for
such a path. Our goal is to show that the tree f (w) also contains an accepting
path.
For i ⇐ {0, 1, . . .}, define Pi to be the length i prefixes of profiles of accepting
paths in the dag w. We know that this set is nonempty, since there is an
accepting path. Let pi be the lexicographically minimal element of Pi. As
defined, the profile pi is the profile of some finite path in the original run dag,
before pruning it to a tree. However, because the pruned tree f (w) stores paths
with optimal profiles, it follows that for every i, the tree f (w) has some path
with profile pi.
Using the definition of the lexicographic ordering, one can see that pi is a prefix
of pj when i < j. Therefore, the profiles pi have some infinite limit, call it p. We
will now show that the pruned tree f (w) contains an infinite path with the limit
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profile p. We will do this using the König lemma, which says that every finitely
branching tree with arbitrarily long paths contains an infinite path. Indeed, as
we have argued in the previous paragraph, the pruned tree f (w) contains paths
with every profile pi. Therefore, if we prune it even more, so that it only
contains paths consistent with the profile p, we will get a finitely branching
tree, which has arbitrarily long paths. Therefore, by the König lemma, it
contains some infinite path.

It remains to prove that the limit profile p has infinitely many accepting edges,
and therefore the infinite path from the previous paragraph is accepting. We
will show that for every i, the limit profile contains an accepting edge which is
later than i. Indeed, consider the profile pi. By definition, we know that this
profile can be extended to the profile of some accepting path in the original run
dag w. This accepting path must use some accepting edge after position i.
Therefore, there is some j > i such that Pj contains a profile that extends pi, and
has one more accepting edge. This means that the minimal profile pj, which
extends pi, also has at least one more accepting edge than pi. ↫

10.3 Finding an accepting path in a tree graph

We now show Lemma 10.6, which says that a deterministic Muller automaton
can check if a width n tree contains a path with infinitely many accepting edges.

Consider a tree t ⇐ [n]ω, and let d ⇐ N be some depth. Define an important node
for depth d to be a node which is either: the root, a node at depth d, or a node
which is a closest common ancestor of two nodes at depth d. This definition is
illustrated below (with red lines representing accepting edges, and black lines
representing non-accepting edges):
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depth d

important node for depth d

path connecting important
nodes for depth d

Definition of the Muller automaton. We now describe the Muller automaton
for Lemma 10.6. After reading the first d letters of an input tree (i.e. after
reading the input tree up to depth d), the automaton keeps in its state a tree,
where the nodes correspond to nodes of the input tree that are important for
depth d, and the edges correspond to paths in the input tree that connect these
nodes. This tree stored by the automaton is a tree with at most n leaves, and
therefore it has less than 2n edges. The automaton also keeps track of a
colouring of the edges, with each edge being marked as accepting or not, where
”accepting” means that the corresponding path in the input tree contains at
least one accepting edge. Finally, the automaton remembers for each edge an
identifiers from the set {1, . . . , 2n ↗ 1}, with the identifier policy being
described below. A typical memory state looks like this:
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1 2
5

4

3

accepting edge

non-accepting edge

important node

identifier of the edge

The big black dots correspond to important nodes for the current depth, red
edges are accepting, black edges are non-accepting, while the numbers are the
identifiers. All identifiers are distinct, i.e. different edges get different
identifiers. It might be the case (which is not true for the picture above), that the
identifiers used at a given moment have gaps, e.g. identifier 4 is used but not 3.
The initial state of the automaton is a tree which has one node, which is the
root and a leaf at the same time, and no edges. We now explain how the state is
updated. Suppose the automaton reads a new letter, which looks something
like this:

To define the new state, perform the following steps.

1. Append the new letter to the tree in the state of the automaton. In the
example of the tree and letter illustrated above, the result looks like this:

1 2
5

4

3

2. Eliminate paths that die out before reaching the new maximal depth. In
the above picture, this means eliminating the path with identifier 4:
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1 2
5

3

3. Eliminate unary nodes, thus joining several edges into a single edge. This
means that a path which only passes through nodes of degree one gets
collapsed to a single edge, the identifier for such a path is inherited from
the first edge on the path. In the above picture, this means eliminating
the unary nodes that are the targets of edges with identifiers 1 and 5:

1 2
5

4. Finally, if there are edges that do not have identifiers, these edges get
assigned arbitrary identifiers that are not currently used. In the above
picture, there are two such edges, and the final result looks like this:

1 2 3
45

This completes the definition of the state update function. We now define the
acceptance condition.

The acceptance condition. When executing a transition, the automaton
described above goes from one tree with edges labelled by identifiers to another
tree with edges labelled by identifiers. For each identifier, a transition can have
three possible effects, described below:

1. Delete. An edge can be deleted in step 2 or in step 3 (by being merged
with an edge closer to the root). The identifier of such an edge is said to
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be deleted in the transition. Since we reuse identifiers, an identifier can
still be present after a transition that deletes it, because it has been added
again in step 4, e.g. this happens to identifier 4 in the above example.

2. Refresh. In step 3, a whole path e1e2 · · · en can be folded into its first edge
e1. If the part e2 · · · en contains at least one accepting edge, then we say
that the identifier of edge e1 is refreshed. This happens to identifiers 1
and 5 in the above example.

3. Nothing. An identifier might be neither deleted nor refreshed, e.g. this is
the case for identifier 2 in the example.

The following lemma describes the key property of the above data structure.

Lemma 10.9. For every tree in [n]ω, the following are equivalent:

(a) the tree contains a path from the root with infinitely many accepting edges;

(b) some identifier is deleted finitely often but refreshed infinitely often.

Before proving the above fact, we show how it completes the proof of
Lemma 10.6. We claim that condition (a) can be expressed as a Muller condition
on transitions. The accepting family of subsets of transitions is

⋃

i
Fi

where i ranges over possible identifiers, and the family Fi contains a set X of
transitions if

• some transition in X refreshes identifier i; and

• none of the transitions in X delete identifier i.

Identifier i is deleted finitely often but refreshed infinitely often if and only if
the set of transitions seen infinitely often belongs to Fi, and therefore, thanks to
the fact above, the automaton defined above recognises the language in the
statement of Lemma 10.6.
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Proof of Lemma 10.9. The implication from (b) to (a) is straightforward. An
identifier in the state of the automaton corresponds to a finite path in the input
tree. If the identifier is not deleted, then this path stays the same or grows to
the right (i.e. something is appended to the path). When the identifier is
refreshed, the path grows by at least one accepting edge. Therefore, if the
identifier is deleted finitely often and refreshed infinitely often, there is some
path that keeps on growing with more and more accepting states, and its limit
is a path with infinitely many accepting edges.
Let us now focus on the implication from (a) to (b). Suppose that the tree t
contains some infinite path π that begins in the root and has infinitely many
accepting edges. Call an identifier active in step d if the path described by this
identifier in the d-th state of the run corresponds to an infix of the path π. Let I
be the set of identifiers that are active in all but finitely many steps, and which
are deleted finitely often. This set is nonempty, e.g. the first edge of the path π

always has the same identifier. In particular, there is some step d, such that
identifiers from I are not deleted after step n. Let i ⇐ I be the identifier that is
last on the path π, i.e. all other identifiers in I describe finite paths that are
earlier on π. It is not difficult to see that the identifier i must be refreshed
infinitely often by prefixes of the path π. ↫

Problem 54. Are the following languages ω-regular (i.e. recognised by
nondeterministic Büchi automata)?

1. ω-words which have infinitely many prefixes in a fixed regular language
of finite words L ∝ Σ⇔;

2. ω-words with infinitely many infixes of the form abpa, where p is prime;

3. ω-words with infinitely many infixes of the form abna, where n is even.

Problem 55. Call an ω-word ultimately periodic if it is of the form uvω for some
finite words u, v. Show that if an ω-regular language is nonempty, then it
contains an ultimately periodic word.

Problem 56. Let UP be the set of ultimately periodic words. Let K and L be
ω-regular languages. Show that if L ⊤ UP = K ⊤ UP then K = L.
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Problem 57. Are the following languages ω-regular?

1. ω-words with arbitrarily long infixes belonging to a fixed regular
language of finite words L;

2. ω-words which have infinitely many prefixes in a fixed language of finite
words L ∝ Σ⇔ (not necessarily regular).

Problem 58. Show that the language of words ”there exists a letter b” cannot be
accepted by a nondeterministic automaton with the Büchi acceptance condition,
where all the states are accepting (but possibly transitions over some letters in
some states are missing).

Problem 59. Show that the language ”finitely many occurrences of letter a”
cannot be accepted by a deterministic automaton with the Büchi acceptance
condition.

Problem 60. Show that every language accepted by a nondeterministic
automaton with the Muller acceptance condition is also accepted by some
nondeterministic automaton with the Büchi acceptance condition.

Problem 61. Show that nonemptiness is decidable for automata with the
Muller acceptance condition.

Problem 62. Define a metric on ω-words by

d(u, v) =
1

2diff(u,v) ,

where diff(u, v) is the smallest position where u and v have different labels. A
language L is called open (in this metric) if for every w ⇐ L there exists some
open ball centered in w that is included in L (standard definition). Prove that
the following conditions are equivalent for an ω-regular language L:

1. is open;

2. is of the form KΣω for some K ∝ Σ⇔;
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3. is of the form KΣω for some regular K ∝ Σ⇔.

Problem 63. Which of the following candidates for a Myhill-Nerode
congruence indeed have the property: ℑL has finite index if and only if L is
ω-regular

1. an equivalence relation ℑL on Σ⇔ where u ℑL v is defined by

uw ⇐ L ⇒ vw ⇐ L for all w ⇐ Σω

2. an equivalence relation ℑL on Σω where u ℑL v is defined by

wu ⇐ L ⇒ wv ⇐ L for all w ⇐ Σ⇔

3. an equivalence relation ℑL on Σ⇔ where u ℑL v is defined by

and





uw ⇐ L ⇒ vw ⇐ L for all w ⇐ Σω

s(ut)ω ⇐ L ⇒ s(vt)ω ⇐ L for all s, t ⇐ Σ⇔



11
Infinite duration games

In this chapter, we prove the Büchi-Landweber Theorem [14, Theorem 1], see
also [58, Theorem 6.5], which shows how to solve games with ω-regular
winning conditions. These are games where two players move a token around a
graph, yielding an infinite path, and the winner is decided based on some
property of this path that is recognised by an automaton on ω-words. The
Büchi-Landweber Theorem gives an algorithm for deciding the winner in such
games, thus answering a question posed in [18] and sometimes called
“Church’s Problem”.

11.1 Games

In this chapter, we consider games played by two players (called 0 and 1),
which are zero-sum, perfect information, and most importantly, of potentially
infinite duration.

Definition 11.1 (Game). A game consists of

• a directed graph, not necessarily finite, whose vertices are called positions;

• a distinguished initial position;

• a partition of the positions into positions controlled by player 0 and positions
controlled by player 1;



144 I N F I N I T E D U R AT I O N G A M E S

• a labelling of edges by a finite alphabet Σ, and a winning condition, which is a
function from Σω to the set of players {0, 1}.

Intuitively speaking, the winning condition inputs a sequence of labels
produced in an infinite play, and says which player wins. The definition is
written in a way which highlights the symmetry between the two players; this
symmetry will play an important role in the analysis. Here is a picture.

initial position

Winning condition for infinite plays:
player 0 wins if label a appears
infinitely often, otherwise 1 wins

dead end

position controlled by player 0

position controlled by player 1
a

a
1

1

0

0

1
0

0

a

aa b

b
b

The game is played as follows. The game begins in the initial position. The
player who controls the initial position chooses an outgoing edge, leading to a
new position. The player who controls the new position chooses an outgoing
edge, leading to a new position, and so on. If the play reaches a position with
no outgoing edges (called a dead end), then the player who controls the dead
end loses immediately. Otherwise, the play continues forever, and yields an
infinite path and the winner is given by applying the winning condition to the
sequence of edge labels seen in the play.
To formalise the notions in the above paragraph, one uses the concept of a
strategy. A strategy for player i ⇐ {0, 1} is a function which inputs a history of
the play so far (a path, possibly with repetitions, from the initial position to
some position controlled by player i), and outputs the new position (consistent
with the edge relation in the graph). Given strategies for both players, call these
σ0 and σ1, a unique play (a path in the graph from the initial position) is
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obtained, which is either a finite path ending in a dead end, or an infinite path.
This play is called winning for player i if it is finite and ends in a dead end
controlled by the opposing player; or if it is infinite and winning for player i
according to the winning condition. A strategy for player i is defined to be
winning if for every strategy of the opponent, the resulting play is winning for
player i.

Example 39. In the game from the picture above, player 0 has a winning
strategy, which is to always select the fat arrows in the following picture.

moves chosen by player 0

a
b

a

a
1

1

00

0

a
a bb

↭

Determinacy. A game is called determined if one of the players has a winning
strategy. Clearly it cannot be the case that both players have winning strategies.
One could be tempted to think that, because of the perfect information, one of
the players must have a winning strategy. However, because of the infinite
duration, one can use the axiom of choice to come up with strange games
where neither of the players has a winning strategy.
The goal of this chapter is to show a theorem by Büchi and Landweber: if the
winning condition of the game is recognised by an automaton, then the game is
determined, and furthermore the winning player has a finite memory winning
strategy, in the following sense.

Definition 11.2 (Finite memory strategy). Consider a game where the positions are
V. Let i be one of the players. A strategy for player i with memory M is given by:



146 I N F I N I T E D U R AT I O N G A M E S

• a deterministic automaton with states M and input alphabet V; and

• for every position v ⇐ V controlled by i, a function fv from M to the neighbours
of v.

The two ingredients above define a strategy for player i in the following way: the next
move chosen by player i in a position v is obtained by applying the function fv to the
state of the automaton after reading the history of the play, including v.

We will apply the above definition to games with possibly infinitely many
positions, but we only care about finite memory sets M. An important special
case is when the set M has only one element, in which case the strategy is
called memoryless. For a memoryless strategy, the new position chosen by the
player only depends on the current position, and not on the history of the game
before that. The strategy in Example 39 is memoryless.

Theorem 11.3 (Büchi-Landweber Theorem). Let Σ be finite and let

Win : Σω ↙ {0, 1}

be ω-regular, i.e. the inverse image of 0 (and therefore also of 1) is recognised by a
deterministic Muller automaton. Then there exists a finite set M such that for every
game with winning condition Win, one of the players has a winning strategy that uses
memory M.

The proof of the above theorem has two parts. The first part is to identify a
special case of games with ω-regular winning conditions, called parity
conditions, which map a sequence of numbers to the parity ⇐ {0, 1} of the
smallest number seen infinitely often.

Definition 11.4 (Parity condition). A parity condition is any function of the form

w ⇐ Iω ∞↙





0 if the smallest number appearing infinitely often in w is even

1 otherwise

for some finite set I ∝ N. A parity game is a game where the winning condition is a
parity condition.
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Parity games are important because not only can they be won using finite
memory strategies, but even memoryless strategies are enough.

Theorem 11.5 (Memoryless determinacy of parity games). For every parity game,
one of the players has a memoryless winning strategy.

In fact, for edge labelled games (which is our choice) the parity condition is the
only condition that admits memoryless winning strategies regardless of the
graph structure of the game, among conditions that are prefix independent,
see [20, Theorem 4].
The above theorem is proved in Section 11.2. The second step of the
Büchi-Landweber theorem is a reduction to parity games. This essentially boils
down to transforming deterministic Muller automata into deterministic parity
automata, which are defined as follows: a parity automaton has a ranking
function from states to numbers, and a run is considered accepting if the
smallest rank appearing infinitely often is even. This is a special case of the
Muller condition, but it turns out to be expressively complete in the following
sense:

Lemma 11.6. For every deterministic Muller automaton, there is an equivalent
deterministic parity automaton.

Proof. The lemma can be proved in two ways. One way is to show that, by
taking more care in the determinisation construction in McNaughton’s
Theorem, we can actually produce a parity automaton. Another way is to use a
data structure called the later appearance record [32]. The construction is
presented in the following claim.

Claim 11.7. For every finite alphabet Σ, there exists a deterministic automaton with
input alphabet Σ, a totally ordered state space Q, and a function

g : Q ↙ P(Σ)

with the following property. For every input word, the set of letters appearing infinitely
often in the input is obtained by applying g to the smallest state that appears infinitely
often in the run.



148 I N F I N I T E D U R AT I O N G A M E S

Proof. The state space Q consists of data structures that look like this:

a c d b

More precisely, a state is a (possibly empty) sequence of distinct letters from Σ,
with distinguished blue suffix. The initial state is the empty sequence. After
reading the first letter a, the state of the automaton is

a

When that automaton reads an input letter, it moves the input letter to the end
of the sequence (if it was not previously in the sequence, then it is added), and
marks as blue all those positions in the sequence which were changed, as in the
following picture:

a c

c

d bprevious state

a d b cnew state

input letter

Consider a run of this automaton over some infinite input w ⇐ Σω. Take some
blue suffix of maximal size that appears infinitely often in the run. Then the
letters in this suffix are exactly those that appear in w infinitely often.
Therefore, to get the statement of the claim, we order Q first by the number of
white (not blue) positions, and in case of the same number of white positions,
we use some arbitrary total ordering. The function g returns the set of blue
positions. This completes the proof of the claim. ↫

The conversion of Muller to parity is a straightforward corollary of the above
lemma: one applies the above lemma to the state space of the Muller
automaton, and defines the ranks according to the Muller condition. ↫
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Let us now finish the proof of the Büchi-Landweber theorem. Consider a game
with an ω-regular winning condition. By Lemma 11.6, there is a deterministic
parity automaton which accepts exactly those sequences of edge labels where
player 0 wins. Consider a new game, call it the product game, where the
positions are pairs (position of the original game, state of the deterministic
parity automaton). Edges in the product game are of the form

(v, q) b↙ (w, p)

such that v a↙ w is an edge of the original game (the label of the edge is on top
of the arrow), the deterministic parity automaton goes from state q to state p
when reading label a, and b is the number assigned to state q by the parity
condition. It is not difficult to see that the following conditions are equivalent
for every position v of the original game and every player i ⇐ {0, 1}:

1. player i wins from position v in the original game;

2. player i wins from position (v, q) in the product game, where q is the
initial state of the deterministic parity automaton recognising L.

The implication from 1 to 2 crucially uses determinism of the automaton and
would fail if a nondeterministic automaton were used (under an appropriate
definition of a product game). Since the product game is a parity game,
Theorem 11.5 says that for every position v, condition 2 must hold for one of
the players; furthermore, a positional strategy in the product game corresponds
to a finite memory strategy in the original game, where the memory is the
states of the deterministic parity automaton.
This completes the proof of the Büchi-Landweber Theorem. It remains to show
memoryless determinacy of parity games, which is done below.

11.2 Memoryless determinacy of parity games

In this section, we prove Theorem 11.5 on memoryless determinacy of parity
games. The proof we use is based in [64] and [58]. Recall that in a parity game,
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the positions are assigned numbers (called ranks from now on) from a finite set
of natural numbers, and the goal of player i is to ensure that for infinite plays,
the minimal number appearing infinitely often has parity i. Our goal is to show
that one of the players has a winning strategy, and furthermore this strategy is
memoryless. The proof of the theorem is by induction on the number ranks
used in the game. We choose the induction base to be the case when there are
no ranks at all, and hence the theorem is vacuously true. For the induction step,
we use the notion of attractors, which is defined below.

