
Slightly Infinite Sets

Mikołaj Bojańczyk

April 25, 2025

The latest version can be downloaded from: mimuw.edu.pl/∼bojan/paper/atom-book

April 25, 2025



ii



Contents

1 Polynomial orbit-finite sets 1
1.1 Representation of equivariant subsets . . . . . . . . . . . . . . . . . . 6

1.1.1 Generating sets . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Automata for polynomial orbit-finite sets 11
2.1 Graph reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Automata and their emptiness problem . . . . . . . . . . . . . . . . . 15

2.3 Undecidable universality . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 A decidable case of universality . . . . . . . . . . . . . . . . . . . . . 22

3 More computational models with atoms 29
3.1 Alternating automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Two-way automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Pushdown automata and context-free grammars . . . . . . . . . . . . 32

3.5 Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Orbit-finite sets 43
4.1 Quotiented pof sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Orbit-finiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Least supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Atoms beyond equality 59
5.1 Oligomorphic structures . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Representation of equivariant subsets . . . . . . . . . . . . . . . . . . 64

5.3 Orbit-finite sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Homogeneous atoms 73
6.1 Homogeneous structures . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 The Fraı̈ssé limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Examples of homogeneous atoms . . . . . . . . . . . . . . . . . . . . 85

6.3.1 The random graph . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.2 Bit vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.3 Trees and forests . . . . . . . . . . . . . . . . . . . . . . . . . 89

iii



iv CONTENTS

7 Algorithms on orbit-finite sets 93
7.1 Representing orbit-finite sets . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Representing elements of orbit-finite sets . . . . . . . . . . . . . . . . 94

7.3 Orbit-finite graphs and automata . . . . . . . . . . . . . . . . . . . . 96

7.4 Systems of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Turing machines 105
8.1 Orbit-finite Turing machines . . . . . . . . . . . . . . . . . . . . . . . 106

8.2 For bit vector atoms, P , NP . . . . . . . . . . . . . . . . . . . . . . . 114

8.3 For equality atoms, Turing machines cannot be determinised . . . . . 117

Author index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Subject index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



Preface

This book is about algorithms that run on objects that are infinite, but finite up to

certain symmetries. Under a suitably chosen notion of symmetry, such objects – called

orbit-finite sets – can be represented, searched and processed just like finite sets. The

goal of the book is to explain orbit-finiteness and demonstrate its usefulness. Most of

the examples of orbit-finite sets are taken from automata theory, since this is where

orbit-finite sets began.

v



vi CONTENTS



Chapter 1

Polynomial orbit-finite sets

The general idea in this book is to discuss sets which are built from some basic infinite

set A, and which are simple enough to be represented finitely and manipulated algo-

rithmically. These sets will be called orbit-finite sets. The fully general notion will be

described in later chapters. We begin in this chapter with a special case, called poly-

nomial orbit-finite sets, which is simpler to formalize, but general enough to describe

most interesting examples.

In the basic infinite set A, which will be used to build the other sets, the only

structure is equality. The assertion “the only structure is equality” will be formalized

later in the book, by using invariance under atom permutations. For the moment, this

will be apparent in the examples, and our convention that elements of A – which will

be called atoms – are names such as John or Eve. Everybody knows that names have

no structure beyond equality.

Before formally defining polynomial orbit-finite sets, we begin with several exam-

ples. These examples are based on automata theory, which was the original motivation

for these notions.

Example 1. Consider the language

{ w ∈ A∗ | the first and last letters of w are the same }.

To recognise this language, we use a deterministic automaton that remembers the first

letter seen in its state, plus one extra bit of information that tells us whether the last

letter seen is the same as the first. This state space can be viewed as a disjoint union

(denoted using +):

{initial} + A︸︷︷︸
equal

+ A︸︷︷︸
nonequal

.

The transition function consists of the following transitions, where a and b range

1



2 CHAPTER 1. POLYNOMIAL ORBIT-FINITE SETS

over A:

initial()
a
→ equal(a)

equal(a)
b
→

equal(a) if a = a
nonequal() if a , a

nonequal(a)
b
→

equal(a) if a = a
nonequal() if a , a.

The accepting states are those from the first copy of A. □

The automaton in the above example was deterministic. Here is an example of a

nondeterministic automaton.

Example 2. Consider the language

L = { w ∈ A∗ | some letter appears twice }.

The recognizing automaton uses nondeterminism to guess the letter that appears

twice. It then loads that letter into its state, and waits for a second appearance, upon

which it enters an accepting sink state. The state space is

{initial, accept} + A.

The first two states are the initial and accepting states, respectively. The transitions

of this automaton are listed below, where a and b range over A:

initial

a
→ initial

initial

a
→ a

a
b
→

accept if a = b
a if a , b

accept

a
→ accept.

We will later show that this language cannot be recognised by a deterministic au-

tomaton, but that will require a formal definition of the model. □

In the automata from the above examples, the state space could be infinite, but it

had a very special form: each state would store some finite information (for example,

is it accepting or reject), and some atoms. In the two examples above, each state

would store zero or one atom, but one could imagine that more atoms are stored,

e.g. we could have a state space of the form

A0 + A0 + A1 + A7.

As before, we write + for disjoint union of sets. In the disjoint union above, the

components of the form A0
represent states where no atoms are stored, such as the

initial states in the two examples. This leads us to the following definition.



3

Definition 1.1 (Pof set). A polynomial orbit-finite set, pof set for short, is any set of

the form

Ad1 + · · · + Adk

for some k, d1, . . . , dk ∈ {0, 1, . . .}.

It is clear why we use the word “polynomial” in the name – syntactically a pof set

is the same thing as a univariate polynomial with coefficients in the natural numbers.

The meaning of the words “orbit-finite” will become apparent later in this book, when

we discuss orbits under the action of atom permutations. In a pof set, we use the name

component for summands in the disjoint union; each component in a pof set is a set

of the form Ad
. The atom dimension of a component is the exponent d, the atom

dimension of a pof set is the maximal atom dimension of its components.

We will be interested in computational models where instead of finite sets, we use

pof sets. We already saw this in Examples 1 and 2; in these automata the state spaces

and input alphabets where pof sets. This resulting theory will generalize the standard

theory of finite objects, because a finite set can be seen as a pof set of atom dimension

zero. For example, a set with three elements can be seen as a pof set

A0 + A0 + A0

that has three components of dimension zero.

In order to get a meaningful theory, we need to make some restrictions on the

way that elements of pof sets are manipulated. Otherwise, we would be working

with models that use countable sets instead of finite ones. The restriction that we

make formalizes the idea that atoms have no structure beyond equality. The idea is

that if atoms are renamed in a way that preserves equality, then all properties should

be preserved. For example, if an automaton has a transition of the form

(John,Eve)
Adam

→ (Adam, John)

then the same automaton should also have a transition of the form

(Tom,Adam)
John

→ (John,Tom),

because the equality patterns are the same in both transitions. This notion is formal-

ized in the following definition, by using atom permutations, which are defined to be

bijective functions A→ A.

Definition 1.2 (Equivariant subset). A subset X ⊆ Ad
is called equivariant if it is

stable under applying atom permutations, i.e.

(a1, . . . , ad) ∈ X ⇔ (π(a1), . . . , π(a1)) ∈ X

holds for every atom permutation π. A subset of a pof set is called equivariant if its

intersection with each component is equivariant.



4 CHAPTER 1. POLYNOMIAL ORBIT-FINITE SETS

Example 3. Consider the set A3
. Up to atom permutations, this set contains five

kinds of elements, namely a non-repeating triple

(John,Eve,Tom),

three kinds of triples that use two atoms

(John,Eve,Eve), (John,Eve,Tom), (John,Tom,Eve),

and a triple where all atoms are the same

(John, John, John).

Every other element of A3
can be mapped to one of the above five example using an

atom permutation, and the five kinds are all different, i.e. none of them can be mapped

to another by an atom permutation. If we want to choose an equivariant subset of A3
,

we need to decide for each of the five kinds whether we want to include it or not. The

five decisions are independent, and therefore there are 25
possibilities of choosing an

equivariant subset. □

The kinds of elements, as described in the above example, will be called orbits.

This is because they are the special case of the general notion of orbits under a group

action, in the case where the group is the group of atom permutations.

Definition 1.3 (Orbit). The orbit of an element x in a pof set X is the set

{ π(x) | π is an atom permutation }.

Example 4. In Example 3, we showed that the set A3
has five orbits. More generally,

the number of orbits in Ad
is the number of equivalence relations on the set {1, . . . , d}.

This number is called the Bell number, and it grows exponentially with d. For example,

the 4-th Bell number is 15, and the 5-th Bell number is 52. □

In the above example, we have argued that for sets of the form Ad
, the number

of equivariant subsets is finite, albeit exponential. This extends to pof sets, which

are finite disjoint unions of such sets, and hence we get the following result, which

explains the expression “orbit-finite” in the name “polynomially orbit-finite”.

Lemma 1.4. Every pof set has finitely many equivariant subsets.

In Definition 1.2, we defined equivariant subsets of one pof set. This extends nat-

urally to relations on pof sets, e.g. binary relations

R ⊆ X × Y,

where X and Y are pof sets. This is because the product of two pof sets can itself be

seen as a new pof set, by distributing products across disjoint unions:

(
∑
i∈I

Adi ) × (
∑
j∈J

Ae j ) ≡
∑
i∈I
j∈J

Adi+e j .



5

Similarly, we can also talk about equivariant functions f : X → Y . These are the same

as binary relations that are both equivariant and functional, i.e. for every x ∈ X there

exactly one y ∈ Y that belongs to the relation.

Example 5. To represent booleans, we can use the atomless set

2 def
= A0︸︷︷︸

true

+ A0︸︷︷︸
false

For a pof set X, and equivariant function of type X → 2 is the same thing as an

equivariant subset of X. □

Example 6. There is only one equivariant function of type A → A, namely the

identity. Clearly the identity is equivariant, since the corresponding set of pairs is the

diagonal

{ (a, a) | a ∈ A },

and this set is equivariant. Let us now prove that there is no other equivariant function

of this type. Suppose then that an equivariant function would map an atom a to some

atom b , a. From the pair (a, b) we can go to any pair (a, c) with a , c by applying an

atom permutation. This would yield a violation – in fact infinitely many violations –

of the functionality condition, which says that each input has only one output. □

Example 7. Let us list all equivariant functions of type f : A2 → A. If the input

to such a function is a repeating pair (a, a) ∈ A2
, then the output has to be a, by

the same argument as in the previous example. If the input is a non-repeating pair

(a, b) with a , b, then the output could be either the first argument a or the second

argument b. Furthermore, this is uniform: if for some non-repeating pair the output

is the first coordinate, then this is true for all non-repeating pairs. This is because

every non-repeating pair can be mapped to every other non-repeating pair by an atom

permutation. Therefore, there are two possibilities for f : it is either the projection to

the first coordinate, or the projection to the second coordinate. □

Example 8. An example of an equivariant function of type A3 → A is

(a, b, c) 7→

c if a , b
a if a = b.

□

As shown in Lemma 1.4, a pof set will have finitely many equivariant subsets.

Therefore, there will be finitely many equivariant relations R ⊂ X × Y , and only some

of these will be functions. Summing up, for every pof sets X and Y there will be finitely

many equivariant functions of type X → Y .

Exercises
Exercise 1. In the definition of an equivariant set from Definition 1.2, we have an equivalence

⇔, and we quantify over atom permutations, which can be briefly written as



6 CHAPTER 1. POLYNOMIAL ORBIT-FINITE SETS

0. ā ∈ X ⇔ π(ā) ∈ X for all permutations π : A→ A

Instead of a two-way implication, we can have a one-way implication in either of the two

directions, and we can quantify over functions that are not necessarily permutations, as in the

following variants:

1. ā ∈ X ⇒ π(ā) ∈ X for all permutations π : A→ A
2. ā ∈ X ⇐ π(ā) ∈ X for all permutations π : A→ A
3. ā ∈ X ⇔ π(ā) ∈ X for all functions π : A→ A
4. ā ∈ X ⇒ π(ā) ∈ X for all functions π : A→ A
5. ā ∈ X ⇐ π(ā) ∈ X for all functions π : A→ A

Which ones are equivalent to the original definition, as in variant 0?

Exercise 2. Show that there is no equivariant function of type A0 → A.

Exercise 3. Show that the number of equivariant subsets of Ad
is doubly exponential in d.

Exercise 4. Consider a pof set X and an equivariant binary relation R ⊆ X × X. Show that the

transitive closure of R is also equivariant.

1.1 Representation of equivariant subsets
The central idea of this book is that sets such as pof sets – and generalizations such

as (not polynomial) orbit-finite sets that will be defined in later chapters – can be

used as a new notion of finiteness, and the resulting computational problems can be

studied. A typical example is pof automata, which are automata where the state space

and input alphabet are pof sets, the initial and final subsets are equivariant, and the

transition relation is also equivariant. The automata from Examples 1 and 2 are pof

automata. As we will see in the next section, the emptiness problem is decidable for

pof automata.

In order to meaningfully discuss the decision problems based on pof sets and

equivariant subsets, we need to have some finite representation, so that they can be

used as inputs to algorithms. For pof sets, there is little doubt: a pof set

Ad1 + · · · + Adk ,

is represented by the list of natural numbers d1, . . . , dk, which describe the atom di-

mensions of the various components. The relevant question is about representation

of equivariant subsets. We think of an equivariant subset in a pof set as being a fam-

ily of equivariant subsets, one for each component Adi
, and therefore we focus on

representing equivariant subsets of individual components. There will be two repre-

sentations

1.1.1 Generating sets
For a pof set X, define the set generated by a subset Y ⊆ X to be all elements that can

be obtained by applying atom permutations to elements of Y , i.e.

{ π(y) | y ∈ Y and π is an atom permutation }.



1.1. REPRESENTATION OF EQUIVARIANT SUBSETS 7

In other words, this is the union of orbits of the elements from Y .

Example 9. The full set A2
is generated by the two pairs

(Eve,Eve), (John,Eve).

As explained in Example 4, the set Ad
is generated by a finite subset, whose size is the

d-th Bell number. The identity function of type A2 → A2
, when seen as a subset of

A4
, is generated by

(John, John) 7→ (John, John) (John,Eve) 7→ (John,Eve).

In the above, we write a 7→ b instead of (a, b) when describing pairs in the graph of a

function □

We can use finite generating subsets as a representation of equivariant subsets.

This assumes that we can represent individual atoms; for the moment we simply as-

sume that atoms are strings over some finite alphabet, but the issue of representations

will be discussed in more detail in Section 3.5. The representation by generating sub-

sets is general enough to cover all equivariant subsets, as shown in the following

lemma.

Lemma 1.5. Every equivariant subset of a pof set is generated by finitely many ele-

ments.

Proof. There are finitely many orbits, and an equivariant subset is a union of some of

these orbits. □

The above lemma shows that finite generating sets can be used as a way of repre-

senting equivariant subsets. The representation has several advantages, but concise-

ness is not one of them. (Non-conciseness can also be framed as an advantage, since

making the inputs longer for an algorithm can give a better bound on its running

time, as we will see in the next section.) For example, to represent the full subset of

Ad
we need a number of generators that is exponential in the dimension d. Also, this

representation is not well suited to basic operations on sets. For example, the empty

set has a very small representation, but its complement does not. Another example is

taking pairs.

Example 10. Consider the subset X ⊆ Ad
that contains only non-repeating pairs.

This subset is generated by one element, e.g. if d = 3 then a generator is

(John,Adam,Tom).

However, if we want to take the square X2
, which is an equivariant subset of A2d

,

then we will need a number of generators that is exponential in d. This is because

X2
consists of tuples of length 2d where the first half is non-repeating and the second

half is also non-repeating, but there is no further restriction on the equalities between

the first half and the second half. In particular, X2
will contain any tuple where the

second half is a permutation of the first half, such as

((John,Adam,Tom), (Tom, John,Adam)).



8 CHAPTER 1. POLYNOMIAL ORBIT-FINITE SETS

It will also contain tuples where some atoms are shared between the first and second

half, and some atoms are not, such as

((John,Adam,Tom), (Tom, John,Eve)).

□

1.1.2 Formulas
As an alternative to generating sets, we can use formulas. For example, the set of

non-repeating tuples in A3
can be described by the formula

x1 , x2 ∧ x1 , x3 ∧ x2 , x3.

The formulas that we use have no quantifiers, they are only Boolean combinations of

equalities on the coordinates (quantifiers will appear later in the book). This repre-

sentation can be exponentially more concise than the generating set representation.

For example, the full set Ad
can be represented by the short formula “true”, while the

number of generators is exponential in d. Also, the representation efficiently sup-

ports such operations as complementation, which is implemented by adding ¬ to the

formula. Similar comments apply to union and intersection, or to the product opera-

tion from Example 10. The following lemma shows that the formula representation is

equivalent to the generating set representation, in the sense that both define the same

subsets, namely the equivariant subsets.

Lemma 1.6. A subset X ⊆ Ad
is equivariant if and only if it can be defined by a

formula φ(x1, . . . , xd) that is constructed using equality comparisons xi = x j and Boolean

operations ∧,∨,¬.

Proof. For the implication⇐, we observe that if we apply an atom permutation to a

tuple in Ad
, then this will not change the pattern of equalities between coordinates,

and therefore the truth value of a formula that uses only equality will be preserved.

For the implication ⇒, consider an equivariant subset X ⊆ Ad
. This subset is

generated by a finite set Y ⊆ X, thanks to Lemma 1.5. The orbit of generator y ∈ Y is

described by a formula, which asserts the pattern of equalities in this generator:(∧
i, j

xi = x j︸      ︷︷      ︸
conjunction ranges over

i, j ∈ {1, . . . , d}
such that y[i] = y[ j]

)
∧

(∧
i, j

xi , x j︸      ︷︷      ︸
conjunction ranges over

i, j ∈ {1, . . . , d}
such that y[i] , y[ j]

)
.

Since there are finitely many generators, to define X we can take the finite disjunction

of these formulas, ranging over the generators. The size of the formula is the number

of generators, times a factor that is polynomial in the dimension d. □

Exercises



1.1. REPRESENTATION OF EQUIVARIANT SUBSETS 9

Exercise 5. Consider the following problem: given two subsets of a pof set, represented using

formulas, decide if they are equal. Show that this problem is: (a) in deterministic logarithmic

space under generating set representation; and (b) complete for coNP under formula represen-

tation.

Exercise 6. To specify a subset of X ⊆ Ad
, we can also use a formula with quantifiers (which

range over atoms). Show that for every such formula, there is an equivalent formula that is

quantifier-free. For example, the formula

φ(x1, x2) = ∃y (x1 , y) ∧ (x2 , y),

is equivalent to “true”.



10 CHAPTER 1. POLYNOMIAL ORBIT-FINITE SETS



Chapter 2

Automata for polynomial
orbit-finite sets

In this section, we discuss in more detail the generalization of automata from finite

sets to polynomial orbit-finite sets. We show that, despite being formally infinite,

these automata can be treated algorithmically, and some of their decision problems

can be decided. However, this comes at a certain cost – not all constructions are

allowed, and the model is less robust than for finite sets. For example, determinization

fails, because the powerset construction does not work.

2.1 Graph reachability
Before discussing automata and their emptiness, we begin with an even simpler com-

putational problem, namely reachability in directed graphs.

Definition 2.1. A directed pof graph consists of a set of vertices V , which is a pof

set, and an edge relation E ⊆ V2
that is equivariant.

Example 11. A simple example is a clique on the atoms: the vertices are A, and all

edges are allowed, i.e.

E = { a→ b | a, b ∈ A }

Here is a second example, where the edge relation is no longer symmetric. The vertices

are A2
, and the edges are

E = { (a, b)→ (b, c) | a, b, c ∈ A }

Here is an example of a path in the second graph

(John, John)→ (John,Eve)→ (Eve,Tom).

11



12 CHAPTER 2. AUTOMATA FOR POLYNOMIAL ORBIT-FINITE SETS

Both graphs are strongly connected, i.e. for every vertices v and w there is a path from

v to w. □

A directed pof graph can be represented in a finite way, by giving the pof set

for the vertices, and some representation (generating set or formula) for the edge

relation. Therefore, it is meaningful to discuss decision problems for pof graphs, such

as reachability.

Theorem 2.2. The following problem is decidable:

• Input: A pof graph, and two equivariant subsets of vertices S ,T ⊆ V .

• Question: Is there a path from some vertex in S to some vertex in T?

The complexity depends on the representation of equivariant subsets:

• PSpace-complete under the formula representation;

• NL-complete under the generating set representation.

Proof. The main idea is that the set of vertices reachable from S is equivariant. There-

fore, we can search for a path from initial to final state in the automaton by just look-

ing at orbits of vertices under atom permutations. The rest, including the complexity

bounds, is mere bookkeeping.

Generating set representation. We begin with complexity of the problem under

the generating set representation. In order to formally speak of this representation,

we need to discuss how individual atoms are represented. We will assume that atoms

are bit strings, i.e. A = 2∗. (This is a bit inconsistent with our convention of represent-

ing atoms as names, but of course names can be encoded in bit strings.) We will show

that, under this representation, the reachability problem is complete for the complex-

ity class of nondeterministic logarithmic space (NL). When talking about logarithmic

space, we need to use a two-tape model for Turing machines: a read-only input tape,

and a read-write work tape of logarithmic size.

• Lower bound. A special case of our problem is reachability for finite graphs,

since pof sets subsume finite sets. The problem reachability problem is hard for

NL in the case of finite graphs, and therefore this lower bound carries over to

the more general atom version of the problem.

• Upper bound. We reduce the problem to the special case of finite graphs.

Reachability in the latter case can be solved in NL, using a naive algorithm that

nondeterministically guesses a path, and stores the current vertex by using a

pointer to the input tape (logarithmic space suffices for that). The reduction

produces the following instance:

– vertices are those that appear in generators of edges in the original in-

stance, or in generators of the source and target sets S and T ;

– there is an edge v→ w if the target state of the transition v is in the same

orbit as the source state of the transition w;



2.1. GRAPH REACHABILITY 13

– source vertices are generators of S ;

– target vertices are generators of T .

The correctness of the reduction is given in the following claim.

Claim 2.3. The original instance has a source-to-target path if and only if the

same is true in the new instance.

Proof. Using equivariance of the edge relation, one shows that for every vertex

in the original instance, it is reachable from a source if and only if some vertex

in the same orbit is reachable in the new instance. □

The reduction can be computed in logarithmic space, even deterministically,

and the reachability problem is in NL.

Formula representation. We now discuss the reachability problem under the for-

mula representation. Here, the complexity will be exponentially higher, namely poly-

nomial space instead of logarithmic space.

• Upper bound. We use the same kind of nondeterministic guessing algorithm

that was used in before. We are allowed to use nondeterminism, since PSpace

is equal to NPSpace by Savich’s Theorem. This time, we will store on the tape a

reachable vertex. At each step, the algorithm guesses a new vertex, with atoms

represented as strings, and it then checks if the formula for the edge relation

allows a connection. The space used by this algorithm is polynomial in:

1. the representation of the graph;

2. the space used to represent atoms.

We will now justify why the space used by atoms is small, in fact logarithmic

in the graph. In every transition, there are at most

d = dim V + dim V

atoms that are used, where dim is the atom dimension. When we are guessing

a new vertex, we might need to get some new atoms that were not seen in the

previous vertex. We can always take the shortest unused atoms, and so we will

always be using the first d atoms, which can be stored using log d bits.

• Lower bound. Here, we reduce from the corridor tiling problem. In this prob-

lem, we have a finite set of square tiles, where each tile has a colour on each of

its four sides. This is formalized as a subset

{N, S, E, W} → C︸                ︷︷                ︸
a tile has colours on the four directions of the compass

.

Elements of this subset will be called tiles. Here is a picture of a set of tiles

which uses three colours:



14 CHAPTER 2. AUTOMATA FOR POLYNOMIAL ORBIT-FINITE SETS

We are also given source and target rows s, t, which are sequences of tiles of the

same length, say n. This length will be the width of the corridor. A solution to

the corridor tiling problem is an n ×m rectangle labelled by the tiles, such that

the first row is s, the last row is t, and every two adjacent tiles have the same

colour on their connecting side. Here is a picture of a solution:

source row

target row

n

m

The corridor tiling problem, i.e. deciding if there exists a solution, is PSpace-

complete. We will show that the corridor tiling problem reduces to the graph

reachability problem, under the formula representation, thus proving PSpace-

hardness for the latter problem. A vertex of the graph will store the representa-

tion of a row in the solution. Assuming that there are k = |C| colours, one row

will be represented by k + 4n atoms

(a1, . . . , ak︸     ︷︷     ︸
distinct atoms

that represent

the tile colours

, n1, s1, e1,w1, . . . , nn, sn, en,wn︸                                 ︷︷                                 ︸
four atoms for each tile in the row,

corresponding to the colours on the sides

north, south, east, west

).

Not all tuples of length k + 4n represent a row, but the tuples that do can be

specified by a formula that has size polynomial in k and d, as follows:∧
i, j∈{1,...,n}

ai , a j︸             ︷︷             ︸
atoms for colours are distinct

∧
∧

i∈{1,...,n−1}

ei = wi+1︸                ︷︷                ︸
colours match horizontally

∧
∧

i∈{1,...,n}

∨
t∈T

ni = at(north) ∧ si = at(south) ∧ ei = at(east) ∧ wi = at(west)︸                                                                                 ︷︷                                                                                 ︸
each position is occupied by a legitimate tile

.

We can further refine the above formula to say that the row represents the

source row, or the target row, by restricting the tile t from the last condition to

be the one that should be used. This way, we get formulas for the initial and



2.2. AUTOMATA AND THEIR EMPTINESS PROBLEM 15

final vertices. Finally, we need to specify the formula for the edge relation. This

formula has

k + 4n︸︷︷︸
old

row

+ k + 4n︸︷︷︸
new

row

,

variables. It says that both the old and new rows are valid, in the sense described

above, and furthermore the south atoms of the old row match the north atoms

of the new row. This, again, can be described by a formula polynomial in k and

n. It is now easy to see that accepting runs of the automaton correspond to so-

lutions of the corridor tiling problem, and therefore the nonemptiness problem

is PSpace-hard.

□

Exercises
Exercise 7. Show that the reachability problem remains PSpace-complete when we restrict it

to symmetric graphs, i.e. graphs where the edge relation is symmetric
1
.

Exercise 8. Consider an undirected pof graph, i.e. a graph where the edge relation is symmet-

ric. Does it necessarily have a spanning tree that is equivariant?

Exercise 9. Consider two undirected pof graphs, which are isomorphic. Is there necessarily

an isomorphism that is equivariant?

Exercise 10. Show that given a directed pof graph, one can compute a number k ∈ {0, 1, . . .}
such that for every vertices s and t, if there is a path from s to t, then there is a path of length

at most k.

Exercise 11. Consider a directed pof graph. Show that there is an infinite path if and only if

there is a cycle.

Exercise 12. Consider a directed pof graph. Show that if the graph is acyclic, then there is a

finite upper bound k on the length of paths.

Exercise 13. Show that the following problem is decidable: given a directed pof graph, decide

if it has finite outdegree, i.e. for every vertex v, there are finitely many vertices w with an edge

v→ w.

Exercise 14. Assume the equality atoms. Show a graph which has an infinite path, but does

not have any infinite finitely supported path.

2.2 Automata and their emptiness problem
In this section, we introduce pof variants of deterministic and nondeterministic au-

tomata, and use the graph reachability result from the previous section to show that

the emptiness problem is decidable. We begin by formally defining the model.

1
Note that in the case of finite graphs, the complexity drops from NL to L when restricting to symmetric

graphs, as shown by Rheingold.



16 CHAPTER 2. AUTOMATA FOR POLYNOMIAL ORBIT-FINITE SETS

Definition 2.4 (Pof automaton). A nondeterministic pof automaton consists of:

1. an input alphabet Σ, which is a pof set;

2. a state space Q, which is a pof set;

3. initial and accepting subsets I, F ⊆ Q, which are equivariant;

4. a transition relation ∆ ⊆ Q × Σ × Q, which is equivariant.

A deterministic pof automaton is the special case where there is exactly one initial

state, and where the transition relation is a function.

As was the case for graphs, the above definition is simply the usual definition,

except that finite sets are replaced by pof sets, and all subsets, relations and functions

are required to be equivariant. Using the same principle, one can consider pof vari-

ants of other structures, such as graphs, pushdown automata, context-free grammars,

Turing machines, etc. (This will be the content of Chapter 3.)

Using the result about graph reachability, we obtaine decidability of emptiness for

pof automata, deterministic or not.

Theorem 2.5. The emptiness problem is decidable for nondeterministic pof automata.

The complexity is the same as for the reachability problem in pof graphs.

Proof. The lower bounds for graph reachability transfer directly to the emptiness

problem, by considering automata over a one-letter alphabet, which are the same

as instances of graph reachability. For the upper bound under the formula represen-

tation, we can use the same straightforward nondeterministic algorithm as in graph

reachability. For the upper bound under the generating set representation, we simply

delete the input letters from the generators of the transitions, and then we solve the

corresponding instance of graph reachability. □

A corollary of the above theorem is decidability of language equivalence for de-

terministic pof automata (as we will see in the following section, the problem is no

longer decidable for nondeterministic automata).

Corollary 2.6. The following problem is decidable:

• Input: Two deterministic pof automata.

• Question: Do they recognise the same language?

The complexity is the same as for the emptiness problem.

Proof. We can use the product construction. A product Q1 × Q2 of two pof sets is

also a pof sets, and the corresponding operations on subsets and transitions preserve

equivariance. We then check if in the product automaton, one can reach states that

are accepting in one automaton, but rejecting in the other. □



2.2. AUTOMATA AND THEIR EMPTINESS PROBLEM 17

In the equivalence algorithm from the above corollary, we use determinism. This

is because we implicitly complement an automaton by complementing its accepting

states, and this only works for deterministic automata. As we will see in the next sec-

tion, the equivalence problem becomes undecidable for nondeterministic automata.

Let us first show that we cannot solve this problem by determinizing. The natural

idea would be to use the powerset construction. Unfortunately, this fails. For ex-

ample, if we take the set A, then its powerset PA is not a pof set. In fact, not only

this construction fails, but there is no successful construction at all, as shown in the

following theorem.

Theorem 2.7. Languages recognised by nondeterministic pof automata are not closed

under complementation. Also, deterministic pof automata are strictly less expressive than

nondeterministic ones.

Proof. The first part of the theorem directly implies the second part, since determin-

istic automata are closed under complementation. To prove the first part, we use the

language

L = { w ∈ A∗ | some letter appears twice }.

In Example 2, we showed that this language is recognised by a nondeterministic pof

automaton. It remains to show that its complement is not recognised by any nonde-

terministic pof automaton.

The complement of L consists of words where all letters are pairwise different.

Suppose, toward a contradiction, that this complement is recognised by a nondeter-

ministic pof automaton. Let d be the atom dimension of the state space, i.e. the maxi-

mal number of atoms that can be stored in a state. Choose n so that it is strictly larger

than the atom dimension of the state space, and consider a word w with 2n pairwise

distinct atoms. This belongs to the complement of the language, and thus it must have

an accepting run. Consider the state q in the middle of the accepting run, i.e. a state

with

I ∋ p
w1
→ q

w2
→ r ∈ F,

where w1 and w2 are the two halves of w that have length n. By assumption on n, there

must be some atom a that appears in the first half w1 but not in the state q. Similarly,

there must be some atom b that appears in the second half w2 but not in the state q.