Attractors. Consider a set of edges X in a parity game (actually the winning
condition and labelling of edges are irrelevant for the definition). For a player
i ⇐ {0, 1}, we define below the i-attractor of X, which intuitively represents
positions where player i can force a visit to an edge from X. The attractor is
approximated using ordinal numbers. (For a reader unfamiliar with ordinal
numbers, just think of natural numbers, which are enough to treat the case of
games with finitely many positions.) Define X0 to be empty. For an ordinal
number α > 0, define Xα to be all positions which satisfy one of the conditions
(A), (B) or (C) depicted below:

(B) is owned by player i and 
      some outgoing edge is in X
      or goes to a position satisfying (A)

(C) is owned by opponent of player i and 
      every outgoing edge is in X 
      or goes to a position
      satisfying (A)

(A) belongs to        
 for some 

opponent
of player i

player i

X
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The set Xα grows as the ordinal number α grows, and therefore at some point it
stabilises. If the game has finitely many positions – or, more generally, finite
outdegree – then it stabilises after a finite number of steps and ordinals are not
needed. This stable set is called the i-attractor of X. Over positions in the
i-attractor, player i has a memoryless strategy which guarantees that after a
finite number of steps, the game will use an edge from X, or end up in a dead
end owned by the opponent of player i. This strategy, called the attractor
strategy, is to choose the neighbour that belongs to Xα with the smallest
possible index α.

Induction step. Consider a parity game. By symmetry, we assume that the
minimal rank used in the game is an even number. By shifting the ranks, we
assume that the minimal rank is 0. For i ⇐ {0, 1} define Wi to be the set of
positions v such that if the initial position is replaced by v, then player i has a
memoryless winning strategy. Define U to be the vertices that are in neither W0

nor in W1. Our goal is to prove that U is empty. Here is the picture:

player 0
wins with 
a memoryless
strategy

player 1
wins with 
a memoryless
strategy

W W0 1

By definition, for every position in w ⇐ Wi, player i has a memoryless winning
strategy that wins when starting in position w. In principle, the memoryless
strategy might depend on the choice of w, but the following lemma shows that
this is not the case.
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Lemma 11.8. Let i ⇐ {0, 1} be one of the players. There is a memoryless strategy σi
for player i, such that if the game starts in Wi, then player i wins by playing σi.

Proof. By definition, for every position w ⇐ Wi there is a memoryless winning
strategy, which we call the strategy of w. We want to consolidate these strategies
into a single one that does not depend on w. Choose some well-ordering of the
vertices from Wi, i.e. a total ordering which is well-founded. Such a
well-ordering exists by the axiom of choice. For a position w ⇐ Wi, define its
companion to be the least position v such that the strategy of v wins when
starting in w. The companion is well defined because we take the least element,
under a well-founded ordering, of some set that is nonempty (because it
contains w). Define a consolidated strategy as follows: when in position w, play
according to the strategy of the companion of w. The key observation is that for
every play using this consolidated strategy, the sequence of companions is
non-increasing in the well-ordering, and therefore it must stabilise at some
companion v; and therefore the play must be winning for player i, since from
some point on it is consistent with the strategy of v. ↫

Define the game restricted to U to be the same as the original game, except that
we only keep positions from U. In general restricting a game to a subset of
positions might create new dead ends. However, in this particular case, no new
dead ends will be created: if a position controlled by player i has all of its
outgoing edges to W0 ∈ W1, then a short analysis shows that the position is
already in either W0 ∈ W1. Define A to be the 0-attractor, inside the game
limited to U, of the rank 0 edges in U (i.e. both endpoints are in U). Here is a
picture of the game restricted to U:
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A
rank 0 rank 0 rank 0 rank 0

player 0 can attract toward rank 0

Consider a position in A that is controlled by player 1. In the original game, all
outgoing edges from the position go to A ∈ W0; because if there would be an
edge to W1 then the position would also be in W1. It follows that:

(1) In the original game, if the play begins in a position from A and player 0
plays the attractor strategy on the set A, then the play is bound to either
use an edge inside U that has minimal rank 0, or in the set W0.

Consider the following game H: we restrict the original game to positions from
U ↗ A, and remove all edges which have minimal rank 0 (these edges
necessarily originate in positions controlled by player 1, since otherwise they
would be in A). Since this game does not use rank 0, the induction assumption
can be applied to get a partition of U ↗ A into two sets of positions U0 and U1,
such that on each Ui player i has a memoryless winning strategy in the game H:

U U0 1
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Here is how the sets U0, U1 can be interpreted in terms of the bigger original
game.

(2) In the original game, for every i ⇐ {0, 1}, if the play begins in a position
from Ui and player i uses the memoryless winning strategy
corresponding to Ui, then either (a) the play eventually visits a position
from A ∈ W0 ∈ W1 or an edge with rank 0; or (b) player i wins.

Here is a picture of the original game with all sets:

U U0 1

player 0
wins with 
a memoryless
strategy

player 1
wins with 
a memoryless
strategy

W W0 1

player 0 can attract toward rank 0

A
rank 0 rank 0 rank 0 rank 0

Lemma 11.9. U1 is empty.

Proof. Consider this memoryless strategy for player 1 in the original game:

• in U1 use the winning memoryless strategy inherited from the game
restricted to U ↗ A;

• in W1 use the winning memoryless strategy from Lemma 11.8;

• in other positions do whatever.

We claim that the above memoryless strategy is winning for all positions from
U1, and therefore U1 must be empty by assumption on W1 being all positions
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where player 1 can win in a memoryless way. Suppose player 1 plays the above
strategy, and the play begins in U1. If the play uses only edges that are in the
game H, then player 1 wins by assumption on the strategy. The play cannot use
an edge of rank 0 that has both endpoints in U, because these were removed in
the game H. The play cannot enter the sets W0 or A, because this would have to
be a choice of player 0, and positions with such a choice already belong to W0

or A. Therefore, if the play leaves U ↗ A, then it enters W1, where player 1 wins
as well. ↫

In the original game, consider the following memoryless strategy for player 0:

• in U0 use the winning memoryless strategy from the game H;

• in W0 use the winning memoryless strategy from Lemma 11.8;

• in A use the attractor strategy to reach a rank 0 edge inside U;

• on other positions, i.e. on W1, do whatever.

We claim that the above strategy wins on all positions except for W1, and
therefore the theorem is proved. We first observe that the play can never enter
W1, because this would have to be a choice of player 1, and such choices are
only possible in W1. If the play enters W0, then player 0 wins by assumption on
W0. Other plays will reach positions of rank 0 infinitely often, or will stay in U0

from some point on. In the first case, player 0 will win by the assumption on 0
being the minimal rank. In the second case, player 0 will win by the
assumption on U0 being winning for the game restricted to U ↗ A.
This completes the proof of memoryless determinacy for parity games, and also
of the Büchi-Landweber Theorem.

Problem 64. We say that a game is finite if it has no infinite plays, i.e. every play
eventually reaches a dead end. Prove that every finite game is determined,
i.e. exactly one of the players has a winning strategy.

Problem 65. Show that reachability games played on finite game graphs can be
solved in time proportional to the number of edges.
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Problem 66. Show that one player parity games can be solved in PTIME.

Problem 67. Show that solving parity games is in NP ⊤ coNP.

Problem 68. Consider the following game on a finite game graph V together
with function rank : V ↙ N. At every moment of the play, the owner of the
current vertex chooses a next vertex among current vertex successors. This
continues until some vertex repeats on the play, i.e. till the first loop is closed.
Then depending on the parity of the smallest rank on the loop the winning
player is determined. Prove that player i in the described game wins iff player i
wins in the parity game on the same arena.

Problem 69. Are Muller games positionally determined?

Problem 70. Show that Büchi games are positionally determined without direct
use of the same result for parity games.

Problem 71. Show that the winning condition Muller games is a Borel set, and
therefore Muller games are determined by Martin’s theorem. (Most of this
problem is looking up what Borel sets and Martin’s theorem are.)

Problem 72. Show that Muller games on finite arenas are not positionally
determined.

Problem 73. Construct an infinite game played on a finite game graph, in
which player 0 has a winning strategy, but not a winning finite memory
strategy. Remark: Notice that by Büchi-Landweber theorem the winning
condition in that game cannot be ω-regular.

Problem 74. Consider the following riddle. There are infinitely many dwarfs
(countably many). Every dwarf is given a hat, which is either red or green.
Every dwarf sees the color of every hat beside his own one. Every dwarf is
supposed to tell what is the color of his hat, such that only finitely many
dwarfs make a mistake. They can fix a strategy in advance, before getting their
hats, but they cannot communicate after getting their hats. Find a winning
strategy for dwarfs. Remark: Problems 74, 75 and 76 serve as a preparation for
the Problem 77.
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Problem 75. Show that there is a function inf-xor : {0, 1}ω ↙ {0, 1}, such that
changing one bit of an argument always changes the result. (The solution uses
the axiom of choice.)

Problem 76. Consider the following two player game, called Chomp. There is a
rectangular chocolate in a shape of n ⇓ k grid. The right upper corner piece is
rotten. Players move in an alternating manner, the first one moves first. Any
player in his move picks square of the chocolate that is not yet eaten, and eats
all pieces that are to the left and to the bottom from the picked piece. The
player who eats the rotten piece loses. Determine who has a winning strategy.

Problem 77. Show a game that is not determined.

Problem 78. Consider the following bisimilarity game played on a finite game
graph with vertices V equipped with a function rank : V ↙ N. Two players,
Spoiler and Duplicator start from a position (u, v) ⇐ V ⇓ V. The play proceeds in
rounds. If at the beginning of a round rank(u) ↖= rank(v) or u and v belong to
different players then Spoiler immediately wins. Otherwise Spoiler makes a
move to (u△, v) or (u, v△) such that u ↗↙ u△ or v ↗↙ v△, respectively. Then
Duplicator makes a move to (u△, v△) such that v ↗↙ v△ or u ↗↙ u△, respectively.
Next round starts from (u△, v△). If play continues infinitely long then Duplicator
wins. Show that if Duplicator has a winning strategy from position (u, v) then
the same player has a winning strategy in the parity game starting from u and
in the parity game starting in v.
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Parity games in quasipolynomial time

In this chapter, we show the following result.

Theorem 12.1. Parity games with n positions and d ranks can be solved in time
nO(log d).

The time in the above theorem is a special case of quasipolynomial time
mentioned in the title of the chapter. Whether or not parity games can be
solved in time which is polynomial in both n and d is an important open
problem. The presentation here is based on the original paper [15], with some
new terminology (notably, the use of separation).
Define a reachability game to be a game where the objective of player 0 is to visit
an edge from a designated subset. (We assume that the designated subset
contains all edges pointing to dead ends of player 1, so that winning by
reaching a dead end is subsumed by reaching designated edges.) Reachability
games can be solved in time linear in the number of edges, as is shown in
Exercise 64. Our proof strategy for Theorem 12.1 is to reduce parity games to
reachability games of appropriate size.

12.1 Reduction to reachability games

The syntax of a reachability automaton is exactly the same as the syntax of an
nfa. The semantics, however, is different: the automaton inputs an infinite
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word, and accepts if a final state can be reached (in other words, there is a
prefix which is accepted by the automaton when viewed as an nfa). For
example, the following reachability automaton

a,b

a a

accepts all ω-words over alphabet {a, b} which contain two consecutive a’s. A
reachability automaton is called deterministic if its transition relation is a
function.
Consider an infinite word over an alphabet {1, . . . , n}⇓ {1, . . . , d}. We view this
word as an infinite path in a game, where the positions are {1, . . . , n} and each
edge is labelled by a rank from {1, . . . , d}. Each letter describes a position and
the rank of an outgoing edge. An infix of such a path is called an even loop if it
begins and ends in the same vertex from {1, . . . , n} and the maximal rank in the
infix is even. Likewise we define odd loops. Here is a picture:

1 2 1 42 2

odd loop, max is 5 even loop, max is 4

1 62 2 1 55 2 1
3

a letter
{1,...,n}

{1,...,d}

2 2 45 3 1 41 4 4 52 5 1

The following lemma shows that to quickly solve parity games, it suffices to
find a small deterministic reachability automaton which separates the
properties “all loops are even” and “all loops are odd”.
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Lemma 12.2. Let n, d ⇐ {1, 2, . . .}. Assume that one can compute a deterministic
reachability automaton D with input alphabet {1, . . . , n}⇓ {1, . . . , d} that accepts
every ω-word where all loops are even, and rejects every ω-word where all loops are
odd, as in the following picture:

({1,...,n} × {1,...,d})
ω

all loops
are even

all loops
are odd

words accepted by the 
reachability automaton

Then a parity game G with n positions and d ranks can be solved in time

O((number of edges in G)⇓ (number of states in D)) + time to compute D

Proof. Let G be a parity game with vertices {1, . . . , n} and edges labelled by
parity ranks {1, . . . , d}. Let D be an automaton as in the assumption of the
lemma. Consider a product game G ⇓D, as defined on page 149, i.e. the
positions are pairs (position of v, state of A) and the structure of the game is
inherited from G with only the states being updated according to the parity
ranks on edges. Player 0 wins the product game G ⇓D if a dead end of player 1
is reached, or if the play is infinite and accepted by D (in the latter case, by the
assumption that D is a reachability automaton, this is done by reaching an
accepting state of D at some point during the play).

Claim 12.3. If player i ⇐ {0, 1} wins G, then player i also wins G ⇓D.
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Proof. By symmetry, take i = 0. Let σ0 be a winning strategy for player i in the
game G. By memoryless determinacy of parity games, we assume that σ0 is
memoryless. Let G0 be the graph obtained from the graph underlying the game
G by fixing the memoryless strategy σ0, i.e. by removing every edge that
originates in a position owned by player 0 and is not used by the strategy σ0.
Paths in the graph G0 correspond to plays in the game G that are consistent
with strategy σ0. Because σ0 was winning in the game G, all infinite paths in G
satisfy the parity condition. In particular, every loop in G0 that is accessible
from the initial vertex has even maximum. This means that every infinite path
in G0 is accepted by the automaton D. Therefore, the same strategy σ0 also wins
in the game G ⇓D. ↫

Because D is a reachability automaton, the product game G ⇓D can be solved
in time proportional to the number of its edges, which is consistent with the
bound in the lemma. ↫

12.2 A small reachability automaton for loop parity

By Lemma 12.2, to prove Theorem 12.1, it suffices to find a deterministic
automaton which separates “all loops even” from “all loops odd”, and which
has a quasipolynomial state space (and time to compute the automaton). As a
warm-up, we present a simpler construction which has nd/2 states.

Fact 12.4. Let n, d ⇐ {1, 2, . . .}. There is a deterministic reachability automaton with
nd/2 states which satisfies the properties in Lemma 12.2.

Proof. Consider a finite word over the alphabet {1, . . . , n}⇓ {1, . . . , d}. For a
rank a ⇐ {1, . . . , d}, a position in the word is called a-visible if its letter has rank
exactly a, and all later positions have ranks ⇑ a, as in the following picture
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ranks ≤4

rank 4

{1 42 2 1 62 2 1 5

4-visible position

5 2 1 3
2 45 3 1 41 4 4 22 3 1 3

1 2
3

a letter
{1,...,n}

{1,...,d}

2

After reading a word, for each even rank a, the automaton stores the number of
a-visible positions up to threshold n ↗ 1, i.e. the state space is a function

even numbers in {1, . . . , d} ↙ {0, 1, . . . , n}.

Whenever the threshold is exceeded, i.e. the number of a-visible positions
exceeds n for some a, the automaton accepts. If this happens, then the
pigeonhole principle says that the input word contains two a-visible positions
with the same label in {1, . . . , n}, and therefore the infix connecting these
positions forms an even loop with maximum exactly a. Therefore, if the
automaton accepts, then there is an even loop. Contrapositively: if there are
only odd loops, then the automaton rejects. On the other hand, if the input
word satisfies the parity condition, i.e. the maximal rank seen infinitely often is
an even number a, then at some point there will be at least n positions that are
a-visible. Therefore if the input satisfies the parity condition (in particular, if the
input has all loops even), then the automaton must accept. ↫

Note that in the above construction, the automaton satisfies a stronger property
than required by Lemma 12.2, namely it accepts all words satisfying the parity
condition (instead of only those where all loops are even).

Lemma 12.5. Let n, d ⇐ {1, 2, . . .}. There is deterministic reachability automaton with
nO(log d) states which satisfies the assumptions of Lemma 12.2.

The rest of Section 12.2 is devoted to proving the above lemma. Like in the
construction with nd/2 states, the automaton will reject all words which violate
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the parity condition, and not just those where all loops are odd. This stronger
property, however, is not used in the proof of Theorem 12.1.
We begin with a nondeterministic reachability automaton A which satisfies the
properties in the lemma in the following sense: if all loops are even, then at
least one run reaches an accepting state, and if all loops are odd, then all runs
avoid accepting states.
Choose the smallest k so that n < 2k. The nondeterministic automaton uses k
registers with names {0, . . . , k ↗ 1}. Each register stores a number from
{1, . . . , d}, or it is undefined. A state of the automaton is a valuation of these
registers or an accepting sink state, i.e. the number of states is at most
(1 + d)k + 1. By choice of k, we have

(d + 1)k ⇑

(d + 1)log(n+1) =

2log(n+1)·log(d+1) =

(n + 1)log(d+1)

and therefore the number of states in A is at most nO(log d). Our final
automaton D will be obtained by keeping the same states as A and removing
transitions so as to make the automaton deterministic, and hence the size of D
will be as required to make Theorem 12.1 true.
Here is a picture of a state of the automaton A:

more significant registers

empty register,
i.e. its value is 

undefined

register 4 register 3 register 2 register 1 register 0

4 356

We design the transition relation to respect following invariant.
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(*) Suppose that the automaton has read a finite word, and has not accepted
yet. Then the register valuation is nondecreasing on nonempty registers.
Furthermore, one can associate to each register r a word wr so that:

1. if r is empty then wr is empty; and

2. the word wk↗1wk↗2 · · ·w1w0 is a suffix of the input read so far; and

3. if a register r is nonempty and stores i ⇐ {1, . . . , d}, then:

(a) all words associated to nonempty registers < r use ranks ⇑ i;

(b) the word wr associated to r is a concatenation of two words:
• tail: 2r ↗ 1 words with even maximal rank;
• head: a word with maximal rank exactly i.

Here is a picture of the invariant. In the picture, we only draw the ranks of the
input letters, and not their labels in {1, . . . , n}. One reason is that the
automaton completely ignores the labels in its transition relation.

{ {

value of the register

word associated to register 3

smallest value of more
significant nonempty registers

a prefix of the input 
that is not in any head

or tail
(we only write ranks of 

input letters)

23-1

max 5

head

7 words
with even max

that is ≤ 6

tail

register 4 register 3 register 2 register 1 register 0

4 356

1 4 262 421 44 62 21 21 25 2214 1 152 14 1 1 24 1 2 131 1 242 521 38 42 21 61 44 22161 321 5 1 222 14 2 1 142 16 2 1 6 15

In the initial state, all registers are empty; this state clearly satisfies the
invariant. Before giving the state update function, we explain two properties of
the invariant.
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Lemma 12.6. Assume that the invariant is satisfied, all registers are nonempty and
store even ranks, and the input letter has even rank. Then the input contains an even
loop.

Proof. If register r stores an even rank, then the associated word wr is a
concatenation of 2r words with even maximal rank: one for the head, and 2r ↗ 1
for the tail. Therefore, if all registers are nonempty and store even ranks, and a
letter of even rank appears in the input, then a suffix of the input – including
the new input letter – can be factorised as a concatenation of

2k↗1 + 2k↗2 + · · · 20
︸ ︷︷ ︸

the registers

+ 1︸︷︷︸
the input letter

= 2k > n

words with even maximal rank. For each of these words, choose the position
which achieves the maximal rank. The pigeonhole principle says that two
positions achieving the maximal rank must have the same label. The infix
connecting these two positions is an even loop. ↫

The above lemma justifies the following acceptance criterion of the automaton:
if all of its registers are nonempty and store even ranks, and it reads an even
rank, then it accepts.

Lemma 12.7. Emptying any subset of the registers preserves the invariant.

Proof. It is enough to show that emptying any single register r preserves the
invariant. If r is the most significant nonempty register, then the word
associated to r is put into the prefix of the input that is not assigned to any
register. Otherwise, the word associated to r is appended to the head of the
closest more significant register. ↫

Transitions of the automaton. We now describe the transitions of the
automaton and justify that they preserve the invariant. Suppose that the
automaton reads a letter with rank a ⇐ {1, . . . , d}. Then the automaton allows
three types of transitions A, B and C, as described below.
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A. Assume that in the current state, all registers store values ↘ a, which
includes the special case when all registers are empty. Under this
assumption, the automaton is allowed to do nothing, i.e. not change the
state when reading a.

Why the invariant is preserved. If all registers are empty, then the new input
letter a becomes part of the input that is not associated to any register.
Otherwise, a is appended to the head of the least significant nonempty
register.

B. Let r be any register which satisfies conditions written in grey below:

5 3 2

nonempty registers >r 
store ranks ≥ a

6
{ no assumption on registers <r

register r  is nonempty and stores  rank <a{

Then the automaton can do the following update (the picture uses a = 4):

45

registers >r 
are not changed

6

{ registers <r are emptied

 the input letter is placed in register  r{

Why the invariant is preserved. We view this transition as a two-step
process. First, all registers < r are made empty, which preserves the
invariant by Lemma 12.7. Next, the input letter a is appended to the head
of the register r (which is now the least significant nonempty register),
and therefore becomes the new maximum in this head.
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C. Let r be any register which satisfies the conditions written in grey below:

6 2

nonempty registers >r 
store ranks ≥ a

67

{ registers <r are nonempty
and store even numbers

 register r is empty or stores an odd rank{
Under these conditions, and assuming that a is even, the automaton can
do the same update as in transitions of type B., i.e. it put a into register r
and empty all registers < r. Apart from the assumption that a is even,
there is no assumption that a is bigger than the contents of registers < r,
e.g. in the above picture a could be 2 or 4.

Why the invariant is preserved. We also view this transition as a two-step
process. First, we empty register r (but not the smaller ones), which
preserves the invariant by Lemma 12.7. Next, all of the words associated
to registers < r are concatenated and put into the tail of register r. As
explained in the proof of Lemma 12.6, after the update the tail of register
r consists of

2r↗1 + 2r↗2 + · · · 20 = 2r ↗ 1

words with even maximum, as required by the invariant. Finally, the
head of register r is set to the one letter word consisting of the new input
letter a. Here is a picture:
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when reading an
input letter with rank

4 246

6 2

2

2

1 4 262 421 44 62 21 21 24 2214 1 152 14 1 1 24 1 2 111 1 242 521 38 42 21 61 44 22161 321 5 1 222 14 2 1 142 16 2 1 6 15

1 4 262 421 44 62 21 21 25 2214 1 152 14 1 1 24 1 2 131 1 242 521 38 42 21 61 44 22161 321 5 1 222 14 2 1 142 16 2 1 6 15

4
words

7
words

1
word

2
words

}}
}

}

Since every transition of A preserves the invariant, we can use Lemma 12.6 to
conclude that if the invariant is preserved and the automaton accepts (which
happens when all registers store even ranks and a new even rank is read), then
the input contains at least one even loop. This gives the following inclusion:

all loops
are oddwords accepted by the 

nondeterministic 
reachability automaton

Define D to be the deterministic reachability automaton which is obtained from
A as follows: if there are several applicable transitions, then choose any
transition that maximises the most significant register that is modified. The
automaton D has fewer accepting runs than A, and therefore it still rejects all



170 PA R I T Y G A M E S I N Q U A S I P O LY N O M I A L T I M E

words that have only odd loops. Therefore, the proof of Lemma 12.5 is
completed by the following lemma.

Lemma 12.8. If the input has only even loops, then D accepts.

Proof. For i ⇐ {1, 2, . . .}, define Di to be a variant of the automaton D where the
number of registers is i instead of k. In particular, D = Dk. By induction on i,
we prove the following generalisation (*) of the lemma. The generalisation is
twofold: we allow any number of registers, and we weaken the assumption
from “only even loops” to “satisfies the parity condition”.

(*) Suppose that Di is initialised in an arbitrary state (not necessarily the
initial state with all registers empty). If the input satisfies the parity
condition, then Di accepts, i.e. it reaches a configuration where all
registers store even ranks and the input letter has even rank.

Suppose that we have already proved (*) for i ↗ 1, or i = 1 and there is nothing
to prove. We now prove (*) for i. Consider a run of Di on an input which
satisfies the parity condition, i.e. the maximal rank that appears infinitely often
is some even a ⇐ {1, . . . , d}. By the induction assumption, the most significant
register i must eventually become nonempty, because transitions that do not
affect the most significant register are transitions of the automaton Di↗1. Once
the most significant register becomes nonempty, then it stays nonempty. Wait
until the most significant rank a is seen again; either the automaton accepts
before this time, or otherwise it puts a into the most significant register. Once
the most significant register stores a, and the input contains only values with
rank ⇑ a, then the most significant register will keep on containing a. Again by
induction assumption, the automaton will eventually fill all registers < i with
even ranks and read an even letter, thus accepting. ↫

Problem 79. Consider the following variant of the automaton from
Lemma 12.5. Only odd numbers are kept in the registers, and the update
function is the same as in Lemma 12.5 when reading an odd number. When
reading an even number a, the automaton erases all registers, which store
values < a. Show that this automaton does not satisfy the properties required
in Lemma 12.5.
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Problem 80. Show that there is no safety automaton which:

• accepts all ultimately periodic words that satisfy the parity condition;

• rejects all ultimately periodic words that violate the parity condition.

Problem 81. Show that there is no safety automaton with < ⊥n/2ℵ states which
satisfies the properties required in Lemma 12.5.

Problem 82. A probabilistic reachability automaton is defined like a finite
automaton, except that each transition is assigned a probability – a number in
the unit interval – such that for every state, the sum of probabilities for
outgoing transitions is 1. The value assigned by such an automaton to an
ω-word is the probability that an accepting state is seen at least once. Show that
there is a probabilistic reachability automaton over the alphabet {1, . . . , n}ω,
with state space polynomial in n, that:

• assigns value 1 to words that have only even loops;

• assigns value 0 to words that have only odd loops.





13
Distance automata

The syntax of a distance automaton is the same as for a nondeterministic finite
automaton, except that it has a distinguished subset of transitions, called the
costly transitions. The cost of a run is defined to be the number of costly
transitions that it uses.

Example 40. Here is a cost automaton, with the costly transitions (one
transition, in this particular example) depicted in red.

b b

a,b a a,b

The nondeterminism of the automaton consists of: choosing the initial state
(first or second), and in case the first state was chosen as initial, then choosing
the moment when the second horizontal transition is used. This
nondeterminism corresponds to selecting a block of a letters, and the cost of a
run is the length of such a block, as in the following picture:
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a a b a a ba a a a b aa a

b
b

a,b
a

a,b

{block of a letters

↭
In this chapter, we prove the following theorem, originally proved by
Hashiguchi in [33]. The theorem was part of Hashiguchi’s solution [34] to the
star height problem, i.e. the problem of determining what is the least number of
nested Kleene stars that is needed to define a given regular language.

Theorem 13.1. The following problem is decidable:

• Input. A distance automaton.

• Question. Is the automaton bounded in the following sense: there is some
m ⇐ N such that every input word admits an accepting run of cost < m.

The problem in the above theorem was called limitedness in [33]. The algorithm
we use, based on [9], uses the Büchi-Landweber Theorem [14] discussed in
Chapter 11. The algorithm leads to an ExpTime upper bound on the limitedness
problem; the optimal complexity is PSpace, which follows as a special case
of [36, Theorem 2.2].

The limitedness game. Fix a distance automaton. For a number
m ⇐ {1, 2, . . . , ω}, consider the following game, call it the limitedness game with
bound m. The game is played in infinitely many rounds 1, 2, 3, . . ., by two
players called Input and Automaton. In each round:

• player Input chooses a letter of the input alphabet;
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• player Automaton responds with a set of transitions over this letter.

A move of player Automaton in a given round, which is a set of transitions, can
be visualised as a bipartite graph, which says how the letter can take a state to a
new state, with costly transitions being red and non-costly transitions being
black, like below:

p
q
r

p
q
r

For the definition of the game, it is important that player Automaton does not
need to choose all possible transitions over the letter played by player Input,
only a subset. Actually, as we will later see, in order to win, player Automaton
need only use tree-shaped sets like this:

every vertex in the right column
has at most one incoming edge

p
q
r

p
q
r

After all rounds have been played, the situation looks like this:

a a a b a b c bletters played by Input

sets of transitions
played by Automaton

...

The winning condition for player Automaton is the following:

1. In every column, at least one accepting state must be reachable from
some initial state in the first column; and

2. Every path contains < m costly edges. In case of m = ω, this means that
every path contains finitely many costly edges.



176 D I S TA N C E A U T O M ATA

If either of the conditions above is violated, then player Input wins. The
following lemma implies the decidability of the limitedness problem.

Lemma 13.2. For a distance automaton, the following conditions are equivalent, and
furthermore one can decide if they hold:

1. the automaton is limited;

2. there is some m ⇐ {1, 2, . . .} such that player Automaton wins the limitedness
game with bound m;

3. player Automaton wins the limitedness game with bound m = ω

Proof. The implications from 2 to 1 and from 2 to 3 are immediate. For the other
implications and the decidability part, the key is the observation that for every
choice of m ⇐ {1, 2, . . . , ω}, the limitedness game is a special case of a game
with a finite arena and an ω-regular condition. In particular, one can apply the
Büchi-Landweber theorem, yielding that a) the winner can be decided; b) the
winner needs finite memory. Condition a) shows that item 3 in the lemma is
decidable, while condition b) will be used in the implication from 3 to 2.

Implication from 1 to 2. We want to prove that if the automaton is limited,
then player Automaton has a winning strategy for some finite m, which will
turn out to be the same m as in the definition of limitedness. Define a run ρ of
the distance automaton over an input word w to be optimal if it has minimal
cost among runs that have the same input word, same source state and same
target state. The strategy of player Automaton is as follows. Suppose that
player Input has played a sequence of letters. Then the sets of transitions
chosen by Automaton are so that the transitions form a forest, consisting only
of optimal runs, where all reachable configurations (i.e. reachable by some run
from an initial state) are covered, as in the following picture:

optimal cost 4 

optimal cost 6

optimal cost 5

a a b a aaa
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When player Input gives a new letter, player Automaton responds with a set of
transitions which connect the new configurations to the previous ones in a
cost-minimising way.

Implication from 3 to 2. Suppose that player Automaton wins the limitedness
game with bound ω. We will prove that player Automaton can also win the
limitedness game with a finite bound.

By the Büchi-Landweber theorem, if player Automaton can win the game with
bound ω, then he can also win the game with a finite memory strategy. We will
show that this finite memory strategy is actually winning for a finite bound.

Suppose that the input alphabet of the original distance automaton is Σ. A finite
memory strategy of player Automaton in the limitedness game is a function

σ : Σ⇔ ↙ sets of transitions

which is recognised by a finite automaton, i.e. there is a deterministic finite
automaton such that σ(w) depends only on the state of the automaton after
reading w. We claim that this same winning strategy produces runs where the
cost is at most (number of states in the distance automaton) times (number of
states in the automaton recognising the strategy), thus proving the implication
from 3 to 2 in the lemma. To prove the claim, suppose that the strategy σ loses
in the game with the above described finite bound. Using a pumping argument
we find a loop that can be exploited by player Input to force player Automaton
into a path that has infinitely many costly edges, contradicting the assumption
that σ wins in the game with bound ω, as in the following picture:
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a a a b a b a b

p q r p q p r p q

letters played by Input

states of the automaton
recognising the strategy

- has at least one costly edge
- begins and ends in the same state for the distance automataon

if player Input keeps iterating
this word, then he wins

in the game with bound ω{
sets of transitions

played by Automaton
...

...

...

↫

Problem 83. Show that limitedness remains decidable when distance automata
are equipped with a reset operation. (The cost of a run is the biggest number of
costly transitions between some two consecutive resets.)

Problem 84. Let A be a distance automaton with input alphabet Σ. The
problem of limitedness of A on regular language L ∝ Σ⇔ asks whether there exists
n ⇐ N such that for every word w ⇐ L the cost of w with respect to A is not
bigger than n. Show that this problem is decidable.

Problem 85. We say that a regular language L has the finite power property if
there exists n ⇐ N such that L⇔ = L0 ∈ L1 ∈ . . . ∈ Ln. Show that one can decide
if a regular language has the finite power property. is decidable.

Problem 86. We say that languages K ∝ Σ⇔ and L ∝ Σ⇔ are separated by
language S ∝ Σ⇔ if K ∝ S and L ⊤ S = ∅. For u, v ⇐ Σ⇔ we say that u = a1 · · · ak
is a subsequence of v, denoted u ̸ v, if v ⇐ Σ⇔a1Σ⇔ . . . Σ⇔akΣ⇔. A language L is
called upward closed if for every u ⇐ L and u ̸ v also v ⇐ L. Show that deciding
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whether two given regular languages K and L are separated by some upward
closed language is decidable.

Problem 87. Let F be the class of finite unions of languages of the form
Σ⇔w1Σ⇔ . . . Σ⇔wkΣ⇔, where all wi are words from Σ⇔. Show that for given
regular languages K and L it is decidable whether they are separated by a set
from F.
Remark: Note that F contains all upward closed languages defined in the
Problem 86. To see this recall that Higman’s Lemma implies that there is no
infinite antichain in the ̸ order. Therefore every upward closed language has
finitely many minimal elements. Thus every upward closed language is a finite
union of languages of the form Σ⇔a1Σ⇔ . . . Σ⇔akΣ⇔, where all ai ⇐ Σ.

Problem 88. Show that it is decidable if a regular language is of star height
one, i.e. it can be defined by a regular expression that uses Kleene star, maybe
multiple times, but does not nest it.





14
Monadic second-order logic

In this section we discuss the connection between monadic second-order logic
(mso) and automata, specifically tree automata. The presentation here is largely
based on [58]. One of the crowning achievements of logic in computer science
is Rabin’s Theorem [46], which says that mso on infinite trees is decidable, and
has the same expressive power as automata. We prove Rabin’s Theorem in this
chapter.
Actually, we already have the tools to prove Rabin’s Theorem1, namely
McNaughton’s Theorem on determinisation of ω-automata from Chapter 10,
and memoryless determinacy of parity games from Chapter 11. It remains only
to deploy the appropriate definitions and put the tools to work.

14.1 Monadic second-order logic

Monadic second-order logic (mso) is a logic with two types of quantifiers:
quantifiers with lowercase variables ↓x quantify over elements, and quantifiers
with uppercase variables ↓X quantify over sets of elements. The term
”monadic” means that one cannot quantify over sets of pairs, or over sets

1Büchi says this in [13, page 2]: ”Given the statement of this lemma [the complementation lemma
for automata on infinite trees], and given McNaughton’s handling of sup-conditions by order vectors,
and given time, everybody can prove Rabin’s theorem.”
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triples, etc. The syntax and semantics of the mso are explained in the following
example.

Example 41. Suppose that we view an directed graph as relational structure
(i.e. a model as in logic), where the universe is the vertices and there is one
binary relation E(x, y) for the edges; this relation is not necessarily symmetric
because the graph is directed. The formula

↔x↔y E(x, y)

says that the graph is a directed clique. The formula only quantifies over
vertices, i.e. it uses only first-order quantification. Now consider a formula
which uses also set quantification, which says that the input graph is not
strongly connected:

↓X︸︷︷︸
exists a set

(↔x↔y x ⇐ X → E(x, y) ′ y ⇐ X)
︸ ︷︷ ︸

X is closed under outgoing edges

→ (↓x x ⇐ X) → (↓x x ↖⇐ X)︸ ︷︷ ︸
X is neither empty nor full

The above formula illustrates all syntactic constructs in mso: one can quantify
over elements, over sets of elements, one can test membership of elements in
sets, and one can use the relations available in the input model (in the case of
directed graphs, only one binary relation).
Here is another example for graphs. The following mso formula says that the
input graph is three-colourable (in the formula, the direction of the edges plays
no role):

↓X1↓X2↓X3 ↔x
∨

i
x ⇐ Xi

︸ ︷︷ ︸
every vertex is coloured

→ ↔x↔y E(x, y) ′
∧

i
x ↖⇐ Xi ↑ y ↖⇐ Xi

︸ ︷︷ ︸
no edge has both endpoints with the same colour

↭
We say that a property of relational structures over some vocabulary
(e.g. graphs as in the above example) is mso definable if there is a formula of
mso which is true exactly in those structures which have the property. In this
chapter, we use mso to describe properties of trees (finite and infinite). In the
next chapter, we talk about finite graphs.
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14.2 Finite trees

Define a ranked alphabet to be a finite set Σ where every element a ⇐ Σ has an
associated arity in {0, 1, . . .}. Here is a picture of a ranked alphabet:

letters of arity 0 arity 1 arity 2

A tree over a ranked alphabet Σ is defined as in the following picture:

if a node has a label of arity n,
then it has exactly n children

every node gets a label from the alphabet

children are ordered, so one can
speak of the first child, second child, etc.

In this section, Section 14.2, we will be interested only in finite trees. Trees as
defined above are sometimes called ranked and ordered. One can consider other
variants, where the label does not determine the number of children (unranked)
or where the siblings are not ordered (unordered). The goal of this section is to
show that, over finite trees, automata have the same expressive power as mso.

Tree automata. We begin by defining automata for finite trees.

Definition 14.1. A nondeterministic tree automaton consists of:

• an input alphabet Σ, which is a ranked alphabet;

• a finite set of states Q with a distinguished subset of root states R ∝ Q
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• for every letter a ⇐ Σ of rank n, a transition relation δa ∝ Qn ⇓ Q.

A tree automaton is called bottom-up deterministic if every transition relation is a
function Qn ↙ Q. An automaton is called top-down deterministic if it has one root
state and the transition relation is a partial function Qn A Q. A tree is accepted by the
automaton if there exists an accepting run, as explained in the following picture:

every node is 
labelled by a state

the state in the root
is in the designated 
set of root states

if a node has state q,
and children with 
states q ,.,.,q  , then
(q ,...,q  , q) belongs
to the transition
relation corresponding
to the label of the node there is no need for

initial states, because
leaves have transition
relations of arity 0r q

q

qp

p

r s1 n

1 n

Lemma 14.2. Languages recognised by nondeterministic tree automata are closed
under union, intersection and complementation.