Let π be the atom permutation that swaps a and b. By equivariance, we have

π(q)
π(w2)
→ π(r) ∈ F.

Since neither a nor b appear in q, we have π(q) = q, and therefore we can stitch the

two runs above to get an accepting run over the concatenation of w and π(v), which

is a word that has an atom repetition, and therefore should be rejected. □

Exercises



18 CHAPTER 2. AUTOMATA FOR POLYNOMIAL ORBIT-FINITE SETS

Exercise 15. Find a deterministic pof automaton for the following language:

{ w ∈ A∗ | the first and last letters are different }.

Exercise 16. Find a deterministic pof automaton for the following language:

{ w ∈ A∗ | no two consecutive letters are the same }.

Exercise 17. Find a deterministic pof automaton for the language

{ w ∈ A∗ | there are at least three different letters }.

Exercise 18. Consider a deterministic pof automaton. Show that after reading an input string

w, all atoms that appear in the state must also appear in w.

Exercise 19. Show that if the input alphabet is finite (i.e. a pof set of dimension zero), then

deterministic pof automata recognise exactly the regular languages.

Exercise 20. Consider a nondeterministic pof automaton, and let k be the maximal number

of atoms that can appear in a single transition. Let A be a finite set of k atoms. Show that if the

automaton is nonempty, then it accepts some word that uses only atoms from A.

Exercise 21. Define a left derivative of a language L ⊆ Σ∗ to be a language of the form

v−1w def
= { w ∈ Σ∗ | vw ∈ L }

for some word v ∈ Σ∗. Are languages recognised by deterministic pof automata closed under

left derivatives?

Exercise 22. We say that two states p and q in a deterministic pof automaton are behaviourally

equivalent if for every input string w, the states pw and qw are both accepting or both rejecting.

Show that behavioural equivalence is equivariant.

Exercise 23. A deterministic pof automaton is called minimal if one cannot find reachable

states p , q that are behaviourally equivalent. Show a language that is recognised by some

deterministic pof automaton but not by any minimal deterministic pof automaton.

Exercise 24. Show that the expressive power of nondeterministic pof automata does not

change if we allow ε-transitions.

Exercise 25. Show that for every nondeterministic pof automaton, the set

{ n ∈ {0, 1, . . .} | the automaton accepts some word of length n }

is ultimately periodic.

Exercise 26. Show that the question from Problem ?? has the same complexity if we restrict

to undirected graphs
2

Exercise 27. Show a family of deterministic pof automata, such that in the n-th automaton

the input alphabet is A, the state space is A0+An
, but the shortest accepted word is exponential

in n.

Exercise 28. Show that for every deterministic pof automaton one can compute some bound k
such that if two states p and q are not behaviourally equivalent, then they can be distinguished

2
This is in contrast to atomless graphs, where the complexity drops to deterministic logspace, as proved

by Rheingold.



2.2. AUTOMATA AND THEIR EMPTINESS PROBLEM 19

by some word of length at most k. Show that this k can be exponential in the dimension of the

state space.

Exercise 29. Show that the following problem is decidable: given a deteriminstic pof automa-

ton, decide if its language is commutative.

Exercise 30. A language is called positively equivariant if for every function π : A→ A which

is not necessarily a bijection, we have

w ∈ L ⇒ π(w) ∈ L.

Show that the following problem is decidable: given a determinstic pof automaton, decide if its

language is positively.

Exercise 31. Let L ⊆ Σ∗ be a language recognised by a deterministic pof automaton. Show that

there is some k with the following property: for every w ∈ Σ∗ there are atoms a1, . . . , ak ∈ A
such that for every atom permutation π that fixes all atoms from a1, . . . , ak , and every v ∈ Σ∗

we have

wv ∈ L ⇔ π(w)v ∈ L.

Exercise 32. Suppose that L ⊆ Σ∗ is recognised by a nondeterministic pof automaton. Show

that there is some k such that for every w ∈ Σ∗ longer than k one can find

1. a decomposition w = xyz with y nonempty; and

2. an atom permutation π that moves finitely many atoms

such that for every n ∈ {0, 1, . . .} we have

xyπ1(y)π2(y) · · · πn(y)πn(z) ∈ L.

Exercise 33. Is there a deterministic pof automaton for the following language?

{ w ∈ A∗ | all letters are different }

Exercise 34. Which of the following closure properties are true for the class of languages

recognised by deterministic pof automata?

1. complementation;

2. union;

3. intersection;

4. reverse;

5. concatentation;

6. Kleene star.

Exercise 35. Which of the closure properties from Problem 34 hold for nondeterministic pof

automata?

Exercise 36. Show that the complement of the language

{ ww | w ∈ A∗ is non-repeating }

is recognised by a nondeterministic pof automaton.

Exercise 37. In this exercise, we consider a variant of regular expressions. Consider the least

class of languages that:



20 CHAPTER 2. AUTOMATA FOR POLYNOMIAL ORBIT-FINITE SETS

1. contains every equivariant set of words that has bounded length;

2. is closed under union and concatenation;

3. is closed under Kleene star L∗.

Show that these languages are a strict subset of nondeterministic, pof automata.

Exercise 38. Show that the regular expressions from the previous exercise are not closed

under intersection.

2.3 Undecidable universality
In Corollary 2.6, we showed that language equivalence is decidable for deterministic

pof automata. We will now show that this problem becomes undecidable for non-

deterministic automata. In fact, already a special case of the language equivalence

problem will be undecidable: given one nondeterministic pof automaton, we want

to decide if it accepts all words, i.e. it is equivalent to the automaton that accepts all

words. For finite automata, this problem is solved by complementing, and then test-

ing for emptiness. As we have seen above, this approach will fail for pof sets, since

nondeterministic pof automata are not closed under complementation. The following

theorem shows that no other approach will work, since the problem is undecidable.

Theorem 2.8. The following problem is undecidable:

• Input: A nondeterministic pof automaton.

• Question: Does it reject some word?

Proof. In the proof, we reduce from the halting problem for counter machines.

Let us begin by describing counter machines. This is a computational model that

uses counters which store natural numbers, and which can updated via increments,

decrements and zero tests. The syntax of the machine is given by a finite set of states

Q, a finite set C of counters, and a finite set of transitions

∆ ⊆ Q︸︷︷︸
source

state

× {inc, dec, zero}︸            ︷︷            ︸
counter operations

× C︸︷︷︸
which

counter is

affected

× Q︸︷︷︸
target

state

.

The increment operation adds one to the affected counter and leaves the other coun-

ters unchanged, the decrement operation subtracts one, and the zero test transition

does not change the counters but is only enabled if the corresponding counter is equal

to zero. A decrement cannot be performed if the corresponding counter is zero, since

we require counters to be natural numbers. The semantics of the machine is its con-

figuration graph, which is a directed graph where the vertices are

Q︸︷︷︸
state

× NC︸︷︷︸
counter

valuation

and where the edges are given by the transitions in the expected way. The following

problem, which we call the halting problem for counter machines, is a classic undecid-

able problem:



2.3. UNDECIDABLE UNIVERSALITY 21

• Input: a counter machine, and two states p and q.

• Question: is there a path from (p, 0̄) to (q, 0̄) in the configuration graph?

We will show that the above problem reduces to universality of nondeterministic pof

automata, and therefore the latter problem is also undecidable. (The halting problem

for counter machines is known to be undecidable even for two counters. However, we

do not need this in our reduction, since it will also work with more than two counters.)

In the reduction, we will use words with atoms to represent accepting runs of

the counter machine. The idea is to use atoms to represent the matching between

increments and their corresponding decrements. Formally speaking, define L to be

the set of words over the alphabet

A × ∆

which satisfy the following two conditions:

1. The first transition has the initial state p, the last transition has the target state

q, and consecutive transitions agree on states.

2. An atom can appear at most twice. Also:

(a) if an atom appears once, then its only appearance labels a zero test;

(b) if an atom appears twice, then the first appearance labels an increment,

the second appearance labels a decrement on the same counter, and there

are no zero tests on this counter between them.

It is not hard to see that L is nonempty if and only if there is a path as in the

halting problem. Therefore, if we could decide emptiness of L, then we could decide

the halting problem. Emptiness of L is the same as universality for its complement.

The following lemma shows that the complement is recognised by a pof automaton,

thus completing the reduction.

Lemma 2.9. The complement of L is recognised by a nondeterministic pof automaton.

Proof. A word belongs to the complement of L if and only if it violates one of the

two conditions 1 or 2 in the definition of L. Since nondeterministic pof automata are

closed under unions, it is enough to give separate automata for the two conditions.

Condition 1 does not refer to atoms, and therefore its complement can be recognised

by a finite automaton, because regular languages on finite (i.e. atom-less) alphabets

are closed under complementation. The interesting part is violations of condition 2.

This condition is violated if and only if at least one of the following holds:

(a) some atom appears at least three times; or

(b) some atom appears at least twice, but in a way that violates condition 2(ii),

i.e. either the two appearances are not matching increment/decrement pairs, or

there is a zero test between them; or

(c) some atom appears exactly once, but is label is not a zero test.



22 CHAPTER 2. AUTOMATA FOR POLYNOMIAL ORBIT-FINITE SETS

It is enough to give a separate automaton for each of the three kinds of violations.

Violations of kind (a) can be recognised by an automaton which stores the repeated

atom in its state, using state space

A0︸︷︷︸
initial

+ A1︸︷︷︸
after first

+ A1︸︷︷︸
after second

+ A0︸︷︷︸
accepting

.

Violations of kind (b) can be recognised by several copies of the following automaton,

with one copy for each counter:

A0︸︷︷︸
initial

+ A1︸︷︷︸
after first

+ A0︸︷︷︸
accepting

.

The most interesting automaton is for violations of kind (c). The challenge is that the

automaton needs to check that the atom appears exactly once. For this reason, it must

guess the atom immediately, before having seen it, to check that it does not appear

earlier in the word. This is done by an automaton with a state space

A1︸︷︷︸
initial

+ A1︸︷︷︸
after first

+ A0︸︷︷︸
accepting

,

where the initial states stores an atom that is nondeterministically guessed. □

Observe that the automaton in the proof of the lemma above had atom dimension

one, and therefore the universality problem is undecidable already for such automata.

□

Exercises
Exercise 39. To express properties of words in A∗, we can use first-order logic, where the

quantifiers range over positions, and there are predicates for the order on positions, and equality

of data values. For example, the following formula says that the first position has the same atom

as some later position:

∀x (∀y y ≥ x)︸      ︷︷      ︸
x is the first position

⇒ (∃y y > x ∧ y ∼ x)︸                 ︷︷                 ︸
x has the same atom

as some later position

.

Show that satisfiability is undecidable for this logic, i.e. one cannot decide if a given formula is

true in some word from A∗.

2.4 A decidable case of universality
In this section, we show that under extra assumptions, we can recover decidability

of universality for nondeterministic pof automata. There is not much space here,

since the undecidability argument used automata with atom dimension one, i.e. a

state would store at most one register. Of course atom dimension zero would be suf-

ficient for decidability, since such automata determinize (even if the input alphabet is



2.4. A DECIDABLE CASE OF UNIVERSALITY 23

infinite), but we are looking for something more exciting. It turns out that the crucial

distinction is nondeterministic guessing of atoms that was used in the reduction in

the previous section. We formalize this in the following definition.

Definition 2.10. A nondeterministic pof automaton is called guessing if there is some

initial state that contains an atom, or some transition

p
a
→ q,

where q contains an atom that appears neither in p nor a.

The automaton for condition (c) in the proof of Lemma 2.9 used guessing, since its

initial states contained atoms. We will show that if the automaton is non-guessing,

and its state space has dimension at most one, then the universality problem is decid-

able. The bound is tight – if we lift allow guessing then we can use the undecidability

proof from Theorem 2.8, and if we allow dimension two, then we also get undecid-

ability, which is left as an exercise for the reader.

Theorem 2.11. The following problem is decidable:

• Input: A nondeterministic pof automaton, which is non-guessing and has a state

space of dimension at most one.

• Question: Does it accept all words?

We do not give any complexity bounds, since the algorithm that we provide is

highly inefficient, and is based on a brute-force procedure that searches through all

possible witnesses of some kind, with no explicit bound on the size of these witnesses.

The rest of Section 2.4 is devoted to proving the above theorem. As mentioned

in Section ??, the powerset construction does not work for pof sets. However, as

we will see in this proof, the two extra assumptions – dimension at most one and

non-guessing – will enable us to exhaustively search the state space in the powerset

automaton, despite this automaton not being a pof automaton.

For the rest of this proof, fix a nondeterministic pof automaton

A = (Q,Σ,∆, I, F)

that we want to check for universality. We will discuss the usual powerset automaton,

which we denote by PA, despite this automaton not being a pof automaton. Let us

recall the construction of the powerset automaton. The input alphabet is the same.

States in the powerset automaton are sets of states in the original automaton, with

the initial state being I, and the final states being those that intersect F. The point of

the powerset automaton is that it is deterministic: when it is in a state P ⊆ Q, and it

reads an input letter a, then it deterministically goes to the state

{ q ∈ Q | p
a
→ q for some p ∈ P }.

Although the powerset automaton is not a pof automaton, we will be able to represent

its reachable states in a finite way, under the extra assumptions from the theorem.

The non-guessing assumption will ensure that only finite sets of states appear in

the powerset automaton.



24 CHAPTER 2. AUTOMATA FOR POLYNOMIAL ORBIT-FINITE SETS

Lemma 2.12. If the automaton A is non-guessing, then every reachable state in the

powerset automaton is a finite subset of Q.

Proof. By the non-guessing assumption, we know that if the powerset automaton

reads an input word w, then its state will be a subset of

{ q ∈ Q | all atoms from q appear in w }.

The above set is finite, since a pof set can only have finitely many elements that use a

given finite set of atoms. □

Thanks to the above lemma, from now on, we will be working in the finite powerset

automaton, which is obtained from the powerset automaton by restricting its state

space to finite sets. The general idea behind our universality algorithm is that it will

exhaustively search for two kinds of witnesses:

• a finite witness that the automaton rejects some word; or

• a finite witness that the automaton accepts all words.

The witnesses of the first kind are straightforward: they are rejected words. The wit-

nesses of the second kind are described in the following lemma (we will later explain

why these witnesses can be viewed as finite).

Lemma 2.13. The automatonA accepts all words if and only if there is a family

R ⊆ PfinQ

of states in the finite powerset automaton with the following properties:

1. R ∋ I, i.e. R contains the initial state of the finite powerset automaton;

2. R contains only sets that intersect F, i.e. it only contains accepting states of the

finite powerset automaton;

3. R is closed under applying transitions of the finite powerset automaton;

4. R is equivariant, i.e. closed under applying atom permutations;

5. R is upward closed with respect to inclusion, when restricted to finite sets: if a finite

set P ⊆ Q contains some set from R, then also P ∈ R.

Proof. The implication ⇐ is immediate; in fact it holds already if we only keep the

first three conditions 1–3. Let us now prove the implication ⇒. Define R to be the

upward closure of the reachable states of the powerset automaton, i.e. R is the finite

sets that contain some reachable state of the powerset automaton. Conditions 1, 2

and 5 follow from the definition of R. By equivariance of the original automaton, the

set of reachable states in the powerset automaton is also equivariant, and therefore

so is its upward closure, thus proving condition 4. Finally, condition 3 follows from

monotonicity of the transition function of the powerset automaton: if we increase the

source state, then we also increase the target state. □



2.4. A DECIDABLE CASE OF UNIVERSALITY 25

As mentioned in the proof, the equivalence in the above lemma would continue to

hold without the last two conditions 4 and 5 about equivariance and upward closure.

The purpose of These conditions, and of the assumption that Q has dimension at most

one, is to ensure that R can be represented in a finite way. This representation will be

based on the following order on finite subsets of Q:

R1 ⊑ R2 iff π(R1) ⊆ R2 for some atom permutation π. (2.1)

It is not hard to see that two subsets are equivalent under the above order, i.e. they

are compared in both directions, if and only if they are in the same orbit under atom

permutations. It is also not hard to see that a subset R is upward closed with respect

to this order if and only if it satisfies conditions 4 and 5. The following lemma shows

that every upward closed set – and therefore also the set R from Lemma 2.13 – is

the upward closure of a finite set, and thus it can be represented in a finite way. The

lemma crucially uses the assumption on dimension one, and it would fail for atom

dimension two or more.

Lemma 2.14. Let Q be a pof set of dimension one. If R ⊆ PfinQ is upward closed with

respect to the order ⊑, then there is a finite set R0 ⊆ R such that

R ∈ R iff R0 ⊑ R for some R0 ∈ R0.

Proof. To prove the lemma, we will use a similar observation about vectors of natural

numbers, equipped with the coordinatewise ordering

(x1, . . . , xd) ≤ (y1, . . . , yd) def
= x1 ≤ y1 ∧ · · · ∧ xd ≤ yd.

This observation is called Dickson’s Lemma, and is stated below.

Dickson’s Lemma Let X ⊆ Nd
be a set that is upward closed with respect to the

coordinatewise ordering. Then there is some finite set X0 ⊆ X such that

x ∈ X iff x0 ≤ x for some x0 ∈ X0.

We will reduce the present lemma to Dickson’s Lemma, using the assumption

that Q has atom dimension at most one. Let us decompose Q into components of

dimension zero and one:

Q = A0 + · · · + A0︸           ︷︷           ︸
k components of

dimension zero

+ A1 + · · · + A1︸           ︷︷           ︸
ℓ components of

dimension zero

For a finite set R ⊆ Q, define its profile to be the following information:

i. which elements from components of dimension zero belong to R;

ii. for each nonempty subset I ⊆ {1, . . . , ℓ}, how many atoms a satisfy

i ∈ I iff the i-th copy of a belongs to P.



26 CHAPTER 2. AUTOMATA FOR POLYNOMIAL ORBIT-FINITE SETS

The profile of a set identifies the set up to atom permutations, i.e. two finite subsets

of Q have the same profile if and only if they are in the same orbit. Together with

equivariance of R, this implies that membership in R can be seen as a question about

profiles, i.e. we have

R ∈ R ⇔ profile(R) ∈ P, (2.2)

where P is defined to be the image of R under the profile map.

The point of profiles is that they are essentially vectors of natural numbers. More

precisely, we can view the profile as a function

PfinQ→ {0, 1}{1,...,k}︸      ︷︷      ︸
answers to

question (i)

×Nnonempty subsets of {1,...,ℓ}︸                      ︷︷                      ︸
answers to

question (ii)

This allows us to view finite sets of states as vectors of natural numbers of fixed di-

mension, which will enable us to use Dickson’s Lemma. (Observe that this technique

would not longer work for dimension two, since we would need to describe how pairs

of atoms interact).

The profile map has the following monotonicity property, where profiles are or-

dered coordinatewise:

R1 ⊑ R2 ⇐ profile(R1) ≤ profile(R2). (2.3)

This is because increasing the profile corresponds to adding states to the set. Thanks (2.3)

and upward closure of R, the set of profiles P is upward closed under ≤. Therefore,

we can apply Dickson’s Lemma to conclude that P is generated by some finite set of

profiles P0. Together with (2.2), this gives us

R ∈ R ⇔ P0 ≤ profile(P) for some P0 ∈ P. (2.4)

Choose R0 so that its profiles are exactly those from P0. The conclusion of the lemma

is proved in the following diagram:

R ∈ R

P0 ≤ profile(R)
for some P0 ∈ P0

R0 ⊑ R
for some R0 ∈ R

upward closure of R(2.4)

(2.3)

□

We are now ready to complete the proof of the theorem. Define a witness for uni-

versality to be a set R as in Lemma 2.13, which is represented by a finite set R0 as in

Lemma 2.14. Define a witness for non-universality to be a rejected word. The algo-

rithm exhaustively searches for witnesses of both kinds, and it is guaranteed to find

one in finite time. (As mentioned before, we have no explicit bounds on the running

time of the algorithm, beyond saying that it runs in finite time.) It remains to show

that one can verify a witness for universality, i.e. given a finite set R0, one can check



2.4. A DECIDABLE CASE OF UNIVERSALITY 27

if its upward closure R satisfies the conditions of Lemma 2.13. The only interesting

condition to check is condition 3, which says that R is closed under applying tran-

sitions. By monotonicity of the transition function in the powerset automaton, this

reduces to checking if for every R in the finite set R0 and every input letter a ∈ Σ, the

resulting state is in R. Although there are infinitely many possible letters a, we only

need to check this for finitely many choices, since we only need to use at most d fresh

atoms, where d is the atom dimension of the input alphabet and fresh atoms are those

that do not appear in R. This completes the proof of Theorem 2.11.

Exercises
Exercise 40. Show that languages recognised by one way non-guessing alternating automata

are not closed under reversals.

Exercise 41. Show that the order defined in (2.1) is no longer a well-quasi ordering if we use

infinite subsets of A.

Exercise 42. Show that the order defined in (2.1) is no longer a well-quasi ordering if we use

finite subsets of A2
instead of A. For example, we have

{(John, Eve), (John, John)} ≤ {(Eve, Tom)︸       ︷︷       ︸
this pair

is deleted

, (Mark, John), (Mark, Mark)︸                              ︷︷                              ︸
to the remaining elements, we

apply an atom permutation with

Mark 7→ John and John 7→ Eve

.}

Exercise 43. Consider the following ordering on A∗. We say that w ≤ v if one can obtain w
from v as follows: (a) first delete some letters from v; then (b) apply some atom permutation. Is

this a well-quasi-ordering?

Exercise 44. We say that a language L ⊆ Σ∗ is upward closed if it is closed under inserting

letters. In other words,

wv ∈ L ⇒ wav ∈ L for every w, v ∈ Σ∗ and a ∈ Σ.

Is it true that every language that is both equivariant and upward closed is necessarily recog-

nised by a nondeterministic pof automaton?



28 CHAPTER 2. AUTOMATA FOR POLYNOMIAL ORBIT-FINITE SETS



Chapter 3

More computational models
with atoms

In the previous sections, we discussed pof variants of deterministic and nondetermin-

istic automata. In this chapter, we give a sample of other models of computation,

namely alternating automata, two-way automata, circuits, context-free grammars,

and Turing machines. This material below is nothing but a collection of exercises,

each one preceded by a brief description of the relevant model of computation.

3.1 Alternating automata

Earlier in this chapter, we showed that in the pof setting, nondeterministic automata

are no longer equivalent to deterministic. There are two more examples of this phe-

nomenon, namely two other variants of automata that are equivalent to the usual au-

tomata in the atom-free case, but are no longer equivalent in the presence of atoms.

The first of these is alternating automata.

An alternating pof automaton is a generalization of nondeterministic automata,

which is self-dual in the sense that it does not priviledge existential choice over uni-

versal choice. Let us describe this model. The automaton has the same syntax as a pof

nondeterministic automaton, except that there is an additional equivariant partition

of the states into two parts, called the existential and universal states. The semantics

are changed as follows. We assume that the automaton has one initial state, and the

language of the automaton is defined to be the words accepted from this initial state.

The set of words w accepted from a state q is defined by induction on the length of the

word as follows
1
. The empty word is accepted from q if and only if q is a final state.

Consider now a nonempty word, say of the form aw where a is a letter and w is some

shorter word. The word aw is accepted from a state q if:

1
This model is often considered with ϵ-transitions, but we avoid them for simplicity. However, we do

use ϵ-transitions in Exercise 59, with the semantics being left to the reader.

29



30 CHAPTER 3. MORE COMPUTATIONAL MODELS WITH ATOMS

• the state q is existential, and w is accepted from p for some transition

q
a
→ p;

• the state q is universal, and w is accepted from q for every transition

q
a
→ p.

Exercises
Exercise 45. Give an alternating pof automaton that recognises the language

{ w ∈ A∗ | all letters in w are different }.

Exercise 46. Show that in the atom-less case, i.e. when the states and input alphabet have

atom dimension zero, this model recognises exactly the regular languages.

Exercise 47. Show that languages recognised by alternating pof automata are closed under

complement.

Exercise 48. Show that emptiness is undecidable for alternating pof automata.

Exercise 49. Show that emptiness continues to be undecidable for alternating pof automata

even if we require the state space to have atom dimension 1.

Exercise 50. Show a language that witnesses point 3 in Figure ??.

Exercise 51. Show a language that witnesses point 4 in Figure ??, possibly assuming conjec-

tures about complexity classes being distinct.

Exercise 52. Show that the non-guessing alternating pof automata are strictly weaker than

the general model.

Exercise 53. Show that emptiness becomes decidable for alternating pof automata if we

require the state space to have atom dimension 1, and the automaton must be non-guessing.

3.2 Two-way automata
We now describe a second extension of finite automata, which is equivalent to the

usual automata in the atom-free case, but not in the presence of atoms. This is a

two-way automaton, where the head can move both left and right. This model is the

same as Turing machines that have a read-only input tape and no work tape. We

will consider the pof variant of this model, in the deterministic case. A deterministic

two-way pof automaton is defined like a deterministic pof automaton, except that the

transition function is of type

Q × (Σ + {⊢, ⊣})︸       ︷︷       ︸
input letters or endmarkers

→ {accept, reject} + (Q × {left, stay, right}︸              ︷︷              ︸
head movement

).

The automaton can also reject by entering an infinite loop.



3.3. CIRCUITS 31

Exercises
Exercise 54. Show that in the atom-less case, i.e. when the states and input alphabet have

atom dimension zero, this model recognises exactly the regular languages.

Exercise 55. Suppose that atoms are names, which can be written using the latin alphabet.

The atomless representation of an element in a pof set is the string over the finite alphabet, which

is obtained from the latin alphabet by adding letters for brackets and commas, that is obtained

by writing out each atom as a string. For example the triple

(John,Eve, John) ∈ A3

has an atomless representation of 15 letters, where the first letter is an opening bracket and the

second letter is J. The atomless representation extends to words over a pof alphabet. Show that

for every two-way pof automaton, the set

{ atomless representation of w | the automaton accepts w }

is in the complexity class L, i.e. deterministic logarithmic space.

Exercise 56. Consider the nondeterministic variant of the previous exercise. Show that the

language of atomless representations is in NL, i.e. nondeterministic logarithmic space, and it

can be complete for that class
2
.

Exercise 57. Find a deterministic two-way register automaton which recognises the language

{a1 · · · an : a1, . . . , an are distinct and n is a prime number}.

Exercise 58. Consider nondeterministic two-way register automatonAwith one register and

labels Σ. Show that the following language is regular (in the usual sense, without data values):

{b1 · · · bn ∈ Σ
∗ : A accepts (b1, a1) · · · (bn, an)

for some distinct atoms a1, . . . , an ∈ A}.

Exercise 59. Show that for every nondeterministic two-way pof automaton, there is an equiv-

alent (one-way) alternating pof automaton with ε-transitions.

3.3 Circuits
In this group of problems, we consider the pof version of circuits. A pof circuit consists

of:

1. a pof set X of variables;

2. a pof directed acyclic graph whose vertices are called gates;

3. a distinguished output gate;

4. an equivariant labelling from gates to X + {∨,∧}.

2
A corollary of Exercises 55 and 56 is that

pof two-way automata determinize ⇒ NL = L.

It is likely that the assumption is false, but no proof is known as of this time.



32 CHAPTER 3. MORE COMPUTATIONAL MODELS WITH ATOMS

Given a valuation of the variables X → {true, false}, the circuit computes a value in

the natural way, which is the value of the output gate.

Exercises
Exercise 60. Show that satisfiability is undecidable for pof circuits.

Exercise 61. A circuit is called a formula if the directed acyclic graph is a tree. Show that

every pof circuit can be transformed into an equivalent formula.

Exercise 62. A pof circuit is said to be in DNF form if the root gate is a disjunction, its children

are conjunctions, and their children are variables or their negations. Show that satisfiability is

decidable for circuits in DNF form.

Exercise 63. CNF normal form is defined dually to DNF normal form. Show that not every

pof DNF circuit can be transformed into an equivalent pof CNF circuit.

3.4 Pushdown automata and context-free grammars
In this section, we discuss pof variants of pushdown automata

3
and context-free gram-

mars. We show that basic results, such as equivalence of pushdown automata and

context-free grammars, or decidability of emptiness, transfer easily to the pof setting.

We also motivate the models by giving examples of automata and grammars that use

atoms.

Definition 3.1. A pof pushdown automaton consists of

Q︸︷︷︸
states

Σ︸︷︷︸
input

alphabet

Γ︸︷︷︸
stack

alphabet

q0 ∈ Q︸ ︷︷ ︸
initial state

γ0 ∈ Γ︸ ︷︷ ︸
initial stack

symbol

,

such that the initial state and initial stack symbol are equivariant, together with an

equivariant transition relation

δ ⊆ Q ×

popped︷︸︸︷
Γ∗ ×

input︷ ︸︸ ︷
(Σ ∪ ϵ) × Q ×

pushed︷︸︸︷
Γ∗

such that the popped and pushed strings have bounded length.

The language recognised by such an automaton is defined in the usual way. We

assume that the automaton accepts via empty stack, i.e. a run is accepting if the last

configuration (state, stack contents) has an empty stack.

Similarly, we can define a pof pushdown grammar.

3
Context-free languages for infinite alphabets were originally introduced by Cheng and Kaminski

(1998), who proved equivalence for register extensions of context-free grammars and pushdown automata.

The generalisation to orbit-finite pushdown automata and context-free grammars is from Bojańczyk et al.

(2014). See also Murawski et al. (2014); Clemente and Lasota (2015a,b).



3.4. PUSHDOWN AUTOMATA AND CONTEXT-FREE GRAMMARS 33

Definition 3.2. A pof context-free grammar consists of

N︸︷︷︸
nonterminals

Σ︸︷︷︸
input

alphabet

R ⊆ N × (N + Σ)∗︸                ︷︷                ︸
rules

S ∈ N︸︷︷︸
initial

nonterminal

where the nonterminals and input alphabet are pof sets, the set of rules is equivariant

and has bounded length, and the initial nonterminal is equivariant.

The language generated by a grammar is defined in the usual way.

Example 12. [Pushdown automaton for palindromes.] For a pof alphabet Σ, consider

the language of palindromes, i.e. words which are equal to their reverse. This language

is recognised by a pof pushdown automaton which works exactly the same way as

the usual automaton for palindromes, with the only difference being that the stack

alphabet Γ is now a pof set, namely Σ. For instance, in the case when Σ = A, the

automaton keeps a stack of atoms during its computation. The automaton has two

control states: one for the first half of the input word, and one for the second half of

the input word. As in the standard automaton for palindromes, this automaton uses

nondeterminism to guess the middle of the word. □

Example 13. [Pushdown automaton for modified palindromes.] The automaton in

Example 12 had two control states, which did not store any atoms. In some cases,

it might be useful to have a set Q of control states that uses atoms. Consider the

set of odd-length palindromes where the middle letter is equal to the first letter. A

natural automaton recognising this language would be similar to the automaton for

palindromes, except that it would store the first letter a1 in its control state.

Another solution would be an automaton which keeps the first letter in every

token on the stack. This automaton has a stack alphabet of Γ = Σ × Σ, and after

reading letters a1 · · · an its stack is

(a1, a1), (a1, a2), . . . , (a1, an).

This automaton needs only two control states. Actually, using the standard construc-

tion, one can show that every orbit-finite pushdown automaton can be converted into

one that has one control state, but a larger stack alphabet. □

The following example gives some motivation for studying orbit-finite pushdown

automata.