Proof. For union, take the disjoint union of two nondeterministic tree automata.
Intersection can be done using a cartesian product, or by using union and
complementation. For complementation, we use determinisation: the same
proof as for automata on words – the subset construction – shows that for every
nondeterministic tree automata there is an equivalent one that is bottom-up
deterministic (top-down deterministic automata are strictly weaker). Since
bottom-up deterministic automata can be complemented by complementing the
root states, we get the lemma. ↫

mso on finite trees. We now define how mso can be used to define a tree
language, and show that tree languages defined this way are exactly those that
are recognised by tree automata.
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A tree (finite or infinite) over an alphabet Σ is viewed as a relational structure
in the following way:

for every label       there is a unary 
predicate     (x) which selects 
node with that label.        

the universe is the nodes of the tree

for every i (up to the maximal arity
in the alphabet) there is a binary 
relation for i-th child

1-st child

2-nd child
We say that an mso formula is true in a tree if it is true in the relational
structure described above. This only makes sense for formulas that have no free
variables (sentences), and which use the vocabulary (relation names) described
above, i.e. unary relations for labels and binary relations for child numbers.
We say that a set of finite trees L over a ranked alphabet Σ is mso definable if
there is an mso formula ϕ such that

ϕ is true in t iff t ⇐ L for every finite tree t over Σ

The formula does not need to check if its input is a finite tree. However, the set
of finite trees is mso definable, as a subset of all relational structures over the
appropriate set of relation names, and therefore the definition of mso definable
languages of finite trees would not be affected by requiring the formula to
check that inputs are finite trees.

Example 42. Suppose that the ranked alphabet is
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The set of trees with an odd number of nodes is mso definable, namely the
formula is “true”. This is because all trees over the above ranked alphabet have
an odd number of nodes. More effort is required for “odd number of leaves”.
Here the formula says that there exists a set X of nodes, which contains the
root, and such that every node belongs to X if and only if it has an even
number of children in X. ↭

The following theorem shows that for finite trees, tree automata have the same
expressive power as monadic second-order logic. The connection of between
automata and mso was originally discovered simultaneously by three authors:
Büchi [12], Elgot [26] and Trakthenbrot [59], in their quest to answer a question
by Tarski: “is the mso theory of the natural numbers with successor decidable”?
We present below the version of the result for finite trees, which has essentially
the same proof as for finite words (a word can be viewed as a tree over a ranked
alphabet where all letters have arity zero or one), and was first observed in [57].

Theorem 14.3. The following conditions are equivalent for every set of finite trees over
a finite ranked alphabet:

1. definable in mso;

2. recognised by a nondeterministic (equivalently, bottom-up deterministic) tree
automaton.

Proof.

1 ℜ 2 Let A be a nondeterministic tree automaton. We show that mso can
formalise the statement “there exists an accepting run of A”. Without loss
of generality, assume that the states of A are numbers {1, . . . , n}. Here is
the sentence that defines the language of A:
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for every node, a transition of the automaton is used

every node has exactly one state

the root has a root state

there exists a 
labelling of 

nodes with states {
Formally speaking, root(x) is a shortcut for a formula which says that x
is not a child of any node, and childi(x) ⇐ Xqi is a shortcut for a formula
which says that there exists a node that is the i-th child of x (because we
have children as relations and not functions) and belongs to qi.

1 ′ 2 By induction on formula size, we show that every mso formula can be
converted into an automaton. The main issue is that when we go to
subformulas, free variables appear, and we need to say how an
automaton deals with free variables. Consider a formula ϕ of mso whose
set of free variables is X (some of these variables are first-order, some are
second-order). To encode a tree together with a valuation of free variables
X, we use a tree over an extended alphabet like this:
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every node is labelled by:
- a label from the original alphabet 
- a subset of the variables 

the arity is inherited
from  the original
alphabet

each first-order variable
appears exactly once

{y,X}

{x}

∅

∅

∅∅

{X}

{Y}

A tree as above is said to satisfy ϕ if ϕ is true under the valuation which
maps each first-order variable to the unique node that has it in the label,
and maps each second-order label to the set of nodes that have it in their
label. Define the language of ϕ to be the trees (over the extended alphabet
with sets of variables) that satisfy ϕ. By induction on the size of an mso
formula, we show that its language, as defined above, is recognised by a
tree automaton. For Boolean operations we use Lemma 14.2, for
existential quantification we use nondeterminism.

↫

14.3 Infinite trees

We now move to infinite trees and Rabin’s Theorem. For simplicity of notation,
we use ranked alphabets where all letters have rank 2. For such alphabets, the
set of nodes is always the same, and can be identified with
{left child, right child}⇔. For arbitrary alphabets, infinite trees can have various
shapes, e.g. an infinite tree is allowed to have subtrees that are finite. To
recognise properties of infinite trees, we use parity automata.

Definition 14.4. The syntax of a nondeterministic parity tree automaton consists of

• an input alphabet Σ, which is a finite ranked set where all letters have rank 2;
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• a finite set of states Q with a distinguished root state;

• a parity ranking function Q ↙ N;

• for every letter a ⇐ Σ, a set of transitions δa ∝ Q2 ⇓ Q.

The automaton accepts an infinite tree over Σ if there exists an accepting run as
explained in the following picture:

the states are consistent
with the transition
relation as for finite trees

the state in the root
is the designated 
root state

on every infinite branch,
the maximal parity rank
appearing infinitely often 
is even

r q

q

qp

p

r s

We now state Rabin’s Theorem. Rabin’s original proof did not use the parity
acceptance condition, but what is now called the Rabin condition, see [58].

Theorem 14.5 (Rabin’s Theorem). The following conditions are equivalent for every
set of (necessarily) infinite trees over a finite ranked alphabet where all letters have
arity 2:

1. definable in mso;

2. recognised by a nondeterministic parity tree automaton.

The proof has the same structure as in the case of finite trees. The only
difference is that for infinite trees, closure under complementation, as stated in
the following lemma, is far from obvious.
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Lemma 14.6 (Complementation Lemma). Languages recognised by
nondeterministic parity automata are closed under complement.

The difficulty in the Complementation Lemma is that we use only
nondeterministic automata; in fact no deterministic model for infinite trees is
known that would be equivalent to mso. Rabin’s Theorem will follow
immediately once the Complementation Lemma is proved, so the rest of this
chapter is devoted to proving the Complementation Lemma.
A corollary of the statement of Rabin’s Theorem as in Theorem 14.5, and of
decidability of emptiness for nondeterministic parity tree automata, is that the
following logical structure has decidable mso theory: the universe is the nodes
of the complete binary tree, and there are two binary relations for left child and
right child. This corollary is the original statement of Rabin’s Theorem, see [46,
Theorem 1.1.].

Alternating parity tree automata. To show complementation of
nondeterministic tree automata, we pass through a more powerful model. The
syntax of an alternating parity tree automaton is defined the same as in
Definition 14.4 for nondeterministic automata, with the following differences:
(1) to each state we assign an owner, which is either “player 0” or “player 1”;
and (2) for each letter a, the transition relation has form

δa ∝ Q ⇓ {ε, 0, 1}⇓ Q.

To define whether or not an automaton A accepts an input tree t over Σ, we
consider a parity game GA(t) defined as follows. The positions of the game are
pairs (state of the automaton, node of the input tree). The initial position is
(root state, root of the tree). Suppose that the current position is (q, v), and
assume that state q is owned by player i ⇐ {0, 1}. In such a position, player i
chooses some pair (x, p) such that (q, x, p) belongs to the transition relation
corresponding to the label of v. If there is no such pair, then player i loses
immediately. Otherwise, the new position is set to (p, v · x), and the play
continues. If the play continues forever, then the winner is declared using the
parity condition, i.e. player 0 wins if and only if the maximal rank of a state
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appearing infinitely often is even. This completes the definition of the game
GA(t). A tree t is accepted if player 0 has a winning strategy in the game.

Theorem 14.7 (Dealternation Theorem).

1. For every nondeterministic parity tree automaton, one can compute an
alternating one that recognises the same language.

2. Languages recognised by alternating parity tree automata are closed under
complement.

3. For every alternating parity tree automaton, one can compute a nondeterministic
one that recognises the same language.

Before proving the above result, we show how it completes the proof of the
Rabin’s Theorem. Recall that the only missing ingredient was the
Complementation Lemma. Using the Dealternation Theorem, we can easily
complement nondeterministic parity tree automata: (1) make the automaton
alternating, (2) complement it, (3) make it nondeterministic again.

Proof of Theorem 14.7. For item 1, let A be a nondeterministic parity tree
automaton with states Q. The simulating alternating automaton has states
Q + Q2. The initial state is the root state of A, and the transitions are explained
in the following picture:
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The parity condition for states from Q is inherited from the original
nondeterministic automaton, and all states from Q2 are assigned the least
important rank.
For item 2, let A be an alternating parity tree automaton. Define A to be the
alternating parity tree automaton obtained from A by swapping the roles of
players 0 and 1, and incrementing the ranking function so that even ranks
become odd and vice versa, but the precedence order on ranks is maintained.
To prove that A is the complement of A, we show below that the following
conditions are equivalent for every input tree t:

1. A accepts t;

2. player 0 has a winning strategy in the game GA(t);

3. player 1 has a winning strategy in the game G
A
(t).

4. player 1 does not have a winning strategy in the game G
A
(t).

5. A rejects t.

The equivalences 1 ⇒ 2 and 4 ⇒ 5 are by definition of the language recognised
by an alternating automaton. The equivalence 2 ⇒ 3 is by construction of A.
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The equivalence 3 ⇒ 4 is because G
A
(t) is a parity game, and it is therefore

determined, i.e. one of the players has a winning strategy. The reason why this
proof works is that: (a) the parity condition is self-dual, which allows one to
define A; and (b) games with the parity condition are determined.
It remains to show the last item of the theorem, namely that alternating parity
tree automata can be made nondeterministic. Suppose that A is an alternating
parity tree automaton, with states Q and input alphabet Σ. By memoryless
determinacy of parity games, it follows that a tree t is accepted if and only if
player 0 has a memoryless winning strategy σ0 in the game GA(t). We will find
a nondeterministic parity automaton on trees which checks this. Define Γ to be
an alphabet which consists of functions from states controlled by player 0 to
pairs in Q ⇓ {ε, 0, 1}. Here is a picture of a such a letter:

states owned by 0
states owned by 1

A memoryless strategy σ0 for player 0 can be represented as a tree over this
alphabet as follows: the label of node v is the function which maps state q to
the pair (p, x) such that strategy σ0 goes from (q, v) to (p, v · x).
We will show that the language

{ (t, σ0)︸ ︷︷ ︸
tree over Σ ⇓ Γ

representing t and σ0

: σ0 is a memoryless strategy for player 0 in GA(t)}

(14.1)

is recognised by a (even deterministic top-down) parity automaton on trees.
This will complete the proof of the Dealternation Theorem, because a
nondeterministic parity automaton can guess the part of the labelling that
describes σ0. The key observation is the following claim. (A branch is defined
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to be an inclusion-wise maximal set of nodes that are totally ordered by the
descendant relation.)

Claim 14.8. There is a nondeterministic parity automaton B over ω-words over the
alphabet Σ ⇓ Γ ⇓ {0, 1} such that the following conditions are equivalent for every tree
t, branch π and memoryless strategy σ0 for player 0:

1. There exists a strategy of player σ1 such that if the players use strategies (σ0, σ1)

in the game GA(t), then the resulting play stays on the branch π and violates
the parity condition.

2. The automaton B accepts the ω-word (t, σ0)|π defined as follows: the i-th letter
is of the label of the i-th node in π as well as the turn that π takes after that
node. Here is a picture:

a branch πa branch π

Proof. The automaton B uses nondeterminism to choose the moves of the
strategy σ1. ↫

Apply the above claim, yielding a nondeterministic parity automaton. By
McNaughton’s Theorem, see Chapter 10, there exists an equivalent
deterministic parity automaton, call it D. It is not difficult to see that a
memoryless strategy σ0 wins in the game GA(t) if and only if every branch in
the tree (t, σ0) is rejected by the automaton D. This can be checked by a
(deterministic top-down) parity automaton on trees, which runs the automaton
D on every branch (and has the acceptance condition complemented). ↫
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Problem 89. The translation from mso to automata in Theorem 14.3 does an
exponential blowup whenever it determinises the automaton, and therefore an
upper bound on the running time is n-fold iteration of exponential, where n is
the size of the formula. Here is a matching lower bound. Consider mso on
words, i.e. there is a successor relation and unary predicates for the labels.
Show that for every n, there is a formula of mso (in fact, first-order logic is
enough) which has size polynomial in n and is true in a unique word which
has length

22222···
2222

︸ ︷︷ ︸
n times

Problem 90. Show that the set N⇔ equipped with the prefix relation has
decidable mso theory.

Problem 91. Show that emptiness is polynomial time and universality is
ExpTime-complete for nondeterministic tree automata on finite trees.

Problem 92. Show that emptiness for nondeterministic parity tree automata
reduces in polynomial time to solving parity games.

Problem 93. Determine whether the following tree languages are regular:

1. trees with an even number of nodes;

2. trees with an even number of a-labelled nodes;

3. trees over leaf alphabet 0, 1 and internal alphabet ↑,→ which evaluate to
true when treated as boolean expressions;

4. balanced trees (every leaf is at the same depth).

Problem 94. Determine which of the following four variants of tree automata:
deterministic / nondeterministic, top-down / bottom-up tree automata are
equivalent.
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Problem 95. Define the yield of a tree to be the word composed from labels of
its leaves written in infix order. Show that for every L ∝ Σ⇔ the following are
equivalent

1. L is context-free;

2. L is the set of yields of some regular tree language.

Problem 96. Show that deterministic top-down tree automata cannot recognize
the language ”some node has label a”.

Problem 97. Show that the language of words of even length is definable in
mso.

Problem 98. Show that the following languages of infinite trees are regular
(accepted by some nondeterministic automaton):

1. on every path, the sequence of labels belongs to a given ω-regular
language L;

2. some node has label a;

3. in every subtree some node has label a.

Problem 99. In Existential Second Order Logic (↓SO) one can write ↓R1,...,Rn φ,
where Ri are any relations (possibly of arity greater than 1) and φ is a first
order sentence (which of course may use Ri). Show that the language of words
of composite (non-prime) length is expressible in ↓SO.

Problem 100. Consider the following game. There are two players Insider and
Outsider. They choose in an alternating manner bits: 0 or 1 and create in that
way an ω-word w. If w belongs to a given regular language W ∝ {0, 1}ω then
Insider wins a play, otherwise Outsider wins. Show that it is decidable to check
which player has a winning strategy in that game. Remark: use MSO logic.
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Treewidth

In this chapter, by graphs, we mean finite undirected graphs. We treat a graph
as a logical structure, where the universe is the vertices and there is a binary
edge relation, which is necessarily symmetric (for a different representation, see
the exercises). We present Courcelle’s Theorem, which says that every formula
of mso on graphs can be evaluated in linear time on graphs that have bounded
treewidth. Treewidth is a graph parameter, i.e. every graph has a some
treewidth, which is a natural number. The treewidth of a graph describes the
smallest width of a tree decomposition that can produce the graph. The general
idea is that small width tree decompositions can be obtained for graphs that are
similar to trees. Treewidth is not the only way of quantifying similarity to a
tree, alternatives include cliquewidth, see [23, Section 2.5] or treedepth [42,
Chapter 6].

15.1 Treewidth and how to compute it

Consider a graph G. Define a tree decomposition of G to be a tree, where each
node of the tree is labelled by a set of vertices in the graph, called the bag of the
node, subject to conditions (1) and (2) depicted in the following picture:
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A node of the
tree decomposition
with its bag

1

2

2

3

2
3

45

1

2

4

6

5

6
7

1

2

7

1

45

a graph one of its tree decompositions

(2) For every vertex v of the graph, 
the set of nodes of the tree
decomposition which have v in
their bag is connected by the child
relation in the tree decomposition (1) Every vertex of the graph 

is in at least one bag. Also,
every edge of the graph
is in at least one bag, i.e.
both of its endpoints are
in at least one bag

Example: 
nodes that have       in their bag

In the tree decomposition, we allow nodes to have unbounded arity, i.e. there is
no requirement that each node has at most two children. The tree in the tree
decomposition is unordered (i.e. there is no ordering on the siblings), but it is
rooted, i.e. it makes sense to talk about descendants and children. Define the
width of a tree decomposition to be the maximal size of a bag minus one. In the
picture above, the width is 2, because the maximal bag size is 3. The reason for
the minus one is so that trees have treewidth one. Another reason is that the
width of a tree decomposition is the intersection between neighbouring bags
(assuming the tree decomposition does not use the same bag twice, which can
be assumed without loss of generality). The treewidth of a graph is the minimal
width of a tree decomposition of it. Treewidth is a fundamental concept in
graph theory, which plays a prominent role in the graph minor project of
Robertson and Seymour.

An alternative way of drawing tree decompositions is in the following picture:
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black vertices are in the bag 
of a node or its descendants

bag of the node

gray vertices
are the rest

Fact 15.1. If a graph has treewidth k, then the number of edges in the graph is at most
k · (k + 1)/2 times the number of vertices.

Proof. A tree decomposition can always be modified so that the bag of a node
contains at least one vertex that is not present in the bags of its descendants.
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Therefore, the number of nodes in the tree decomposition is at most the
number of vertices in the underlying graph. Each edge must be present in some
node, and each node can have at most k · (k + 1)/2 edges, which proves the fact.
The bound in the fact is optimal, as witnessed by a clique over k + 1 vertices. ↫

Computing a tree decomposition. We present an algorithm that computes
tree decompositions of approximately optimal width (at most four times worse,
see below for the exact statement) and which runs in quadratic time when the
treewidth is fixed. The algorithm is from Robertson and Seymour, see also [24,
Theorem 7.18].

Theorem 15.2. There is a function f : N ↙ N and an algorithm which runs in time
f (k) · n2 that approximates tree decompositions in the following sense:

• Input. k and a graph with n vertices;

• Output. A tree decomposition of the graph which has width < 4k, or a
certificate that the graph has treewidth ↘ k.

The algorithm from the theorem is not optimal. The optimal algorithm, by
Bodlaender [8], runs in linear time instead of quadratic time, and computes tree
decompositions of optimal width (i.e. < k instead of < 4k). The function f (k) is
exponential, and there is little hope for improvement, because the following
problem is np-complete [5]: given k and a graph, decide if the graph has
treewidth at most k. The theorem gives a (prototypical) example of a an
algorithm that is fixed parameter tractable, i.e. the input has two parameters k, n
and the running time is of the form:

some computable function a polynomial with 
degree independent of k

The algorithm uses the following lemma on computing separators. Recall that a
separator of vertex sets X and Y in a graph G is a set of vertices S disjoint from



T R E E W I D T H A N D H O W T O C O M P U T E I T 201

X ∈ Y such that G ↗ S does not contain any path connecting X with Y, as in the
following picture:

X

X

Y
Y

Y

separator
of X and Y

connected component
after removing the 
separator

Lemma 15.3. Given a graph G and disjoint sets of vertices X, Y, one can compute a
separator of minimal size in time

O((number of edges + number of vertices) · (size of the separator)).

We do not prove the above lemma, it can be shown using the Ford-Fulkerson
algorithm for computing maximum flow, see the discussion in [24, p. 198].
When the treewidth is fixed, the number of edges is linear in the number of
vertices, and the size of the separator is bounded by a function of k (see the
proof of Lemma 15.4), and therefore the running time of the algorithm is linear.
The main step in proving Theorem 15.2 is the following lemma.

Lemma 15.4. Let k ⇐ N. There is a linear time algorithm which does this:

• Input. k and a graph G with ⇑ 3k distinguished vertices;

• Output. A certificate that the graph has treewidth ↘ k, or a set S of ⇑ k vertices
so that G ↗ S has at least two connected components, and each connected
component has ⇑ 2k distinguished vertices.
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Proof. We begin with the algorithm, and then justify why it succeeds on graphs
of treewidth < k. We enumerate all possible partitions of the distinguished
vertices into three parts as follows

distinguished vertices

X S Y
size ≤ 2k size ≤ 2ksize ≤ k

1

The idea is that S1 is the intersection of the separator with the distinguished
vertices. The number of such partitions is exponential in k, but is a constant if k
is assumed to be fixed. For each such partition, compute a minimal size
separator S2 of X and Y in the graph G ↗ S1, as depicted in the following
picture

X Y

S2

S1

Separator of 

in the graph 

and

Report success if the size of S1 ∈ S2 is at most k, and return S1 ∈ S2 as the
separator. This completes the algorithm. The running time is linear, because the
size of the separator is fixed, and the number of edges is linear in the number
of vertices by Fact 15.1.
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We now justify that if G has treewidth < k then the algorithm succeeds. If the
graph has treewidth < k, then there is a tree decomposition where all bags have
size ⇑ k. Let t be this tree decomposition. Choose a node x of the tree
decomposition so that half or more of the distinguished vertices of G appear in
bags of x and its descendants, but this is no longer true for any of the children
of x. Here is a picture:

the blue subtree has at least half
of the distinguished vertices

each red subtree has less than half
of the distinguished vertices

the complement of the blue subtree 
has less than half of the distinguished vertices

x

Define S to be the bag of x. The size of S is ⇑ k. By choice of x we know that
every connected component of G ↗ S has at most half of the distinguished
vertices. In particular, there must be at least two connected components,
because

3k︸︷︷︸
distinguished

vertices

> k︸︷︷︸
distinguished
vertices in S

+ 3k/2︸︷︷︸
distinguished

vertices in each
connected component

For each connected component of G ↗ S, we count the number of distinguished
nodes in that component; this is a number that is at most half of 3k. The
following claim, when applied to the numbers of distinguished vertices in the
connected components of G ↗ S, shows that the connected components can be
grouped into two groups, so that each group has at most 2k distinguished
vertices, thus proving the lemma.
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Claim 15.5. Let n1 ↘ n2 ↘ · · · ↘ np be numbers in {1, . . . , 2k} with sum ⇑ 3k. Then

⇑ 2k︷ ︸︸ ︷
n1 + · · ·+ ni

⇑ 2k︷ ︸︸ ︷
ni+1 + · · ·+ np for some i

Proof. Take the first i such that the sum of the first i elements is ↘ k. ↫

↫

Proof of Theorem 15.2. We use a more detailed statement of the algorithm, as
described below.

• Input k and a graph with ⇑ 3k distinguished vertices;

• Output. A certificate that the graph has treewidth ↘ k, or a tree
decomposition of the graph which has width < 4k and where the root
bag consists exactly of the distinguished vertices.

Suppose that G is the graph. If there are < 3k distinguished vertices, we add
some arbitrary vertices to make the set have size exactly 3k. Apply Lemma 15.4,
computing S, X and Y. If the input graph has treewidth < k then the algorithm
from the lemma must succeed. Find all connected components of the graph
G ↗ S, of which there are at least two. Each connected component has ⇑ 2k
distinguished vertices. Here is a picture:

separator S

distinguished vertices
not distinguished vertices

connected component
of G – S



T R E E W I D T H A N D H O W T O C O M P U T E I T 205

For each connected component U of the graph G ↗ S, define GU to be the graph
induced by U ∈ S. This graph is smaller than G, because G ↗ S has at least two
connected components. Here are are the graphs GU for our picture above:

For each of the graphs GU , recursively call the algorithm, with the
distinguished vertices being S plus the original distinguished vertices from U.
We are allowed to do the recursive call, since U has ⇑ 2k distinguished vertices
and S has at ⇑ k vertices. Combine the tree decompositions yielded by the
recursive calls into a single tree as follows:
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root bags of tree 
decompositions
from recursive call

distinguished vertices
plus separator S
(size ≤4k)

distinguished vertices
only

It is not difficult to check that this is a tree decomposition of G. The size of bags
is ⇑ 4k, and therefore the width of the decomposition is < 4k (recall that the
width was size of bags plus one). The algorithm does a linear computation,
followed by recursive calls to smaller instances; and therefore its running time
is quadratic. ↫

15.2 Courcelle’s Theorem

In this section we prove Courcelle’s Theorem, which says that mso can be
evaluated efficiently on graphs of bounded treewidth. The key ingredient is the
following lemma, which is proved the same way as Courcelle’s original result
that mso definable graph properties are recognisable, see [22, Theorem 4.4].

Lemma 15.6. For every k ⇐ N and every formula of mso ϕ on graphs, there is a
linear time algorithm which does the following:

• Input. A graph together with a tree decomposition of width ⇑ k;
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• Question. Does the graph satisfy ϕ?

The proof of the lemma is essentially this: we view the tree decomposition as a
tree over a finite alphabet, convert the formula ϕ into a tree automaton, and
then run the tree automaton over the tree in linear time. If we combine the
lemma with an algorithm that computes tree decompositions, we do not need
to get the tree decomposition on input. This yields the following formulation of
Courcelle’s Theorem (the algorithm for computing tree decompositions in these
notes gives only a quadratic running time, for the linear time bound one needs
the algorithm of Bodlaender from [8]):

Theorem 15.7 (Courcelle’s Theorem). For every k ⇐ N and every formula of mso ϕ

on graphs, there is a linear time algorithm evaluates ϕ on graphs of treewidth ⇑ k.

The rest of this chapter is devoted to proving Lemma 15.6. To this end, we
present a more algebraic way of defining treewidth, so that tree decompositions
can be viewed as trees over a finite ranked alphabet.

The algebra of tree decompositions. Define a sourced graph to be a graph
with some but not necessarily all vertices being assigned natural numbers. The
vertices with numbers are called the sources and the numbers are called the
source names. Each source name can be used for at most one source. A width k
sourced graph is one where the source names are from {0, . . . , k}, note that
k + 1 source names are allowed; this corresponds to bags having size k + 1 in a
width k tree decomposition. A sourced graph with no sources is the same as a
graph. Here is a picture of a width 4 sourced graph, which does not use source
names 0 and 3:

1
2

4
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The purpose of sourced graphs is to combine them using the following fusion
operation. The fusion operation inputs two sourced graphs, and outputs their
disjoint union with each pair of sources that have the same name being merged
together into a single vertex, as in the following picture

3

1

2

2
3

4

4

1

2

4

two sourced graphs their fusion

Besides fusion, we also use an operation that forgets some source names,
illustrated below:

1

2

4

2

a sourced graph after forgetting 1, 4.

For k ⇐ N, define the algebra of width k sourced graphs to be the algebra where the
universe is width k sourced graphs, and which is equipped with a binary
fusion operation and a family of unary forget operations (one for every subset
of source names). Here is a term in the algebra of width k sourced graphs that
generates a cycle of length 6:
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1

1

1

1 1

2

2 2

2 2

0

0

0 0

0

0

fuse
forget 2

fuse
forget 0

fuse
forget 2

fuse
forget 0, 1, 2

Fact 15.8. A graph has treewidth k if and only if (when viewed as a sourced graph
without any sources) it can be generated by a term in the algebra of width k sourced
graphs, starting with constants that have at most k + 1 vertices.

Proof. We only do the top-down implication. Consider a tree decomposition (in
the standard, non-algebraic way) of width k. Using at top-down greedy
algorithm, one can colour the vertices of the graph with colours {0, . . . , k} so
that for each bag of the tree decomposition, all vertices in the bag have different
colours. For a node x of the tree decomposition, define a sourced graph as
follows:

• the graph is the subgraph induced by the union of bags of x and its
descendants (this is sometimes known as the cone of node x);
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• the sources are the bag of x, with source names taken from the colouring.

By induction on the number of descendants of x, we show that the sourced
graph corresponding to x in the above sense can be generated by a term in the
algebra of sourced graphs as in the statement of the fact. In the induction step,
we do the following. For every child y of x, we combine the sourced graph
generated by the subtree of y with the bag of x as follows:

sourced graph of y

forget source name 0, because
it is not in the bag of x

fuse

bag of x

0

0

1 1

2 2

Then we fuse all of the resulting graphs, with y ranging over children of x. ↫

A term as in Fact 15.8 can be viewed as a tree over a ranked alphabet Σk where:

• leaves are width k sourced graph with at most k + 1 vertices;

• unary nodes are forget operations for subsets I ∝ {0, . . . , k};

• binary nodes all have the same label “fuse”.

A width k tree decomposition can be converted into a corresponding tree over
the above alphabet in linear time. Since the fusion operation as used in Σk has
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arity two, the conversion produces tree decompositions with binary branching
(which can break properties, like no bag being used twice). By Theorem 14.3,
for finite trees over alphabet Σk, mso is equivalent to tree automata. Since tree
automata can be evaluated in time linear in the size of the input tree (it is easier
to use the bottom-up deterministic variant), it follows that mso formulas on
trees can also be evaluated in linear time. Therefore, Lemma 15.6 will follow
once we prove the following lemma.

Lemma 15.9. Let k ⇐ N and let ϕ be an mso formula over graphs. There is a mso
formula ϕ̂ on trees over alphabet Σk such that

t satisfies ϕ̂ iff the graph of t satisfies ϕ

holds for every width k tree decomposition, viewed as a tree over Σk.

Proof. Consider a tree t as in the statement of the lemma. To a node x in the
tree and a source name i ⇐ {0, . . . , k}, there corresponds a vertex [x, i] of the
graph generated by t in the natural way, as depicted in the following picture:

1

1 2

2 2

0

0

0

[x, 0] and [y, 0] are
the same vertex, 
namely this one

fuse
forget 2

fuse
forget 0, 1, 2

x

y

The encoding (x, i) ∞↙ [x, i] is partial, because it is undefined if the source name
i is not present in the sourced graph that is generated by the subtree of x. It is
not hard to see that for every source names i, j ⇐ {0, . . . , k} the following binary
relations on nodes x, y of t are definable in mso:
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• [x, i], [y, i] are both defined and equal;

• the graph has an edge from [x, i] to [y, j].

Using the above relations, one can simulate an mso formula ϕ over the graph
generated by t using an mso formula over t itself. When ϕ quantifies over a set
of vertices U, then ϕ̂ quantifies over k + 1 sets of nodes, namely:

{x : [x, 0] ⇐ U}, . . . , {x : [x, k] ⇐ U}.

The professional terminology for the construction described above is “the
graph generated by t can be produced from t using an mso transduction”,
see [23, Section 1.7]. ↫

Problem 101. Show that a graph has treewidth 1 iff it is a forest.

Problem 102. Compute the treewidth of the clique of n vertices.

Problem 103. Consider the following game on a graph G between k cops and
one robber. The robber has a fast motorbike, cops have helicopters. In between
moves everybody occupies one vertex. A round of the game is played as
follows:

• some subset of the cops starts flying their helicopters and declares where
they are going to land (different cops might land in different places) at
the end of the round; the remaining cops stay on the ground,

• the robber moves along a path; he cannot pass through vertices that are
occupied by cops who are on the ground,

• the cops in helicopters land on the declared vertices.

The cops win if they manage to land on the vertex with the robber. Show that if
a graph has treewidth k then k + 1 cops have a winning strategy in this game.
Remark: if a graph has treewidth k then the robber has a winning strategy
against k cops, but this is harder to show.
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Problem 104. Let Gk be a grid k ⇓ k (with k2 vertices). Show that Gk has
treewidth which is either k or k ↗ 1. The actual answer is k, but showing this is
a bit technical.

square grid of dimension 5

Problem 105. Determine the treewidth of the full bipartite graph with n
vertices on the left and n vertices on the right.

Problem 106. Show that the vertex cover problem can be solved on a graph G
in time 2O(tw(G)) · nO(1).

Problem 107. A graph G is called a minor of graph H, denoted G ↬ H, if G can
be obtained from H by a sequence of operations of one of the following three
types: 1) deleting a vertex, 2) deleting an edge, 3) contracting an edge, i.e.
unifying two endpoints of this edge. Show that G ↬ H implies tw(G) ⇑ tw(H).

Problem 108. Show that there exists a function f such that if a graph G is
connected then it has a walk (a path which is allowed to visit vertices multiple
times) that visits all vertices and visits every edge at most f (tw(G)) times.
Show that this is no longer true if we want to limit the number of visits to every
vertex.

Problem 109. Show that the following problem is decidable: given an mso
formula ϕ and k ⇐ {1, 2, . . .}, decide if ϕ is true in some graph of treewidth at
most k.

Problem 110. Consider two representations of graphs as logical structures:

• Edge representation. The universe is the vertices and there is a binary
relation for neighbourhood.
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• Incidence representation. The universe is the vertices and the edges, and
there is a binary relation for incidence of a vertex with an edge.

With edge representation, mso can quantify over sets of vertices, while with
incidence representation, mso can quantify over sets of vertices and edges.
When proving Lemma 15.6, we used edge representation. Show that the lemma
and also Problem 109 remain true with the incidence representation.

Problem 111. Show that the language of connected graphs is definable in mso
on graphs (assume edge representation, as described in the Problem 110).

Problem 112. Show that the language of all forests is definable in mso on
graphs (assume edge representation, as described in the Problem 110).

Problem 113. Show that the language of grids is definable in mso on graphs
and find an appropriate formula (assume edge representation, as described in
the Problem 110).

Problem 114. Recall the edge and incidence representations from Problem 110.
Show a property of graphs that is definable using incidence representation but
not using edge representation.

Problem 115. Recall the edge and incidence representations from Problem 110.
Find a class of graphs C such that the following problem is decidable for the
edge representation but not for incidence representation: given a formula of
mso, decide if it is true in some graph from C.

Problem 116. Show that “has an Euler cycle” is a graph property that is not
definable in mso, even if one uses the incidence representation from
Problem 110.

Problem 117. Consider the extension of mso, called counting mso, where one
can write a formula “the size of set X is divisible by n” for every n. Show that
having an Euler cycle is definable in counting mso.

Problem 118. Show that Lemma 15.6 remains true when we use counting mso
(see Problem 117) and incidence representation.



C O U R C E L L E ’ S T H E O R E M 215

Problem 119. The grid theorem [47, 16] says that if a class of graphs has
unbounded treewidth, then it has square grids of arbitrarily large dimensions
as minors. Using the grid theorem, show that if a class C of finite graphs has
unbounded treewidth, then the following problem is undecidable: given an
mso formula ϕ, decide if it is true in some graph from C.

Problem 120. Show that for every k ⇐ N there exists t ⇐ N such that if a graph
has treewidth ↘ t then it has k vertex disjoint cycles. Hint: use the grid theorem.

Problem 121. Show that for a planar graph one can check in time
2O(

¬
k log(k)) · nO(1) whether it contains a simple path with at least k vertices.

Hint: use the grid theorem for planar graphs in the following form: if a planar
graph has treewidth ↘ 5k then it has the k ⇓ k grid as a minor.

Problem 122. Recall ↓SO from Problem 99. Let us model a graph as relational
structure using the edge representation discussed in Problem 110 (for the
incidence representation, the same result would be true). Show that a property
of graphs is definable in ↓SO if and only if it is in the class NP (this is Fagin’s
theorem).

Problem 123. Show that the following problem is undecidable: the input is a
formula of ↓SO that uses only equality (and the quantified relations); the
question is if this formula is true in some finite structure (i.e. a finite universe
equipped with equality only).

Problem 124. Show that there is a polynomial time algorithm deciding whether
a given graph is planar. Hint: assume that there exists a polynomial algorithm
deciding whether a given graph G is a minor of an input graph H.

Problem 125. Show that there exists a polynomial time algorithm deciding
whether a given graph can be drawn on torus without crossing edges.





16

Parsing in matrix multiplication time

The classical dynamic cyk algorithm for parsing context-free grammars runs in
cubic time (in terms of the input word). In this chapter we present a parsing
algorithm of Valiant [62], which parses context-free languages in approximately
the same time as matrix multiplication. The matrices are Boolean, which means
that the entries are 0 or 1, addition is ↑ and multiplication is →. For readers
wary of matrices, an n ⇓ m Boolean matrix is the same as a binary relation
between {1, . . . , n} and {1, . . . , m}, and matrix multiplication is composition of
relations, as in this picture:
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The naive algorithm for matrix multiplication runs in time n3, but smarter
algorithms run faster, e.g. the Strassen algorithm runs in time approximately
O(n2.8704), and the record holder as of 2024 is O(n2.3715), see [63]. The exponent
in the running time of matrix multiplication is denoted by ω. We know that this
value is at least 2, because one needs to read the matrices, and currently it is
known to be at most 2.3715. The purpose of this chapter is to explain an
algorithm, due to Valiant, which employs matrix multiplication to parse
context-free languages in sub-cubic time. The Valiant algorithm is not practical
for parsing, because the constant factors are large in the fast matrix
multiplication algorithms, but it is a milestone in the theory of algorithms.

Theorem 16.1. Assume that multiplication of n ⇓ n Boolean matrices can be
computed in time O(nω) for some real number ω. Then membership in a context-free
language can be decided in time at most

poly(G) · nω · log(n) where G is the grammar and n is the length of the input.

For ω > 2, the running time can be further improved to poly(G) · nω which we
justify later in footnote 1.
For the rest of this chapter, fix ω and a context-free grammar G. We assume that
the grammar is in Chomsky Normal Form, i.e. every rule is of the form
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X A YZ or X A a, where X, Y, Z are nonterminals and a is a terminal. A
grammar can be converted into Chomsky Normal Form in polynomial time, so
this assumption can be made without loss of generality.
The main data structure that will be used in this algorithm is what we call a
parse matrix for some input string. Define an interval in an input string to be a
connected sequence of positions. We think of an interval as connecting two cuts
(i.e. spaces between positions) in an input string, as in the following picture:

A parse matrix is a collection of facts of the form “the infix at interval I can be
generated by a nonterminal X”. We always want this collection to be sound,
i.e. every fact in the parse matrix should actually be true, but it does not need
to be complete, which means that the parse matrix contains all true facts. The
information about nonterminal X in a parse matrix can be seen as a Boolean
matrix MX where the rows are source cuts, and the columns are target cuts. All
nonzero entries will be strictly above the diagonal, since the source cut must be
strictly before the target cut. (Since we do not have ε-productions, every
nonterminal generates only nonempty strings). A parse matrix for a string of
length n is called a parse matrix of length n. In this parse matrix, the underlying
Boolean matrices for each nonterminal have dimension (n + 1)⇓ (n + 1), since
there are n + 1 cuts.
As mentioned above, a parse matrix can be viewed as a collection M = {MX}X
of Boolean matrices, indexed by nonterminals. For parse matrices M, N of same
length, define their product M · N by

(M · N)X
def
=

⋃

X↙YZ
MY · MZ

where the union ranges over rules of the grammar and MY · MZ is matrix
multiplication. The product consists of facts of the form “interval I can be
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generated by X”, which can be derived by taking rule X ↙ YZ in the grammar,
and a decomposition of I into two intervals J and K, such that the matrix M
contains that fact “interval J can be generated by Y” and the matrix N contains
that fact “interval K can be generated by Z”. Since we have described product
of parse matrices using matrix multiplication, we get the following observation.