Example 14. [Modelling recursive programs] Pushdown automata without atoms are

sometimes used to model the behaviour of recursive programs with Boolean variables.

By adding atoms, we can also model programs that have variables ranging over atoms.

Consider a recursive function such as the following one (this program does not do

anything smart):

1 function f(a: atom)
2 begin
3 b:=read() // read an atom from the input
4 if b != a then



34 CHAPTER 3. MORE COMPUTATIONAL MODELS WITH ATOMS

5 f(b)
6 if b != read() then
7 fail() // terminate the computation
8 end

The behaviour of this program can be modelled by a pof pushdown automaton. The

input tape corresponds to the read() functions. The stack corresponds to the call

stack of the recursive functions; the stack stores atoms since the functions take atoms

as parameters. Since the only variables are atoms, the set of possible call frames

(i.e. the stack alphabet) is a pof set. Pof pushdown automata could also be used

to model more sophisticated behaviour, including mutually recursive functions and

boolean variables. □

Theorem 3.3. Pushdown automata recognize the same languages as context-free gram-

mars. Furthermore, emptiness is decidable.

Proof. We just redo the classical constructions, which are so natural that they easily

go through in the pof extension.

• From a pushdown automaton to a context-free grammar. Without loss of gen-

erality, we assume that each transition either: pops nothing and pushes one

symbol; or pops one symbol and pushes nothing. We also assume that in every

accepting run, the stack is nonempty until the last configuration. Every push-

down automaton can be transformed into one of this form, without changing

the recognised language, by using additional states and ε-transitions. The trans-

formation can be done in polynomial time, assuming that equivariant subsets

are represented using formulas.

Assuming that the pushdown automaton has the form discussed above, the cor-

responding grammar is defined as follows. The nonterminals are

N = {S }︸︷︷︸
an initial nonterminal

+ Q × Γ × Q.

The language generated by a nonterminal (p, γ, q) is going to be the set of words

which label runs of the following form:



3.4. PUSHDOWN AUTOMATA AND CONTEXT-FREE GRAMMARS 35

begins with state p  
and     on the top of
the stack (but possi-
bly other symbols 
below)

ends with state q
and initial stack

the initial part of the stack remains unchanged through the run

... ... ... ... ... ... ... ... ...

To describe these runs, we use the following grammar rules. All the sets below

are equivariant and have bounded length:

1. Transitive closure. For every p, q, r ∈ Q and γ ∈ Γ, there is a rule

(p, γ, q)→ (p, γ, r)(r, γ, q).

2. Push-pop. For every transitions

(p, ϵ, a, p′, γ′)︸           ︷︷           ︸
push

(q′, γ′, b, q, ϵ)︸          ︷︷          ︸
pop

there is a rule

(p, γ, q)→ a(p′, γ′, q′)b.

3. Starting. For every transition that pops the initial stack symbol γ0

(p, γ0, a, q, ϵ)︸          ︷︷          ︸
pop

there is a rule

S → (q0, γ0, p)a.

• From a context-free grammar to a pushdown automaton. The automaton keeps a

stack of nonterminals. It begins with just the starting nonterminal, and accepts

when all nonterminals have been used up. In a single transition, it replaces the

nonterminal on top of the stack by the result of applying a rule. This automaton

has one state (if we disregard the restriction that all transitions have to be either

push or pop).



36 CHAPTER 3. MORE COMPUTATIONAL MODELS WITH ATOMS

• Emptiness is decidable. We now show that emptiness is decidable. We use

the context-free grammars, and the usual algorithm. This algorithm stores an

equivariant subset of the nonterminals that are known to be nonempty (also

known as productive nonterminals). Initially, the subset is empty. In each step,

we add a nonterminal X to the subset if there is some rule in the grammar,

where the left hand side has X, and the right hand side has only terminals and

nonterminals that are already in the subsets. Because the set of rules is equiv-

ariant, in each step the subset is equivariant. Therefore, the subset can grow

only in finitely many steps before stabilizing. The number of steps is at most

the number of orbits in the set of nonterminals, which is at most exponential

in the representation of the grammar.

□

Exercises
Exercise 64. Consider the following extension

4
of pof pushdown automata, where a new

kind of transition is allowed:

q
fresh(a)

→ p for states p, q and an input letter a ∈ A.

When executing this transition, the automaton reads letter a and changes state from q to p,

but only under the condition that all atoms from the input letter a are fresh (i.e. do not appear

in) with respect to every letter on the stack and the current state q. Show that emptiness is

decidable.

Exercise 65. Consider the following higher-order variant of orbit-finite pushdown automata
5
.

The automaton has a stack of stacks (one could also consider stacks of stacks of stacks, etc., but

this exercise is about stacks of stacks). There are operations as in a usual pushdown automaton,

which apply to the topmost stack. There is also an operation “duplicate the topmost stack” and

an operation “delete the topmost stack”. Show that emptiness is undecidable.

Exercise 66. Show a language that is generated by a pof context-free grammar, but not by

any pof context-free grammar with a finite (not just pof) set of nonterminals.

Exercise 67. Show that emptiness for pof context-free grammars is ExpTime-complete.

Exercise 68. Show that if the set of terminals (i.e. the input alphabet), is finite (i.e. pof of di-

mension zero), then pof context-free grammars are the same as usual context-free grammars.

Exercise 69. Show that pof context-free grammars can be converted into Chomsky normal

form, where all rules are of the form X → YZ with X,Y,Z nonterminals, or X → a with X a

nonterminal and a a terminal.

3.5 Turing machines
In this section, we discuss the pof version of Turing machines. A pof Turing machine

is defined like a Turing machine, except that the set of states, and the alphabets are

pof sets, and the transition function is equivariant.

4
This extension is based on Murawski et al. (2014).

5
This exercise is based on (Murawski et al., 2014, Section 6).



3.5. TURING MACHINES 37

We assume that the reader is familiar with Turing machines, but we give a more

detailed description of our modal to fix notation. The input alphabet Σ, the work

alphabet Γ, and the set of states Q are all pof sets. We assume that the work alphabet

contains the input alphabet, and there is some designated blank symbol

blank ∈ Γ \ Σ

that is equivariant. One could have a two tape model, but since we will not be inter-

ested in machines with sublinear space (e.g. logarithmic space), we use the one tape

model for simplicity. In this model, there is one tape that is read-write, which initially

contains the input string, and which is also used for storing intermediate computa-

tions. The tape is infinite in both directions. A configuration of the Turing machine

consists of the tape contents (i.e. each cell has some letter from the work alphabet), a

head position (which points to some cell), and a state from Q. The initial configuration

looks like this:

a1

q0

a2 a3 ......

input string

head is in initial state, 
and just before the first 

input letter 

blanksblanks

The behaviour of the Turing machine is specified by its transition function, which

is an equivariant function of type

Q × Γ︸︷︷︸
current state and

letter under

the head

→ {accept, reject} + (Q × {left, stay, right}︸              ︷︷              ︸
head movement

× Γ︸︷︷︸
what is

written on

the tape

).

Using the transition function, the machine computes a new configuration in the ex-

pected way, or it accepts/rejects. This leads to a computation (a sequence of config-

urations), which is either finite – when an accept/reject instruction is executed – or

infinite. In a nondeterministic machine, instead of a function we have a binary re-

lation, and an input string might have more than one computation. The language

recognized by a (possibly nondeterministic) Turing machine is the set of words that

have at least one accepting computation.

Example 15. [A Turing machine checking that all letters are different] Consider

the equality atoms. Assume that the input alphabet is A. We show a deterministic

Turing machine which accepts words where all letters are distinct. The idea is that the

machine iterates the following procedure until the tape contains only blank symbols:

if the first non-blank letter on the tape is a, replace it by a blank and load a into the

state, scan the word to check that a does not appear again (if it does appear again,

then reject immediately), and after reading the entire word go back to the beginning



38 CHAPTER 3. MORE COMPUTATIONAL MODELS WITH ATOMS

...

...

...

... ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

...

...

...

...

...

...

...

...

...

...

...

Sam

Sam

Sam

Sam

Eve

Sam

Eve

Eve

Eve

Eve

Eve

Eve

Eve

Eve

Eve

Eve

Tom

Tom

Tom

Tom

Tom

Tom

Tom

Tom

Tom

Tom

Tom

Tom

Tom

Tom

Tom

1 9

3 11

5 13

7 15

2 10

4 12

6 14

8 16

Figure 3.1: An accepting run of the Turing machine from Example 15.



3.5. TURING MACHINES 39

of the tape. If the tape is entirely erased, then accept. The sets of states is A, plus two

extra states for the scanning, which are depicted using red and blue in Figure 3.1. □

Having defined Turing machines, we get the usual notions of semi-decidability

(the language of some Turing machine) and decidability (the language of some Tur-

ing machine that always halts). The Church-Turing Thesis states that there is only

one notion of decidable language, which is captured by Turing machines. Does intro-

ducing atoms give a violation of this thesis? What does that even mean? One way

of answering this question is to relate computation with atoms to the classical notion

of computation without atoms. A word with atoms can be represented by a word

without atoms, by writing down the atoms, such as “John” or “Mary” using a finite

alphabet. Under such a representation, we get a usual word over a finite alphabet,

which can be used as an input for the classical atom-free models of computation. We

will show later in this section that Turing machines with atoms can be simulated by

machines without atoms, and vice versa, and thus the two models of computation are

essentially equivalent. Using this equivalence, we can carry over to the atom world

classical results, such as equivalence of deterministic and nondeterministic machines

in the presence of unbounded computation time. However, in Chapter 8 we will dis-

cover a twist in the story – if we use a more general notion of pof sets, namely (not

necessarily polynomial) orbit-finite sets, then some of the equivalences break down,

for example nondeterministic machines are not equivalent to deterministic ones. Be-

fore we get to the twist, let us tell the un-twisted story, which involves pof sets.

We begin by formalizing what it means to “write down” an atom.

Definition 3.4. A representation of the atoms is any function

r : 2∗ → A

which is surjective (every atom has at least one representation) and such that one can

decide if two strings represent the same atom.

An alternative choice of definition would require the function to be bijective,

which would also give a simpler algorithm for deciding if two strings represent the

same atom. We choose to use the above definition because it will more naturally

extend to atoms with more structure.

Suppose that we have a representation of the atoms. We can extend it to represent

elements of a pof set: an element of such a set is described by indicating which com-

ponent Adi
is used, followed by a representation of the di atoms in the tuple. We can

also extend the representation to describes words over a pof set, by using separator

symbols between the letters. Summing up, once we know how to represent atoms

with atom-less strings, we can do the same for words over a pof alphabet. In the fol-

lowing theorem, we show that the atom version of Turing machines correspond to

the usual Turing machines without atoms, via the representation. Furthermore, the

choice of representation is not important.

Theorem 3.5. The following conditions are equivalent for every language L ⊆ Σ∗ over

a pof alphabet:

1. L is recognised by a deterministic pof Turing machine;



40 CHAPTER 3. MORE COMPUTATIONAL MODELS WITH ATOMS

2. L is recognised by a nondeterministic pof Turing machine;

3. L is equivariant and for every representation r,

{ w | w represents, under r, some word in L }

is recognised by a nondeterministic Turing machine;

4. as in the previous item, but the machine is deterministic;

5. as in the previous item, but the representation r is quantified existentially.

Proof. The implications 1⇒ 2 and 3⇒ 5 are trivial. For the implication 2⇒ 3, we use

a straightforward simulation, where the simulating machine stores representations

of the simulated Turing machine. Implication 3 ⇒ 4 is the classical fact that, with-

out atoms, deterministic and nondeterministic Turing machines compute the same

languages. The interesting implication is 5⇒ 1, which is proved below.

Let r be a representation as in the assumption 5, and let us write s : 2∗ → Σ∗ for the

extension of this representation to words over the alphabet Σ. The main idea is that

this representation can be inverted, up to atom permutations, by a deterministic pof

Turing machine. This is proved in the following lemma, which we call the deatomi-

sation lemma, because it transforms a word with atoms into a representation without

atoms. (We use the standard notion of Turing machines for computing a function –

there is an output tape, the machine always halts, and the contents of the output tape

is the output of the function.)

Lemma 3.6 (Deatomisation). There is a function f : Σ∗ → 2∗, computed by a de-

terministic pof Turing machine, such that every word w ∈ Σ∗ is in the same orbit as

s( f (w)).

Before proving the above lemma, we use it to prove the implication 5⇒ 1. Using

the atom-less Turing machine from the assumption, we know that there is a Turing

machine that in puts w ∈ Σ∗, and checks if s( f (w)) belongs to the language. By the

assumption that the language is equivariant, this is the same as checking if w belongs

to the language. It remains to prove the Deatomisation Lemma.

Proof. Consider some computable enumeration of representations of the atoms, i.e. an

infinite list of strings in 2∗ which is computed by a Turing machine, and such that

every atom is represented by exactly one string on the list. Such an enumeration can

be found for every representation.

Using this enumeration, we define the deatomisation function f from the state-

ment of the lemma. Consider an input string w ∈ Σ∗. The string w contains some

atoms, and these atoms can be listed in the order of their first appearance in the string.

For each of these atoms, we choose a string representation according to the enumer-

ation in the previous paragraph, i.e. the atom with the leftmost appearance gets the

first representation, the atom with the second leftmost appearance gets the second

representation, and so on. We then apply this choice consistently to the entire string.

All of this can be implemented by a deterministic pof Turing machine. □



3.5. TURING MACHINES 41

This completes the proof of the implication 5⇒ 1, and therefore also of the the-

orem. We would like to remark that the proof of the Deatomisation Lemma given

above will fail for more general input alphabets which will be considered later in the

book. The issue is that the proof above refers to the order of appearance of atoms in

the input string, and this will no longer be meaningful for some input alphabets, such

as unordered pairs of atoms, which will be legitimate alphabets in the more general

settings. □

Exercises
Exercise 70. Give a deterministic pof Turing machine for the language

{ w#v | w, v ∈ A∗ are in the same orbit }.

Exercise 71. Consider a two-tape model, which has a work tape with a separate head. Show

that for every pof Turing machine, deterministic or not, there is an equivalent one (in the two-

tape model) where the state space has atom dimension zero. (Attention: this will no longer be

true for orbit-finite sets, which are not polynomial orbit-finite.)

Exercise 72. Show that the answer to the previous problem is negative in the one-tape

model.



42 CHAPTER 3. MORE COMPUTATIONAL MODELS WITH ATOMS



Chapter 4

Orbit-finite sets

In this chapter, we define two of the main notions discussed in this book, namely finite

supports and orbit-finiteness. The motivating example is minimization of determin-

istic automata.

Minimization of automata. Suppose that we want to minimize a deterministic

pof automaton. The classical construction restricts the state space to the subset of

reachable states, and then quotients this subset under the Myhill-Nerode equivalence

relation

q ∼ p def
= qw ∈ F ⇔ pw ∈ F for every word w ∈ Σ∗.

For pof automata, we cannot apply this construction, since pof sets are not closed

under taking subsets, or quotients. This is illustrated in the following example.

Example 16. Consider the language

L = { w ∈ A∗ | w uses at most two different atoms }.

This language is recognised by a pof automaton, which has a state space

A0 + A1 + A2︸           ︷︷           ︸
atoms seen so far

+ A0︸︷︷︸
reject

.

This automaton is not minimal, because the states from A2
store the order in a pair

(a, b), which is not needed for the language. To make this automaton minimal, we

should use a state space of the form

A0 + A1 +

(
A
2

)
︸︷︷︸

sets of exactly

two atoms

+A0

This kind of feature is not available in pof automata. More formally, we will show

that for every deterministic pof automaton for this language, the states after reading

43



44 CHAPTER 4. ORBIT-FINITE SETS

the input words ab and ba must be different (while they should be equal in a minimal

automaton). Indeed, if the same state q would be reached after reading both ab and

ba, then this state would satisfy

π(q) = q where π is the atom permutation that swaps a and b.

If an element in a pof set satisfies the above condition, then it cannot use the atoms a
and b. This cannot happen in an automaton that recognises the language. □

If we would like our automata to be closed under minimization, then they should

support taking subsets and quotients. A quick and dirty solution is to simply add these

two features. We will describe this solution in Section 4.1. Later in this chapter, we

will show that the solution is not so dirty after all.

Exercises
Exercise 73. Define the orbit count of a deterministic pof automaton to be the number of or-

bits of reachable states. For a language, we can consider the set of deterministic pof automata

that recognise it, and have minimal orbit count for this property. Show that this set can con-

tain automata that are non-isomorphic. Here, an isomorphism between two automata is an

equivariant bijection

reachable states ofA
f
−→ reachable states of B

such that for every input word, applying f to the state ofA after reading a word gives the state

of B after reading the same word.

4.1 Quotiented pof sets
To formalize subsets and quotients, we use partial equivalence relations. A partial

equivalence relation on a set X is defined to be a binary relation that satisfies

x ∼ y ⇒ x = y︸                   ︷︷                   ︸
symmetric

and x ∼ y and y ∼ z ⇒ x ∼ z︸                                ︷︷                                ︸
transitive

.

This is like an equivalence relation, but the missing axiom is reflexivity x ∼ x. Defining

a partial equivalence relation is the same as indicating some subset (the elements that

are equivalent to themselves), and then defining a (total) equivalence relation on the

subset. Therefore, partial equivalence relations subsume both subsets and quotients.

We write X/∼ for the set of equivalence classes of ∼, and we call this a quotient of the

original set
1
.

Definition 4.1. A quotiented pof set, qpof for short, is any quotient X/∼ of a pof set

X by a partial equivalence relation ∼ that is equivariant.

1
A more complete name would be quotiented subset, but we use the shorter name, despite the fact that

it subsumes both quotients and subsets.



4.1. QUOTIENTED POF SETS 45

Example 17. Quotiented pof sets subsume both subsets and quotients. Let us begin

by illustrating subsets. Every equivariant subset Y ⊆ X, can be seen as a quotiented

pof set, which corresponds to the partial equivalence relation

x ∼ y if x = y and x ∈ Y.

One example of such a set is the set

A(d) def
= { (a1, . . . , ad) ∈ Ad | a1, . . . , ad are pairwise different },

which we call the set of non-repeating tuples. We will use these sets a lot. □

Example 18. In Example 16, we discussed the set(
A
2

)
.

This is an example of a quotiented pof set. It is the quotient of A2
under the partial

equivalence relation defined by

(a, b) ∼ (a′, b′) if {a, b} = {a′, b′} ∧ a , b.

□

Similarly to the case of pof sets, all structure on quotiented pof sets will be required

to be equivariant. Equivariance is defined in the same way as for subsets of pof sets:

membership in the set must be stable under applying atom permutations. Let us define

this more formally.

Definition 4.2. [Equivariant subset of a qpof set] A subset

Y ⊆ X/∼

of a quotiented pof set is called equivariant if for every element of X/∼, which is an

equivalence class [x]∼ of some element x ∈ X, we have

[x]∼ ∈ Y ⇔ π([x]∼)︸  ︷︷  ︸
image of π, when applied to the set

of elements that are in the equivalence class [x]

∈ Y for every atom permutation π.

In the above definition, when we apply an atom permutation to an element of an

equivalence class, we take the image of all elements in the equivalence class. An al-

ternative approach would be to apply the atom permutation to a representative of the

equivalence class, and then take the equivalence class of the image. This would give

the same effect, since applying atom permutations commutes with taking equivalence

classes, as long as ∼ is equivariant:

π([x]∼)︸  ︷︷  ︸
first take the equivalence class,

then apply the atom permutation

= [π(x)]∼︸  ︷︷  ︸
first apply the atom permutation,

then take the equivalence class

.



46 CHAPTER 4. ORBIT-FINITE SETS

Example 19. Consider the quotiented pof set(
A
2

)
from Example 18, which is obtained by a quotient of X = A2

with respect to a certain

equivalence relation ∼. An element of the quotient is an equivalence class of pairs, as

in the following example:

(John,Mary)︸          ︷︷          ︸
element x ∈ X

{(John,Mary), (Mary, John)}︸                               ︷︷                               ︸
its equivalence class in X/∼

. (4.1)

If we apply to the above equivalence class the atom permutation that swaps John and

Mary, then we get the same equivalence class. □

In Definition 4.2, we defined equivariance for subsets of quotiented pof sets. Since

quotiented pof sets are closed under taking products X × Y , we can also talk about

equivariant relations on quotiented pof sets, by considering equivariant subsets of

the product X×Y . As a special case of relations, we can discuss equivariant functions

between quotiented pof sets.

Example 20. We will show that there is no equivariant function

f :
(
A
2

)
→ A.

In this proof, we treat elements of

(
A
2

)
as sets {a, b} of size two, although formally they

are defined to be equivalence classes of ordered pairs. Consider some hypothetical

function f , and some input-output pair

f ({a, b}) = c.

We first rule out the case that c < {a, b}. If this were the case, then we could apply an

atom permutation to the input-output pair that moves c without moving a and b, and

get a violation of functionality. Let us now rule out the case c ∈ {a, b}. If this were

the case, then we could apply an atom permutation that swaps a and b; this atom

permutation would not change the input, but it would change the output, and so it

would also be a violation of functionality. □

Quotiented pof sets are a solution to the problem of minimization of deterministic

pof automata. Indeed, if we have some pof automaton, then we can define a partial

equivalence relation on its states by

p ∼ q def
= p and q are both reachable, and accept the same words.

By equivariance of the automaton, this is an equivariant partial equivalence relation.

Therefore, the quotient Q/∼ is a quotiented pof set. As usual, one can define a quotient

automaton A/∼ which recognises the same language as the original automaton A.

This automaton is well-defined (i.e. its structure is equivariant), and it is minimal in



4.2. ORBIT-FINITENESS 47

the appropriate sense. More details will be provided later in this chapter, when we

prove Myhill-Nerode Theorem.

Exercises
Exercise 74. How many equivariant functions are there of type(

A
d

)
→

(
A
e

)
for d, e ∈ {0, 1, . . .}?

Exercise 75. Find a deterministic qpof automaton for the language

{ w ∈
(
A
3

)∗
| some atom a appears in all letters }.

Exercise 76. Find a deterministic qpof automaton for the language

{ w ∈
(
A
3

)∗
| there are at most distinct 5 atoms used in the word }.

Exercise 77. Find a deterministic qpof automaton for the language

{ w ∈
(
A
3

)∗
|

some atom from the set in the first letter appears

an even number of times in the remaining letters

}.

Exercise 78. Find a deterministic qpof automaton for the language:

{ w ∈
(
A
2

)∗
| there exist a, b ∈ A such that every letter in w intersects {a, b} }.

Consider the first two letters in the input string that are not equal to each other,

which are sets x and y of size two. If:

1. If the sets are disjoint, then the only candidates for a, b are from x ∪ y. Then,

we can use the same kind of solution as in Exercise 77.

2. Otherwise, the only candidates for a and b are:

(a) the two atoms that are in the symmetric difference (x \ y) ∪ (y \ x); or

(b) the atom in the intersection, and some other atom.

4.2 Orbit-finiteness
One could worry that quotiented pof sets are a hack that fixes the minimization issue

for automata, but does not have proper theoretical justification. In this section, we

ease such worries, by giving a more semantic concept, namely orbit-finite sets, and

showing that they are exactly the same as quotiented pof sets.



48 CHAPTER 4. ORBIT-FINITE SETS

Group actions. The semantic characterization will use two of the central notions

in this book: finite supports, and orbit-finiteness. These notions are defined in terms

of group actions, so begin by defining those.

Definition 4.3. An action of a group G on a set X is defined to be a function

G × X → X,

which we denote by

(π, x) 7→ π(x),

that satisfies the following two axioms:

(π ◦ σ)(x)︸     ︷︷     ︸
compose in the group

and then apply the action

= π(σ(x))︸  ︷︷  ︸
apply the action

two times

and 1(x) = x︸   ︷︷   ︸
the group identity

does not move anything

.

In this book, the group G will always be permutations of the atoms, although in

later chapters will restrict the permutations to those that respect some extra structure

on the atoms, such as a linear order.

Example 21. Sets constructed using atoms are naturally equipped with an action of

the group of atom permutations. For example, the set Ad
is equipped with the action

defined by

π(a1, . . . , ad) = (π(a1), . . . , π(ad)).

We have been using this group action implicitly in the previous chapters. The action

also extends to other sets, such as A∗ or the powerset PA. In the case of the powerset,

we use the image, i.e.

π(X) = { π(a) | a ∈ X }.

□

Finite supports. We now introduce the fundamental notion of supports. The gen-

eral idea is that the support of an element x in a set X consists of the atoms that are

needed to describe it. Since the notion is defined in abstract terms of group actions,

it will be useful to keep the following examples in mind while reading the formal

definition.

Set X Element x ∈ X Support of x
A2 (John,Mary) John,Mary

PA { a ∈ A | a , John } John

PA A ∅



4.2. ORBIT-FINITENESS 49

Definition 4.4 (Supports). Consider a set X that is equipped with an action of atom

permutations. An element x ∈ X is said to be supported by a list of atoms a1, . . . , an if

π(a1) = a1 ∧ · · · ∧ π(an) = an︸                                ︷︷                                ︸
we write this as π(ā) = ā, where ā is the list a1, . . . , an

⇒ π(x) = x (4.2)

holds for every atom permutation π. We say that x is finitely supported if it is supported

by some finite list of atoms.

Before continuing, let us remark on the notation. In the above definition, we use

finite lists for supports. The order of atoms in this list, or their repetitions, are not

relevant for the notion of support, since they do not affect the assumption of the

implication (4.2). Therefore, the only relevant information is the set of atoms that

appears on this list, which is why many authors present the support as a finite set

of atoms, and not a list. If one uses sets {a1, . . . , an} for supports, then one should

remember that the assumption in implication (4.2) is not

π({a1, . . . , an}) = {a1, . . . , an},

which is a weaker assumption, because it allows π to swap atoms inside the set.

Example 22. Let us discuss which elements of the powerset PA are finitely sup-

ported. If x ∈ PA is finite, then it is finitely supported, namely by any list that con-

tains all atoms in this set. A similar result holds for co-finite sets, i.e. sets obtained by

removing finitely many atoms. For example, if we take

x = A \ {John,Mary},

then x is supported by the atoms John,Mary, because any atom permutation that fixes

both John and Mary will map the set x to itself, even if it permutes the other atoms.

Therefore, all finite and co-finite elements in PA are finitely supported.

The remaining elements of the powerset are not finitely supported. Let us prove

this formally. Suppse that x ∈ PA is neither finite nor cofinite, and take some hy-

pothetical finite support ā. There must be some atoms b, c that are not in this finite

support, and such that b ∈ x and c < x. Take the atom permutation that swaps b and

c, and leaves all other atoms fixed. This permutation fixes the support, but moves x,

which contradicts the definition of finite support. □

Orbits and orbit-finiteness. We now introduce the second fundamental notion

of this book, which is orbit-finiteness. This idea was already discussed informally

before, but we now give a formal definition in terms of group actions. Consider a set

X equipped with an action of atom permutations. An orbit of X is defined to be any

subset of the form

{ π(x) | π is an atom permutation },

for some x ∈ X. We will be interested in sets that have finitely many orbits, and

where all elements are finitely supported. (In the exercises, we explain why these two

conditions are necessary for the theory to work.)



50 CHAPTER 4. ORBIT-FINITE SETS

Definition 4.5 (Orbit-finite set). An orbit-finite set is defined to be a set X, together

with an action of the group of atom permutations, such that every element x ∈ X has

finite support, and there are finitely many orbits.

Example 23. Recall the set A(d)
that consists of non-repeating d-tuples of atoms.

This set has one orbit. The set A3
is orbit-finite. Like any orbit-finite set, this set

decomposes into a disjoint union of one-orbit sets, which in this case uses five orbits:

A1︸︷︷︸
all atoms

are equal

+ A(2) + A(2) + A(2)︸                ︷︷                ︸
two atoms are equal, and

one is diffferent, which

can happen in three ways

+ A(3)︸︷︷︸
all atoms

are different

.

□

Example 24. The powerset PA is not orbit-finite, because sets of different finite size

are in different orbits. □

Example 25. Consider the set A(3)
of non-repeating triples. On this set, consider the

equivalence relation that identifies triples modulo cyclic shift:

(a, b, c) ∼ (b, c, a) ∼ (c, a, b) for all a, b, c ∈ A.

Consider the quotient of under this equivalence relation. This is a one-orbit set. It is

also an example of a quotiented pof set, since we can view ∼ as a partial equivalence

relation on (possibly repeating) triples that removes the repeating triples. □

The following theorem shows that orbit-finite sets are exactly the same as the

quotiented pof sets.

Theorem 4.6. Let X be a set equipped with an action of atom permutations. Then X is

orbit-finite if and only if it admits an equivariant bijection with a quotiented pof set.

Proof. The bottom-up implication is easy, so we only prove the top-down implication.

If a set is finitely many orbits, then it is a disjoint union of one-orbit sets. Since

quotiented pof sets are closed under disjoint union, it is enough to prove the top-

down implication for a one-orbit set X. Choose some x ∈ X. By assumption on finite

supports, this element is supported by some atoms a1, . . . , ad . Define a partial function

from Ad
to X as follows: it consists of input-output pairs

π(a1, . . . , ad) 7→ π(x),

where π ranges over atom permutations. By definition of supports, this is a partial

function, i.e. if the inputs are equal then the outputs are equal. This function is surjec-

tive, since its range is the orbit of x, and we have assumed that X is a one-orbit set. The

function defines a bijection between X and the inputs, quotiented by the equivalence

relation “same output”. □



4.2. ORBIT-FINITENESS 51

A Myhill-Nerode Theorem. We now use the theory developped above to prove

an orbit-finite version of the Myhill-Nerode Theorem. In the classical, finite version,

the theorem says that a language is regular if and only if its syntactic congruence

has finite index (i.e. finitely many equivalence classes), with the syntactic congruence

defined as follows.

Definition 4.7. The syntactic congruence of a language L ⊆ Σ∗ is the equivalence

relation on Σ∗ that identifies two words w and w′ if they cannot be distinguished by

any future, i.e.

wv ∈ L⇔ w′v ∈ L for every v ∈ Σ∗.

The syntactic congruence can be applied also for infinite alphabets, such as quo-

tiented pof sets. We will show that in this case, orbit-finite index will correspond to

being recognised by a deterministic quotiented pof automaton.

We begin by explaining what it means for the syntactic congruence to have orbit-

finite index. The first observation is that the syntactic congruence is equivariant, as

long as the language itself is equivariant.

Lemma 4.8. Let Σ be a quotiented pof set. If a language L ⊆ Σ∗ is equivariant, then the

same is true for its syntactic congruence, i.e.

w ∼ w′ ⇔ π(w) ∼ π(w′)

for every words w,w′ ∈ Σ∗ and atom permutations π.

Proof. If the words w and w′ can be distinguished by some future v, then the words

π(w) and π(w′) can be distinguished by the future π(v), thanks to equivariance of

concatenation and of the language L. □

We now explain why the notion of orbits is applicable to the quotient of Σ∗ under

the syntactic congruence. Consider some set X with an action of atom permutations

(we care about X = Σ∗ in this example). Let ∼ be an equivalence relation on this set

that is equivariant (we care about the syntactic congruence). The quotient X/∼ is also

equipped with an action of atom permutations, with the action defined by

equivalence class of x
π
7→ equivalence class of π(x). (4.3)

By equivariance of ∼, it is easy to check that this action is well-defined, i.e. it does not

depend on the choice of representative x in the equivalence class. Thanks to the above

observations, if Σ is a quotiented pof set, and L ⊆ Σ∗ is an equivariant language, then

we can equip the quotient

Σ∗/syntactic congruence of L

with an action of atom permutations, and therefore we can ask if this quotient is

orbit-finite. As the following theorem shows, orbit-finiteness is equivalent to recog-

nizability by a deterministic quotiented pof automaton.