Lemma 16.2. For length n parse matrices, product can be computed in time O(nω).

We say that a parse matrix M is closed if it satisfies M · M ∝ M, and we say that
it is closed on an interval I if it is closed when restricted to intervals contained
in I. For a parse matrix M, define its closure M⇔ to be the least (with respect to
inclusion) parse matrix that contains M and is closed.

Proposition 16.3. There is an algorithm which runs in time

T(n) ⇑ poly(G) · log(n) · nω

and which computes the closure of a length 2n parse matrix, assuming that it is closed
on the intervals {1, . . . , n} and {n + 1, . . . , 2n}.

Before proving the proposition, we show how it implies the Theorem 16.1.

Proof of Theorem 16.1. Suppose that we want to know if the grammar G
generates a word w of length n. Define M to be the length n parse matrix where
MX contains intervals {i} such that nonterminal X generates the i-th letter of w,
using a rule of the form X ↙ a. This parse matrix can be computed in time
linear in n. The word w is generated by the grammar if and only if the closure
M⇔ contains the full interval on the component corresponding to the starting
nonterminal. It suffices therefore to compute the closure M⇔. To make the
computation easier, suppose that the length of the word is a power of two,
i.e. n = 2k. We do a divide an conquer approach: we compute the closures of
the parse matrix for the first and second halves of w (using a recursive
procedure), and then combine these using the algorithm from Proposition 16.3.
The running time of this algorithm is at most

T(n) + 2T(
n
2
) + · · ·+ 2kT(

n
2k ). (16.1)
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Because T(n) is at least quadratic, it follows that

2iT(
n
2i ) ⇑ 2i T(n)


2i
2 =

T(n)
2i ,

so the above sum is bounded by

T(n) +
T(n)

2
+ · · ·+ T(n)

2k < 2T(n),

which shows that the running time (16.1) is at most two times slower than T(n),
thus proving the theorem, given the bounds on T(n) from Proposition 16.3. ↫

It remains to prove the proposition. We use the following lemma.

Lemma 16.4. Suppose that M is a length k + 2n parse matrix that is closed on the
intervals A ∈ B and B ∈ C as depicted below:

A B C{ { {n positions k positions n positions

closed

closed

Then the closure M⇔ can be computed in time poly(G) · nω + T(n).

Proof. Define N to be M ∈ M · M restricted to intervals that contain B or are
disjoint with B. Here, the sum takes the union of all facts stored in the two
parse matrices. The main observation in the lemma is the following claim.

Claim 16.5. M⇔ = M ∈ N⇔.

Before proving the claim, we note that the right side of the above equality can
be computed in time as in the statement of the lemma, thus proving the lemma.
By Lemma 16.2, the parse matrix N can be computed in time poly(G) · nω,
using matrix multiplication for the product M · M. Because the matrix M is
closed over intervals A and C, it follows that N is also closed over these
intervals. Since all entries of N contain B or are disjoint with B, it is essentially
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a matrix of length 2n whose first and second halves are closed. It follows that
N⇔ can be computed in time T(n).
It remains to prove the claim. The inclusion ∋ is immediate, it remains to
justify the inclusion ∝. We need to show that if M⇔ contains interval I on
nonterminal X, then this is true for M ∈ N⇔. If I is contained in A ∈ B or B ∈ C,
then this implication holds by the closure assumptions on M. The remaining
case is when I contains B. The reason for M⇔ containing I on nonterminal X is
a parse tree as described in the following picture:

A B C

{{{

a leaf with label X
represents an interval
on component X of M

a non-leaf with label X
represents an interval
on component X of M*

X

Y

Y Z

Z X X Y X ZYXYX

X

X Y YZ

In the parse tree, use red consider the smallest interval which contains B, and
use yellow for the descendants of the red interval:

A B C

{{{

smallest interval
which contains B

X

Y

Y Z

Z X X Y X ZYXYX

X

X Y YZ
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By minimality, each yellow interval is contained in either A ∈ B or B ∈ C, and
therefore belongs to M by the closure assumptions on M. Therefore, the red
itself belongs to M · M. The red interval contains B, and the blue intervals are
disjoint with B, therefore the red and blue intervals are in N. It follows that the
red and blue intervals form a parse tree corresponding to the matrix N⇔. ↫

Proof of Proposition 16.3. Here is the algorithm. Suppose that M is a length 2n
parse matrix which is closed on its first and second halves, as in the assumption
of the proposition. Let us write A, B, C, D for the intervals describing the four
quarters of 2n, as in the following picture:

A B C D{ { { {

As in Lemma 16.4, the blue rectangles indicate the intervals which are closed.

1. By induction, compute the closure of the interval B ∈ C:

A B C D{ { { {

2. Using Lemma 16.4 twice, compute the closures of A ∈ B ∈ C and
B ∈ C ∈ D:

A B C D{ { { {

3. Using Lemma 16.4, compute the closure of A ∈ B ∈ C ∈ D:
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A B C D{ { { {
The cost of the above procedure is:

T(n) = T(n/2)︸ ︷︷ ︸
step 1

+ 2 · (T(n/2) + c · nω)︸ ︷︷ ︸
step 2

+ T(n/2) + c · nω

︸ ︷︷ ︸
step 3

for some c polynomial in the grammar. Summing up,

T(n) = 4T(n/2) + 3c · nω.

Reasoning as in the end of the proof of Theorem 16.1, we get

T(n) = 3c · nω + 4 · 3c · (n
2
)ω + · · ·+ 4k · 3c · ( n

2k )
ω.

Because nω is at least quadratic (an algorithm for matrix multiplication must at
least read two n ⇓ n matrices), it follows that

4i · ( n
2i )

ω ⇑ nω,

which gives the bound in the proposition. 1 ↫

Problem 126. Show that the operation M ∃ N is not associative.

Problem 127. Design an algorithm, which for an undirected graph G with n
vertices answers whether there exists a subgraph of G, which is

1. a triangle, in time O(nω);

2. a cycle with 4 vertices, in time O(nω);

1 Assuming that ω > 2, we can get rid of the log(n) in the running time, because the sum
∑k

i=0 4i( n
2i )

ω is bounded by nω ∑∞
i=0(

1
2ω↗2 )

i which is O(nω), because 1
2ω↗2 < 1.
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3. a cycle with k vertices, in time O(nω);

4. a clique with 4 vertices, in time O(n1+ω);

5. a clique with 5 vertices, in time O(n2+ω);

6. a clique with 6 vertices, in time O(n2ω);

7. a clique with 3k vertices, in time O(nkω).

Problem 128. Design an algorithm, which for an undirected graph G = (V, E)
with 3n vertices answers whether there exists a subset S ∝ V with
|E(S, V ↗ S)| ↘ k in time O(2nω · poly(n)) (by E(A, B) we denote the set of all
the edges with one endpoint in A and another endpoint in B).

Problem 129. Let U, V ∝ Nd be sets of d-dimensional vectors, each one with n
vectors. Show that for n ↘ d one can check whether there are u ⇐ U and v ⇐ V
such that u B v in time o(n2d).

Problem 130. Design an algorithm, which multiplies two matrices of size n ⇓ n
in time O(nlog2 7).





17

Two-way transducers

In this chapter, we talk about transducers, i.e. automata that input words and
output words. We cover three families of transducers as shown below:

deterministic two-way

rational

sequential

 replace every a by b

duplicate every a

duplicate every letter at
an even-numbered position

swap the first and last letter

identity of last letter is a,
otherwise empty output

duplicate reverse



228 T W O - WAY T R A N S D U C E R S

17.1 Sequential functions

Recall the definition of a nondeterministic finite automaton with output from
Definition 4.11. This is an nfa where every transition is labelled by a (possibly
empty) output word over a designated output alphabet, and every final state is
labelled by a (possibly empty) end-of-input word, also over the output alphabet.
Here is an example:

a/aa
a/ε

b/ε

b

b/bb

transition which inputs a
and outputs aa

end-of-input word

The output of a run is obtained by concatenating the output words of all
transitions used, followed by the end-of-input word of the last state used. The
semantics of the automaton is defined to be the function which maps an input
word to the multiset of words over the output alphabet that are produced by
accepting runs (if the same output is produced by n different accepting runs,
then it appears n times in the output multiset).
The automaton in the picture above has the following outputs: if the input
word is empty, then the output multiset is empty; if the input word is
nonempty, then the automaton produces exactly one output (i.e. a multiset with
one word) which is obtained from the input by deleting the first letter, doubling
the other letters, and appending b to the end.
Define a dfa with output to be the special case of an nfa with output where: (a)
the transition relation is a deterministic, i.e. for every state there is a unique
outgoing transition for each input letter; and (b) all states are final. Under these
assumptions, the automaton produces exactly one output for every input, and
therefore its semantics can be viewed as a function from words over the input
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alphabet to words over the output alphabet. Any function obtained this way is
called a (left-to-right) sequential function1 . Here is an example:

a/a

qp

a/ε

ε #

The transducer above erases a’s at even-numbered positions, and appends # or
nothing to the output, depending on the parity of the input length. Other
examples of left-to-right sequential functions include: “erase all appearances of
letter a” or “erase all appearances of letter a at even-numbered input positions”.

Define a right-to-left sequential function symmetrically: the syntax is the same,
except that in the semantics, the input letters are read from right to left, and the
end-of-input word is produced after reading the leftmost position. The function
“identity if the input ends with a, otherwise empty output” is a right-to-left
sequential function but not a left-to-right sequential function.

1The name sequential is used for at least four transducer models in the literature, starting with the
original transducer models described by Shannon [54, Section 8] and later developed by Moore [40]
and Mealy [39]. Both the Moore and Mealy models – which are two non-equivalent models of
letter-to-letter transducers – were called sequential by their authors. In those days, sequential seems
to have been a synonym for “recognised by an automaton”. Then, Ginsburg introduced a model,
called submachines, that could produce words (and not just letters) in transitions [31]. Soon Gins-
burg’s model started to be called sequential, see e.g. [25, p. 298]. Then, Schützenberger extended
submachines with end-of-input words [52]. Now it is Schützenberger’s model – originally called
subsequential – that is being called sequential, e.g. [29], and this is the convention that we adopt
here.
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17.2 Rational functions

We now move to a richer class of functions from words to words, called the
rational functions2. This class admits several equivalent definitions; we give five.
Another advantage is that the class is symmetric, i.e. there is no need to define
“right-to-left rational functions”. We begin with two definitions that use nfa’s
with output.

Functional and unambiguous nfa’s with output. We say that an nfa with
output is functional if for every input word, the output multiset contains exactly
one word, but possibly with multiplicities. In other words, there might be
several accepting runs, but all accepting runs produce the same output word,
and there is always at least one accepting run. We say that an nfa with output
is unambiguous if for every input word, the output multiset contains exactly one
word, used exactly one time. In other words, for every input there is exactly
one accepting run. Functional, and therefore also unambiguous, nfa’s with
output can be viewed as recognising functions from words to words, by
mapping an input word to the unique output word in the output multiset.
Functional nfa’s with output are essentially the same as the original definition
of rational functions given by Eilenberg in [25, Chapter IX].
We will later show that – when viewed as recognisers of functions from words
to words (without multiplicities of outputs) – functional and unambiguous
automata have the same expressive power, i.e. nothing is gained by using
functional but possibly ambiguous nfa’s with output.

Lookahead dfa with output. A lookahead nfa with output is a model that
extends an nfa with output as follows: instead of pairs (input letter, word over
the output alphabet), the transitions are pairs (regular language over the input
alphabet, word over the output alphabet). A transition labelled by a pair (L, w)

2The name rational comes from Eilenberg. Eilenberg introduced rational subsets of any
monoid [25, Chapter VII], which covers the special case of rational relations [25, Chapter IX] de-
fined as rational subsets of monoids of the form Σ⇔ ⇓ Γ⇔, which in turn covers the special case of
rational functions which are functional rational relations.
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can be applied if the unread part of the input belongs to L; the effect of using
such transition is that w gets added to the output and one input letter is
consumed. Here is a picture of a run:

input word

en
d-

of
- i

np
ut

 w
or

dM must contain this suffix{
output word

run r rq p qq

b ab

b a ab bb aa

aa
(L, b) (K, ε) (M, a) (L, ab) (L, bb)

aa

A lookahead dfa with output is the special case where (a) for every state, the
regular languages labelling outgoing transitions form a partition of all
nonempty words; and (b) every state is final.

Example 43. The following lookahead dfa with output swaps the first and last
letters:

bΣ*a/a

bΣ*b/b

a+b/ε

aΣ+/a

bΣ+/b

aΣ*a/a
a+b/ε

aΣ*b/b

ε

aΣ+/a

bΣ+/b

ε ε

word begins with b{ word begins with a

the output depends
on the last letter

{
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↭

Eilenberg bimachine. We now present Eilenberg bimachines, which are
essentially another syntax for lookahead dfa with output. An Eilenberg
bimachine [25, Chapter XI.7] consists of two finite automata A,B over the input
alphabet – with A left-to-right deterministic and B right-to-left deterministic –
as well as an output function of type

states of A⇓ input alphabet ⇓ states of B ↙ (output alphabet)⇔.

In the automata A,B the final states are irrelevant and can be omitted from the
syntax. The semantics of the bimachine is defined as follows. Given a
nonempty input word, define for each position in the input word an output
word as described in the following picture:

a1 a3 a6a2 a5a4

w1 w3 w6w2 w5w4

q6 q3 q1 q0q4 q2q5

p0 p2 p5p1 p4 p6p3

the i-th output word is the value of the output function on
- the state of left-to-right automaton after reading letters <i
- the i-th letter
- the state of right-to-left automaton after reading letters >i

input word

output of bimachine

run of right-to-left
automaton

run of left-to-right
automaton

The output of the bimachine is defined to be the concatenation of the output
words, in the order inherited from the input positions. To deal with empty
inputs, an Eilenberg bimachine is equipped with an designated output word
that is used for the empty input.
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Equivalence of the models. The following theorem shows that all the models
described above are equivalent. We use the name rational function for a
word-to-word function that is defined by any one of the equivalent models in
the theorem.

Theorem 17.1. The following models are equivalent, in terms of the functions from
words to words that they define:

1. functional nfa with output;

2. lookahead dfa with output;

3. unambiguous nfa with output.

4. Eilenberg bimachines.

5. compositions of right-to-left sequential functions with left-to-right sequential
functions.

Proof sketch.

1 ∝ 2 Consider a functional nfa with output A. We define an equivalent
lookahead dfa as follows. The lookahead dfa computes some run of the
functional nfa that can be extended to an accepting run. Each transition
is chosen using the lookahead, to determine if it can be extended to an
accepting run. If more than one transition can be chosen, some arbitrary
tie-breaking mechanism is used.

2 ∝ 3 Consider some lookahead dfa with output A. We define an equivalent
Eilenberg bimachine as follows. Let B be a right-to-left dfa (without
output) that simultaneously recognises all the languages which are used
in the transitions of A, i.e. the lookahead languages. The simulating nfa
with output guesses the runs of these two automata (the run for B is
right-to-left, and the run for A is left-to-right, and depends on the run of
B). This guess is unambiguous, because the automata A and B are
unambiguous.
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3 ∝ 4 Consider an unambiguous nfa with output A. We define an equivalent
Eilenberg bimachine as follows. The left-to-right automaton is a
left-to-right powerset construction applied to states of A, i.e. its states are
sets of states in A and the transition function is defined by

P · a = {q : the automaton A has a transition p a/w↙ q for some p ⇐ P }.

The right-to-left automaton is defined symmetrically, i.e. its transition
function is defined by

a · P = {p : the automaton A has a transition p a/w↙ q for some q ⇐ P }

The output function maps a triple (P, a, Q) to the unique output word w
such that the automaton has a transition

p a/w↙ q p ⇐ P, q ⇐ Q.

This function is well defined by the assumption that A is unambiguous.

4 ∝ 1 Consider an Eilenberg bimachine A. We define an equivalent functional –
in fact, unambiguous – nfa with output as follows. The states of the
simulating automaton are pairs (state of the left-to-right automaton in A,
state of the right-to-left automaton A). The transition relation is defined
by

(q, ap) a/w↙ (qa, p)

w is the output word in the bimachine that is associated to the triple
(q, a, p). This automaton is unambiguous by the determinism
assumptions in the definition of a bimachine.

2 ∝ 5 A right-to-left sequential function can label the input word with states of
right-to-left automata recognising the lookahead, and a left-to-right
sequential function can then simulate the dfa with lookahead.

5 ∝ 3 Functional nfa with output are closed under compositions and generalise
both left-to-right and right-to-left sequential functions.

↫
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17.3 Deterministic two-way transducers

We now turn to the most powerful class of transducers discussed in this
chapter, namely deterministic two-way transducers. In the next chapter, we will
present an equivalent one-way model, which uses registers to store parts of the
output.

Definition 17.2. A deterministic two-way transducer consists of:

• finite input and output alphabets Σ and Γ;

• a finite set of states Q with a distinguished initial state;

• a transition function

δ : Q ⇓ (Σ ∈ {C,▽}) ↙ {accept} ∈ (Q ⇓ {left, stay, right}⇓ Γ⇔)

The semantics of the transducer are defined similarly to Turing machines.
Actually, the model is equivalent to a Turing machine where there is one
read-only input tape and one append-only output tape. The automaton begins
in the following configuration:

the automaton begins in the
left end marker in its initial state

the input is embelished by left and right end markers

input word

{b
q

ab aa
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(For two-way automata, the head is over a letter, as opposed to one-way
automata, where the head is between letters.) At any given moment, the
automaton applies its transition function to its current state and the symbol
under the head. The result of the transition might be “accept”, in which case
the automaton ends its run, or a triple (state, direction, output word), in which
case the new state is assumed, the head is moved in the direction, and the
output word is appended to the output. The output letters are used in
chronological order, i.e. those which are output at the beginning of the run are
at the beginning of the output, regardless of the position of the head when
executing the transition. The run of the automaton might fail, either by moving
out of the word (i.e. moving left on the left marker or moving right on the right
marker), or by entering an infinite computation that never sees a final state;
such failing runs do not produce any output, and therefore the semantics of the
automaton is a partial function from Σ⇔ to Γ⇔.
Typical things that can be done using a two-way transducer are duplication or
reversing the input. The main result of this chapter is that deterministic
two-way automata are closed under composition.

Theorem 17.3 ([1, 19]). Functions recognised by deterministic two-way transducers
are closed under composition.

For sequential and rational functions, closure under composition is done using
a straightforward product construction. For two-way automata, the
construction is much more challenging, since the automata begin composed
might choose to move in different directions.
The rest of this chapter is devoted to proving Theorem 17.3. We do it in two
steps. First, we show in Lemma 17.4 a weaker version – namely that
deterministic two-way automata are closed under pre-composition with
rational functions. Then we bootstrap the weaker version to get composition
with deterministic two-way automata.

Rational preprocessing. We begin by proving that deterministic two-way
transducers can be pre-composed with rational functions. A different
perspective on this result is that deterministic two-way transducers would not
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become more expressive if equipped with “regular lookaround”, i.e. transitions
that depend not only on the letter under the head, but also on some regular
properties of the words to the left and right of the head.

Lemma 17.4. Deterministic two-way transducers are closed under pre-composition
with rational functions. In symbols,

2Det︸︷︷︸
functions recognised by

deterministic two-way automata

= 2Det ∃ Rat︸︷︷︸
rational functions

Proof. The left-to-right inclusion is immediate, because the identity is a rational
function. For the converse inclusion, recall the following characterisation

Rat = Seq↙︸ ︷︷ ︸
left-to-right

sequential functions

∃ SeqA︸ ︷︷ ︸
right-to-left

sequential functions

from Theorem 17.1. By the above, to prove the theorem it is enough to show

2Det ∋ 2Det ∃ Seq↙ 2Det ∋ 2Det ∃ SeqA.

By symmetry of two-way automata, it is enough to prove the first inclusion.
Summing up, it suffices to show that if f is left-to-right sequential and g is
recognised by a deterministic two-way transducer, as in the following diagram,

Σ⇔ left-to-right sequential f
""

f ∃g
%%

Γ⇔

two-way g
!!

∆⇔

then the composition f ∃ g is also recognised by a deterministic two-way
automaton. The difficulty is the machines for f and g have different types of
movement.
The idea for the proof comes from Hopcroft and Ullman [61, Lemma 3]. To
simplify notation, we assume that f is letter-to-letter, i.e. each transition of the
underlying dfa with output produces exactly one output letter, and there are
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no end-of-input words. The proof for the general case – without the
letter-to-letter assumption – can be easily inferred from the special case.

Suppose that the two-way automaton recognising g is in state p over the i-th
position of its input (which is the output of f ), like in the following picture:

head of g in state p

position i

the automaton f was in state q after reading i-1 letters

input of f

{
output of g

Then the simulating two-way automaton for the composition g ∃ f has its head
over the i-th position of the input word (which is the input of f ), and knows the
states p and q described in the picture above. The question is how to maintain
this information, especially when the simulated two-way automaton g wants to
move its head to the left. The key insight is to consider the graph which
describes the states of f and how they are updated by the transition function.
This graph looks likes this:
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initial

input letters

co
lu

m
n 

1

co
lu

m
n 

2

co
lu

m
n 

12

The vertices of the graph are configurations of f , i.e. pairs (state of f , column
between positions in the word), and the edges correspond to transitions of the
automaton. Each edge is labelled by an output letter. We number the columns
beginning with 1. Because f is deterministic, the graph is a forest.
Define qi to be the state of f in the i-th column, i.e. after reading the first i ↗ 1
letters of the input word. The simulating two-way automaton uses the state qi
to get the i-th letter in the output f (w). Suppose that the head of the simulating
two-way automaton is over some position i in the input word, and the state qi
of the oracle is known, as indicated by a red circle in the following picture:

initial

input letters

head of simulating automaton

We show below how to maintain the state of f when simulating one transition
of the two-way automaton g. If the transition of the two-way automaton g does
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not move the head, or moves it to the right, there is no problem, since the
transition function of f can be simply applied to the known state qi.
The issue is when the simulated two-way automaton f wants to move the head
to the left, and we need to compute the state qi↗1.
Here is the solution. In terms of the forest in the pictures above, we want to
determine the unique child of the red node which has the initial configuration
in its subtree. To find this unique child, we do the following. We start by
moving the head one step to the left, which identifies all possible candidates for
the predecessor configurations. Here is the picture, with the candidates being
coloured yellow:

initial

input letters

previously known
configuration

candidates for 
the predecessor

If there is only one yellow configuration, i.e. only one candidate for the
predecessor, then we are done. The more interesting case is when there is more
than one yellow configuration. In this case, we keep moving to the left, and use
green to colour all descendants of the yellow configuration (and therefore of the
red configuration as well). For each green configuration we remember which of
the yellow configurations is its ancestor. Two cases may happen.

1. We might reach a column where all green configurations are descendants
of the same yellow configuration, as in this picture:
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initial

input letters

all are descendants of the same
yellow configuration

In this case, the unique yellow configuration is the one that we want to
compute. The question is how to return to this unique configuration?
The solution is this: suppose that we stopped in column i, i.e. all green
configurations in column i are descendants of the same yellow
configuration, but this is not true for column i + 1. We store in our
memory the state of the unique yellow configuration that is the ancestor
of all green configurations in column i. Then we start moving to the
right, storing in each column that states reachable from the green
configurations in column i + 1. We stop when this set becomes a
singleton – this happens exactly when we reach the column with the red
node. Then we can move one step to the left and use our stored yellow
state to determine the predecessor configuration of the red one.

2. The remaining case is when we reach the first column at the beginning of
the input. Here we do the same trick to return to the red configuration,
and we can keep in our state which branch of the subtree corresponds to
the computation of the past oracle.

↫
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Closure under composition. Using Lemma 17.4 on pre-compositions with
rational functions, we complete the proof of Theorem 17.3 on composition
closure of deterministic two-way transducers. For our proof, it is more
convenient to use a definition – clearly equivalent in terms of expressive power
– of two-way transducers where the initial configuration is (initial state, end of
input marker ▽).
Fix two deterministic two-way transducers

Σ⇔ f
"" Γ⇔ g

"" ∆⇔ .

We use the following colour coding. The first alphabet Σ is written in black.
Blue is used for the states and output alphabet of f . Red is for the states and
output alphabet of g. Our goal is to give a deterministic two-way transducer
which recognises the composition g ∃ f .
We begin with a naive construction that will not work. Take some input word
w ⇐ Σ⇔, and consider the configuration graph of f on this input word, which
looks like this:

accept

startab

ε

a a aa

a

a

a

a

bb

bb

a

ε

b

ε

a

ε

b

a

ε ε

εε ε

ε

bb

b
ε

ab

ε

a

bb

a cc aab b

Vertices of the graph – the blue dots – are pairs (state, position in w extended
with end markers), and the edges correspond to transitions. The transitions are
labelled by output words from the intermediate alphabet Γ. We can represent
the configuration graph as a labelling of the input word, with arrows stored in
the positions where they originate, and the descriptions of the end markers
stored in the adjacent input positions.
The natural construction for the composition g ∃ f would be to have an
automaton which stores a state of g and a pointer to one of the letters from Γ
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that are in the label of an edge in the configuration graph, as in the following
picture:

bb

aba

a

ε

b

aa ab

ε

b
εε

ε

ab

ε

a

bb

c da

q

b

state of the automaton g

The problem with this construction is that a vertex in the configuration graph
might have several incoming edges. For example, suppose that in the situation
from the above picture, the automaton g decides to move its head to the left
and change the state to p. Then the automaton for the composition g ∃ f would
not know which of the following two choices should be made:

bb

aba

a

ε

b

aa ab

ε

b
εε

ε

ab

ε

a

bb

c da

p

b

The solution – and also the reason why we use rational preprocessing from
Lemma 17.4 – is to restrict the configuration graph of f to edges that are
reachable from the initial configuration.
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Lemma 17.5. The following function is rational. The input is a configuration graph of
f , like this:

accept

startab

ε

a a aa

a

a

a

a

bb

bb

a

ε

b

ε

a

ε

b

a

ε ε

εε ε

ε

bb

b
ε

ab

ε

a

bb

The output is the same graph, but only with those edges that are reachable from the
initial configuration, like this:

accept

start

a a a a

a

a

bb ε ε ε ε

ε ε

a

bb

Proof. We assume that a configuration graph is represented as word where each
letter represents the outgoing transitions from one column (i.e. position in the
input word with end markers). Here is a picture of a letter

ab

ε

a

bb

For this claim, it is convenient to use an Eilenberg bimachine as the
representation of rational transducers. Given a position i in a configuration
graph, the bimachine generates the following information:
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accept

startab

ε

a a aa

a

a

a

a

bb

bb

a

ε

b

ε

a

ε

b

a

ε ε

εε ε

ε

bb

b

ab

ε

a

a

bb

po
si

tio
n 
i

positions <i positions >i

(b) for which states p, q is there a 
      path from (p, i+1) to (q, i+1) that
      only visits positions > i.

(a) for which states p, q is there a path
      from (p, i-1) to (q, i-1) that only visits
      positions < i.

(c) for which states q is there a path
      from the initial configuration to (q, i+1) 
      that only visits positions > i.

The information can be generated by deterministic automata, as required by the
definition of an Eilenberg bimachine, using the standard conversion of two-way
automata (without output) to one-way automata. Based on this information
and the label of the position i, one can determine which states in position i are
reachable from the initial configuration. In its output, the bimachine only leaves
edges that originate from reachable states. ↫

By Lemma 17.4, deterministic two-way transducers are closed under rational
preprocessing, and by Lemma 17.5 a rational function can restrict a
configuration graph to reachable configurations. Therefore, in order to find a
deterministic two-way transducer for the composition g ∃ f , it suffices to give a
deterministic two-way transducer which inputs configuration graph of f
restricted to reachable configurations, like this:
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accept

start

a a a a

a

a

bb ε ε ε ε

ε ε

a

bb

and outputs the value of g on the labelling of the unique path from the starting
configuration to the accepting configuration. Since the blue nodes have
indegree at most one, this can be done using the naive construction described
before Lemma 17.5.

Problem 131. Show that deterministic two-way automata (seen as acceptors of
words) can be complemented with polynomial blowup.

Problem 132. Consider a sequential transducer, which defines a function
f : Σω ↙ Γω. Show that this function is continuous with respect to the distance
defined in Problem 62.

Problem 133. Show that the reverse function is not left-to-right sequential.

Problem 134. Which of the following functions over a unary alphabet are
sequential?

1. an ∞↙ an2 ;

2. an ∞↙ a⊥
¬

nℵ.

Problem 135. Show that the duplication function w ∞↙ ww is not rational.

Problem 136. Show that left-to-right sequential functions are closed under
compositon, i.e.

Seq↙ = Seq↙ ∃ Seq↙.

Problem 137. Show that rational functions are closed under compositon, i.e.

Rat = Rat ∃ Rat.
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Problem 138. Show that if f is recognised by a deterministic two-way
transducer and and g is rational (with suitable input and output alphabets),
then g ∃ f is recognised by a deterministic two-way transducer.

Problem 139. Consider nondeterministic two-way automata with output. Show
that for every nondeterministic two-way automaton with output A there is a
deterministic two-way automaton with output B that uniformises it in the
following sense: for every input word, B produces one of the outputs of A. (If
there is no output of A, then also there is no output of B.)

Problem 140. Show that the following problem is in polynomial time: given
two letter-to-letter (i.e. each transition produces exactly one letter) left-to-right
sequential functions with the same input alphabet, decide if for every input
they produce the same output.

Problem 141. Show that the following problem is undecidable: given two
left-to-right sequential functions with the same input alphabet, decide if for
some input, they produce the same output.





18
Streaming string transducers

In this chapter we present a one-way automaton model that has the same
expressive power as two-way transducers.
We begin by defining register transducers, which are automata that use
registers to store parts of their output. We have already seen register
transducers in Chapter 6 – in a more general setting, for arbitrary algebras –
and we have even proved in Corollary ?? that their equivalence is decidable for
the specific algebra of words with concatenation that we use in this chapter. To
make this chapter self-contained, we give a stand-alone definition below.
Register transducers, as defined below, will turn out to be strictly more
powerful than two-way transducers, but a model with the same expressive
power as two-way transducers will be recovered by placing a certain copyless
restriction on the register updates.

Definition 18.1. A register transducer consists of:

• finite input and output alphabets Σ and Γ;

• a finite set of states Q;

• a finite set of registers R;

• an initial configuration in Q ⇓ (R ↙ Γ⇔);
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• a transition function

δ : Q ⇓ Σ ↙ Q ⇓ (R ↙ (R + Γ)⇔)︸ ︷︷ ︸
register update

• an output function
out : Q ↙ (R + Γ)⇔

The automaton is run as follows. Define a register valuation to be any function
from registers to words over the output alphabet Γ, and define a register update
to be any function from registers to words over the alphabet R + Γ. There is an
action of updates on valuations

(v ⇐ register valuations, τ ⇐ register update) ∞↙ v · τ ⇐ register valuations

where v · τ is obtained from τ by replacing each register name with its contents
under τ. A configuration of the automaton is defined to be a pair (state, register
valuation). The automaton begins in the initial configuration. When reading an
input letter a, the automaton uses its transition function to determine its new
state and the register update. More formally, the configuration is updated as
follows:

(q, v) · a def
= (p, vτ) where δ(q, a) = (p, τ).

After the entire word has been processed, with the last configuration being
(q, v), the automaton outputs out(q), with register names replaced by their
contents in v.

Example 44. Here is an automaton where the input and output alphabets are
{a}, and the recognised function is an ∞↙ a5+3·2n . The automaton has one
register and one state. The initial configuration stores the word a in the unique
register. When reading an input letter, the unique register r is updated by
r := rr. The output function maps the unique state to aaaaarrr.
The function recognised by this register transducer is not recognised by any
two-way transducer. There reason is that the function has exponential growth,
while a two-way transducer has necessarily at most linear blowup, because a
position in the input word can be visited at most once for each state. ↭
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Copyless restriction. As argued in Example 44, register transducers can have
exponential growth, and therefore are not in general equivalent to deterministic
two-way transducers. To recover equivalence with two-way transducers, we use
the copyless restriction (also known as the single use restriction) described in the
following picture:
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register 1

picture of a
register update
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copyless means that every
register appears at most once
in the right hand sides of the 
substitutions
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 2 := ε
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 4 := 4 aba

register 2

register 3

register 4
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ht
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In other words, a register update is copyless if every vertex in the left column
has outdegree at most one. The intuition is that the register contents are
physical objects and can only be moved around and not duplicated.

Definition 18.2. A streaming string transducer1 is a register transducer where the
transition function produces only copyless register updates.

The output function need not be copyless. Requiring it to be copyless would
not weaken the model, though, because the output function is applied only
once. For example, if the output function uses each register at most k times,
then by taking k disjoint copies of the registers we can make the output
function copyless.

1The model and name of streaming string transducers comes from [3], although similar and es-
sentially equivalent models have been known before in the literature on attribute grammars, e.g. at-
tributed tree transducers from [30].
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The goal of this chapter is to prove that streaming string transducers are
equivalent to deterministic two-way transducers.

Theorem 18.3. Streaming string transducers recognise the same word-to-word
functions as deterministic two-way transducers

The above theorem was proved by Alur and Cerny in [3]. A similar result
(using a model of streaming string transducers with lookahead) can also be
recovered from earlier work of Bloem, Engelfriet and Hogeboom: (a) mso
transductions are equivalent to deterministic two-way transducers [27]; and (b)
mso transductions are equivalent (even over trees) to a certain kind of attribute
transducers [7].
We begin by describing the proof strategy. Our goal is to prove the equality

SST︸︷︷︸
functions recognised by

streaming string transducers

= 2Det.︸ ︷︷ ︸
functions recognised by

deterministic two-way transducers

(18.1)

As in the proof of Theorem 17.4, we write Rat for the class of rational functions.
In Section 18.1, we prove the following inclusions

SST
Lemma 18.4

∝ 2Det ∃ Rat and SST ∃ Rat
Lemma 18.5

∋ 2Det.

In other words, every streaming string transducer can be recognised by a
deterministic two-way automaton with preprocessing by a rational function,
and likewise in the opposite direction. Rational functions are easily seen to be
closed under composition, using a straightforward product construction, see
Exercise 137. Combining the inclusions from Lemmas 18.4 and 18.5, and using
closure of rational functions under composition, we get

SST ∃ Rat = 2Det ∃ Rat. (18.2)

To finish the proof of Theorem 18.3, it suffices to show that both streaming
string transducers and deterministic two-way transducers are closed under
preprocessing with rational functions. For deterministic two-way transducers,
this was shown in Theorem 17.4 from Chapter 17. For streaming string
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transducers, this will be done in Lemma 18.7, which is the most challenging
construction in this chapter. Combining these results, we get

SST
Lemma 18.7

= SST ∃ Rat (18.2)
= 2Det ∃ Rat Theorem 17.4

= 2Det

which completes the proof of Theorem 18.3. It remains to prove
Lemmas 18.4, 18.5 and 18.7.

18.1 Equivalence after rational preprocessing

In this section, we prove that streaming string transducers and deterministic
two-way transducers are equivalent if we allow rational preprocessing

Lemma 18.4. Every streaming string transducer can be decomposed as a rational
function followed by a deterministic two-way transducer. In other words

SST ∝ 2Det ∃ Rat.

Proof. Fix a streaming string transducer. A run of the transducer looks like this:

control state of the SST

a aab bc
input letter

register update executed in
the transition from p3 to p4 

output of 
the SST

p0 p2 p5p1 p4 p6p3

ab
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aba

bbb

b

a

b

ab

a

b

b

ab

a

aba
aba

bbb

b

a

b

ab

a

a

b

b

ab

a
b

{

output function
of the SST

{
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It is not hard to see that there is a rational – in fact left-to-right sequential –
transducer which transforms an input word

a aab bc

to a word describing the corresponding sequence of register updates:

letter 1

ab

a

aba

bbb

b

a

b

ab

a

b

b

ab

a

aba
aba

bbb

b

a

b

ab

a

a

b

b

ab

a
b

{

letter 2

{

letter 3

{

letter 4

{

letter 5

{

letter 6

{
letter 7

{
By using the above rational transducer as a preprocessor, to prove the lemma it
is enough to find a deterministic two-way transducer which inputs a tree that
describes the register updates, and outputs the final value. To do this, we use a
depth-first search through the tree as explained in the following picture

ab

a

aba

b

b

ab ab

b

123

4
5

6

7

8

the word a 
is the 4th
one to be
output 

search begins
and ends 

here
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It is easy to implement a depth-first search using a deterministic two-way
automaton. One simply has to remember the current register and the direction
from which it came. ↫

Lemma 18.5. Every deterministic two-way transducer can be decomposed as a rational
function followed by a streaming string transducer. In other words

2Det ∝ SST ∃ Rat.

Proof. As in the proof of Theorem 17.3, it is more convenient to use a definition
of two-way transducers where the initial configuration is (initial state, end of
input marker ▽). Consider the configuration graph of the two-way automaton
over a given input word, as in the following picture:
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ε
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b
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ε

a

bb

a cc aab b

We begin with a naive idea, which will not work because of the copyless
restriction. For a vertex in the configuration graph, define its segment to be the
(unique, by determinism) path that begins in the configuration, and is cut off at
the first visit to the same column as the source configuration, as in the
following picture:
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ab

ε

a

bb

the segment of this configuration

the segment of this configuration

The segment might accept/reject/loop without returning to the column of the
source configuration. The naive idea would be to store for each state q the
output word that is found by reading the labels on the segment of the
configuration that has state q in last read position. The problem with this
construction is that it violates the copyless restriction, because configurations
can have more than one incoming edge, and therefore the labels of one segment
can be shared by several longer segments.
Like in the proof of Theorem 17.3, the solution is to restrict the configuration
graph to edges that are reachable from the initial configuration. As shown in
Lemma 17.5, a rational function can be used to restrict the configuration graph
to reachable configurations, so that the result looks like this:

accept

start

a a a a

a

a

bb ε ε ε ε

ε ε

a

bb

When only reachable edges are used, the indegree is at most one, because
otherwise the automaton would loop, which cannot happen by the assumption
that it defines a total function. Using the naive idea, one can write a streaming
string transducer which inputs a configuration graph with only reachable edges
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– represented as a word over a finite alphabet in any natural way – and outputs
the label of the segment corresponding to the initial configuration. ↫

18.2 Lookahead removal

In this section we show that functions recognised by register transducers and
streaming string transducers are closed under pre-composition with rational
functions.