52 CHAPTER 4. ORBIT-FINITE SETS

Theorem 4.9. The following conditions are equivalent for an equivariant language L ⊆
Σ∗ over a quotiented pof alphabet Σ:

1. L is recognised by a deterministic quotiented pof automaton;

2. the quotient of Σ∗ under the syntactic congruence of L is orbit-finite.

Proof. We use essentially the same proof as in the classical Myhill-Nerode Theorem,

except that we use “orbit-finite” instead of “finite”.

1⇒ 2 Let us first show that if L is recognised by a deterministic quotiented pof au-

tomaton, then the quotient from item 2 is orbit-finite. Let Q be the reachable

states of the automaton. If two words give the same state of the automaton,

then they must be equivalent under the syntactic congruence. This gives us a

function from Q to the quotient. This function is surjective, since every word

gives some state, and it is easily seen to be equivariant. Therefore, we can de-

duce orbit-finiteness of the quotient by applying the following straightforward

lemma.

Lemma 4.10. Let f : X → Y be a surjective equivariant function between two

sets equipped with actions of atom permutations. If X is orbit-finite, then so is Y .

Proof. Every orbit of X is mapped to an orbit of Y . □

2⇒ 1 We use the standard syntactic automaton whose state space is the quotient,

and whose transition function is given by

equivalence class of w
a
−→ equivalence class of wa.

We will justify that this is indeed a quotiented pof automaton. Directly from the

definition of the action on the quotient described in (4.3), we deduce that quo-

tienting preserves finite supports: if a tuple of atoms supports a word w ∈ Σ∗,
then the same tuple supports its equivalence class under syntactic congruence.

Therefore, every element in the quotient has a finite support. By Theorem 4.6,

the quotient is isomorphic to a quotiented pof set.

□

In the theorem above, we use quotiented pof sets. What about (non-quotiented)

pof sets, as discussed at the beginning of this book? If the input alphabet is non-

trivally quotiented, then we will also need quotients for the state space of the au-

tomaton, as explained in the following example.

Example 26. Consider the input alphabet

Σ =

(
A
2

)
,

and a deterministic (non-quotiented) pof automaton. We claim that in this automaton,

all reachable states will have atom dimension zero, i.e. they will come from atom-free

components A0
. To see why this is true, we use the following observation.



4.2. ORBIT-FINITENESS 53

Lemma 4.11. Let d > 0. There is no equivariant function

f :
(
A
2

)
→ Ad.

Thanks to the observation in the above lemma, if the current state is of atom di-

mension zero, then the next state also has this property. Therefore, the reachable

states of the automaton have atom dimension zero. This will preclude recognizing

any language that depends on atoms in any way. □

The above example shows that we may need quotients if the input alphabet has

quotients. But what if the alphabet does not have quotients, i.e. it is a pof set? As

we will see later in this chapter, the Myhill-Nerode Theorem does hold in this case,

because we have an implication

recognised by a quotiented pof automaton and input alphabet is a pof set

recognised by a pof automaton.

However, proving this implication will require developping some extra theory, namely

least supports.

Exercises
Exercise 79. Show that a tuple ā supports x if and only if

π(ā) = σ(ā) implies π(x) = σ(x) for every atom automorphisms π, σ.

Exercise 80. Find all equivariant binary relations on A.

Exercise 81. Show that a function f : X → Y is equivariant if and only if the following

diagram commutes for atom permutation π:

X
f //

π

��

Y

π

��
X

f
// Y

Exercise 82. Consider an enumeration a1, a2, . . . of some countably infinite set A. Define the

distance between two permutations of A to be 1/n where an is the first argument where the per-

mutations disagree. Let X be a countably infinite set equipped with an action of permutations

of the equality atoms. Show that all elements of X are finitely supported if and only if

π︸︷︷︸
permutation of A

7→ (x 7→ π(x))︸       ︷︷       ︸
permutation of X

is a continuous mapping, and that this continuity does not depend on the choice of enumera-

tions of A or X.



54 CHAPTER 4. ORBIT-FINITE SETS

Exercise 83. Show a counterexample, in the equality atoms, to the converse implication from

Exercise 112. In other words, show a set which is not orbit-finite, but where every tuple of

atoms supports finitely many elements.

Exercise 84. Assume the equality atoms. Let R ⊆ An+k
be a finitely supported relation which

is total in the following sense: for every ā ∈ An
there is some b̄ ∈ Ak

such that R(āb̄). Show

that there is a finitely supported function f : An → Ak
whose graph is contained in R.

Exercise 85. Show that in the equality atoms (actually, under any oligomorphic atoms), every

orbit-finite is Dedekind finite
2
, i.e. does not admit a finitely supported bijection with a proper

subset of itself.

Exercise 86. Show that in the equality atoms, there is a set that is not orbit-finite, but Dedekind

finite in the sense from Exercise 85.

Exercise 87. Call a family of sets directed if every two sets from the family are included in

some set from the family. Consider the equality atoms. Show that a set with atoms X is finite

(in the usual sense) if and only if it satisfies: for every set with atomsX ⊆ PX which is directed,

there is a maximal element in X.

Exercise 88. Call a familyX of sets uniformly supported
3

if there is some tuple of atoms which

supports all elements of X. Assume that the atoms are oligomorphic. Show that a set X is

orbit-finite if and only if: (*) there is a maximal element in every set of atoms X ⊆ PX which is

directed and uniformly supported.

Exercise 89. Show the following variant of König’s lemma. If a tree has orbit-finite branching

and arbitrarily long branches, then it has an infinite branch.

4.3 Least supports
An element x ∈ X might have different supports. For example, we can add atoms to

a support, and it will still be a support. In this section, we show that adding useless

atoms to the support is the only phenomenon that can arise, because there is a least

support
4
.

Theorem 4.12 (Least Support Theorem). Let X be a set with an action of atom permu-

tation. If x ∈ X has some finite support, then one can find atoms a1, . . . , ad that support

x, and such that every finite support of x contains all atoms a1, . . . , ad .

Another way of stating the above theorem is that finite supports are closed under

intersection, if they are viewed as sets (and not lists). It is important that we consider

finite supports. For example, any atom a is supported by the infinite set A− {a}, since

fixing this set is the same as fixing a. The intersection of the two supports {a} and

A − {a} is empty, but a does not have empty support.

Proof of the Least Support Theorem. It is enough to prove the theorem in the case when

X has one orbit; this is because every other set is a disjoint union of (possibly infinitely

2
This exercise is inspired by Blass (2013).

3
This exercise is inspired by (Pitts, 2013, Section 5.5).

4
The Least Support Theorem was first proved in (Gabbay and Pitts, 2002, Proposition 3.4). A generali-

sation of this theorem, for other kinds of atoms, can be found in (Bojańczyk et al., 2014, Section 10).



4.3. LEAST SUPPORTS 55

many) one-orbit sets. Recall the set A(d)
of non-repeating tuples that was described

in Example 17. This is an equivariant single-orbit set. The key observation is the

following lemma.

Lemma 4.13. Assume that X has one orbit. There is some d ∈ {0, 1, . . .} an equivariant

surjective function

f : A(d) → X

such that tuples with the same value under f are equal as sets:

f (a1, . . . , ad) = f (b1, . . . , bd) implies {a1, . . . , ad} = {b1, . . . , bd}.

Proof. By Lemma ?? there is an equivariant surjective function

f : Y → X for some equivariant Y ⊆ An.

Take some equivariant orbit of f , with f viewed as a subset of Y × X. This orbit is

still an equivariant function whose image is also X. In other words, we can assume

without loss of generality that Y is a single equivariant orbit in Ad
. Such an orbit is

an equality type. By projecting away the duplicated coordinates in the equality type,

we can assume that Y contains only nonrepeating tuples. Summing up, we know that

there is a surjective equivariant function

f : A(d) → X.

We show below that the function either satisfies the condition in the statement of the

lemma, or the dimension d can be made smaller. If the condition in the statement of

the lemma is not satisfied, then

f (a1, . . . , ad) = f (b1, . . . , bd) (4.4)

holds for some tuples ā, b̄ which are not equal as sets. Without loss of generality, we

assume that the last atom ad in ā does not appear in the tuple b̄. Choose some atom

permutation π which fixes the first d − 1 atoms in ā and all atoms in ā, but does not

fix an. We have

f (ā)
(4.4)

= f (b̄) π fixes b̄
= f (π(b̄))

equivariance

= π( f (b̄))
(4.4)

= π( f (ā))
equivariance

= f (π(ā)),

which proves that

f (a1, . . . , ad−1, ad) = f (a1, . . . , ad−1, a) for some distinct a, a1, . . . , ad .

The set of tuples a, a1, . . . , ad which satisfies the condition above is an equivariant

subset of A(d+1)
, by equivariance of f . Therefore, if some tuple satisfies the condition,

then all tuples in A(d+1)
satisfy it as well, i.e. we could also write “for all distinct” in

the above condition. In other words, the value of f depends only on the first d − 1
coordinates. Therefore, we can use the induction assumption. □



56 CHAPTER 4. ORBIT-FINITE SETS

Using the above lemma, we complete the proof of the Least Support Theorem.

Apply Lemma 4.13 yielding some equivariant function

f : A(n) → X.

Let x ∈ X, and choose some tuple (a1, . . . , an) which is mapped by f to x. To prove

the Least Support Theorem, we will show that the atoms a1, . . . , an appear in every

support of x. Let then b̄ be some atom tuple which supports x. Toward a contradiction,

suppose that b̄ is not a permutation of a1, . . . , ad , and therefore one can choose atom

permutation π such that

π(bi) = bi for every i ∈ {1, . . . , d}
π(ai) < {a1, . . . , ad} for some i ∈ {1, . . . , d}.

We have

x = (π fixes the support of x)

π(x) = (choice of a1, . . . , ad)

π( f (a1, . . . , ad)) = (equivariance of f )

f (π(a1, . . . , ad)).

Since the tuple π(a1, . . . , an) is not equal to (a1, . . . , an) as a set, it must have a different

value than x, by assumption on the function f . □

A representation theorem
Apart from the Least Support Theorem, another application of Lemma 4.13 is the

following representation theorem for equivariant orbit-finite sets. Let X be a one-

orbit set. Apply Lemma 4.13, yielding an equivariant function

f : A(d) → X.

Because f is equivariant and permutations of coordinates commute with atom auto-

morphisms, the following conditions are equivalent for every permutation g of the

coordinates {1, . . . , d}:

f (a1, . . . , ad) = f (ag(1), . . . , ag(d)) for some (a1, . . . , ad) ∈ A(d)
(4.5)

f (a1, . . . , ad) = f (ag(1), . . . , ag(d)) for every (a1, . . . , ad) ∈ A(d). (4.6)

Permutations g which satisfy condition (4.6) form a group, call it G. This is a subgroup

of the group of permutations of the coordinates {1, . . . , d}. We claim:

f (a1, . . . , ad) = f (b1, . . . , bd)
iff

∃g ∈ G (a1, . . . , ad) = (bg(1), . . . , bg(d)).



4.3. LEAST SUPPORTS 57

The bottom-up implication is by definition. For the top-down implication, recall that

Lemma 4.13 asserted that tuples with the image under f must contain the same atoms,

and therefore some g ∈ G must take one tuple to the other. Let us write

A(d)/G

to be A(d)
for the set of non-repeating atom tuples modulo coordinate permutations

from the group G. Since quotienting by G is exactly the kernel of the function f , we

have just proved the following theorem
5
:

Theorem 4.14. Let X be an orbit-finite set that has one orbit. Then X admits an equiv-

ariant bijection to a set of the form

A(n)/G

for some d ∈ N and some subgroup G of the group of permutations of the set {1, . . . , d}.

Example 27. Let d ∈ {1, 2, . . .} and let G be the group of all permutations of {1, . . . , d}.
In this case, A(d)/G is the same as (

A
d

)
,

i.e. unordered sets of atoms with exactly d elements. □

Myhill-Nerode for pof sets
As we have mentioned after the proof of the Myhill-Nerode characterization in The-

orem 4.9, in the case of pof sets that are not quotiented, deterministic pof automata

are equivalent to deterministic quotiented pof automata. This is proved below.

Theorem 4.15. Assume that the input alphabet is a (non-quotiented) pof set Σ. Then

the two equivalent conditions in Theorem 4.9 are also equivalent to

(3) L is recognised by a deterministic pof automaton.

Proof. Since pof sets are a special case of quotiented pof sets, it is enough to show

that if the input alphabet is a (non-quotiented) pof set, then for every deterministic

quotiented pof automaton, there is an equivalent (non-quotiented) pof automaton.

Consider a deterministic quotiented pof automaton. Let Q be its state space. By The-

orem 4.14, we can assume that the state space is

Q =
∑
i∈I

A(di)/Gi

Consider the pof set

P =
∑
i∈I

Ad.

5
This result is from (Bojańczyk et al., 2014, Theorem 10.17), although a similar construction can already

be found in (Ferrari et al., 2002, Definition 2).



58 CHAPTER 4. ORBIT-FINITE SETS

There is a natural projection from P to Q, which is a partial function

Π : P→ Q.

This projection is defined on elements with non-repeating tuples of atoms, and it

returns the corresponding equivalence class. An important property of this projection

is:

(*) every output element arises from finitely many input elements.

Let us pull back the transition function of the original automaton to a transition rela-

tion on states P. In other words, define

∆ ⊆ P × Σ × P

to be the inverse image, under the projection Π, of the transition function of the orig-

inal automaton. We view ∆ as a binary relation between two pof sets, namely P × Σ
and P. Because the original automaton was deterministic, and thanks to the finite-

ness condition (*), we know that for every input in P×Σ, the transition relation ∆ has

finitely many outputs in P. Therefore, we can apply the following lemma to extract

an equivariant function contained in ∆.

Lemma 4.16. Let X and Y be pof sets, and let ∆ ⊆ X × Y be an equivariant binary

relation such that for every x ∈ X the set

{ y ∈ Y | (x, y) ∈ ∆ }

is nonempty and finite. Then there is an equivariant function δ : X → Y whose graph is

contained in ∆.

Proof. Homework. □

□

Exercises
Exercise 90. Consider a qpof group, i.e. the underlying set is a qpof, and the group operation

is equivariant. Show that such a group must be finite.

Exercise 91. Let X be a qpof. Show that if f : X → X is an equivariant surjective function,

then f is a bijection.

Exercise 92. Consider a chain

X0
f1
↠ X1

f2
↠ X2

f3
↠ . . .

fn
↠ Xn

of equivariant surjective function between qpof sets. Show that the length of this chain is

bounded by a polynomial of the following two parameters of the first set X0: the orbit count,

and the atom dimension.



Chapter 5

Atoms beyond equality

So far, we have worked with atoms that have equality only. It turns out that the theory

developed in this book is also meaningful when the atoms have extra structure, like

an order. We take a logical approach, where the notion of atoms is specified by a

relational structure, i.e. a set with some relations on it. Here are some examples:

(N)︸︷︷︸
the natural numbers

with no relations

(N, <)︸︷︷︸
the natural numbers

with order

(Z, <)︸︷︷︸
the integers

with order

(Q,+)︸︷︷︸
the rational nunmbers

with a ternarny relation

for adition x + y = z

.

All of these structures will be candidates for atoms, however only the first and last one

will turn out to be appropriate. This chapter explains when a structure is appropriate,

and how the theory works when that happens.

5.1 Oligomorphic structures
The choice of atoms will be formalized by a relational structure, as in model theory.

Definition 5.1 (Relational structure). A relational structure consists of:

1. an underlying set A, called the universe of the structure;

2. a family of relations on this set, each one of the form R ⊆ Ad
for some d.

We use letters like A or B to describe the atoms. A candidate for the atoms is a

relational structure. Not all candidates are appropriate, however. Here is an example

of an inappropriate one.

Example 28. [Presburger Arithmetic] Suppose that for the atoms we would like to

use the natural numbers with successor, i.e. the relational structure

A = ({0, 1, 2, . . .}, x + y = z︸    ︷︷    ︸
a ternary relation for the successor

).

59



60 CHAPTER 5. ATOMS BEYOND EQUALITY

This structure is also known as Presburger Arithmetic. We could consider polynomial

orbit-finite sets for this structure, and subsets of them that are definable using for-

mulas. This time, the formulas could use the relations given in the structure, namely

the successor relation and a zero test. In this setting, many of the problems that were

decidable previously, will become undecidable for the new choice of atoms. An ex-

ample is graph reachability – one can easily encode the halting problem for counter

machines. To implement a zero test on variable x, we check if x + x = x. □

As we see from the above example, some structures, such as Presburger Arith-

metic, will not be a good choice for the atoms. This is despite Presburger Arithmetic

being a very tame structure, in particular it has a decidable first-order theory, as for-

malized in the following definition. (We assume that the reader is familiar with the

basics of first-order logic, such as what it means for a formula to be true in a structure,

or what free variables are. For a more detailed introduction, see Hodges (1993).)

Definition 5.2 (Decidable first-order theory). The first-order theory of a structure is

the set of first-order sentences that are true in it. Here, a first-order sentence is a

formula that is built using the following constructors

∀x ∃x︸   ︷︷   ︸
quantifiers

∨ ∧ ¬︸       ︷︷       ︸
Boolean combinations

x = y︸︷︷︸
equality

R(x1, . . . , xd)︸          ︷︷          ︸
relations from the structure

,

and which has no free variables. A structure has a decidable first-order theory if there

is an algorithm that decides if first-order sentence belongs to the theory.

We will typically be interested in structures with a decidable first-order theory,

such as Presburger Arithmetic. In fact the latter structure is named Mojżesz Pres-

burger, who proved that its first-order theory is decidable. As we saw in Example 28,

having a decidable first-theory will not – on its own – be sufficient for our theory. It

will be equally important that the notion of equivariant subset is well-behaved.

So far, equivariance, which was defined in terms of atom permutations. When

the atoms are a structure with relations beyond equality, the role of permutations is

played by automorphisms, as described in the following definition.

Definition 5.3 (Automorphisms). An automorphism of a relational structure A is a

bijection π of its universe with itself, which preserves all relations, i.e.

ā ∈ R ⇔ π(ā) ∈ R

holds for every relation R of arity d in the structure and every tuple ā ∈ Ad
.

Example 29. [Presburger arithmetic is rigid] Suppose that we define the atoms A to

be Presburger Arithmetic. The problem with this choice is that there are no non-trivial

automorphisms (such structures are called rigid). Indeed, an automorphism must map

0 to 0, and then it must map 1 to 1, and so on. Therefore, the only automorphism is

the identity. This means that every subset of A, or more generally Ad
, is going to be

equivariant. In particular, this precludes any finite representation or algorithms that

would deal with equivariant subsets. □



5.1. OLIGOMORPHIC STRUCTURES 61

Example 30. [Equality atoms] Suppose that we define the atoms A to be a structure

where the universe is some countably infinite set, and which has no relations. (Equal-

ity is assumed to be a given for first-order logic.) An automorphism in this case is the

same as a bijection of the universe with itself, i.e. a permutation of the universe, as

was the case for atoms with equality only. For this reason, we call this structure the

equality atoms. □

Example 31. [Integers with order] Suppose that we define the atoms A to be (Z, <),
i.e. the integers with order. Automorphisms of this structure must preserve the order.

Therefore, they must also preserve the successor relation. Indeed, if two consecutive

elements x and x+1 would be mapped to non-consecutive elements, then the resulting

gap would be a violation of bijectivity. Therefore, automorphisms of this structure are

translations, i.e. functions of the form x 7→ x+c for some c ∈ Z. In this structure, A has

one orbit, because one can go from every integer to every other integer by applying

some translation. However, A2
has infinitely many orbits, because the difference x1 −

x2 between the two coordinates is preserved by translations. Therefore, there are

uncountably many equivariant subsets of A2
. □

As illustrated in the above examples, we want the structure to have finitely many

orbits under its automorphisms. This should not only hold for the structure A itself,

but also for its powers Ad
, since such powers will arise in our constructions (such as

pof sets). Hence the following definition.

Definition 5.4. A structure A is called oligomorphic
1

if for every d ∈ {0, 1, . . .}, the

structure Ad
has finitely many elements up to automorphisms of A. More precisely,

for every d, the equivalence relation on Ad
defined by

ā ∼ b̄ if π(ā) = b̄ for some automorphism π of A

has finitely many equivalence classes.

Example 32. The equality atoms from Example 30, i.e. an infinite set without any

structure except equality, are oligomorphic. These are the atoms that we have studied

so far: automorphisms are permutations, and the number of orbits in Ad
is the d-th

Bell number. The other structures

(N,+) (Z, <)

discussed in Examples 28 and 31 are not oligomorphic. For the second one, we need

to got to the second power to get infinitely many orbits. □

Example 33. Every structure with a finite universe is oligomorphic. □

1
The notion of oligomorphic structures comes from Ryll-Nardzewski (1959), Engeler (1959) and Sveno-

nius (1959), who proved that countable oligomorphic structures are exactly those which are ω-categorical,

i.e. are the unique countable models of their first-order theory. This connection with first-order logic will

be important in Chapter ??, which discusses how orbit-finite sets can be represented using formulas of

first-order logic.



62 CHAPTER 5. ATOMS BEYOND EQUALITY

Example 34. [Ordered atoms] Consider the structure (Q, <) of ordered rational num-

bers. We will call this structure the ordered atoms. This is because it will turn out that

this structure is the canonical way of modelling a total order in our theory, as we will

describe in Chapter 6. We will show that this structure is oligomorphic. An automor-

phism of this structure is any order-preserving permutation. For example, the affine

function

x 7→
x
3
− 2

is an automorphism. On the other hand, x3
is not an automorphism, despite preserv-

ing the order. The reason is that cubing is not invertible on the rationals. To show

that this structure is oligomorphic, we will prove that two tuples

(a1, . . . , ad), (b1, . . . , bd) ∈ Qd

are in the same orbit, with respect to atom automorphisms, if and only if they have

the same order type, i.e.

ai ≤ a j ⇔ bi ≤ b j for all i, j ∈ {1, . . . , d}.

This will imply oligomorphism, since there are finitely many different order types for

each dimension d. Clearly if the tuples are in the same orbit, then they must have the

same order type, by definition of automorphisms. The converse implication is also

not hard to see, for example it is sufficient to consider piecewise affine maps. □

Example 35. The real numbers with order (R, <) are also oligomorphic. The same

argument as for the rationals works. However, we will not study this structure since

we care about countable ones only. □

Example 36. Consider an undirected graph with two countably infinite cliques (with-

out self-loops). Here is a picture, with only 12 vertices shown for each of the two

cliques:

The graph, like any graph, can be viewed as a logical structure, where the universe

is the vertices, and there is one binary relation for edges, which is symmetric and

irreflexive. The automorphisms of this structure (which are the same as graph au-

tomorphisms in the usual sense) are generated by: permutations of the first clique,

permutations of the second clique, and swapping the two cliques. In particular, the

tuples

(a1, . . . , ad) and (b1, . . . , bd)



5.1. OLIGOMORPHIC STRUCTURES 63

are equal up to atom automorphisms if and only if they have the same equality types

and the same equivalence types with respect to the equivalence relation “in the same

clique”. Since there are finitely many possibilities for every choice of n, it follows that

these atoms are oligomorphic. □

Polynomial orbit-finite sets. Many of the notions that we have described so far

make sense for other atoms, and not just the equality atoms. The only difference is that

instead of atom permutations, we use the more general notion of atom automorphism.

In the special case of the equality atoms, this will be the same as atom permutations.

We begin with the generalization of pof sets and their equivariant subsets.

Definition 5.5 (Polynomial orbit-finite sets for general atoms). Let A be an oligo-

morphic structure. A pof set over this structure is any set of the form

Ad1 + · · · + Adk .

A subset X of a pof set is called equivariant if membership in the subset is invariant

under atom automorphisms, i.e.

x ∈ X ⇔ π(x) ∈ X for every automorphism π of A,

with the expected action of automorphisms on elements of the pof set.

The first part of the above definition, i.e. applying a polynomial to some structure,

makes sense for structures that are not necessarily oligomorphic. However, we intend

to study pof sets equipped with equivariant subsets, and equivariant subsets are well-

behaved only for oligomorphic structures.

As was the case for the equality atoms, we can consider pof automata, now for a

general structure.

Example 37. Consider the ordered atoms A = (Q, <) from Example 34, and the

language

{ w ∈ A∗ | the letters in w are strictly growing }.

This language is recognised by a deterministic pof automaton. The automaton stores

the most recent letter, and enters a rejecting sink state if it sees a decrease. The state

space is

A0︸︷︷︸
initial

+ A1︸︷︷︸
last

atom

+ A0︸︷︷︸
error

and the transition function is defined as expected. □

Exercises
Exercise 93. Show that the structure (Z, <) is not oligomorphic.

Exercise 94. For the atoms (Q, <), find all equivariant binary relations on A.

Exercise 95. Consider a structure A that is oligomorphic. Let B be a new structure, whose

universe is a pof set over A, and whose relations are equivariant (under automorphism of A).

Show that B is also an oligomorphic structure.



64 CHAPTER 5. ATOMS BEYOND EQUALITY

5.2 Representation of equivariant subsets
The purpose of the theory that is developed in this book is to have a generalization of

finiteness that is amenable to algorithms. In particular, equivariant sets should allow

for finite representations, and should have other good properties of finite sets. From

the very definition of oligomorphism we see that an equivariant subset can be chosen

in finitely many ways, as explained in the following lemma.

Lemma 5.6. Let A be a relational structure that is oligomorphic. Then every pof set has

finitely many equivariant subsets.

Proof. It is enough to show that pof sets of the form Ad
have finitely many equivariant

subsets, and the result will transfer to general pof sets, which are disjoint unions of

such sets. By definition of oligomorphism, there are finitely many orbits in Ad
, and

each equivariant subset is a union of such orbits. Therefore, there are finitely many

choices. □

A corollary of the above lemma is that certain fixpoint algorithms will be guaran-

teed to terminate in finite time. A typical example is graph reachability, as illustrated

below.

Example 38. In Theorem 2.2, we showed that graph reachability is decidable pof sets

under the equality atoms. Suppose that we want to generalise this to any oligomorphic

atoms. A natural idea is to consider the chain

V0 ⊆ V1 ⊆ V2 ⊆ · · · (5.1)

where Vn is the set of vertices that can be reached from some source vertex via a

path of length at most n. Assuming that set of source vertices is equivariant, and the

edge relation is also equivariant, the set Vn will also be equivariant for every n. It

follows from Lemma 5.6 that the chain (5.1) will stabilize after finitely many steps,

and therefore the set of reachable vertices can be obtained in finitely many steps. □

In the above example, we showed an “algorithm” that decides graph reachability

by computing a finite increasing chain of equivariant subsets of vertices. However,

for this to be an algorithm, we need to be to represent subsets Vn from the chain in

a finite way; compute the new subsets based on the previous ones, and test equality

between such subsets. This leads us to the question:

How can we represent equivariant subsets of a pof set?

Of course, we want the representation to support certain basic operations, such as

checking if two subsets are the same (because the same subset might have several

representations), or Boolean combinations on subsets. Since a pof set is a finite union

of sets of the form Ad
, the question reduces to

How can we represent equivariant subsets of Ad
?



5.2. REPRESENTATION OF EQUIVARIANT SUBSETS 65

In the case of the equality atoms, in Section 1.1 we proposed two representations,

namely generating subsets, and formulas. As it turns out, these two representations

carry over to general oligomorphic structures.

By definition of oligomorphic atoms, see Lemma 5.6, a pof set will have finitely

many orbits, and therefore every equivariant subset can be represented by giving one

element for each orbit. Therefore, we can use finite sets of generators to describe

equivariant subsets, at least as long as we can write down individual elements of the

structure. There are, however, some unresolved questions about this representation

for subsets. For example: how do we test equality of two subsets given by generators?

Or: how do we compute the complement? We will return to these questions in Sec-

tion 7.2; for the moment we will stick to the formula representation. As we will see

below, the formula representation is very well suited to the oligomorphic case, since

oligomorphic structures are exactly those where equivariant subsets can be defined

by first-order formulas.

Under the equality atoms, we represented an equivariant subset ofAd
by a formula

φ(x1, . . . , xd)

that used Boolean combinations and equality. In the general oligomorphic case, we

will also use such formulas, but we will allow quantifiers, and other relations – beyond

equality – that are present in the structure. Subset of Ad
that can be defined this way

are called first-order definable. For some structures, such as the equality atoms, we

can avoid quantifiers, but for others the quantifiers will be necessary, as illustrated in

the following example.

Example 39. Consider the following three-vertex graph:

As mentioned in Example 36, this graph can be seen as a relational structure with

one binary relation. Like any finite structure, this structure is oligomorphic. There is

no quantifier-free formula that distinguished the isolated vertex from a non-isolated

vertex, despite the two vertices being in different orbits. □

The following theorem shows that for oligomorphic structures which are count-

able (i.e. have a countable universe), equivariant subsets are exactly the first-order

definable ones.

Theorem 5.7. Let A be a countable oligomorphic structure. A subset X ⊆ Ad
is equiv-

ariant if and only if it is first-order definable.

Proof. In this proof, we use the name atom for elements of the universe. Consider the

following game (known as the Ehrenfeucht-Fraı̈ssé game), which is parametrised by

two tuples ā, b̄ ∈ Ad
and a number of rounds k ∈ {0, 1, 2, . . . , ω}. The game is played

by two players, called Spoiler and Duplicator. In each round:

• Spoiler chooses one of the tuples and extends it with one atom.

• Duplicator responds by extending the other tuple with one atom.



66 CHAPTER 5. ATOMS BEYOND EQUALITY

Spoiler wins the game if, for some finite i ≤ k, the (extended) tuples after playing i
rounds can be distinguished by some quantifier-free formula (using the relations from

the structure), otherwise Duplicator wins. The theorem follows immediately from the

equivalence of items 1 and 4 in the following lemma.

Lemma 5.8. The following conditions are equivalent for every tuples ā, b̄ ∈ Ad
:

1. the tuples belong to the same first-order definable subsets;

2. Duplicator has a winning strategy in the k-round game for every k < ω;

3. Duplicator has a winning strategy in the ω-round game;

4. the tuples are in the same orbit.

Proof.

• 1 implies 2. This is (half of) the classical Ehrenfeucht-Fraı̈ssé theorem
2
, which

says that if two tuples satisfy the same formulas of quantifier rank at most k,

then Duplicator has a winning strategy in the k-round game. Recall that the

quantifier rank of a formula is the maximal nesting of quantifiers.

• 2 implies 3. In this step, we use oligomorphism. The key observation is in the

following claim, which shows that Duplicator has a strategy that ensures stay-

ing in positions that satisfy 2.

Claim 5.9. Consider one round of the Ehrenfeucht-Fraı̈ssé game, which begins in

a position (i.e. a pair of atom tuples of same finite length) that satisfies condition 2.

For every move of player Spoiler, there is a response of player Duplicator which

ensures that the resulting position also satisfies condition 2.

Proof. Suppose that the round begins in a position (ā, b̄). By symmetry, we only

consider the case when Spoiler extends the tuple ā with some atom a ∈ A. By

condition 2, we know that for every k there is some response bk ∈ A of player

Duplicator, which guarantees that

Duplicator can win the k-round game from position (āa, b̄bk). (5.2)

Observe that the above condition is, which describes a property of tuples of

some fixed length, is equivariant. This is because the dynamics of the game

would not be affected if we applied an atom automorphism to all choices. By

oligomorphism, we know that there are finitely many orbits of tuples

(āa, b̄bk)

that can be realized. Therefore, some orbit is hit by infinitely many choices of

bk. By equivariance of (5.2), we can pick some bk that witnesses an orbit that

is hit infinitely often, and this bk will guarantee winning the k-round game for

infinitely many k, and therefore for all k. □

2
See (Hodges, 1993, Section 3.2)



5.2. REPRESENTATION OF EQUIVARIANT SUBSETS 67

Thanks to the above claim that if we play the ω-round game and we start in

a position that satisfies 2, then Duplicator can play in a way that guarantees

always staying in positions that satisfy 2. In particular, Duplicator can win ω-

rounds, thus witnessing 3.

• 3 implies 4. In this step, we use countability. We need to show that if Duplica-

tor has a winning strategy in the ω-round game for tuples ā and b̄, then there

is an automorphism that maps one tuple to the other. This is proved using a

back-and-forth argument. Fix some enumeration of the model A, which exists

by assumption on countability. Consider a play in the ω-round game, where

Spoiler uses the following strategy:

– in even-numbered rounds, extend the ā tuple with the least (according to

the enumeration) atom that does not appear in it;

– in odd-numbered rounds, do the same for the b̄ tuple.

Suppose that Duplicator responds to the above strategy with a winning strategy.

In the resulting play, we get two infinite sequences

a1, a2, . . . b1, b2, . . .

of atoms that extend the tuples ā and b̄, respectively. By the choice of Spoiler’s

strategy, every atom appears in the first infinite sequence, and also every atom

appears in the second infinite sequence. Therefore, the function ai 7→ bi is

permutation of the atoms. Furthermore, this permutation is an automorphism,

since at every step in the game, the same same quantifier-free formulas must

be satisfied on both sides.

• 4 implies 1. By induction on the quantifier rank k, one shows that tuples in the

same equivariant orbit must satisfy the same first-order formulas of quantifier

rank k.

This completes the proof of the lemma, and therefore also of the theorem. □

□

Graph reachability
In the previous chapters, we showed that some decision problems – such as graph

reachability or emptiness for nondeterministic automata – can be decided. We now

show that these results carry over to other structures, under the suitable assumptions.

The first of these assumptions is that the structure is countable and oligomorphic, and

so we can use Theorem 5.7 to conclude that equivariant subsets can be represented in a

finite way, namely by first-order formulas. This assumption makes the decision prob-

lems well-posed, because the inputs (such as graphs or automata) can be represented

in a finite way. However, we also need to be able to operate on equivariant subsets.

For example, the same equivariant subset might have several representations, and we



68 CHAPTER 5. ATOMS BEYOND EQUALITY

need to be able to test equality between them. This boils down to the question: given

two first-order formulas

φ(x1, . . . , xd) and ψ(x1, . . . , xd),

decide if they define the same subset of Ad
. Already in the special case when d = 0,

i.e. when the formulas are sentences, this problem is the same as checking which

sentences are true in the structure. Therefore, in order to manipulate equivariant

subsets represented by formulas, we will want the first-order theory to be decidable;

this will be our second assumption. These two assumptions will be enough for many

algorithms. An example is graph reachability – the following theorem shows that the

decidability result from Section 2.1 transfers over from the equality atoms to general

oligomorphic structures.

Theorem 5.10. Assume that the atoms A are a countable oligomorphic structure with

a decidable first-order theory. Then reachability for pof graphs is decidable.

Proof. Although we have essentially described the algorithm in Example ??, we spell

out the details about the representation in this proof, to explain how exactly we ma-

nipulate equivariant subsets represented by formulas. The input to the problem con-

sists of a pof set

V =
∑
i∈I

Adi ,

together with three equivariant relations:

E ⊆ V2︸  ︷︷  ︸
edges

S ,T ⊆ V︸    ︷︷    ︸
source and target

vertices

An equivariant subset of V – such as the source and target sets – is represented by

a family of first-order formulas, with one formula for each component i ∈ I of the

disjoint union in the set V . The formula for component i has di free variables, and

tells us when a tuple of atoms belongs to the i-th component. A similar representation

is used for the binary relation E – for each pair of components i, j ∈ I, there is a

formula with di + d j free variables, which tells us when a tuple of atoms from the i-th
component is related to a tuple of atoms from the j-th component. We will use these

representations to implement a reachability algorithm.

We intend to compute the chain

V0 ⊆ V1 ⊆ V2 ⊆ · · ·

of sets, such that Vn is the vertices that can be reached by a path of length at most

n. Each set Vn will be represented by a family of formulas, call these formulas {φn
i }i∈I .

For n = 0, we use the formulas for the source set. Let us now show how to compute



5.2. REPRESENTATION OF EQUIVARIANT SUBSETS 69

the formulas for Vn+1 based on the formulas for Vn:

the formula for

component i in Vn+1︷  ︸︸  ︷
φn+1

i (x̄) =

the formula for

component i in Vn︷︸︸︷
φn

i (x̄) ∨
∨
j∈I

∃ȳ︸︷︷︸
choosing a component

j ∈ I and a tuple ȳ
of d j atoms is the same as

choosing an element of V

(the formula for

component j in Vn︷︸︸︷
φn

j (ȳ) ∧ φE
ji(ȳ, x̄)︸   ︷︷   ︸

the formula for

components i and j in

the edge relation E

)
.

As explained in Example ??, this chain cannot grow infinitely often, because the set of

vertices has finitely many orbits, and each set in the chain is a union of these orbits.

Also, a new set in the chain is defined in terms of the previous one, and therefore once

we have Vn+1 = Vn for some n, then the chain stabilizes forever. We can check when

the chain stabilizes by asking if the following first-order formula – which says that

no new elements have been added – is true in the atoms:∧
i∈I

∀x̄ φn
i (x̄) ⇒ φn+1(x̄).

We can get an answer to this question, by the assumption that the atoms have a de-

cidable first-order theory. □

In the proof above, we did not give a more precise estimate on the computational

complexity of the problem, beyond saying that it is decidable. Later on in this book,

we will see that the algorithm is in PSpace for most choices of atoms that we consider,

including the equality atoms (this was already shown in Section 2.1), and the ordered

atoms.

Exercises
Exercise 96. Consider a structure with a countable vocabulary. Show that if it is not oligo-

morphic, then there is some subset of Ad
that is equivariant, but not first-order definable.

Exercise 97. Consider an oligomorphic structure with a decidable first-order theory. Show

that the following conditions are equivalent:

1. the following function, called the Ryll-Nardzewski function, is computable:

d ∈ {0, 1, . . .} 7→ number of orbits in Ad
;

2. there is an algorithm that inputs d ∈ {0, 1, . . .} and returns a formula with 2d free vari-

ables that defines the “same orbit” relation on Ad
.

Exercise 98. Consider a countable oligomorphic structure. Show that the following conditions

are equivalent for a sequence of orbits

X1 ⊆ A1, X2 ⊆ A2, . . . :

1. there is some enumeration of the atoms such that Xn is the orbit of the first n atoms in

the enumeration;



70 CHAPTER 5. ATOMS BEYOND EQUALITY

2. Xn is obtained from Xn+1 by deleting the last coordinate, and every orbit in A∗ can be

obtained from some Xn by deleting some coordinates.

Exercise 99. Consider the two conditions in Definition ??. Show that in the presence of the

first condition ??, the second condition ?? is equivalent to any of the following conditions:

1. the Ryll-Nardzewski function is computable, as in item 1 from Exercise 97;

2. there is an algorithm that inputs d ∈ {0, 1, . . .} and returns a list of tuples that generate

Ad
, with one tuple for each orbit (i.e. no orbit is represented twice).

Exercise 100. Show that the following are equivalent for a countable oligomorphic structure:

1. has a representation;

2. has a decidable first-order theory and a computable Ryll-Nardzewski function.

Exercise 101. Consider the following two conditions for an orbit-finite graph.

1. there is an directed path;

2. there is a cycle.

Find an atom structure where the two conditions are equivalent, and also an atom structure

where only the implication 1⇐ 2 is true.

Exercise 102. Show that under the assumptions of Theorem ??, there is an algorithm that

checks if condition 1 of Exercise 101 is satisfied, assuming that the graph, source and targets

are all hereditarily orbit-finite. Likewise for condition 2.

Exercise 103. An instance of alternating reachability is defined in the same way as an instance

of graph reachability, i.e. there is a directed graph with distinguished source and target vertices.

The difference is in the semantics: we play a game between players Odd and Even, with Odd

choosing the next edge in odd rounds, and Even choosing the next edge in even rounds. We

want to decide if player Odd has a strategy that guarantees seeing a target vertex in a finite

number of rounds, regardless of the choice of initial vertex in the source set
3
. Show that this

problem is decidable under the assumptions of Theorem 5.10.

Exercise 104. Assume the equality atoms. A Büchi game has the same syntax as alternating

reachability from Exercise 103. The game is played similarly, except that the objective of player

0 is to see vertices from T infinitely often. Give an algorithm that decides the winner in a Büchi

game represented by a set builder expression. Hint: use memoryless determinacy of Büchi

games without atoms, see (Thomas, 1990, Theorem 6.4).

Exercise 105. Consider the graph which is obtained by taking a disjoint union of all cliques,

one for each size n ∈ {1, 2, . . .}. This structure is not oligomorphic, but we can still consider pof

sets with first-order definable subsets. Show that graph reachability is decidable.

5.3 Orbit-finite sets
In Section 4.2, we gave a more semantic notion of finiteness for the equality atoms,

called orbit-finiteness. This notion, which is the central one for this book, extends to

other structures by using automorphisms instead of permutations.

3
This type of game is called a reachability game. More general games, namely parity games, are studied

in (Klin and Łełyk, 2017, Section 5.2)



5.3. ORBIT-FINITE SETS 71

Definition 5.11 (Finite supports and orbit-finiteness). Let A be a relational struc-

ture, and consider a set X that is equipped with an action of atom automorphisms,

i.e. automorphisms of the structure A.

• Supports. An element x ∈ X is supported by a list of atoms a1, . . . , an if

π(ā) = ā ⇒ π(x) = x

holds for every automorphism π of the structure A. We say that x is finitely

supported if it is supported by some finite list of atoms.

• Orbit-finite set. The set X is called orbit-finite if every element x ∈ X has finite

support, and there are finitely many orbits under the group action.

We will only be interested in orbit-finite sets for atoms that are oligomorphic. The

oligomorphic assumption will guarantee that basic operations, such as product X×Y ,

can be implemented on orbit-finite sets.

Example 40. [Finitely supported subsets in the ordered atoms] Consider the ordered

atoms A = (Q, <). In this case, the automorphisms are order-preserving bijections.

Consider a subset X ⊆ A which is supported by a tuple of atoms ā. We claim that X is

a union of intervals (open, closed, open-closed or closed-open) whose endpoints are

either −∞,∞, or appear in ā. Indeed, consider atoms b, c that are not in ā and are not

separated by an atom in ā in terms of the order. There is an automorphism that fixes

ā, and which maps b to c. Since the set X is supported by ā, it follows that b ∈ X if

and only if c ∈ X. □

In Chapter 4, we defined quotiented pof sets under the equality atoms, and we

showed that they were the same as orbit-finite sets, up to equivariant bijections. The

notion of quotiented pof set extends to oligomorphic structures (a pof set quotiented

by an equivariant partial equivalence relation). Also, the characterization carries over,

as stated in the following theorem.

Theorem 5.12. Let A be an oligomorphic structure, and let X be a set that is equipped

with an action of atom automorphisms. Then X is orbit-finite if and only if it admits an

equivariant bijection with a quotiented pof set.

Proof. Same proof as the special case for equality atoms from Theorem 4.6. Oligo-

morphism is used in the easer right-to-left implication: every quotiented pof set is

orbit-finite. This is because (non-quotiented) pof sets are orbit-finite by definition of

oligomorphism, and quotienting does not increase the number of orbits. □

A corollary of the above theorem is that orbit-finite sets enjoy the same closure

properties as quotiented pof sets. For example, they are closed under Cartesian prod-

ucts X × Y , since quotiented pof sets have this property. Not all results carry over to

oligomorphic structures. For example, least supports can fail, as explained below.

Example 41. Consider an atom structure A which is the following graph:



72 CHAPTER 5. ATOMS BEYOND EQUALITY

Consider the quotiented pof set A/ ∼, where ∼ is the equivalence relation “in the

same connected component”. An element of this set, i.e. a connected component, is

supported by any of the two atoms in it, but none of these supports is a least support. A

similar phenomenon can be observed in the structure of two cliques from Example 36.

In this case, each of the two cliques – when seen as an element of the finitely supported

powerset – is supported by any atom that appears in it. □

Exercises
Exercise 106. Assume that the atoms are oligomorphic. Show that for every orbit-finite set

X, there is some d ∈ {0, 1, . . .} and a surjective equivariant function f : Ad → X.

Exercise 107. Show that the atoms (Q, <) also have least supports.

Exercise 108. Show an example of oligomorphic atoms without least supports.

Exercise 109. Assume that the atoms are oligomorphic. Let X be a set with an action of group

automorphisms, which is not known to be orbit-finite. Let R ⊆ X × X be an equivariant binary

relation which is orbit-finite. Show that the transitive closure of R is also orbit-finite.

Exercise 110. Assume that the atoms are oligomorphic, and there are infinitely many atoms.

Show that orbit-finite sets are not closed under taking finitely supported function spaces:

X
fs

→ Y def
= { f : X → Y | f is finitely supported }.

Exercise 111. Assume oligomorphic atoms. Let X,Y be orbit-finite sets and let F be an

equivariant subset of the finitely supported function space from the previous exercise. Show

that F is orbit-finite if and only if there is some n ∈ {0, 1, 2, . . .} such that every function f ∈ F
has a support of size at most n.

Exercise 112. Assume oligomorphic atoms. Show that in an orbit-finite set, for every atom

tuple ā there are finitely many elements supported by ā.

Exercise 113. Show that Exercise 84 fails in (Q, <).

Exercise 114. Show that Exercise 84 fails in some atoms, even for a relation R such that for

every first argument, there are finitely many second arguments related by the relation.

Exercise 115. Assume that the atoms are oligomorphic. Let X be an orbit-finite set and let

ā be a tuple of atoms. Consider the family of equivalence relations on X which are supported

by ā and where every equivalence class is finite. Show that this family has a greatest element

with respect to inclusion (i.e. a coarsest equivalence relation).

z

Exercise 116. Show that the following statement is true in the equality atoms but not in (Q, <).
Let X be a set equipped with an action of atom automorphisms, where every element is finitely

supported. Then X is orbit-finite if and only if: (***) for every equivariant family of finitely

supported subsets of X which is totally ordered by inclusion, there is a maximal element.



Chapter 6

Homogeneous atoms

To define orbit-finiteness, we need atoms that are oligomorphic. How does one get

oligomorphic structures?

This chapter is devoted to a method of producing oligomorphic structures, which

is called the Fraı̈ssé limit
1
. The idea behind the Fraı̈ssé limit is that it inputs a class

of finite structures, sufficiently well-behaved, and outputs a single countably infinite

structure which contains all the finite structures, and does so in a certain homoge-

neous way. The Fraı̈ssé limit can be applied to classes of finite structures such as all

finite total orders, all finite directed graphs, all equivalence relations on finite sets,

etc.

6.1 Homogeneous structures
Before defining homogeneous structures, we begin by recalling some terminology

from logic. In the previous chapter, there was one structure, and we used logic to

define relations on this structure. In this chapter, there will be many structures, but

we will still want to compare them using a single formula. To do this, we use the

notion of a vocabulary: this is a set of names for relations, each one with an associated

arity in {0, 1, . . .}. Here are some examples of vocabularies:

x ≤ y︸︷︷︸
the vocabulary for

ordered structures

has one binary relation

edge(x, y)︸     ︷︷     ︸
the vocabulary for graphs

has one binary relation

x + y = z x × y = z︸                    ︷︷                    ︸
the vocabulary for rings

has two ternarny relations

.

Note that the first two vocabularies are essentially the same, since they both have

one relation of arity two. However, is useful to give different names to convey dif-

ferent intentions. In the third vocabulary, we use ternary relations instead of binary

functions – this is because we want to stick to relational vocabularies for simplicity. A

structure over a given vocabulary is a structure in the sense of Definition 5.1, together

with a function (called the interpretation of the vocabulary) that assigns each relation

1
This is a basic notion in model theory. For further information, see e.g. (Hodges, 1993, Section 7).

73



74 CHAPTER 6. HOMOGENEOUS ATOMS

name from the vocabulary to relation in the structure of the same arity. Thanks to the

interpretation, we can evaluate a formula over the vocabulary in any structure over

this vocabulary.

Consider two structures A,B over the same vocabulary. An embedding f : A→ B
is any injective function from the universe of A to the universe of B which preserves

and reflects the relations in the following sense

R(a1, . . . , an)︸          ︷︷          ︸
in A

⇔ R( f (a1), . . . , f (an))︸                  ︷︷                  ︸
in B

.

An isomorphism is the special case of an embedding where the function is a bijection.

An embedded substructure of a structure is defined to be any structure that embeds

into it. A substructure is the special case where the embedding is simply an inclusion

map. We will be mainly interested in (embedded or not) substructures that are finite,

i.e. have finite universes. Here is the fundamental definition for this chapter.

Definition 6.1 (Homogeneous structure). A structure is called homogeneous if ev-

ery isomorphism between finite substructures extends to a full automorphism of the

entire structure.

Here is a diagram that describes the above definition.

∀∃

B C

A A

isomorphism

subset subset

automorphism

Example 42. The equality atoms and the ordered atoms (Q, <) are homogeneous. Let

us do the proof for the ordered atoms. A finite substructure is the same as a choice of d
rational numbers x1 < · · · < xd . Any two such choices will be isomorphic, assuming

the same dimension d. If we take two such choices, they will be in the same orbit,

i.e. the isomorphism will extend to an automorphism. □

Example 43. Consider the structure which consists of finite subsets of natural num-

bers, equipped with a binary relation for subset inclusion:

A = (Pfin(N),⊆).

We will show that this structure is not homogeneous. Consider a finite substructure

B that has only one element, namely the empty set, and another finite substructure

C that also has only one element, namely the singleton set {1}. As finite structures,

they are isomorphic – the subset relation connects the unique element with itself in

both of them. However, there is no automorphism of A that maps the empty set to a

nonempty set. This structure is also not oligomorphic, because it has infinitely many

orbits already in A1
, namely sets of different finite sizes will be in different orbits. □

In principle, oligomorphism and homogeneity are incomparable notions, as ex-

plained in the following two examples.



6.1. HOMOGENEOUS STRUCTURES 75

Example 44. [Oligomorphic⇏ homogeneous] Every finite structure is oligomorphic,

but not every finite structure is a homogeneous. For example, consider the three

element path

Let the vertices be 1, 2, 3. The substructures {1} and {2} are isomorphic, but there is

no automorphism that maps 1 to 2. □

Example 45. [Homogeneous ⇏ oligomorphic] Consider an infinite structure which

has one unary relation for every possible singleton. This structure has no automor-

phism, and therefore it has infinitely many orbits. However, it is homogeneous for

the trivial reason that the only isomorphism between finite substructures are between

identical subsets. □

However, the differences exhibited in the above examples are rather superficial.

Every oligomorphic structure can be made homogeneous one by adding (infinitely

many) relations: we can simply add a d-ary relation for every orbit in Ad
. For the con-

verse implication, the following theorem shows that most reasonable homogeneous

structures are in fact oligomorphic.

Theorem 6.2. If a structure is homogeneous, then it is oligomorphic if and only if

(*) for every d ∈ {0, 1, . . .}, it has finitely many substructures of size d, up to isomor-

phism.

Proof. If we take tuples (a1, . . . , ad) and (b1, . . . , bd) that are in the same orbit, then

the function ai 7→ bi is an isomorphism between the substructures generated by the

tuples. Therefore, if there are finitely many orbits in Ad
, then there are finitely many

kinds of substructures of size d, up to isomorphism, which proves the left-to-right

implication. For the converse implication, we use homogeneity: the orbit of a tuple

is uniquely determined by the isomorphism type of the induces substructure, and the

order and repetitions of the elements in the tuple, which can be chosen in finitely

many ways. □

A corollary of the above theorem is that for finite vocabularies, homogeneity im-

plies oligomorphism. This is because condition (*) will automatically hold in the pres-

ence of a finite vocabulary.

One of the fundamental properties of oligomorphic structures was that equivari-

ant relations were exactly those that could be defined in first-order logic, see Theo-

rem 5.7. For homogeneous structures, quantifier-free formulas are enough.

Theorem 6.3. Consider a homogeneous structure A.

1. Two tuples inAd
are in the same orbit if and only if they satisfy the same quantifier-

free formulas.

2. If A additionally satisfies condition (*) from Theorem 6.2, then the equivariant

subsets of Ad
are exactly those that are definable by quantifier-free formulas.



76 CHAPTER 6. HOMOGENEOUS ATOMS

Proof. We begin with the equivalence in the first item. The right-to-left implication is

immediate: the truth-value of quantifier-free formula does not change when an auto-

morphism is applied. Conversely, if two tuples of atoms satisfy the same quantifier-

free formulas, then one can build an isomorphism between the substructures gen-

erated by them, which will extend to an automorphism of the entire structure by

homogeneity.

The second item follows from the first item, and the observation that under as-

sumption (*), there are finitely many possible quantifier-free formulas with d vari-

ables, up to logical equivalence. □

Exercises
Exercise 117. Which finite graphs are homogeneous?

6.2 The Fraı̈ssé limit
In this section, we describe the Fraı̈ssé limit, which is a way – in fact the only way –

of constructing countable homogeneous structures. Before defining the Fraı̈ssé limit,

consider the following problem: for a class A of finite structures, find some (possibly

infinite) structure A such that

A = { B | B is a finite structure that embeds into A }︸                                                             ︷︷                                                             ︸
this is called the age of the structure A

.

For example, if A is the class of all finite structures over an empty vocabulary, then

it is the age of any infinite structure over the empty vocabulary. If A is the class of

finite total orders, then it is the age of any infinite total order, such as

(N, <) (Z, <) (Q, <) (R, <).

However, if we want the total order to be countable and homogeneous, then the only

choice is the rational numbers. Finally, not every class arises as the age of some struc-

ture. A necessary condition is that every two structures from A can be embedded

into a single structure from A , since this is a property that will hold for the age of a

single structure A. For this reason, the class

A = { G | G is a graph with at most 10 edges }

is not the age of any structure. The purpose of this chapter is to identify conditions

which guarantee that A can be obtained as the age of some structure, and furthermore

we want this structure to be homogeneous. These conditions are described in terms

of amalgamations, so we begin by defining amalgamation.

Definition 6.4 (Amalgamation). An instance of amalgamation is two embeddings

with a common source:

A
f1

zz
f2

$$
B1 B2

(6.1)



6.2. THE FRAÏSSÉ LIMIT 77

A solution of the instance is a structure C and two embeddings g1, g2 such that the

following diagram commutes:

A
f1

zz
f2

$$
B1

g1 $$

B2

g2zz
C

(6.2)

Definition 6.5 (Fraı̈ssé class). A Fraı̈ssé class is a class of finite structures over a

common vocabulary which is closed under isomorphism, substructures, and also:

• it is closed under amalgamation, which means that for every instance of amal-

gamation which uses structures from the class, there is a solution which also

uses a structure from the class.

A Fraı̈ssé class is called countable if it has countably many structures, up to iso-

morphism. We are now ready to state the Fraı̈ssé theorem, which says that Fraı̈ssé

classes are in one-to-one correspondence with countable homogeneous structures.

Theorem 6.6 (Fraı̈ssé Theorem). The map

A 7→ age of A

is a bijection between countable homogeneous structures (modulo isomorphism) and count-

able Fraı̈ssé classes. In other words:

1. the age of every countable homogeneous structure is a countable Fraı̈ssé class; and

2. every countable Fraı̈ssé class is obtained this way; and

3. if two countable homogeneous structures have the same age, then they are isomor-

phic.

The inverse of the age operation, i.e. the map which inputs a Fraı̈ssé class and

outputs the corresponding countable homogeneous structure (which is unique up to

isomorphism thanks to the above theorem), is called the Fraı̈ssé limit. Before prov-

ing Theorem 6.6, we give some examples and non-examples of Fraı̈ssé classes. In all

these examples, closure under substructures and isomorphism is immediate, and only

amalgamation need be discussed.

Example 46. Consider the class of all finite structures over an empty vocabulary (in

which case formulas can talk only about equality). This class is closed under amalga-

mation, by taking the disjoint union of two sets with a common subset. Here is an

example of an instance of amalgamation and its solution:



78 CHAPTER 6. HOMOGENEOUS ATOMS

When drawing amalgamation diagrams, we use the red colour for elements of A. In

general, the same instance might have several solutions. Here is an example of a

different solution to the instance above:

In fact, the above instance has infinitely many solutions (because the solution can be

arbitrarily large). Note how the second solution uses the same black element as the

target of both black nodes in the second row. □

Example 47. Consider the class of finite undirected graphs. In other words, this is

the class of all finite structures over a vocabulary which has one binary relation that

is required to be symmetric and irreflexive. This class is closed under amalgamation

(the same argument works for directed graphs), by taking the disjoint union of two

directed graphs with a common induced subgraph. Here is an example:

As in Example 46, there are also other solutions to the above instance. More generally,

for every relational vocabulary, the class of all finite structures over this vocabulary

is closed under amalgamation. In particular, by Theorem 6.6, each of these classes

has a Fraı̈ssé limit. The limit for undirected graphs will be discussed in more detail in

Section 6.3.1. □

Example 48. Consider the class of finite planar graphs. To simplify this example,

we assume that a graph is modelled (unlike in Example 47) as a structure where the

universe is vertices and edges, and there is a binary incidence relation between edges

and vertices. (This way of modelling a graph means that an embedding can add edges

without adding vertices.) The class is not closed under amalgamation. Here is an

instance without a solution:



6.2. THE FRAÏSSÉ LIMIT 79

Any hypothetical solution to the above instance would have the 5-clique as a minor,

and would therefore not be planar. A similar but more elaborate example would show

failure of amalgamation for planar graphs under the modelling of graphs used by

Example 47, where the universe of the structure is the vertices and there is a binary

relation for the edges. □

Example 49. Consider directed graphs where the edge relation is a partial successor,

i.e. vertices have out-degree and in-degree at most one, and no loops. The class is not

closed under amalgamation, here is an instance without a solution:

□

Example 50. Consider the class of finite total orders. This class is closed under amal-

gamation. Here is an example of an instance of amalgamation and its solution:

□

We now begin the proof of the Fraı̈ssé Theorem. We first show item 1, which

says that the age of a countable homogeneous structure is a Fraı̈ssé class. We prove a

slightly stronger result, which does not assume countability.

Lemma 6.7. For every homogeneous structure, not necessarily countable, its age is a

Fraı̈ssé class.

Proof. The only nontrivial part is amalgamation. Let H be a homogeneous structure.

Consider an instance of amalgamation which uses structures that embed into H, as in

the following diagram (all arrows are embeddings):

A
f1

zz
f2

$$
B1

h1��

B2

h2��
H H

The diagram distinguishes the targets of h1 and h2 because the embeddings h1 ◦ f1
and h2 ◦ f2 need not be the same embedding of A in H. However, the images of



80 CHAPTER 6. HOMOGENEOUS ATOMS

both of these embeddings are isomorphic finite substructures of H. Therefore, by

homogeneity there is an automorphism π which extends this partial automorphism.

In other words, the following diagram commutes:

A
f1

zz
f2

$$
B1

h1��

B2

h2��
H π // H

If we restrict the right copy of H to the union of the images of the maps h2 and π ◦ h1,

then we get a solution of amalgamation. □

If a homogeneous structure is countable, then it has countably many embedded

finite substructures. Therefore, by the above lemma, the age of a countable homoge-

neous structures is a countable Fraı̈ssé classes. We now establish item 3 in the theo-

rem, which says that the age uniquely identifies a countable homogeneous structure.

Lemma 6.8. A countable structure H is homogeneous if and only if:

(*) If A,B are finitely generated substructures of H then

∀∃ B

f ��

g // A

h
��
H

Furthermore, countable homogeneous structures with the same age are isomorphic.

Proof.

• Homogeneous structures satisfy (*). Let g, f be as in (*). We assume without loss

of generality that g is an inclusion. Let f ′ be an embedding of A into H, which

exists by the assumption that A is a substructure. Here is a picture:

f

f ’



6.2. THE FRAÏSSÉ LIMIT 81

By following the inverse of f and then f ′, we get a partial automorphism be-

tween two finitely generated substructures of H, namely the two red parts on

the right. By homogeneity, this partial automorphism extends to a full auto-

morphism. The function f ′ composed with the inverse of that automorphism is

the desired embedding.

• Structures satisfying (*) are homogeneous. Here we use countability. The follow-

ing claim, in the special case of H = H1 = H2, shows that H is homogeneous.

Claim 6.9. Let H1,H2 be countable structures with the same age. If both satisfy

(*), then every partial isomorphism between finite substructures of H1 and H2
extends to a full isomorphism.

Proof. Let f be an isomorphism between structures in the ages of H1 and H2,

respectively, and let a be an element of H1. Let A be the substructure of H1
whose universe is a plus the domain of f . Here is a picture:

The structure A is in the age of H1, and therefore by the assumption of the

claim it embeds into H2. By (*), f extends to an embedding of A into H2. This

argument, and a symmetric one where a is in H2, establishes that:

(**) For every isomorphism between structures in the ages of H1 and H2, re-

spectively, and every element a of eitherH1 orH2, the partial isomorphism

can be extended to be defined also on a.

The conclusion of the claim follows from (**) using a back-and-forth construc-

tion. Define inductively a sequence of partial isomorphisms between finitely

generated substructures of H1 and H2, such that the next one extends the pre-

vious one, and every element of both structures appears eventually in the source

or target of a partial isomorphism from the sequence. The full isomorphism is

then the limit of these partial isomorphisms. □

• Homogeneous structures are uniquely determined by their finitely generated sub-

structures. By Claim 6.9 applied to the empty partial isomorphism between H1
andH2, we see that countable homogeneous structures are uniquely determined

– up to isomorphism – by their age.

□

To finish the proof of Fraı̈ssé Theorem, we need to show item 2.



82 CHAPTER 6. HOMOGENEOUS ATOMS

Lemma 6.10. Every countable Fraı̈ssé class A arises as the age of some countable ho-

mogeneous structure.

Proof. Choose some enumeration

A1,A2, . . . (6.3)

of the structures in A , which represents every structure up to isomorphism. We

define a sequence

H0 ⊆ H1 ⊆ · · · (6.4)

of structures in A as follows. Choose the first structure H0 arbitrarily, say the empty

structure. A new structure is obtained by applying the following claim.

Claim 6.11. Suppose that Hn is already defined. There is a structure Hn+1 ⊇ Hn in A
such that for every instance of amalgamation

A

B Hn

f g

where both A,B are among the first n structures in the enumeration of A , there is a

solution of the form

B Hn

Hn+1

f ′ inclusion

Proof. There are finitely many possible instances of amalgamation as in the claim,

because A and B can be chosen in finitely many ways, and there are finitely many

possible embeddings between two finite structures. Let m be the number of instances.