A different perspective on this result is that register transducers and streaming
string transducers would not become more expressive if equipped with an
oracle that gives regular information about the input word to the left and right
of the head. Since the information about the word to the left of the head can be
stored in the state, the interesting part of the oracle is the one that talks about
the word to the right of the head. In other words, in this section we show that
lookahead can be eliminated from the transducers without affecting expressive
power.

Lemma 18.6. Functions recognised by register transducers are closed under
pre-composition with rational functions.

Proof. Consider functions

Σ⇔ f
"" Γ⇔ g

"" ∆⇔

such that f is rational and g is recognised by a register automaton. We use the
following colour coding. The first alphabet Σ is written in black. Blue is used
for the states and output alphabet of f . Red is for the states and output
alphabet of g. A run of the composition g ∃ f looks like this:
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a b ab aa

a ε aababa bbaab

q6 q3 q1 q0q4 q2q5

p0 p2 p5 p7p1 p4
a
a
ε
ba

aba
ab
a
ba

abaab
ε
ba
baa

abaab
ε
babaa
a

aa
abaab
babaab
ab

aaabaab
a
babaaba
ε

aaabaabbaba
ab
a
ε

ε
ε
ε
ε

p6p3

register valuation pn is the state after
reading output produced by
f in the last n-1 transitions
and end-of-output word.

input word

run of f

output of f
end of word

output

run of g

The register transducer for the composition f ∃ g stores a function

states of lookahead f ↙ configurations of g

which maps a state q of f to the configuration that would be used by g
assuming that q is the state of the lookahead f after reading the unread part of
the input (in a right-to-left pass). Such a function can be represented by using

(number of states in lookahead f ) ⇓ (number of registers in g)

registers; and the representation can be updated in the transition function.
After reading the entire word, the transducer for the composition looks at the
value of the function under the initial state of f , and then applies the output
function of g. ↫

The construction in the above lemma cannot be used for streaming string
transducers because it violates the copyless restriction. The violation comes
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from merging states in the right-to-left sequential function f . For example,
suppose that the state transformation of f over some input letter a ⇐ Σ looks
like this:

ba

aaa
ε

ε

q0

q1

q2

q0

q1

q2

q3q3

Then the register transducer described in the proof of Lemma 18.6 would
duplicate the information stored for state q1, using it for both q0 and q1.
To eliminate lookahead for streaming string transducers, we use a data
structure, called a transformation forest, which stores register updates
organised in a forest structure so that composition can be done without
copying. We describe this data structure below.

Composing register updates. We begin with defining a composition
operation on register updates. Here is the picture:
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two register updates τ, σ their composition τ·σ
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The composition operation is defined so that if τ, σ are two register updates
and v is a register valuation, then

v · (τ · σ) = (v · τ) · σ.

Using the above composition, we can view the set of register updates – for a
fixed set of register names and output alphabet – as a monoid.

Transformation forests. Suppose that M is a monoid and Q is a finite set.
(Our intended application is that S is the monoid of register updates for some
streaming string transducer, but the abstract definition requires less notation.)
Define a transformation forest (over M and Q) to be any labelled forest of the
following form:

q p
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nodes are labelled 
by elements of Q

if a node is neither a root nor leaf,
then it has ≥2 children
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one leaf
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by elements of S

each root 
has a different

label

We now describe how transformation forests can be composed. Suppose that
we have two transformation forests τ and σ, as illustrated below:
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Their composition τσ is obtained by doing the following steps.

1. To each root of σ we can associate a unique leaf of τ with the same label,
because roots of σ have different labels and all labels appear in leaves of
τ. Merge each root of σ with the associated leaf of τ:
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2. Eliminate nodes that do not reach any node leaf of σ:
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3. Contract into a single edge every path that uses only nodes with unary
branching (except the source and target):

q
abbb
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The label of a contracted path is the product, in the semigroup S, of the
labels of edges on the path before the contraction.

It is not hard to see that this operation is associative, i.e.

τ(σρ) = (τσ)ρ.
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Also, there is a neutral element, namely the transformation forest where each
leaf is a root (and there are no edges). Therefore, the set of transformation
forests is a monoid, which we denote by M[Q]. The reader might recognise
transformation forests from Lemma 10.6 from Chapter 10. In that lemma, the
monoid M had two elements “accepting” and “non-accepting”. In this chapter,
M will be the infinite monoid of copyless register updates.

Lookahead elimination for streaming string transducers. Equipped with the
data structure of transformation forests, we are ready to prove the copyless
variant of Lemma 18.6.

Lemma 18.7. Functions recognised by streaming string transducers are closed under
pre-composition with rational functions. In other words

SST = SST ∃ Rat.

Proof. The left-to-right inclusion is immediate, since the identity is a rational
function. For the converse inclusion, recall the following equality

Rat = Seq↙︸ ︷︷ ︸
left-to-right

sequential functions

∃ SeqA︸ ︷︷ ︸
right-to-left

sequential functions

from Theorem 17.1. Since both streaming string transducers and left-to-right
sequential functions are instances of left-to-right automata, a straightforward
product construction can be used to yield the inclusion

SST ∋ SST ∃ Seq↙

Therefore, in order to prove the lemma it suffices to show

SST = SST ∃ SeqA.

Here we cannot use a simple product construction, because we compose
automata that move in different directions. The rest of the proof is devoted to
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proving the above inclusion. We use the same notation and colour convention
as in the proof of Lemma 18.6. Let

Σ⇔ f
"" Γ⇔ g

"" ∆⇔

be functions such that f is right-to-left sequential and g is a streaming string
transducer. Our goal is to design a streaming string transducer that recognises
the composition g ∃ f . To make notation lighter, we assume that f has empty
end-of-input words. This assumption can be lifted without greater conceptual
difficulty.

Overview of the construction. The idea is that instead of storing register
valuations, the streaming string transducer for g ∃ f will store register updates,
organised in a transformation forest. To illustrate this idea, consider the
configuration graph of the right-to-left sequential function f over an input
word w ⇐ Σ⇔, as shown in the following picture:
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Nodes of the configuration graph are labelled by states of f and edges are
labelled by output words of f . Because the f is right-to-left deterministic, the
configuration graph is a forest, with the roots in the first column. The output of
f is obtained by reading from left to right the labels on the path that goes from
the unique leaf with the initial state of f to the unique root that is its ancestor.
(We use the assumption that the end-of-input words are empty; otherwise we
would need to add one more column at the left end of the picture.)
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The automaton recognising the composition g ∃ f will store in its configuration
a transformation forest

t ⇐ (register updates of g)
︸ ︷︷ ︸
monoid of copyless register
updates for registers and

output alphabet of g

[states of f ].

The nodes of this transformation forest will correspond to the leaves of the
configuration graph, their closest common ancestors, and the roots that are
reachable from leaves, as represented by the big yellow circles below:
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For a path connecting two adjacent yellow nodes, the transformation forest t
will store the register update done by g on that path. To describe the automaton
in more detail, we begin by discussing how copyless register updates, and
therefore also transformation forests over the monoid of copyless register
updates, can be stored in the configuration of a streaming string transducer.

Storing register updates. Recall the graphical representation of register
updates that was used when defining the copyless restriction. A copyless
register update can be stored by a streaming string transducer like this:

abb

abb
aaa

aaa

bbaa

bbaa

3 registers used to
store these words
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In general, to store a copyless register update we need a bounded number of
bits to store the tree structure of the update plus

2 · (number of registers in g)

registers to store the output words used in the update. To store a
transformation forest

t ⇐ (register updates of g)[states of f ].

we use a bounded number of bits to store the structure of the forest and its
labelling by states of f , plus

2 · (number of registers in g)
︸ ︷︷ ︸

registers to store
a register update

· 2 · (states in f )
︸ ︷︷ ︸
number of edges in

a transformation forest

registers to store the register updates. The following claim says that
transformation forests can be updated in a copyless way.

Claim 18.8. Fix a transformation forest

s ⇐ (register updates of g)[states of f ].

Then the function

t ⇐ (register updates of g)[states of f ] ∞↙ ts ⇐ (register updates of g)[states of f ]

can be done using a copyless register update.

Proof. Almost by definition, copyless register updates can be composed using a
copyless register update. The same is true when composing transformation
forests ts, because each label from t and each label from s is used at most once
in the composition. In fact, copyless register updates can be seen as a special
case of transformation forests, see Exercise 146. ↫
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The automaton. Before describing the automaton, let us introduce some
notation that will be used in its definition and correctness proof. Let q be a state
of f and let p be a state of g. Define fq to be the right-to-left sequential function
obtained from f by changing the initial state to q and define [p, w, q] to be the
run of g – viewed as a sequence of transitions – which begins in state p and
reads the word fq(w). We have the following equality, which is obtained by
unravelling the definitions:

[p, wa, q] = [p, w, aq] · [p( fq(a)), a, q] for every w ⇐ Σ⇔ and a ⇐ Σ.
(18.3)

In the above, we write q and p for the state transformations of the automata
underlying f and g.
Equipped with the above notation, we are ready to define the streaming string
transducer recognising the composition g ∃ f . After reading an input word
w ⇐ Σ⇔, the transducer will store a transformation forest

tw ⇐ (register updates of g)[states of f ]

whose intuitive meaning was described at the beginning of the proof. The
transformation forest tw is stored as described before Claim 18.8, and it satisfies
the following invariant:

(*) Let q be a state of f and let π be the unique root-to-leaf path in tw that
ends in a leaf with label q. Then the composition of register updates
labelling π is the same as the register update done by the run
[initial state of g, w, q].

To update its configuration, the transducer will also store in its finite state space
the function δw defined by

q ⇐ states of f ∞↙ target state of the run [initial state of g, w, q]

Using (18.3), it is not hard to see how δwa can be computed from δw and an
input letter a. It remains to show how to update the transformation forest tw.
Initially, tε is a forest with no edges and one leaf per state of f , like this



L O O K A H E A D R E M O VA L 267

every leaf is also
a root, and there

are no edges

q0

q1

q2

q3

and therefore the invariant (*) is satisfied because π is the empty path which
yields an identity register update. When reading a letter a, the transformation
forest is updated as follows. The new transformation forest twa is defined to be
the composition – in the monoid of transformation forests – of tw with the
following transformation forest:

a leaf for
each state of f the parent of a leaf with label q

is a root with label aq

the edge to a leaf with label q
is labelled by the register update
done by the run [δw(aq), a, q] 
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Using the equality (18.3), it is not hard to check that twa satisfies the invariant.
Furthermore, the update can be done while preserving the copyless discipline,
by Claim 18.8.
It remains to define the output function so that the automaton recognises the
composition g ∃ f . By the invariant, once the automaton has finished processing
an input w, by looking at the transformation forest tw we can recover the
register update τ that is done by the run of g on f (w), i.e. the run

[initial state of g, w, initial state of f ].
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To get the output of g ∃ f on w, it remains to apply τ to the empty register
valuation, and finally apply the output function of g to the resulting register
valuation. All of this can be done using the register representation of the
transformation forest tw. ↫

Problem 142. Show that the class sst of functions recognised by streaming
string transducers has the following closure properties:

1. if f , g are in sst, then so is w ∞↙ f (w)g(w).

2. if f is in sst, then so is w ∞↙ reverse of f (w).

Problem 143. Show that the class of regular languages is closed under inverse
images of streaming string transducers, but not under forward images.

Problem 144. Show that a language L ∝ Σ⇔ is regular if and only if there is a
streaming string transducer with input alphabet Σ and output alphabet {0, 1}
which recognises the characteristic function of L.

Problem 145. Define a nondeterministic streaming string transducer by (a)
allowing several applicable transitions in each state; (b) distinguishing
accepting states, so that only runs that end in an accepting state count. A
functional streaming string transducer is a nondeterministic one where every
accepting run produces the same output. Show that functional streaming string
transducers recognise the same functions as deterministic ones.

Problem 146. Consider the least class of monoids that contains Γ⇔, and is
closed under:

• reversing the monoid operation, i.e. m · n becomes n · m;

• submonoids;

• homomorphic images;

• if M is the class, then so is M[Q] for every finite set Q.
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Show that this class contains, for any finite set R of registers, the monoid of
copyless register updates with alphabet Γ and registers R.

Problem 147. A streaming string transducer is called monotone if its registers
can be totally ordered as r1, . . . , rn so that every register update τ preserves the
order in the following sense: after concatenating the words τ(r1), . . . , τ(rn) and
keeping only the register names, we get a subsequence of r1, . . . , rn. Show that
every streaming string transducer can be decomposed as g ∃ f where f is a
rational function and g is a monotone streaming string transducer.

Problem 148. Show that the following problem is PSpace-hard (it is also in
PSpace, but this is more challenging to prove): given a streaming string
transducer, decide if it produces the empty word for every input.
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Learning automata

This chapter is about learning regular languages of finite words. All automata
here are deterministic finite automata. The setup is that there are two parties:
Learner and Teacher. Teacher knows a regular language. Learner wants to learn
this language, and pursues this goal by asking two types of queries to the
Teacher:

• Membership. In a membership query, Learner gives a word, and the
Teacher says whether or not Teacher’s language contains that word.

• Equivalence. In an equivalence query, Learner gives regular language,
represented by an automaton, and Teacher replies whether or not the
Teacher’s and Learner’s languages are equal. If yes, the protocol is
finished. If no, Teacher gives a counterexample, i.e. a word where the
Teacher’s and Learner’s languages disagree.

Membership queries on their own can never be enough to identify the
language, since there are infinitely many regular languages that match any
finite set of membership queries. Given enough time, equivalence queries alone
are sufficient: Learner can enumerate all regular languages, and ask
equivalence queries until the correct language is reached, without ever using
membership queries. The lecture is about a more practical solution, which was
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found by Dana Angluin [4]. Angluin’s algorithm is a protocol where Learner
learns Teacher’s language in a number of queries that is polynomial in:

• the minimal automaton of Teacher’s language;

• the size of Teacher’s counterexamples.

If Teacher provides counterexamples of minimal size, then the second
parameter above is superfluous, i.e. the number of queries will be polynomial
in the minimal automaton of Teacher’s language. As mentioned above, we only
talk about deterministic automata, and therefore the minimal automaton refers
to the minimal deterministic automaton.

State words and test words. Suppose that Teacher’s language is L ∝ Σ⇔. We
assume that the alphabet is known to both parties, but the language is only
known to Teacher. At each step of the algorithm, Learner will store an
approximation of the minimal automaton of L, described by two sets of words:

• a set Q ∝ Σ⇔ of state words, closed under prefixes;

• a set T ∝ Σ⇔ of test words, closed under suffixes.

The idea is that the state words are all distinct with respect to Myhill-Nerode
equivalence for Teacher’s language, and the test words prove this. This idea is
formalised in the following definitions.

Correctness and completeness. If T is a set of test words, we say that words
v, w ⇐ Σ⇔ are T-equivalent if

wu ⇐ L iff vu ⇐ L for every u ⇐ T

This is an equivalence relation, which is coarser or equal to the Myhill-Nerode
equivalence relation of Teacher’s language. In terms of T-equivalence we define
the following properties of sets Q, T ∝ Σ⇔ that will be used in the algorithm:

• Correctness. All words in Q are pairwise T-non-equivalent;
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• Completeness. For every q ⇐ Q and a ⇐ Σ, there is some p ⇐ Q that is
T-equivalent to qa.

If (Q, T) is correct and complete, then we can define an automaton as follows.
The states are Q, the initial state being the empty word. When the automaton is
in state q ⇐ Q and reads a letter a, it goes to the state p described in the
completeness property; this state is unique by the correctness property. The
accepting states are those states that are in Teacher’s language.

Lemma 19.1. If (Q, T) is correct but not complete, then using a polynomial number of
membership queries, Learner can find some P ∋ Q such that (P, T) is correct and
complete.

Proof. If q ⇐ Q and a ⇐ Σ are such that no word in Q is T-equivalent to qa, then
qa can be added to Q. The membership queries are used to test what is
T-equivalent to qa. ↫

The algorithm. Here is the algorithm.

1. Q = T = {ε}

2. Invariant: (Q, T) is correct, not necessarily complete.

3. Apply Lemma 19.1, and enlarge Q, making (Q, T) correct and complete.

4. Compute the automaton for (Q, T) and ask an equivalence query for it.

5. If the answer is yes, then the algorithm terminates with success.

6. If the answer is no, then add the counterexample and its suffixes to T.

7. Goto 2.

Note that if (Q, T) is correct, then all words in Q correspond to different states
in the minimal automaton (for Teacher’s language). Furthermore, if the size of
Q reaches the size of the minimal automaton, then Q represents all states of the
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minimal automaton, and the transition function in the automaton for (Q, T) is
the same as the transition function in the minimal automaton. Therefore, if Q
reaches the size of the minimal automaton, the equivalence query in step 4 has
a positive result.
To prove that the algorithm terminates, we show below that after step 6, (Q, T)
is no longer complete. This will mean that step 3 will necessarily enlarge Q,
and therefore the number of times we do ”Goto 2” will be bounded by the size
of the minimal automaton.

Lemma 19.2. After step 6, (Q, T) is no longer complete.

Proof. Let (Q, T) be the pair in step 4, and let a1 · · · an be the counterexample,
which witnesses that the automaton for (Q, T) does not recognise Teacher’s
language. Define T△ to be T plus all suffixes of the counterexample, and
suppose toward a contradiction that (Q, T△) is complete. If (Q, T△) is complete,
then the automata for (Q, T) and (Q, T△) are the same. Define qi to be the state
of either of these automata after reading a1 · · · ai. By construction, the state qi is
a word which is T△-equivalent to qi↗1ai, and since ai+1 · · · an ⇐ T△, it follows that

qi↗1ai · · · an ⇐ L iff qiai+1 · · · an ⇐ L.

Since q0 is the empty word, the above and induction imply that

a1 · · · an ⇐ L iff qn ⇐ L

which means that the automaton gives the correct answer to the
counterexample, a contradiction. ↫

Problem 149. Show that one can design an algorithm for learning DFA without
membership queries and counterexamples, which finds a correct DFA in
exponential time. Show that one cannot do better.

Problem 150. Show that there is no algorithm, which asks only membership
queries and guesses a correct DFA at the first time it asks an equivalence query.
Show that the same holds for a fixed number of mistaken equivalence queries
allowed.
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Problem 151. Show that there is no algorithm running in polynomial time,
which learns a correct DFA in the following setting: both membership and
equivalence queries are allowed, but in the case when answer for an
equivalence query is ”NO” Teacher delivers no counterexample.
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