By induction on i ∈ {1, . . . ,m}, we create a structure Hi
n+1 that solves the first i in-

stances; once we have done this we can use Hm
n+1 as the solution for all instances. The

induction step is proved by applying amalgamation to the previous solution. □

Define H to be the limit (i.e. union) of the sequence H1,H2, . . .. By construction,

H satisfies condition (*) from Lemma 6.8, and is therefore homogeneous.

To complete the proof, we justify that the age of H is exactly A . Every finite

structure that embeds into the limit H must embed into some Hn, and is therefore in

A , because Hn ∈ A and the class is closed under substructures. Therefore, the age

of H is contained in A . Let us prove the converse inclusion. Suppose that A ∈ A .

At some point n in the enumeration, we have seen both A and the empty structure.

Therefore, Hn+1 will contain a solution to an instance of amalgamation where the

empty structure is embedded into both A and Hn+1. This means that Hn+1 contains an

isomorphic copy of A. □

This completes the proof of Fraı̈ssé Theorem.



6.2. THE FRAÏSSÉ LIMIT 83

Computability. The Fraı̈ssé limit not only exists, but under mild assumptions on

the Fraı̈ssé class, it can be computed. What does it mean to compute an infinite struc-

ture? This is formalized in the following theorem, which shows that one perform basic

computational operations, such as counting orbits, deciding the first-order theory, and

representing elements.

Theorem 6.12. Let A be a Fraı̈ssé class such that:

(*) there is an algorithm that inputs d and returns a finite list of all structures that

represents all structures of size d in A , up to isomorphism.

Then its Fraı̈ssé limit, call it A, has the following properties:

1. it is oligomorphic, and given d one can compute the number of orbits in Ad
;

2. it has effective quantifier elimination, i.e. for every first-order formula, one can

compute an equivalent one that is quantifier-free;

3. there is a function ρ : 2∗ → A, called a representation, which has the following

properties (when atoms are used in algorithms, they are represented as strings

using the representation):

(a) every atom is represented by at least one string;

(b) given a first-order formula φ(x1, . . . , xd) and a1, . . . , ad ∈ A, one can decide

if

A |= φ(a1, . . . , ad);

(c) given two tuples in Ad
, decide if they are in the same orbit.

Proof. We begin with item 1. By assumption (*), there are finitely many substructures

of size d in A , up to isomorphism. Therefore, A is oligomorphic by Theorem 6.2. An

orbit in Ad
is the same thing as a substructure with at most d elements, together with

a list of length d that covers all of its elements, possibly with repetitions. We can

count such objects, up to isomorphism, using assumption (*).

We now show item 2, about quantifier elimination. We assume that “true” and

“false” are quantifier-free formulas; these will be the only possible formulas when we

apply the quantifier elimination to a sentence, i.e. a formula without free variables.

The proof is by induction on the size of the formula. The only non-trivial case is

eliminating a single quantifier, say an existential one (because eliminating a universal

quantifier reduces to this case by De Morgan’s laws):

∃xφ(x1, . . . , xn, x)︸            ︷︷            ︸
quantifier free

.

The inner formula φ can be seen as describing structures with n + 1 distinguished

elements; with the distinguished elements not being necessarily pairwise distinct. Let

us write Aφ for the corresponding structures, i.e. this is the class

Aφ = {(A,
ā︷     ︸︸     ︷

a1, . . . , an, a) : A ∈ A and a1, . . . , an, a are elements that satisfy φ}.



84 CHAPTER 6. HOMOGENEOUS ATOMS

Up to isomorphism, the above class is finite and can be computed thanks to assump-

tion (*). Because the Fraı̈ssé limit is homogeneous, a tuple āa in the Fraı̈ssé limit

satisfies φ if and only if Aφ contains the substructure generated by ā (together with

the distinguished ā). Define A∃xφ to be the following projection of Aφ: for each

(A, āa) ∈ Aφ, remove the last element a from the list of distinguished elements. A

tuple ā in the Fraı̈ssé limit satisfies the quantified formula ∃xφ if and only if A∃xφ

contains the substructure generated by ā (together with the distinguished ā). This

property can be expressed using a quantifier-free formula.

We now prove the last item 3, about the representation. Here, we revisit the con-

struction of the Fraı̈ssé limit in the proof of Lemma 6.10. In that proof, we started off

with an enumeration, see (6.3), which represents all structures in A up to isomor-

phism. Thanks to assumption (*), we can assume that this enumeration is effective in

the following sense: there is an algorithm that inputs n and returns the n-th struc-

ture An in the enumeration. The construction in Claim 6.11 preserves this notion of

effectiveness, and therefore also the sequence Hn is effective. Since the Fraı̈ssé limit

is defined to be the union of the latter enumeration, it follows that the Fraı̈ssé limit is

effective in the sense that one can define a surjective representation ρ : 2∗ → H that

allows us to test if a given tuple of elements satisfies a given relation from the vocabu-

lary. (The string representing an element from H stores the following information: at

which stage n did the element appear in Hn, and which element of Hn it is.) If we can

decide the relations from the vocabulary, then we can decide quantifier-free formulas,

and so we can also decide first-order formulas, as required by item 3b, thanks to the

previous item about quantifier elimination. The last part of the theorem, in item 3c,

is about deciding if two tuples are in the same orbit. By Theorem 6.3, we know that

two tuples are in the same orbit if and only if they satisfy the same quantifier-free for-

mulas. Although the vocabulary is in principle infinite, we can use assumption (*) to

show that for every d, there is some finite part of the vocabulary such that quantifier-

free formulas using only that part are enough to distinguish different orbits in Ad
. In

combination with the previous observations about deciding quantifier-free formulas,

we can get an effective criterion for checking if two tuples from Ad
are in the same

orbit. □

All Fraı̈ssé classes discussed in this chapter satisfy the assumptions of the above

theorem. In particular, the corresponding Fraı̈ssé limit will have a decidable first-

order theory, thanks to the special case of item 3b for formulas without free variables.

Therefore, we can apply Theorem 5.10 to decide graph reachability. In the Chapter 7,

we will see many other examples of algorithms, beyond graph reachability, which can

be used for atoms that arise a Fraı̈ssé limit. Before we do that, however, we present

several interesting examples of Fraı̈ssé limits, which will illustrated the scope of ap-

plicability for the algorithms that will be presented in Chapter 7.

Exercises
Exercise 118. Consider the class of all finite partial orders, i.e. binary relations that are

reflexive and transitive. Show that this class is closed under amalgamation.

Exercise 119. Are series parallel graphs closed under amalgamation?



6.3. EXAMPLES OF HOMOGENEOUS ATOMS 85

Exercise 120. Show a Fraı̈ssé class where solutions to amalgamation necessarily violate the

following condition:

(*) the intersection of the images of g1 and g2, as per diagram (6.2), is exactly the image of

A.

Exercise 121. Assume a finite relational vocabulary. Suppose that A is a class of struc-

tures that satisfies the assumptions of Theorem 6.6, and let A be its Fraı̈ssé limit. Show that if

membership in A is decidable, A is an effective structure.

Exercise 122. Let A be a class of structures over a finite vocabulary, possibly including

functions, which:

1. has decidable membership;

2. is closed under substructures, isomorphism and amalgamation;

3. given k ∈ N one can compute some n ∈ N such that structures in A with k generators

have size at most n.

Show that the Fraı̈ssé limit of A has a decidable first-order theory with constants and a com-

putable Ryll-Nardzewski function.

Exercise 123. Define monadic second-order logic (mso) to be the extension of first-order logic

where one can also quantify over sets of vertices. A famous result on mso is Rabin’s Theorem
2
,

which says that the structure {0, 1}∗ equipped with functions x 7→ x0 and x 7→ x1 has decidable

mso theory, i.e. one can decide if a sentence of mso is true in it. Show that (Q, <) has decidable

mso theory.

Exercise 124. If Σ is a finite alphabet. We model a word w ∈ Σ∗ as a structure, where the

universe is positions in w, there is a binary predicate < for the order relation, and for every

label a ∈ Σ there is a unary predicate a(x). We denote the vocabulary used for this structure by

Σ<. Show that for every regular language L ⊆ Σ∗ there is a homogeneous structure A over a

vocabulary containing Σ< such that the age of A after restricting to Σ< is exactly the structures

corresponding to L.

6.3 Examples of homogeneous atoms
We end this chapter with three extended examples of homogeneous structures.

6.3.1 The random graph
We begin with the Fraı̈ssé limit of all finite undirected graphs. As shown in Exam-

ple 47, this is a Fraı̈ssé class, and therefore it has a Fraı̈ssé limit. Call this limit the

random graph. The name is justified by the following observation.

Theorem 6.13. Consider a countably infinite undirected graph, where each the pres-

ence/absence of an edge is chosen independently with equal probability one half
3
. Almost

surely (i.e. with probability one) this graph is isomorphic to the random graph.

2
For an introduction to mso and Rabin’s Theorem, see (Thomas, 1990, Theorem 6.8).

3
The conclusion of the theorem would not change if we used a different distribution, e.g. there would

be an edge with probability 0.99.



86 CHAPTER 6. HOMOGENEOUS ATOMS

Proof. Let us write H for the graph that is chosen randomly. For a finite graph G, and

a function h from vertices of an induced subgraph F ⊆ G to vertices of H, consider

the event: “either h is not an embedding, or it can be extended to an embedding of G”.

This event happens almost surely because failing the event would require infinitely

many independent random events that go wrong. Since there are countably many

choices of F ⊆ G and functions h, up to isomorphism, it follows that almost surely

the graph H satisfies condition (*) of Lemma 6.8, and therefore it is isomorphic to the

random graph. □

Since the class of finite undirected graphs is clearly countable, its Fraı̈ssé limit is

oligomorphic and has all of the computability properties in the conclusion of Theo-

rem 6.12. It follows that problems such as graph reachability or automaton emptiness

are decidable, assuming that the inputs are pof automata, or quotiented pof automata.

Exercises
Exercise 125. Assume that the atoms are the random graph. Is the language

{a1 · · · an ∈ A : the subgraph induced by a1, . . . , an is connected}

recognised by a nondeterministic orbit-finite automaton?

Exercise 126. Assume that the atoms are the random graph. Give examples and non-examples

of graph properties X such that the following language is recognised by a nondeterministic

orbit-finite automaton:

LX = {a1 · · · an : the subgraph induced by a1, . . . , an satisfies X}.

To recognise LX , the automaton should be prepared for an arbitrary enumeration of the vertices

of the graph, possibly with repetitions.

Exercise 127. Assume that the atoms are the random graph. Show that there is no finitely

supported total order on the random graph.

Exercise 128. Show that there is no orbit-finite automaton, even nondeterministic, which

recognises the language of width k path decompositions.

Exercise 129. Assume that the atoms are the random graph. Show that for every mso formula

φ(x1, . . . , xn) with free variables that represent vertices (not sets of vertices) there is formula of

first-order logic which is equivalent on the random graph. Nevertheless, there is no algorithm

which computes such equivalent formulas.

Exercise 130. Assume that the atoms are the random graph. Show that solving equations, as

discussed in Section 7.4, is undecidable.

6.3.2 Bit vectors
This section is about the Fraı̈ssé limit of finite vector spaces over the two element

field. These atoms will also be discussed in Chapter 8, where we will show that, over

these atoms, deterministic polynomial time orbit-finite Turing machines are weaker

than the nondeterministic ones.

For the rest of this section, we only study vector spaces over the two element

field, so we say vector space with the implicit assumption that the underlying field is



6.3. EXAMPLES OF HOMOGENEOUS ATOMS 87

the two element field. Every vector space of finite dimension (which is equivalent to

having finitely many vectors) is isomorphic to

({0, 1}d,+) for some d ∈ {1, 2, . . .}

where addition is modulo two. We model a – possibly infinite – vector space V as

a structure over the following infinite vocabulary: for every d ∈ {0, 1, . . .} there is

a relation which selects d-tuples of vectors that are linearly independent. Here, a

d-tuple v̄ ∈ Vd
is called linearly independent if it does not satisfy any non-trivial

dependency

α1v1 + · · · + αdvd = 0,

where non-trivial means that at least one of the coefficientsαi is nonzero. In particular,

if the tuple contains a repetition, then it is linearly dependent. If the vector space

has finite dimension, then the relation will not select any tuple, once d exceeds the

dimension.

It is not hard to see that finite vector spaces are a Fraı̈ssé class. Embeddings are the

same thing as injective linear maps. To amalgamate two vector spaces, of dimensions

say d1 and d2, one needs a vector space of dimension max(d1, d2). Therefore, there is

a Fraı̈ssé limit of the finite vector spaces; and thanks to Theorem 6.12 this limit is a

countably oligomorphic structure.

One can also construct the Fraı̈ssé limit explicitly. The Fraı̈ssé limit must be a

vector space, since any violation of the vector space axioms would need to happen

already in a finitely generated substructure. Since the Fraı̈ssé limit is countable, its di-

mension must be countable, and since the Fraı̈ssé limit embeds all finite vector spaces,

its dimension must be infinite. Therefore, the Fraı̈ssé limit is a vector space of count-

ably infinite dimension. Up to isomorphism, there is a unique vector space like this.

One way of representing this unique vector space is as follows. The elements are bit

vectors, which are defined to be ω-sequences of zeroes and ones which have finitely

many ones (if we allowed infinitely many ones, the resulting vector spaces would have

uncountable dimension). By ignoring trailing zeroes, a bit vector can be represented

as a finite sequence, such as 00101001. Define the bit vector atoms to be the bit vectors

equipped with a function for coordinatewise addition modulo two:

01011 + 11001 = 1001.

An example basis consists of bit vectors which have a 1 on the n-th coordinate:

1, 01, 001, 0001, . . . .

Another example of a basis is

1, 11, 111, 1111, . . . .

Least supports. We prove below that for the bit vector atoms, a version of the Least

Support Theorem is true. For bit vectors, least supports are not unique as sets, but as

spanned subspaces. For example, the pair of atoms (01, 10) is supported by itself,

but it is also supported by (11, 01). More generally, the following lemma shows that

supporting and spanning are the same concepts, when talking about tuples of atoms.



88 CHAPTER 6. HOMOGENEOUS ATOMS

Lemma 6.14. Assume the bit vector atoms. An atom tuple ā supports an atom tuple b̄
if and only if all atoms in b̄ are spanned by ā.

Proof. The right-to-left implication is immediate. For the converse implication, sup-

pose that some atom in b̄ is not spanned by ā. By the Steinitz exchange lemma, this

atom can be mapped to some other atom by a ā-automorphism. □

We are now ready to state the Least Support Theorem for bit vector atoms.

Theorem 6.15 (Least Support Theorem). Assume the bit vector atoms. Let X be a set

equipped with an action of atom automorphisms. If x ∈ X has finite support, then there

exists a tuple ā of atoms which supports x, and which is least in the sense that if b̄ supports

x, then ā supports b̄.

Proof. Without loss of generality, we assume that X has one orbit. The proof follows

the same lines as the proof for the equality atoms, except that vector independence

plays the role of equality. Let us write A⟨d⟩ for the set of d-tuples of atoms which are

linearly independent. This is a one orbit set.

Lemma 6.16. There is an equivariant function

f : A⟨d⟩ → X

which satisfies the following condition
4

for every ā, b̄ ∈ A⟨d⟩:

f (ā) = f (b̄) ⇒ every atom in ā is spanned by b̄ and vice versa.

Proof. We start with some function f : A⟨d⟩ → X that is equivariant, but which does

not necessarily satisfy the condition in the lemma. Such a function can be found, by

taking some tuple ā of independent atoms that supports some element x ∈ X, and

extending it to an equivariant function. We will now show that either f satisfies the

condition, or the dimension d can be made smaller. By iterating this argument at most

d times, we get the conclusion of the lemma.

Suppose that f violates the condition in the lemma, as witnessed by tuples ā and

b̄, which have the same image under f but do not span each other. Some coordinates

in ā are spanned by b̄, but at least one coordinate is not. Without loss of generality,

we assume that the first i coordinates in the tuple ā are not spanned by b̄, and the

remaining coordinates are spanned by b̄. In other words, the tuple

(a1, . . . , ai︸     ︷︷     ︸
first i atoms

in the tuple ā

, b1, . . . , bd︸     ︷︷     ︸
all atoms in

the tuple b̄

)

is linearly independent. Since the vector space A has infinite dimension, one can

choose a′1, . . . , a
′
i ∈ A which are linearly independent, and which are not spanned by

āb̄. It follows that

(a1, . . . , ai)
π
7→ (a′1, . . . , a

′
i)

4
Condition (??), as well as the related condition from Lemma 4.13, is equivalent to saying that ā and b̄

have the same algebraic closure, in the model theory sense, see (Hodges, 1993, Chapter 4).



6.3. EXAMPLES OF HOMOGENEOUS ATOMS 89

holds for some atom automorphism π that fixes b̄. Because b̄ supports f (b̄), which is

the same as f (b̄), we have

f (ā) = f (π(ā)).

Since we have assumed that the last d − i coordinates of ā are supported by b̄, it

follows that the last d − i coordinates in π(ā) are the same as in ā. Summing up, we

have found two inputs for the function f , namely ā and π(ā), which agree on the last

d − i coordinates, but which have independent atoms on the first i coordinates. By

equivariance of f , this means that the first i coordinates in a tuple from A⟨d⟩ can be

replaced by fresh independent atoms without affecting the value of f . It follows that

f does not depend on the first i coordinates, and hence we can lower the dimension

d. □

Take the function f from the above lemma. This function is surjective, since an

input orbit is mapped to an output orbit, and X is assumed to be a one-orbit set. We

will show that if ā is a least support, in the sense of the theorem, for f (ā). Indeed,

suppose that f (ā) would be supported by some tuple b̄ which does not span ā. Then

there would be an atom automorphism π that would fix b̄ – and therefore also the

output of the function – but would map ā to some tuple not spanned by ā. In this

case, the inputs ā and π(ā) would be a violation of the above lemma. □

Exercises
Exercise 131. Let B be the structure where the universe is the same as in the bit vector atoms,

but we only have the independence predicate for dimension 3, i.e. there is a ternary predicate

“the atoms a, b, c are linearly independent”. Show that B has the same automorphisms as the

bit vector atoms.

Exercise 132. Show that the structure B from Exercise 131 is not homogeneous.

Exercise 133. Consider vector spaces over the three element field, with the independence

relations. Is the class of finite-dimensional vector spaces a Fraı̈ssé class?

6.3.3 Trees and forests
In this section, we study the Fraı̈ssé limit of trees and forests

5
. The trees and forests

we study are rooted, unlabelled, and unordered, as explained in the following picture:

there are distinguished roots

no order on the children, 
and no restrictions on their 

number

5
This section is based on Bojańczyk et al. (2013b).



90 CHAPTER 6. HOMOGENEOUS ATOMS

A tree is the special case of a forest when there is exactly one root.

The purpose of this section is to show that care is needed when choosing predi-

cates and functions to model a combinatorial object, like a tree or forest, if we want to

have a Fraı̈ssé limit. The following list shows three ways of modelling trees as logical

structures; only the third way will admit a Fraı̈ssé limit. In all cases, the universe of

the structure is the nodes of the tree.

1. There is a binary predicate for the parent relation. A finite forest is charac-

terised by the requirement that each node has at most one parent. This way of

modelling forests leads to a class that is not closed under amalgamation. Here

is an instance of amalgamation that has no solution:

2. There is a binary predicate for the ancestor relation. A finite forest is charac-

terised by the requirement that for every node, its ancestors are totally ordered.

This way of modelling forests also leads to a class that is not closed under amal-

gamation. Here is an instance of amalgamation that has no solution:

3. We have a ternary relation

z = closest common ancestor of x and y.

The class of trees modelled this way is closed under amalgamation, as illustrated

in Figure 6.1. Therefore, it has a Fraı̈ssé limit, which we call the universal forest.

(This forest is connected, because by amalgamation we can connect any two

forests.)

Exercises
Exercise 134. Assume the universal forest atoms. Find a finitely supported equivalence

relation on the atoms which has infinitely many infinite equivalence classes.

Exercise 135. Assume the universal forest atoms. Show that one cannot find an infinite

equivariant set X and an equivariant relation on it which is a total dense order. Equivariance is

important here, since if we only want a finitely supported one then this is easily accomplished



6.3. EXAMPLES OF HOMOGENEOUS ATOMS 91

an instance of amalgamation

its solution

Figure 6.1: Amalgamation for forests with a closest common ancestor relation.



92 CHAPTER 6. HOMOGENEOUS ATOMS

by taking the path connecting some two atoms a < b, and using the order inherited from the

atoms.

Exercise 136. Show that the universal forest has decidable mso theory.



Chapter 7

Algorithms on orbit-finite sets

In this chapter, we give examples that illustrate how algorithms can be generalized

from finite sets to orbit-finite sets. For all algorithms in this chapter, we make the

following assumptions about the atom structure.

Definition 7.1. A structure A is called effectively oligomorphic if:

1. it is oligomorphic and countable;

2. it has a decidable first-order theory;

3. given d ∈ {0, 1, . . .}, the number of orbits in Ad
can be computed.

These assumptions are satisfied by all atom structures that have been discussed

so far, such as the equality atoms, the order atoms, the graph atoms, or the bit vector

atoms.

7.1 Representing orbit-finite sets
To discuss algorithms, we need a finite representation of orbit-finite sets and their

equivariant subsets. In the special case of polynomial orbit-finite sets, we already

discussed such a representation in Section 5.2, when deciding graph reachability. This

representation was defined for polynomial orbit-finite sets, but it extends naturally to

(not necessarily polynomial) orbit-finite sets, as described below.

• How do we represent an orbit-finite set? By Theorem 5.12, every orbit-finite set

admits an equivariant bijection with a quotiented pof set, and so we will use

quotiented pof sets as our representation of orbit-finite sets. A quotiented pof

set is of the form

Ad1
/∼1
+ · · · + Adk

/∼k
,

where each ∼i is an equivariant partial equivalence relation on Adi
. By Theo-

rem 5.7, each of the equivalence relations ∼i is necessarily first-order definable,

93



94 CHAPTER 7. ALGORITHMS ON ORBIT-FINITE SETS

and therefore it can be represented by a first-order formula. This formula has

2di variables, because it is a binary relation on Adi
. Summing up, an orbit-finite

set is represented by a list of dimensions d1, . . . , dk ∈ {0, 1, . . .}, one for each

component, together with a list of first-order formulas φ1, . . . , φk that describe

partial equivalence relations on these components. We would like the syntax to

be decidable, which in this case means checking if the first-order formulas do

indeed define partial equivalence relations. This can be formalized by writing a

first-order sentence:∧
i∈{1,...,k}

∀x̄, ȳ, z̄ ∈ Adi φi(x̄, ȳ)⇔ φi(ȳ, x̄)︸                 ︷︷                 ︸
symmetry

∧ φi(x̄, ȳ) ∧ φi(ȳ, z̄)⇒ φi(x̄, z̄)︸                              ︷︷                              ︸
transitivity

.

Since the first-order theory is decidable for an effectively oligomorphic struc-

ture, we can check if the above formula is true, and so the syntax is decidable.

• How do we represent an equivariant subsets of an orbit-finite set? Apart from

orbit-finite sets, we also need to represent their equivariant subsets (which

themselves can be seen as new orbit-finite sets.) Suppose that we have an orbit-

finite set as in the previous item. To describe an equivariant subset, we need

to specify for each component Adi
an equivariant subset, which is required to

be stable under the equivalence relation ∼i. This subset can be described by a

first-order formula ψi, and stability can be formalized by a first-order sentence∧
i∈{1,...,k}

∀x̄ ∈ Adi ψi(x̄) ⇒ φi(x̄, x̄)︸  ︷︷  ︸
each element

is in some

equivalence class

∧ ∀ȳ ∈ Adi φi(x̄, ȳ)⇒ ψi(ȳ)︸                          ︷︷                          ︸
subset is closed under replacing

elements with equivalent ones

.

In the rest of this chapter, we will present algorithms that operate on orbit-finite

sets and their equivariant subsets, using the representation described above. For the

moment, we need to care about the representation, and we will need to justify how

various operations, such as Boolean operations or certain kinds of loops, can be imple-

mented on this representation. Later on in this book, we will present a more principled

approach, namely a programming language that takes care of all of these operations.

7.2 Representing elements of orbit-finite sets
In the previous section, we explained how we can represent orbit-finite sets and their

subsets. It would also be desirable to represent individual atoms; for example this

would be needed to use a representation of sets in terms of generators, as we did in

Section 1.1.1 for the equality atoms. Before moving on to the algorithms, we discuss

how individual elements can be represented. Of course such a representation should

support certain basic operations, such as testing equality. This is formalized in the fol-

lowing definition, which uses the same three conditions as in item 3 of Theorem 6.12.

Definition 7.2 (Atom representation). An atom representation for a structure A is a

function r : 2∗ → A which has the following properties (when atoms are used in

algorithms, they are represented as strings using the representation):



7.2. REPRESENTING ELEMENTS OF ORBIT-FINITE SETS 95

(a) every atom is represented by at least one string;

(b) given a first-order formula φ(x1, . . . , xd) and a1, . . . , ad ∈ A, one can decide if

A |= φ(a1, . . . , ad);

(c) given two tuples in Ad
, decide if they are in the same orbit.

In Exercise 137 we show that if an atom representation exists, then it is essentially

unique, since there are computable translations between any two atom representa-

tions. The following theorem shows that atom representations exist, under our usual

effectivity assumption.

Theorem 7.3. Every effectively oligomorphic structure has an atom representation.

Proof. We will use Theorem 6.12, whose conclusion says that there is an atom repre-

sentation. An oligomorphic structure A can be seen as a homogeneous structure H,

which has the same elements, but its vocabulary is extended so that it has one relation

for every first order formula. (The vocabulary is infinite.) Let H be the age of H. By

the assumption that A is effectively oligomorphic, there is an algorithm that inputs

d, and returns all structures in H up to isomorphism
1

In other words, A satisfies

assumption (*) of Theorem 6.12. Therefore, we can apply that theorem, which yields

an atom representation for the Fraı̈ssé limit H, because item 3 of Theorem 6.12 is the

same as the definition of an atom representation. This in turn yields a representation

for A. □

The atom representation which arises from the above theorem will be very inef-

ficient. In cases of interest, such as the equality atoms or the order atoms, it will be

better to manually prepare more efficient atom representations.

One application of atom representations will be discussed in Chapter 8, where we

will study what it means for a language L ⊆ A∗ to be decidable. In the presence of atom

representations, we can simply require that this language is decidable in the usual

sense, assuming that atoms are given as strings that represent them. This requirement

will be a baseline, to which we will compare other notions, such as orbit-finite Turing

machines.

Another application is to represent equivariant subsets of Ad
by finite generating

sets. This is the same method as in Section 1.1.1: a generating set for a subset X ⊆ Ad

is any set that contains at least one tuple per orbit. The assumptions on an atom

representation will enable us to perform basic operations on subsets represented this

way, such as Boolean combinations. For union, we can simply combine the two sets

of generators (which might result in some orbits being represented by more than one

generator). For intersection, we can use the “same orbit” test to check which orbits are

represented in both sets. The most interesting operation is complementation, where

we need to be able to describe orbits that are not represented. For this, we use the

following lemma.

1
It is worth explaining how one “returns” a structure over an infinite vocabulary. This means that we

return a list of its elements, together with an algorithm which inputs a relation name, and tells us which

tuples are selected by the relation.



96 CHAPTER 7. ALGORITHMS ON ORBIT-FINITE SETS

Lemma 7.4. For an atom representation of an effectively oligomorphic structure, there

is an algorithm which does the following:

(d) given d, compute a list of tuples that represents every orbit in Ad
.

Proof. By assumption on being effectively oligomorphic, we know the number of or-

bits. We can then start enumerating all of Ad
, until we have represented all orbits,

which can be checked using the “same orbit” test from item (c). □

Of course, in cases of interest we will want to use more efficient algorithms than

the one which is given in the proof of the above lemma.

Exercises
Exercise 137. Consider an effectively oligomorphic structure, and two atom representations

r1, r2. Show that there is some computable function f : 2∗ → 2∗ which inputs a representation

of some atom under r1, and returns a representation of the same atom under r2.

7.3 Orbit-finite graphs and automata
Having discussed representations of orbit-finite sets and their elements, we now start

to present algorithms that operate on them. The first group of results, presented in

this section, is about orbit-finite automata. These results are mainly based on the

graph reachability result from Theorem 5.10, which showed that graph reachability

is decidable for effectively oligomorphic atoms (in fact, the proof did not use the full

power of the assumption, since it did not require that we can compute the number of

orbits in Ad
). Quotients do not affect the algorithm, and so it extends to orbit-finite

graphs, as stated in the following theorem.

Theorem 7.5. Assume that the atoms are effectively oligomorphic. Then the reachability

problem for orbit-finite graphs (represented as in Section 7.2) is decidable.

Proof. Same as for Theorem 5.10. □

The emptiness problem for automata is the same as the reachability problem for

graphs, and therefore we can use the above theorem to decide emptiness for orbit-

finite automata. Let us begin by formally defining the model. Similarly to graphs, the

definition of an orbit-finite automaton is the same as in the finite case, except that the

word “finite” is replaced by “orbit-finite”, and all subsets must be equivariant.

Definition 7.6 (Nondeterministic orbit-finite automaton). Let A be an oligomorphic

structure. A nondeterministic orbit-finite automaton over A is a tuple

A =
(

Q,︸︷︷︸
states

Σ,︸︷︷︸
input alphabet

I ⊆ Q,︸ ︷︷ ︸
initial states

F ⊆ Q,︸  ︷︷  ︸
accepting states

δ ⊆ Q × Σ × Q︸            ︷︷            ︸
transitions

)
,

where Q and Σ are orbit-finite sets, and the subsets I, F, δ are equivariant.



7.3. ORBIT-FINITE GRAPHS AND AUTOMATA 97

The semantics of the automaton are defined as for nondeterministic finite au-

tomata. The language recognised by such an automaton is equivariant, since the set

of accepting runs is equivariant. An automaton is called deterministic if it has one

initial state, and δ is a function from Q × Σ to Q.

Theorem 7.7. Assume that the atoms are effectively oligomorphic. Then the empti-

ness problem for nondeterministic orbit-finite automata (represented as in Section 7.2) is

decidable.

Proof. An immediate corollary of Theorem 7.5. □

Other positive results that generalise easily to orbit-finite automata include:

• ϵ-transitions do not add to the power of nondeterministic automata (Exercise 138);

• one can minimize deterministic automata (Theorem 7.9);

• one can decide if a nondeterministic automaton is unambiguous (Exercise 139).

Negative results for the equality atoms generalise to other oligomorphic atoms, when

the atoms are infinite:

• nondeterministic automata are not closed under complement;

• the universality problem is undecidable;

• deterministic automata are strictly weaker than nondeterministic ones.

To illustrate the scope of the above results, we give several examples of determin-

istic or nondeterministic orbit-finite automata, in various oligomorphic atoms.

Example 51. Assume that the atoms are the random graph from Section 6.3.1. This

structure is effectively oligomorphic, because it is the Fraı̈ssé limit of a Fraı̈ssé class

that can be enumerated as in the assumptions of Theorem 6.12. The set of paths in the

random graph can be viewed as a language

{a1 · · · an ∈ A : for every i < n there is an edge from ai to ai+1} ⊆ A∗.

This language is recognised by a deterministic orbit-finite automaton, which uses its

state to stores the last seen vertex. The set of cycles is also recognised by a determin-

istic automaton, this automaton also needs to remember the first vertex to check if it

is connected to the last one. □

Example 52. Assume that the atoms are the random graph, and consider the lan-

guage

{ w ∈ A∗ | the subgraph of A induced by atoms from w is a clique }

This language cannot not be recognized by an orbit-finite automaton, even nondeter-

ministic, as we show in the Exercise 140. □



98 CHAPTER 7. ALGORITHMS ON ORBIT-FINITE SETS

Example 53. Assume that the atoms are the random graph. The graph atoms are a

natural setting to talk about path and tree decompositions of graphs, as used in the

graph minor project of Robertson and Seymour. To make notation lighter, we only

discuss path decompositions. A width k path decomposition for a finite subset V ⊆ A
is defined to be a list of (not necessarily disjoint) subsets V1, . . . ,Vn ⊆ V such that:

(a) every vertex from V appears in at least one bag; and (b) if two vertices from V are

connected by an edge, then they appear together in at least one bag; and (c) if a vertex

appears in some two bags, then it also appears in all other bags between them.

If k is fixed, then such a path decomposition can be seen as a word over an orbit-

finite alphabet, namely the sets of at most k atoms. (The number of orbits in this alpha-

bet is the number of isomorphism types of graphs with at most k vertices.) Therefore,

a path decomposition can be used as the input to an orbit-finite automaton. We now

show that interesting properties of the underlying graph can be recognised by such

automata.

Claim 7.8. There is a deterministic orbit-finite automatonA such that

A accepts V1 · · ·Vn iff the graph V1 ∪ · · · ∪ Vn is connected

holds for input which is a width k path decomposition
2
.

Proof. After reading a path decomposition V1, . . . ,Vn the automaton stores in its state

the last bag Vn together with the equivalence relation∼n on it which identifies vertices

from the last bag if they are in the same connected component of the underlying

graph V1 ∪ · · · ∪ Vn. The states of the automaton are pairs (set of at most k atoms, an

equivalence relation on this set); this state space is orbit-finite. The initial state is the

empty set equipped with an empty equivalence relation, and the accepting states are

those where the equivalence relation has one equivalence class. The definition of the

transition function is left to the reader. □

Similar constructions as in the above claim can be done for any property of graphs

of bounded pathwidth that is recognisable in the sense of Courcelle, which covers

all graph properties that can be defined in monadic second-order logic
3
. Using tree

automata instead of word automata, one can also cover tree decompositions. □

Example 54. Consider the bit-vector atoms and the language

{ w ∈ A∗ | w is linearly dependent }.

The linear dependence in the above language is the same as the one discussed when

defining the bit-vector atoms, i.e. w is viewed as a list and not as a set. This means

that any repetition in the list will immediately be a dependence. This language is

recognised by a nondeterministic orbit-finite automaton. The state space is A, the

2
The automaton does not check if the input is a path decomposition, in fact this cannot be done, see

Exercise 128.

3
For more on recognisability, pathwidth, and monadic second-order logic, see (Courcelle and Engelfriet,

2012, Chapter 5.3).



7.3. ORBIT-FINITE GRAPHS AND AUTOMATA 99

initial subset is the singleton of the zero vector {0}, and the accepting subset is the set

of non-zero vectors. The transition relation is

{ p
a
→ q | p + a = q or p = q }.

One can show that the nondeterminism in the above automaton is unavoidable –

the language is not recognised by a deterministic orbit-finite automaton. In fact, we

will show an even stronger result later in this book, namely that the language is not

recognised by any deterministic Turing machine running in polynomial time. □

Minimization of deterministic automata. In Chapter 5, one of our motivations

for introducing orbit-finite sets as a generalization of pof sets was to minimize de-

terministic automata. In Theorem 4.9, we showed a version of the Myhill-Nerode

Theorem for the equality atoms, which gave a machine independent characterization

of deterministic orbit-finite automata, in terms of an orbit-finite syntactic congruence.

The same result carries over to general oligomorphic atoms.

Theorem 7.9. Assume that the atoms are oligomorphic. The following conditions are

equivalent for an equivariant language L ⊆ Σ∗ over an orbit-finite alphabet Σ:

1. L is recognised by a deterministic orbit-finite automaton;

2. the quotient of Σ∗ under the syntactic congruence of L is orbit-finite.

Proof. The same proof as for Theorem 4.9, and in fact, for the original Myhill-Nerode

Theorem for finite sets. We simply construct a deterministic automaton on the equiv-

alence classes of syntactic congruence. The assumption that the language is equivari-

ant guarantees that the structure of the automaton – the transition function and the

accepting states – is also equivariant. □

If the atoms are not only oligomorphic, but they are effectively oligomorphic, then

the syntactic automaton (i.e. the automaton that arises from the above theorem, also

known as the minimal automaton) can be computed based on any other deterministic

automaton.

Theorem 7.10. If the atoms are effectively oligomorphic, then the syntactic automaton

can be computed based on any deterministic orbit-finite automaton.

Proof. We use what is called the Moore algorithm, i.e. a fixpoint procedure that com-

putes equivalence on states
4
. Suppose that we are given a deterministic orbit-finite

automaton, whose states are Q. We first use the graph reachability algorithm from

Theorem 7.5 to restrict the state space to reachable ones. Next, we quotient the state

space with respect to syntactic equivalence, i.e. recognizing the same language, as

described below.

For n ∈ {0, 1, . . .}, define ∼n to be the equivalence relation on states, which iden-

tifies two states if they accept the same words of length at most n. It is easy to see

4
The computational complexity of automata minimisation is studied in Murawski et al. (2015), using

the equality atoms and a more concrete model with registers and control states.



100 CHAPTER 7. ALGORITHMS ON ORBIT-FINITE SETS

that this equivalence relation is equivariant, and each ∼n can be computed using the

formula representation of equivariant subsets. The chain

∼1 ∼2 ∼3 · · ·

is a decreasing sequence of equivariant subsets of Q×Q, and therefore it must stabilize

after finitely many steps. The stable value of this sequence is the syntactic equivalence

relation, and the minimal automaton is obtained by quotienting its state space under

this relation. □

Exercises
Exercise 138. Show that adding ϵ-transitions does not change the expressive power of non-

deterministic orbit-finite automata.

Exercise 139. Show that, under the assumptions of Theorem 7.5, one can check if a nondeter-

ministic orbit-finite automaton is deterministic. Likewise for unambiguous (each input admits

at most one accepting run).

Exercise 140. Consider the graph atoms. Show that the language of cliques, i.e. words in

A∗ where every two letters are connected by an edge, is not recognised by a nondeterministic

orbit-finite automaton.

Exercise 141. Consider the equality atoms. For a language L ⊆ Σ∗, consider the two-sided

Myhill-Nerode equivalence relation which identifies words w,w′ ∈ Σ∗ if

uwv ∈ L iff uw′v ∈ L for every u, v ∈ Σ∗.

The quotient of Σ∗ under this equivalence relation is called the syntactic monoid of L. Show

that if the syntactic monoid is orbit-finite, then the syntactic automaton is orbit-finite, but the

converse implication fails.

Exercise 142. Let L ⊆ Σ∗ be a language, and let Q be the states of its syntactic automa-

ton. Show that the syntactic monoid defined in the previous exercise is isomorphic to the sub-

monoid of functions Q → Q which is generated by the state transition functions {q 7→ qa}a∈Σ
of the syntactic automaton.

Exercise 143. Let L ⊆ Σ∗ and let h : Σ∗ → M be its syntactic homomorphism, i.e. the function

which maps a word to its equivalence class under two-sided Myhill-Nerode equivalence. Show

that M is orbit-finite if and only if the syntactic automaton of L is orbit-finite and there is some

k ∈ {0, 1, . . .} such that all elements of M have support of size at most k.

Exercise 144. We say that a monoid M is aperiodic if for every m ∈ M there is some

k ∈ {0, 1, . . .} such that mk = mk+1
. Let L be a language with an orbit-finite syntactic automaton.

Show that the syntactic monoid of L is aperiodic if and only if for every state q of the syntactic

automaton and every w ∈ Σ∗ there is some k ∈ {0, 1, . . .} such that qwk = qwk+1
.

Exercise 145. Suppose that M is an orbit-finite monoid. Can one find an infinite sequence

M ⊋ M1 ⊋ M2 ⊋ M3 ⊋ · · ·

such that each Mi is a submonoid?

Exercise 146. Consider an orbit-finite monoid M. We define the prefix relation on this monoid

as follows: a is an infix of b if b = ax for some x ∈ M. Show that under the equality atoms, the

prefix relation is well-founded, but this is no longer true under the order atoms.



7.4. SYSTEMS OF EQUATIONS 101

7.4 Systems of equations
In the previous section, we discussed automata problems, which were based on graph

reachability. Using a similar approach, the results on context-free grammars from

Section 3.4 can be extened from the equality atoms to effectively oligomorphic atoms.

Let us now give a new algorithm, which is based on a different approach
5
. In this

algorithm, we use only two kinds of atoms, namely the equality atoms and the ordered

atoms, but curiously enough, the ordered atoms are needed to analyze the equality

atoms.

Consider a system of equations in the two element field Z2, like this one:

x + y = 1
x + z = 1
y + z = 1

The system above does not have a solution, because some two variables need to get

the same value, violating the equations. The system has finitely many equations. In

this section, we consider systems where the set of equations is orbit-finite, but each

individual equation is finite.

Example 55. Consider the equality atoms. The variables are pairs of distinct atoms,

and the set of equations is

(a, b)︸︷︷︸
one variable

+ (b, a)︸︷︷︸
one variable

= 1 for all a , b ∈ A.

A solution in Z2 to this system amounts to a choice function, which chooses for every

two atoms a , b ∈ A exactly one of the pairs (a, b) or (b, a). It follows that the above

system has a solution, but no equivariant supported solution. □

The above example shows that, under the equality atoms, an equivariant system

of equations might have a solution, but it might not have an equivariant solution. If

we use the ordered atoms, then the problem goes away, as shown in the following

theorem.

Theorem 7.11. Assume the atoms (Q, <). Let E be an equivariant orbit-finite set of

equations. If E has any solution in Z2, then it has a solution in Z2 that is equivariant.

Proof.

1. In the first step, we show that without loss of generality we can assume that

the variables are tuples of atoms. Let X be the orbit-finite set of variables that

appear in the equations E. By the representation result from Theorem 5.12, see

also Exercise 106, there is some k ∈ {0, 1, 2 . . .} and an equivariant surjective

function

f : Ak → X.

5
This section is based on Klin et al. (2015)



102 CHAPTER 7. ALGORITHMS ON ORBIT-FINITE SETS

Define F to be the following set of equations over variables Ak
:

x = y︸︷︷︸
when f (x) = f (y)

y1 + · · · + yn = i.︸               ︷︷               ︸
when E contains an equation

x1+···+xn=i
where f (y1) = x1, . . . , f (yn) = xn

It is easy to see that if E has a solution if and only if F has a solution. Likewise

for equivariant solutions.

2. Let F be the system of equations produced in the previous item. To prove the

theorem, it remains to show that if F has a solution

s : Ak → Z2

then it also has an equivariant one. We prove this using the Ramsey Theorem.

By the Ramsey Theorem, there is an infinite set A ⊆ A such that

s(a1, . . . , an) = s(b1, . . . , bn)

holds for all ā and b̄ which are strictly growing tuples from A. Again by the

Ramsey Theorem, there is an infinite set B ⊆ A such that

s(a1, . . . , an) = s(b1, . . . , bn)

holds for all ā and b̄ which are strictly decreasing tuples from B. Repeating this

argument for all finitely many order types, i.e. for all orbits in Ak
, we get an

infinite set Z ⊆ A such that

s(a1, . . . , an) = s(b1, . . . , bn)

holds whenever ā and b̄ are tuples from Zk
with the same order type (in other

words, in the same equivariant orbit of Ak
). Define

s′ : Ak → Z2

to be the function that maps ā to s(b̄) where b̄ is some tuple from Zk
in the

same equivariant orbit as ā. Such a tuple b̄ exists, and furthermore s(b̄) does

not depend on the choice of b̄ by construction. Because s′(ā) depends only on

the equivariant orbit of ā, the function s′ is equivariant. It is also a solution to

F . This is because every equation from F can be mapped to some equation in

F which uses only variables from Z, and s′ satisfies those equations.

□

Corollary 7.12. Assume that the atoms are (Q, <). Given an equivariant orbit-finite

system of equations, one can decide if the system has a solution in Z2. Likewise for the

equality atoms.



7.4. SYSTEMS OF EQUATIONS 103

Proof. Assume the atoms are (Q, <). By Theorem 7.11, it is enough to check if the

system has an equivariant solution. By Lemma ??, we can compute all equivariant

orbits of the variables, and therefore we can check all equivariant functions from the

variables to Z2, to see if there is any solution.

Consider now the equality atoms. We reduce to (Q, <). Every equivariant orbit-

finite set over the equality atoms can be viewed as an equivariant orbit-finite set over

(Q, <), by using the same set builder expressions. This transformation does not affect

the existence of solutions, and for systems of equations over atoms (Q, <) we already

know how to answer the question. □

Exercises
Exercise 147. Assume that the atoms are Presburger arithmetic (N,+). Consider sets of

equations over the field Z2, where both the variables and the set of equations are represented

by set builder expressions. Show that having a solution is undecidable.

Exercise 148. What is the effect on the decidability of the problem in Exercise 147 if we

assume that the set of variables is A, i.e. the natural numbers? What if the variables are atoms

and every equation has at most two variables?

Exercise 149. Consider the following atoms
6
. The universe is the set of bit strings {0, 1}ω

which have finitely many 1’s. The structure on the atoms is given by the following relation of

arity four:

a + b = c + d,

where addition is coordinatewise. This structure is oligomorphic. Show two sets that are equiv-

ariant and orbit-finite, such that there is a finitely supported bijection between them, but there

is no equivariant bijection.

6
Suggested by Szymon Toruńczyk.



104 CHAPTER 7. ALGORITHMS ON ORBIT-FINITE SETS



Chapter 8

Turing machines

Without atoms, the notion of “computability” is formalised using Turing machines,

and there is a thesis – called the Church-Turing Thesis – which says that there is

any other hypothetical model of computation would need to be captured by Turing

machines.

What happens to this thesis in the presence of atoms? We begin a discussion in this

chapter, by introducing orbit-finite Turing machines. This is an interesting and natural

model of computation. However, as we will discover already in this chapter and then

later on in this book, using Turing machines as the definition of computability is

problematic. The main issue is that the basic data structure in a Turing machine is a

list, and arranging objects in lists requires a form of choice, which typically impossible

in the presence of atoms. We will overcome these limitations in later chapters, by

using models of computation that are based on sets instead of lists.

Nevertheless, there are interesting things to say about Turing machines with atoms,

and we say some of them in this chapter. The highlights are that, for Turing machines

with atoms, one can prove nontrivial separations for complexity classes:

• In Section 8.2, we prove that p , np holds in the bit vector atoms. It is worth

underlying that this result has no bearing on the usual version of the ques-

tion, without atoms. This is because we prove a much stronger result, which is

clearly false without atoms, namely that deterministic orbit-finite Turing ma-

chines running in polynomial time are incapable of recognizing even some lan-

guages that are recognized by nondeterministic orbit-finite automata. The sep-

arating language is

{a1 · · · an ∈ A : a1, . . . , an are not linearly independent}.

This language is recognised in by a nondeterministic automaton (guess the lin-

ear combination that gives zero) or deterministic exponential time Turing ma-

chine (try all combinations), but it is not reocognized in deterministic polyno-

mial time.

• In Section 8.3, we prove a similar separation for the equality atoms. We show

that there is a language which is recognised by a nondeterministic Turing ma-

105



106 CHAPTER 8. TURING MACHINES

chine (even in polynomial time), but not recognised by any deterministic Turing

machine (even without restrictions on running time). This separation is harder

than in Section 8.2, and uses the Cai-Fürer-Immerman construction from finite

model theory. As in the previous item, this separation is unlikely to be useful

in separating complexity classes without atoms. The accompanying proof is

based on the limited access that Turing machines have to their input and on the

symmetries that result from applying atom automorphisms.

8.1 Orbit-finite Turing machines
Before presenting the separation results about Turing machines, we begin by defining

the model and discussing some examples.

Definition 8.1 (Orbit-finite Turing machine). An orbit-finite Turing machine is de-

fined in the same way as in Section 3.5, except that instead of polynomial orbit-finite

sets, we use (not necessarily polynomial) orbit-finite sets, and the atoms need not be

the equality atoms, but they can be any oligomorphic structure.

At first glance, the difference seems to be minor. By Theorems 4.6 and 5.12, an

orbit-finite set is the same as a polynomial orbit-finite set quotiented by some partial

equivalence relation, and therefore the only difference between pof sets and orbit-

finite sets is the presence of quotients. As we will see, the quotients have profound

impact, and break results such as the characterization from Theorem 3.5, even under

the equality atoms.

To illustrate the roles of quotients, consider the following example. The example

is a positive one – i.e. we can still solve the problem using a deterministic orbit-finite

Turing machine – but later on we will see negative examples.

Example 56. [An input alphabet with quotients] Consider the equality atoms. Let

the input alphabet Σ be sets of atoms of size at most ten. This is the quotient of A10

under the partial equivalence relation that identifies two tuples if they use the same

set of atoms. (Formally speaking, this quotient does not cover the empty set. To

work around this minor issue, we can either use A10 + A0
, or we can stay with A10

and modify the equivalence relation, so that the empty set is represented by some

redundant orbit. This is because sets of non-maximal size, say size 1, are represented

by many orbits, and one of these can be spared to represent the empty set.)

Here is an example of an input word over this alphabet Σ that has six letters:

{John,Eve,Mary}{John,Eve,Tom}{John,Eve}{John,Eve,Mary}{John,Eve}{Tom}.

The letters are sets, which means that there is no order on the atoms that appear in

a given letter. This will prevent a machine from doing operations like “load the first

atom from the letter under the head”, witnessing the difficulties of input alphabets

with quotients. However, as we show in this example, the diffiulties can be overcome

for this particular input alphabet.

Consider the language: “some atom appears in an odd number of letters”. This

language can easily be recognized by a nondeterministic Turing machine, in fact even



8.1. ORBIT-FINITE TURING MACHINES 107

a nondeterministic orbit-finite automaton. The challenge is doing this with a deter-

ministic machine, because there is no apparent mechanism for pointing to the atom

that appears in an odd number of letters. To see this, consider the example input word

from the previous paragraph. Both atoms John and Eve appear in an odd number of

letters, but an equivariant deterministic Turing machine cannot see any difference be-

tween these two atoms, because every set contains either both or none of the atoms

John and Eve.

Here is a solution to the problem, i.e. a deterministic orbit-finite Turing machine

that recognizes the language. Suppose that the input word is A1 · · · An, where each

Ai is a letter from the alphabet, i.e. a set of at most ten atoms. The Turing machine

executes the following program:

1. Generate a copy of the input word. After this step the tape has the form

A1 · · · An︸    ︷︷    ︸
first copy

| A1 · · · An︸    ︷︷    ︸
second copy

.

2. As long as possible, iterate these steps on the second copy of the tape:

(a) if some set appears multiple times, remove all the duplicates;

(b) if A, B are two distinct intersecting sets that appear in the second copy,

then remove them and add the three sets A \ B, B \ A, A ∩ B.

This stage ends when all sets in the second copy are pairwise disjoint.

3. At this point, the second contains contains equivalence classes of the relation

“appears in the same sets from A1, . . . , An”. Check if some equivalence class

(i.e. some set from the second copy) is contained in an even number of sets

from the first copy.

All the above steps can be performed by a deterministic orbit-finite Turing ma-

chine. To process sets, the machine can use state space which stores a set of at most

10 atoms. □

In the above example, the symmetries in the input alphabet required some non-

trivial programming tricks. As we will see later in this chapter, when the symmetries

get more complicated, the tricks will run out.

Before showing these negative results, we begin with a positive result, which in-

volves nondeterministic machines. In Theorem 3.5, we showed that for the equality

atoms and polynomial orbit-finite sets, Turing machines with atoms are computa-

tionally complete, in the sense that they recognize the same languages as the usual

atom-less Turing machines, assuming that atoms are represented in an atom-less way.

The proof of that theorem does not extend to (not necessarily polynomial) orbit-finite

sets. The issue is with the deatomisation construction in Lemma 3.6, which assumes

that one can order the atoms from the input string in their order of appearance, and

speak of the “leftmost atom”, or the “second leftmost atom”. Such an order exists

when the alphabet is a pof set, because letters are ordered tuples of atoms, but it does



108 CHAPTER 8. TURING MACHINES

not necessarily exist for more general alphabets, e.g. when letters are sets as in Ex-

ample 56. Therefore, we need to revisit the questions for the more general setting of

orbit-finite sets.

Later in this chapter, we will show that not only the proof of Theorem 3.5 fails

to work for orbit-finite sets that are not polynomial, but the result itself is false, be-

cause deterministic and nondeterministic orbit-finite machines have different compu-

tational power. However, we can at least show that the nondeterministic machines

are computationally complete, under a mild assumption on the atoms, which is true

for all atom structures discussed in this book.

The additional assumption is that the vocabulary is finite, and every first-order

formula is equivalent to an existential formula, which is a formula of the shape

φ(x1, . . . , xn) = ∃y1, . . . , ym︸       ︷︷       ︸
prefix of existential

quantifiers

φ(x1, . . . , xn, y1, . . . , ym)︸                        ︷︷                        ︸
a quantifier-free formula

.

Most atom structures that we have used so far – such as the equality atoms, the or-

dered atoms, or the graph atoms – have an even stronger property, namely every for-

mula is equivalent to a quantifier-free formula. This is because they are homogeneous

structures over a finite vocabulary, and for homogeneous structures, every first-order

formula is equivalent to a quantifier-free formula, see Theorem 6.3. The only excep-

tion is the bit-vector atoms, which are homogeneous, but over an infinite vocabulary.

However, also these atoms can be made compliant, if we change the vocabulary, as

explained in the following example.

Example 57. Consider the bit-vector atoms. As we have defined them in Section 6.3.2,

this is a homogeneous structure over an infinite vocabulary, which has a dependence

relation for every dimension d. We can, however, use a different vocabulary, namely

one ternary relation

x + y = z

for addition of vectors. This relation is equivariant, since automorphisms of the atoms

are linear maps, and therefore it can be defined using a quantifier-free formula by The-

orem 6.3, see Exercise 150 for an explicit formula. Conversely, each of the dependence

relations can be expressed using only the addition relation. Therefore, we can think

of the bit-vector atoms as having only on relation, namely addition. (For this new

vocabulary, the structure is no longer homogeneous, see Exercise 151.) In the new

vocabulary, every first-order formula is equivalent to an existential one, since: (a) ev-

ery first-order formula is equivalent to a quantifier-free formula using dependence

only, and (b) both dependence and independence can be defined using existential for-

mulas that use addition only. □

In Theorem 8.2 below, we will show that nondeterministic orbit-finite Turing ma-

chines are computationally complete, which means that they are equivalent to Turing

machines that use atom-less strings as representations of atoms. This notion of rep-

resentation was formalised in Definition 7.2, as a function r : 2∗ → A, subject to

certain assumptions. Once we know how to represent individual atoms as atom-less



8.1. ORBIT-FINITE TURING MACHINES 109

strings, we can easily extend the representation to represent elements of pof sets, or

elements of orbit-finite sets, or words over an orbit-finite alphabets. These extensions

are used in the following theorem, which shows that nondeterministic orbit-finite

Turing machines are the “right” model for languages over orbit-finite alphabets.

Theorem 8.2. Assume that the atoms are effectively oligomorphic, have a finite vocabu-

lary, and every first-order formula is equivalent to an existential one. Then the following

conditions are equivalent for every L ⊆ Σ∗ where Σ is an orbit-finite alphabet:

1. L is recognised by a nondeterministic orbit-finite Turing machine;

2. L is equivariant and for every atom representation, see Definition 7.2, the language

{ w ∈ 2∗ | w represents some word in L }

is recognised by a nondeterministic Turing machine (without atoms);

3. as in the previous item, but the machine is deterministic;

4. as in the previous item, but the representation is quantified existentially.

Proof. The implications 1⇒ 2⇒ 3⇒ 4 are proved in the same way as in Theorem 3.5.

Let us very briefly recall those arguments. For the implication 1⇒ 2, we extend the

representation from atoms to configurations of Turing machines, and show that the

one-step successor relation is decidable, which can be used to recognize the language

in item 2. The implication 2⇒ 3 follows from the fact that deterministic and nondeter-

ministic Turing machines without atoms recognize the same languages. Finally, the

implication 3⇒ 4 is trivial (“every” implies “some”, as long as an atom representation

exists, and it does exist by by Theorem 7.3).

We are left with the implication 4⇒ 1. We begin by reducing to the case where

the input alphabet is A.

Lemma 8.3. If the implication 4⇒ 1 holds in the special case when the input alphabet

Σ is A, then it holds for every orbit-finite alphabet.

Proof. The reduction is based on the following observation.

Claim 8.4. For every orbit-finite set Σ there exists d ∈ {0, 1, . . .} and a surjective equiv-

ariant function f : Ad → Σ.

Proof. By Theorem 5.12, we know that Σ admits an equivariant bijection with a quo-

tiented pof set. By removing the quotients, it follows that there is a surjective equiv-

ariant function from some (un-quotiented) pof to Σ. Therefore, it enough to prove the

claim for (un-quotiented) pof sets. To get such a surjective function

f : Ad → Ad1 + · · · + Adk︸             ︷︷             ︸
an (un-quotiented pof set)

,

we choose d to be the maximal dimension among d1, . . . , dk plus some constant e,

which is chosen to be so that Ae
has at least k orbits. We use the orbit of the last e

atoms to choose the component in i ∈ {1, . . . , k}, and the remaining atoms to get the

content of tuple in Adi
. □



110 CHAPTER 8. TURING MACHINES

We use the above claim to prove the lemma. Let L ⊆ Σ∗ be a language over

some orbit-finite alphabet, which satisfies condition 4. Apply the above claim to get

a surjective function f , and extend it to lists, giving a surjective equivariant function

f ∗ : (Ad)∗ → Σ∗.

We can pull back the language L along f ∗, yielding a new language

K = { v ∈ (Ad)∗ | f ∗(v) ∈ L }.

We can think of the new language as being a language over alphabetA, which contains

only words with length divisible by k. Therefore, we can apply the implication 4⇒ 1 to

the new language. To complete the proof of the lemma, we will show that condition 4

transfers from the original language L to the new language K, and that condition 1

transfers in the opposite direction.

Let us first explain how condition 4 transfers from the original language to the

new language. Condition 4 speaks about machines which work on atom-less repre-

sentations. Given a representation of a word for the new language, an orbit-finite

Turing machine can compute a representation for its image under f ∗, and then use

the Turing machine for the original language. This shows the transfer of condition 4.

Let us now explain how condition 1 transfers from the new language to the origi-

nal language. Given an input word for the original language, the orbit-finite machine

uses nondeterminism to guess some input for the new language which maps to it

along f ∗, and then calls on the Turing machine for the new language. □

The proof of the above lemma crucially uses nondeterminism, in the last step

where an inverse image under f ∗ is guessed. As we will see later in this chapter,

this is unavoidable, since nondeterministic orbit-finite Turing machines are strictly

more expressive than deterministic ones.

Having proved the reduction in Lemma 8.3, it remains to prove implication 4⇒

1 for languages over the alphabet A. Let then L ⊆ A∗ be a language that satisfies

condition 4. When we speak of representations of atoms or lists of atoms below, we

refer to the representation this condition.

We begin by showing that if we bound the computation time, then the accepted

words can be defined using first-order formulas.

Lemma 8.5. Given an input length d and bounds t and s on the time and space of the

computation, one can compute a first-order formula which defines the language

{ w ∈ Ad |
some word in the orbit of w has a representation which

is accepted by M in time at most t and space at most s }

Proof. Let F be the finite set of words (without atoms) that are accepted by M in at

most n computation steps, and which represent some word in Ad
. This set can be

computed given the parameters d, s, t. To prove the lemma, we show that we can

compute formulas that describe the orbits of the words represented by F. The main

observation is in the following claim, which shows that the partition of Ad
into orbits,

with each orbit described by a first-order formula, can be computed.



8.1. ORBIT-FINITE TURING MACHINES 111

Claim 8.6. Given d, one can compute first-order formulas that describe all orbits in Ad
.

Proof. By the assumption that the structure is effectively oligomorphic, we can com-

pute the number of orbits in Ad
, say it is n. Next, we can start enumerating n-tuples

of first-order formulas in d variables, until we find an n-tuple where all formulas de-

scribe nonempty subsets which are pairwise disjoint. These subsets must be the orbits

of Ad
. The stopping criterion is decidable, since the structure has a decidable first-

order theory, and the procedure must stop, since every orbit is first-order definable

by Theorem 5.7. □

Using the above claim, we can check which of the orbit formulas are satisfied by

the tuples (represented by strings) in F. This check is decidable, by definition of atom

representations. The disjunction of the resulting formulas defines the language in the

statement of the lemma. □

We are now ready to prove that the language L is recognised by a nondeterministic

orbit-finite Turing machine. Thanks to the above lemma, we can compute a first-order

formula which tells us if the input word belongs to the language as witnessed by a

run of given length. The Turing machine recognising L will evaluate the formula, for

ever larger resource bounds, and it will accept once it finds some resource bounds for

which the formula is true. If the word is not in the language, then the procedure will

not terminate, since no resource bounds be found. The important thing, however, is

that the procedure will terminate with acceptance when the word is in the language.

To evaluate the formulas, we use the following lemma, which completes the proof

that L is recognised by a nondeterministic orbit-finite Turing machine, and also the

proof of the theorem.

Lemma 8.7. There is a nondeterministic orbit-finite Turing machine that inputs

a1 · · · ad ∈ A∗︸          ︷︷          ︸
a list of atoms

and φ(x1, . . . , xd)︸         ︷︷         ︸
a first-order formula

and answers if the formula is true for the given atoms.

Proof. The input alphabet is the disjoint union of A, which is used for the list of atoms,

and some finite alphabet which is used to represent the formula. The proof of this

lemma is the only place where we use the assumption that every formula is equivalent

to an existential one.

We begin by proving the lemma in the special case when the formulaφ is quantifier-

free. A quantifier-free formula is a Boolean combination of atomic formulas

R(xi1 , . . . , xik )

where R is a relation from the vocabulary, and the indices i1, . . . , ik indicate the vari-

ables in question. For each such atomic formula, the Turing machine moves it head to

the positions i1, . . . , ik on the input list of atoms, and collects their values into a single

tuple from Ak
. Since the vocabulary is finite, the dimension k has a fixed upper bound

that does not depend on the input, and therefore this tuple can be stored in the state.



112 CHAPTER 8. TURING MACHINES

The relations from the vocabulary can be hard-coded into the transition function of

the Turing machine, since they are equivariant, and there are finitely many possibil-

ities by the assumption that the vocabulary is finite. Therefore, the Turing machine

can use a single transition to check if the relation R is satisfied by a tuple that is stored

in its state.

We now consider the general case, where the input formula is not necessarily

quantifier-free. By the assumption on the atom structure, we know that the input

formula is equivalent to an existential formula

∃y1 · · · ∃yn ψ(x1, . . . , xd, y1, . . . , yn).

Not only does this existential formula exist, but we can also compute it. This is done

by enumerating all candidates for the existential formula and using decidability of

the first-order theory to check if the candidate is equivalent to the input formula. We

know that an equivalent candidate will eventually be found. Once we have found the

appropriate candidate, it can be evaluated for the input list of atoms: use nondeter-

minism to guess the values of the existential variables, write them on the tape, and

then check if the quantifier-free part ψ is true using the procedure from the previous

paragraph. □

□

In the above theorem, we use nondeterministic Turing machines and the assump-

tion that first-order logic collapses to its existential fragment. This assumption covers

all atom structures used in this book, and we are not aware of any example that is not

covered. However, it is natural to ask about what happens without this assumption.

We will show that without this assumption, a variant of the above theorem can still

be recovered, at the cost of using a slightly more general model, namely alternating

machines.

Let us begin by describing the model. The syntax of an alternating Turing machine

is the same as for a nondeterministic one, except that the states are additionally par-

titioned into two parts: existential and universal. (The idea is that a nondeterministic

machine is the special case when all states are existential.) The semantics of is de-

fined in terms of a game, which is played by two players, called the existential player

and the universal player. A position in the game is a configuration of the machine.

In a given configuration, the player who owns the control state chooses a transition,

which results in a new configuration, or in acceptance/rejection. The language rec-

ognized by the machine is defined to be the words for which the existential player

has a strategy in the game that ensures acceptance, assuming that one begins with

the initial configuration for the input string. This means that for every strategy of the

universal player, a finite number of rounds is played and then the machine accepts.

Theorem 8.8. Assume that the atoms are effectively oligomorphic and have a finite

vocabulary. Then for every language L ⊆ Σ∗ over orbit-finite alphabet, conditions 2–4

from Theorem 8.2 are equivalent each other, and also to:

1* L is recognised by an alternating orbit-finite Turing machine.



8.1. ORBIT-FINITE TURING MACHINES 113

Proof. The implications 1*⇒ 2⇒ 3⇒ 4 are proved in the same way as in Theorem 3.5.

The only difference is that for the first implication, we need the observation that with-

out atoms, alternating and nondeterministic Turing machines are equivalent. This is a

classical result, which is proved by showing that a nondeterministic Turing machine

can enumerate through all possible strategies for the existential player.

For the implication 4⇒ 1*, we can use the same proof structure as in the proof of

Theorem 8.2. As we remarked in that proof, Lemma 8.7 is the only part of the proof

which used the assumption that every formula is equivalent to an existential one.

Therefore, it remains to prove that lemma, without this assumption, but using alter-

nating machines instead of nondeterministic ones in the conclusion. In this version,

the lemma becomes essentially trivial, since the alternation can be used to simulate

both kinds of quantifiers, universal and existential. □

Exercises
Exercise 150. Consider the bit-vector atoms. Write a quantifier-free formula for x + y = z,

which uses the dependence relations.

Exercise 151. Consider the bit-vector atoms with the ternary addition relation from Exam-

ple 57 and no other relations. Show that this structure is not homogeneous.

Exercise 152. Assume oligomorphic atoms. Let M be a nondeterministic orbit-finite Turing

machine with input alphabet A. Show that there is a finite family R of equivariant relations on

the atoms such that for every n, t, s ∈ {0, 1, . . .}, the property

{ w ∈ An | M accepts w in time at most t and space at most s }

can be defined by an existential formula that uses only relations from R.

Exercise 153. Assume that the atoms are effectively oligomorphic. Prove a converse of The-

orem 8.2: if the conditions in the theorem are equivalent, then every first-order formula is

equivalent to an existential one.

Exercise 154. Assume that the atoms are oligomorphic. Let Σ be an orbit-finite input alphabet.

Show that a language L ⊆ Σ∗ is recognised by a deterministic orbit-finite Turing machine if and

only if:

(*) There is an orbit-finite set A ⊇ Σ, a finite set F of functions (each one being an equiv-

ariant function Ak → A for some k) and an equivariant subset F ⊆ A such that given

n ∈ N, one can compute a term using the functions F and has n variables such that

a1 · · · an ∈ L iff t(a1, . . . , an) ∈ F for every a1, . . . , an ∈ Σ.

Exercise 155. Assume that the atoms are oligomorphic and admit least supports. Show that

a language L ⊆ A∗ is recognised by a deterministic orbit-finite Turing machine if and only if:

(**) There exists a finite family F of functions (each one being an equivariant function Ak →

A for some k) and relations (each one being a subset of Ak
for some k) such that given

n ∈ N, one can compute a quantifier-free formula with functions F that has n free

variables and defines L ∩ An
.

Exercise 156. Assume that the atoms admit least supports, and are homogeneous over a rela-

tional vocabulary. Show that nondeterministic and deterministic orbit-finite Turing machines

recognise the same languages over input alphabet A.



114 CHAPTER 8. TURING MACHINES

8.2 For bit vector atoms, P , NP
Recall the bit vector atoms that were introduced in Section 6.3.2. This is the vector

space over the two-element field of countably infinite dimension, i.e. these are vectors

in {0, 1}ω that have finitely many nonzero entries. Equivalently, this is the Fraı̈ssé

limit of finite-dimensional vector spaces over this field. As explained in Example 57,

we can view this as a structure with one ternary relation x + y = z, or alternatively

with infinitely many relations for linear dependence.

In this section, we show that p , np holds for these atoms. Actually, we prove that

deterministic polynomial time orbit-finite Turing machines are not even capable of

simulating nondeterministic orbit-finite automata. The separating language consists

of lists of vectors that have some nontrivial linear dependency.

Theorem 8.9. Assume the bit vector atoms. The language

{ a1 · · · an ∈ A∗ | for some nonempty subset I ⊆ {1, . . . , n} we have 0 =
∑

i∈I ai }

is recognised by a nondeterministic orbit-finite automaton (and therefore also by a non-

deterministic polynomial time orbit-finite Turing machine), but it is not recognised by

any deterministic polynomial time orbit-finite Turing machine.

Proof. The upper bound in the theorem – about recognisability by an orbit-finite au-

tomaton – was shown in Example 54. One can also have an alternative upper bound:

the language can be recognised by a deterministic orbit-finite Turing machine in ex-

ponential time, by enumerating through all possible coefficients in the linear combi-

nation.

The rest of this section is devoted to proving the lower bound for determinis-

tic Turing machines that run in polynomial time. Fix some deterministic orbit-finite

Turing machine. We will show that if the machine runs in polynomial time and re-

jects some linearly independent tuple, then it will also reject some linearly dependent

tuple.

We begin by introducing some notation. Let Γ be the work alphabet and let Q be

the state space of the fixed Turing machine. A computation of the machine that uses

t time steps and s units of space can be seen as a rectangular grid

ρ : {1, . . . , t} × {1, . . . , s}︸                    ︷︷                    ︸
pairs in this set

will be called tiles

→ Γ + Γ × Q︸      ︷︷      ︸
labels of tiles

,

where labels from Γ × Q are used for tiles containing the head, and labels from Γ

are used for the other tiles. Not every function ρ of the above type is a computation,

because ρ must also respect the transition function of the machine. The following

straightforward lemma says that respecting the transition function is a property that

depends on at most three tiles at a time.

Lemma 8.10. Suppose that

ρ, σ : {1, . . . , t} × {1, . . . , s} → Γ + Γ × Q



8.2. FOR BIT VECTOR ATOMS, P , NP 115

are similar in the sense that for every three tiles x, y, z, the triples

(ρ(x), ρ(y), ρ(z)) (σ(x), σ(y), σ(z))

are in the same orbit. Then ρ is a computation if and only if σ is a computation, and ρ
is rejecting if and only if σ is rejecting.

Proof. The semantics of a Turing machine involves comparing at most three tiles at

the same time, as in the following picture:

a c de c d
p

a c de c b
r

a c d

c d

c d

c d e d c
q

The assumption of the lemma could even be weakened to triples of tiles that are adja-

cent in the grid as in the above picture, but we will not need this stronger variant of

the lemma. □

We use the above lemma to show that a rejecting computation of the Turing ma-

chine that has polynomial size can be converted into another rejecting computation,

whose input word is linearly dependent, and therefore should be accepted. The result-

ing contradiction will show that the language cannot be recognised by a deterministic

polynomial time Turing machine.

By Claim 8.4, there is a surjective equivariant function

f : Ad → Γ + Γ × Q.

Consider an input string w ∈ A∗ that is linearly independent, and let

ρ : {1, . . . , t} × {1, . . . , s} → Γ + Γ × Q

be the corresponding computation of the Turing machine. This is a rejecting compu-

tation, because the input string is linearly independent. Define a support list of this

computation to be any

ρ̄ : {1, . . . , t} × {1, . . . , s} → Ad

which is yields ρ after extending with f . The support list can be viewed as a list of

atoms of length std. This length of this list is polynomial in the input length, since the

time and space of the Turing machine is polynomial, and the dimension d is fixed. We

claim that if the input length n is large enough, then there is some atom a ∈ A which

1. is spanned by the n independent atoms in the input string w;

2. is not spanned by any subset of 3d atoms in the support list ρ̄.



116 CHAPTER 8. TURING MACHINES

This is because the number of atoms spanned by ā is exponential in n, while the num-

ber of subsets from the second item is polynomial.

Choose a linear map φ : A → A whose kernel is {0, a}. (This is done by choosing

a basis of A which contains a, and then sending the basis vector a to zero, and the

remaining basis vectors to themselves). This linear map is not an atom automorphism,

since it is not invertible. Nevertheless, we can still apply it to atoms and lists of atoms

(however, it will not be guaranteed to preserve orbits). Apply it to the support list ρ̄,

yielding a new support list

σ̄ : {1, . . . , t} × {1, . . . , s} → Ad.

Finally, let

σ : {1, . . . , t} × {1, . . . , s} → Ad

be the result of extending σ̄ with f . We will now show that σ is in fact a computation

of the Turing machine, and that it is also rejecting. This will yield a contradiction,

since the input string becomes linearly dependent after applying φ, and therefore we

get a rejecting computation on a string that should be accepted.

Lemma 8.11. The function σ is a rejecting computation of the Turing machine.

Proof. The essential idea is that while the linear map φ is not an atom automorphism,

it still preserves the orbit of short lists of atoms, and this will be enough to preserve

computations of the Turing machine.

Thanks to Lemma 8.10, it suffices to show that for every three tiles x, y, z, the triples

orbits of these three tiles are the same in ρ and σ. To prove this, we use the following

straightforward characterisation of the same orbit relation.

Claim 8.12. Two tuples ā, b̄ ∈ Ak
are in the same orbit if and only if∑

i∈I

ai = 0 iff

∑
i∈I

f (ai) = 0 for every I ⊆ {1, . . . , k}.

Proof. The left-to-right implication is immediate. For the right-to-left implication, we

observe that if the same subsets of coordinates have zero sum, then the two tuples sat-

isfy the same quantifier-free formulas under the vocabulary that uses the dependence

relations. Under this vocabulary, the structure A is homogeneous, see the discussion

in Example 57. Therefore, if the two tuples satisfy the same quantifier-free formulas,

then they are in the same orbit, by Theorem 6.3. □

Using the claim, we complete the proof of the lemma. By definition, the sup-

port list σ̄ was obtained from ρ̄ by applying the linear map φ, which preserved non-

zeroness of linear combinations of size at most 3d. Since a tile uses at most d atoms,

it follows from the above claim that for every three tiles, the corresponding triples of

labels in σ̄ and ρ̄ are in the same orbit. This relation continues to hold after applying

the equivariant map f , and therefore every triple of tiles in ρ has a triple of labels that

is in the same orbit as the corresponding triple of labels in σ. This shows that σ is

also a rejecting computation of the Turing machine. □



8.3. FOR EQUALITY ATOMS, TURING MACHINES CANNOT BE DETERMINISED 117

The above lemma shows that the Turing machine must also reject some linearly

dependent tuple, which is a contradiction. Therefore, the language cannot be recog-

nised by a deterministic polynomial time Turing machine. □

Exercises
Exercise 157. Assume the bit vector atoms. Show that if the input alphabet is A, then

nondeterministic orbit-finite Turing machines have the same expressive power as deterministic

orbit-finite Turing machines (although with possibly exponential slowdown).

8.3 For equality atoms, Turing machines cannot be
determinised

This section describes another thing that deterministic Turing machines with atoms

cannot do. This time, the atoms are the equality atoms.

Theorem 8.13. Assume the equality atoms. There is a language which:

1. is recognised by a nondeterministic orbit-finite Turing machine;

2. is not recognised by any deterministic orbit-finite Turing machine.

In other words, deterministic orbit-finite Turing machines are not computationally

complete
1
, which witnesses the tightness of Theorem 8.2.

The rest of Section 8.3 is devoted to proving Theorem 8.13.

Recall from Theorem 3.5 that, when the input alphabet is a pof set, then deter-

ministic orbit-finite Turing machines are computationally complete. Therefore, the

language in the theorem needs to use an input alphabet that is not a pof set.

The language in Theorem 8.13 will be recognised by a polynomial time nondeter-

ministic machine. Therefore, the theorem gives another example of np,p. Again, as

mentioned at the beginning of this chapter, the theorem is unlikely to shed new light

on the np,p question without atoms, since the proof is based on the limited way that

a Turing machine can access the atoms in its tape.

The separating language. Define a tile to be a tuple of 8 distinct atoms, i.e. an

element of A(8)
. We draw tiles like this:

7

8

3

4

65

21

(1, 2, 3, 4, 5, 6, 7, 8) is drawn as

1
The results in this section are based on Bojańczyk et al. (2013a).



118 CHAPTER 8. TURING MACHINES

We will arrange tiles on a square grid with torus topology. For n ∈ {1, 2, . . .}, define

an n × n tiling to be a function

T : n × n→ A(8)
where n × n def

= {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1}.

A tiling is called consistent if it satisfies the following constraints:

33

34

35

36

43

2827
35

36

31

32

65

3029
31

32

33

34

21

2625

21

22

23

24

2827

1615
23

24

19

20

3029

1817
19

20

21

22

2625

1413

9

10

11

12

1615

43
11

12

7

8

1817

65
7

8

9

10

1413

21 The grid has a 
torus topology, and 
therefore the first 
and last rows are 
adjacent, likewise 
for columns.

Each atom 
appears 
exactly
twice, on 
adjacent 
positions.

We begin with an informal description of the language that is difficult for deterministic

Turing machines. One is given partial information about a tiling, namely each tile is

known up to an even number of flips (see below). The question is: can the partial

information be instantiated to a tiling that is consistent? This question will turn out

to be doable using a nondeterministic machine – by guessing the instantiation – but

will be impossible for a deterministic machine.

We now describe the partial information in more detail. A flip on a tile is defined

to be a transposition of atoms that appear on one side, as shown in the following

picture:

7

8

3

4

65

21

a tile one of its flips

7

8

4

3

65

21

Define ≈ to be the equivalence relation on tiles, which identifies two tiles if one can

be obtained from the other by doing an even number of flips. Each equivalence class

of ≈ has eight tiles, as shown in the following picture:



8.3. FOR EQUALITY ATOMS, TURING MACHINES CANNOT BE DETERMINISED 119

7

8

4

3

65

12

7

8

3

4

56

12

8

7

3

4

65

12

7

8

4

3

56

21

8

7

4

3

65

21

8

7

3

4

56

21

8

7

4

3

56

12

7

8

3

4

65

21

Define A(8)
/≈

to be the set of equivalence classes of tiles. This is an orbit-finite set.

We are now ready to define the separating language.

Definition 8.14 (cfi property). Define an n × n ≈-tiling to be a function

T : n × n→ A(8)
/≈
.

We say that T satisfies the cfi property
2

if there exists a consistent tiling

S : n × n→ A(8)

which projects to T when tiles are replaced by their equivalence classes.

Formally speaking, the separating language required for Theorem 8.13 should be

a set of words, and not ≈-tilings, because Turing machines input words. Therefore,

we assume some convention on linearly ordering the tiles in an ≈-tiling, e.g. the tiles

are ordered first by columns then by rows. Under such a convention, an n×n ≈-tiling

can be encoded uniquely as a word of length n2
over the alphabet A(8)

/≈
.

To prove Theorem 8.13, we will show that a nondeterministic orbit-finite Turing

machine can check if an ≈-tiling satisfies the cfi property, but a deterministic one

cannot.

The positive part about nondeterministic machines is immediate. The work al-

phabet of the machine is A(8)
/≈
∪A(8)

plus additional symbols that are used as markers.

Given an input word representing some≈-tilingT , the machine uses nondeterminism

to guess the consistent tiling S which witnesses the cfi property. Then, it determin-

istically checks if the adjacency constraints of a consistent tiling are satisfied by S.

This computation can be done in a polynomial number of steps.

The interesting part is that deterministic machines cannot check the cfi property.

The CFI property is not recognised by any deterministic Turing machine. We

begin by discussing a doubt the reader might have at this point. Given an input repre-

senting a ≈-tiling T , there are only finitely many (if exponentially many) possibilities

2
The name stands for Cai, Fürer and Immerman, who first studied this property in Cai et al. (1992).



120 CHAPTER 8. TURING MACHINES

for choosing the witness S as in Definition 8.14. Why not use a deterministic algo-

rithm that exhaustively enumerates all the possibilities? The problem is that such

an algorithm cannot be implemented as a deterministic Turing machine. The intu-

itive reason is that even if a ≈-equivalence class has only 8 tiles, one cannot choose

deterministically any single one among them (i.e. there is no notion of the “first” or

“second” element of the equivalence class) to write it down on the tape.

We now proceed to give a formal proof of why the cfi property is not recognised

by any deterministic Turing machine. This will be a consequence of Lemma 8.16 be-

low, which says that a deterministic Turing machine, unlike the cfi property, is in-

sensitive to certain well chosen flips in an ≈-tiling.

We lift the notion of flips from tiles to their ≈-equivalence classes as follows. If τ
is a tile, then the flip of its ≈-equivalence class is defined to the ≈-equivalence class

which contains some (equivalently, any) flip of τ. It is easy to see that this notion does

not depend on the choice of τ in its ≈-equivalence class, nor does it depend on the

choice of which side was flipped. Flipping is an involution on ≈-equivalence classes,

i.e. doing a flip twice leads back to the same ≈-equivalence class.

The following lemma shows that flips violate the cfi property.

Lemma 8.15. Let T be an n×n ≈-tiling which satisfies the cfi property. Then for every

x ∈ n × n, the following ≈-tiling violates the cfi property:

Tx(y) def
=

flip of T (y) if y = x;

T (y) otherwise.

Proof. A parity argument. We view an n × n grid as a graph, where vertices are grid

positions, and grid positions are connected by an edge if they are adjacent in the

(torus) grid topology. For S : n× n→ A(8)
define the conflict set to be the set of edges

e in the graph corresponding to n× n such that the colours of the two sides adjoining

on e are different. Here is a picture:

33

34

35

36

43

2827
35

36

31

32

65

3029
31

32

34

33

21

2625

21

22

23

24

2827

1615
24

23

19

20

3029

1817
19

20

21

22

2625

1413

9

10

11

12

1615

34
11

12

7

8

1817

65
7

8

9

10

1413

21

vertex

conflicting edge 

non-conflicting edge 

Using this terminology, an ≈-tiling T satisfies the cfi property only if there exists

some S which has an empty conflict set and such that T is the ≈-equivalence class

of S. The key observation is that S ≈ S′ implies that the conflict sets have the



8.3. FOR EQUALITY ATOMS, TURING MACHINES CANNOT BE DETERMINISED 121

same parity (i.e. size modulo two); and furthermore making one flip makes this parity

change. □

We are now ready to prove the main lemma which witnesses that the cfi prop-

erty is not recognised by any deterministic orbit-finite Turing machine. Fix a deter-

ministic orbit-finite Turing machine. We use the formalisation of computations from

Section 8.2, i.e. a computation is a function ρ : N2 → ∆, where the ∆ is the work

alphabet plus pairs (letter of the work alphabet, state of the machine). If T is an ≈-

tiling, we write ρT for the unique computation of the fixed Turing machine on the

word representing T .

Lemma 8.16. There exists k ∈ {0, 1, . . .} with the following property. Let n ∈ {0, 1, . . .}
be sufficiently large, and let T be an n × n ≈-tiling which satisfies the cfi property.

Assuming the notation Tx defined in Lemma 8.15, the following holds for every i, j ∈ N:

ρT (i, j) = ρTx (i, j) for all x ∈ n × n with at most k2
exceptions. (*)

Before proving the lemma, we use it to finish the proof of Theorem 8.13. Take k
as in the lemma, and let n be sufficiently large. Let T be some n × n ≈-tiling which

satisfies the cfi property. Consider the computation ρT , and let (i, j) be the place in

the computation which contains the head at the moment when it accepts. If n > k2
,

then (*) in the lemma implies that there is some x ∈ n × n such that ρTx has the same

contents. In particular, the machine also accepts Tx. This contradicts Lemma 8.15.

Proof of Lemma 8.16. Choose k so that

k/2 > support size for the Turing machine + support size for cell contents︸                                ︷︷                                ︸
smallest l such that ρT (i, j) has a

support of size l for every i, j ∈ N

.

We prove (*) by induction on i, i.e. the number of computation steps of the Turing

machine. For the induction base of i = 0, we observe that the contents of a cell in

time i = 0 depend only on the value of the input in at most one grid position, and

hence (*) holds with at most one exception.

For the induction step, suppose that (*) is true for i − 1 and consider the case

of i. In the computation of a Turing machine, the contents of a cell in time i are

uniquely determined by the contents of at most two cells in time i − 1: the cell in

the same column (offset from the beginning of the tape), plus possibly the contents

of the unique cell in time i − 1 which contains the head of the machine. Hence, using

the induction assumption we can conclude the following weaker version of (*), which

uses 2k2
exceptions instead of k2

:

ρT (i, j) = ρTx (i, j) for all x ∈ n × n with at most 2k2
exceptions. (**)

In the rest of this proof, we bring back the number of exceptions down to k2
. To do

this, we talk about connected components in T after removing some grid positions

from the input T . For a subset X ⊆ n × n of grid positions, define its connected

components to be the connected components in the subgraph of the graph of n× n (as

defined in the proof of Lemma 8.15) induced by X. Here is a picture of a set X together

with its partition into connected components:



122 CHAPTER 8. TURING MACHINES

component 1

se
t X component 2

are in component 2 because of torus topology

component 3
{

We now resume the proof of the implication from (**) to (*). Choose a tuple of

atoms ā which supports both the Turing machine and the cell contents ρT (i, j). By

choice of k, we can assume that ā less than k/2 atoms. Define

Z ⊆ n × n

to be the grid positions where T uses at least one atom from ā. The set Z has less

than k grid positions, since every atom appears in at most two grid positions and k
is more than twice the size of ā. By a straightforward analysis of connectivity in an

n × n grid, one can conclude that if n is big enough, then the graph corresponding to

n× n−Z has a connected component, call it X, which contains all grid positions from

n × n with at most k2
exceptions. If n is big enough, then

2k2︸︷︷︸
number of exceptions in (**)

< n2 − k2︸ ︷︷ ︸
size of X

,

and therefore there is some x0 ∈ X which satisfies

ρT (i, j) = ρTx (i, j). (⋄)

Using this x0, we will show that all x ∈ X also satisfy (⋄), thus proving (*). Let x ∈ X.

Since X is connected and disjoint from Z, in the graph corresponding to n× n there is

a path which goes from x to x0 and avoids grid positions from Z. Here is a picture:



8.3. FOR EQUALITY ATOMS, TURING MACHINES CANNOT BE DETERMINISED 123

x

we want to
show

we already
know 

an edge
on the path
from x to x0 

x0

Every edge e of the grid n × n corresponds to two distinct atoms. Define π to be

the atom automorphism which swaps, for every e on the path from x to x0, the two

atoms that correspond to the edge e. This atom automorphism fixes all atoms from ā.

For each tile except those corresponding to x and x0, the automorphism flips an even

number of sides, and hence we have:

Tx = π(Tx0 ). (8.1)

The path from x to x0 was chosen so that it avoids atoms in the support of the Turing

machine, and therefore

π(ρT ) = ρπ(T ) for every input T to the machine. (8.2)

We are now ready to prove that x satisfies (⋄):

ρTx (i, j) = (by (8.1))

ρπ(Tx0 )(i, j) = (by (8.2))

π((ρTx0
)(i, j)) = (because x0 satisfies (⋄))

π((ρT )(i, j)) = (because π fixes the support of ρT (i, j))

ρT (i, j).

This completes the proof of the lemma, and therefore also of Theorem 8.13. □

Exercise 158. Assume the equality atoms. Show that if k ≤ 3 and the input alphabet Σ is

k-tuples of atoms modulo some equivariant equivalence relation, then every nondeterministic

Turing machine over input alphabet Σ can be determinised.

Exercise 159. In the proof of Theorem 8.13, we used an input alphabet which consisted of

8-tuples of atoms modulo some equivalence relation. Improve the proof to use 6-tuples modulo

some equivalence relation
3
.

Exercise 160. Assume the equality atoms and consider the alphabet

{{{a, b, c}, {d, e, f }} : a, b, c, d, e, f are distinct atoms}.

3
This exercise is based on Klin et al. (2014); in particular Section 5.1 of that paper shows that 5 is the

smallest dimension where Theorem 8.13 holds.



124 CHAPTER 8. TURING MACHINES

Show that Turing machines over this input alphabet cannot be determinised.



Bibliography

Blass, Andreas. 2013. Power-Dedekind Finiteness. http://www.math.lsa.
umich.edu/ablass/pd-finite.pdf. [Online; accessed September 6,

2019].

Bojańczyk, Mikołaj, Klin, Bartek, Lasota, Sławomir, and Toruńczyk, Szymon. 2013a.

Turing Machines with Atoms. Pages 183–192 of: 28th Annual ACM/IEEE Symposium

on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013.

Bojańczyk, Mikołaj, Segoufin, Luc, and Toruńczyk, Szymon. 2013b. Verification of

database-driven systems via amalgamation. Pages 63–74 of: Proceedings of the 32nd

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS

2013, New York, NY, USA - June 22 - 27, 2013.

Bojańczyk, Mikołaj, Klin, Bartek, and Lasota, Sławomir. 2014. Automata theory in

nominal sets. Logical Methods in Computer Science, 10(3).

Cai, Jinyi, Fürer, Martin, and Immerman, Neil. 1992. An optimal lower bound on the

number of variables for graph identifications. Combinatorica, 12(4), 389–410.

Cheng, Edward Y. C., and Kaminski, Michael. 1998. Context-Free Languages over

Infinite Alphabets. Acta Inf., 35(3), 245–267.

Clemente, Lorenzo, and Lasota, Sławomir. 2015a. Reachability Analysis of First-order

Definable Pushdown Systems. Pages 244–259 of: 24th EACSL Annual Conference on

Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany.

Clemente, Lorenzo, and Lasota, Sławomir. 2015b. Timed Pushdown Automata Revis-

ited. Pages 738–749 of: 30th Annual ACM/IEEE Symposium on Logic in Computer

Science, LICS 2015, Kyoto, Japan, July 6–10, 2015.

Courcelle, Bruno, and Engelfriet, Joost. 2012. Graph Structure and Monadic Second-

Order Logic - A Language-Theoretic Approach. Encyclopedia of Mathematics and Its

Applications, vol. 138. Cambridge University Press.

Engeler, ERWIN. 1959. A characterization of theories with isomorphic denumerable

models. Notices Amer. Math. Soc, 6, 161.

125

http://www.math.lsa.umich.edu/~ablass/pd-finite.pdf
http://www.math.lsa.umich.edu/~ablass/pd-finite.pdf


126 BIBLIOGRAPHY

Ferrari, Gian Luigi, Montanari, Ugo, and Pistore, Marco. 2002. Minimizing Transition

Systems for Name Passing Calculi: A Co-algebraic Formulation. Pages 129–158

of: Foundations of Software Science and Computation Structures, 5th International

Conference, FOSSACS 2002. Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings.

Gabbay, Murdoch, and Pitts, Andrew M. 2002. A New Approach to Abstract Syntax

with Variable Binding. Formal Asp. Comput., 13(3-5), 341–363.

Hodges, Wilfrid. 1993. Model Theory. Encyclopedia of Mathematics and its Applica-

tions. Cambridge University Press.

Klin, Bartek, and Łełyk, Mateusz. 2017. Modal Mu-Calculus with Atoms. 21 pages.

Klin, Bartek, Lasota, Sławomir, Ochremiak, Joanna, and Toruńczyk, Szymon. 2014.

Turing machines with atoms, constraint satisfaction problems, and descriptive

complexity. Pages 58:1–58:10 of: Joint Meeting of the Twenty-Third EACSL Annual

Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July

14–18, 2014.

Klin, Bartek, Kopczyński, Eryk, Ochremiak, Joanna, and Toruńczyk, Szymon. 2015.

Locally finite constraint satisfaction problems. Pages 475–486 of: Proceedings of the

2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE

Computer Society.

Murawski, Andrzej, Ramsay, Steven, and Tzevelekos, Nikos. 2014. Reachability in

Pushdown Register Automata. Pages 464–473 of: Mathematical Foundations of Com-

puter Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary,

August 25-29, 2014. Proceedings, Part I.

Murawski, Andrzej, Ramsay, Steven, and Tzevelekos, Nikos. 2015. Bisimilarity in

Fresh-Register Automata. Pages 156–167 of: 30th Annual ACM/IEEE Symposium on

Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6–10, 2015.

Pitts, Andrew M. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cam-

bridge Tracts in Theoretical Computer Science, vol. 57. Cambridge University Press.

Ryll-Nardzewski, Czesław. 1959. On the categoricity in power ≤ ℵ0. Bull. Acad. Polon.

Sci. Sér. Sci. Math. Astr. Phys, 7, 545–548.

Svenonius, Lars. 1959. No-categoricity in first-order predicate calculus 1. Theoria,

25(2), 82–94.

Thomas, Wolfgang. 1990. Automata on Infinite Objects. Pages 133–192 of: Handbook

of Theoretical Computer Science, Volume B: Formal Models and Sematics (B).



AUTHOR INDEX 127

Author index



128 BIBLIOGRAPHY

Subject index


	*Polynomial orbit-finite sets
	Representation of *equivariant subsets
	Generating sets
	Formulas


	Automata for polynomial orbit-finite sets
	Graph reachability
	Automata and their emptiness problem
	Undecidable universality
	A decidable case of universality

	More computational models with atoms
	Alternating automata
	Two-way automata
	Circuits
	Pushdown automata and context-free grammars
	Turing machines

	Orbit-finite sets
	Quotiented pof sets
	Orbit-finiteness
	Least supports

	Atoms beyond equality
	Oligomorphic structures
	Representation of equivariant subsets
	Orbit-finite sets

	*Homogeneous atoms
	Homogeneous structures
	The Fraïssé limit
	Examples of homogeneous atoms
	The random graph
	Bit vectors
	Trees and forests


	Algorithms on orbit-finite sets
	Representing orbit-finite sets
	Representing elements of orbit-finite sets
	Orbit-finite graphs and automata
	Systems of equations

	Turing machines
	Orbit-finite Turing machines
	For bit vector atoms, P  NP
	For equality atoms, Turing machines cannot be determinised
	Author index
	Subject index


