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Preface

This book is about algorithms that run on objects that are infinite, but finite up to
certain symmetries. Under a suitably chosen notion of symmetry, such objects - called
orbit-finite sets — can be represented, searched and processed just like finite sets. The
goal of the book is to explain orbit-finiteness and demonstrate its usefulness. Most of
the examples of orbit-finite sets are taken from automata theory, since this is where
orbit-finite sets began.
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Chapter 1

Polynomial orbit-finite sets

The general idea in this book is to discuss sets which are built from some basic infinite
set A, and which are simple enough to be represented finitely and manipulated algo-
rithmically. These sets will be called orbit-finite sets. The fully general notion will be
described in later chapters. We begin in this chapter with a special case, called poly-
nomial orbit-finite sets, which is simpler to formalize, but general enough to describe
most interesting examples.

In the basic infinite set A, which will be used to build the other sets, the only
structure is equality. The assertion “the only structure is equality” will be formalized
later in the book, by using invariance under atom permutations. For the moment, this
will be apparent in the examples, and our convention that elements of A — which will
be called atoms — are names such as John or Eve. Everybody knows that names have
no structure beyond equality.

Before formally defining polynomial orbit-finite sets, we begin with several exam-

ples. These examples are based on automata theory, which was the original motivation
for these notions.

Example 1. Consider the language
{ w € A* | the first and last letters of w are the same }.

To recognise this language, we use a deterministic automaton that remembers the first
letter seen in its state, plus one extra bit of information that tells us whether the last
letter seen is the same as the first. This state space can be viewed as a disjoint union
(denoted using +):

{initial} + A + A .
SN~ S~
equal nonequal

The transition function consists of the following transitions, where a and b range
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over A:

initial() 5 equal(a)

b |equal(a) ifa=a
equal(a) — )
nonequal() ifa #a

nonequal(a) — ]
nonequal() ifa # a.

b {equal(a) ifa=a

The accepting states are those from the first copy of A. O

The automaton in the above example was deterministic. Here is an example of a
nondeterministic automaton.

Example 2. Consider the language
L ={we A"| some letter appears twice }.

The recognizing automaton uses nondeterminism to guess the letter that appears
twice. It then loads that letter into its state, and waits for a second appearance, upon
which it enters an accepting sink state. The state space is

{initial, accept} + A.

The first two states are the initial and accepting states, respectively. The transitions
of this automaton are listed below, where a and b range over A:

R
initial — initial
. o . a

initial — a

b |accept ifa=>
a —
a ifa#b

accept 5 accept.

We will later show that this language cannot be recognised by a deterministic au-
tomaton, but that will require a formal definition of the model. [J

In the automata from the above examples, the state space could be infinite, but it
had a very special form: each state would store some finite information (for example,
is it accepting or reject), and some atoms. In the two examples above, each state
would store zero or one atom, but one could imagine that more atoms are stored,
e.g. we could have a state space of the form

A%+ AD 4 AT + A

As before, we write + for disjoint union of sets. In the disjoint union above, the
components of the form A represent states where no atoms are stored, such as the
initial states in the two examples. This leads us to the following definition.



Definition 1.1 (Pof set). A polynomial orbit-finite set, pof set for short, is any set of
the form

AN 4. A
for some k,d,,...,d, €{0,1,...}.

It is clear why we use the word “polynomial” in the name - syntactically a pof set
is the same thing as a univariate polynomial with coefficients in the natural numbers.
The meaning of the words “orbit-finite” will become apparent later in this book, when
we discuss orbits under the action of atom permutations. In a pof set, we use the name
component for summands in the disjoint union; each component in a pof set is a set
of the form A“. The atom dimension of a component is the exponent d, the atom
dimension of a pof set is the maximal atom dimension of its components.

We will be interested in computational models where instead of finite sets, we use
pof sets. We already saw this in Examples 1 and 2; in these automata the state spaces
and input alphabets where pof sets. This resulting theory will generalize the standard
theory of finite objects, because a finite set can be seen as a pof set of atom dimension
zero. For example, a set with three elements can be seen as a pof set

A%+ A0 4+ A

that has three components of dimension zero.

In order to get a meaningful theory, we need to make some restrictions on the
way that elements of pof sets are manipulated. Otherwise, we would be working
with models that use countable sets instead of finite ones. The restriction that we
make formalizes the idea that atoms have no structure beyond equality. The idea is
that if atoms are renamed in a way that preserves equality, then all properties should
be preserved. For example, if an automaton has a transition of the form

(John, Eve) Adgm (Adam, John)

then the same automaton should also have a transition of the form

h
(Tom, Adam) Tofp (John, Tom),

because the equality patterns are the same in both transitions. This notion is formal-
ized in the following definition, by using atom permutations, which are defined to be
bijective functions A — A.

Definition 1.2 (Equivariant subset). A subset X C A is called equivariant if it is
stable under applying atom permutations, i.e.

(ai,...,ap) e X © (nlay),...,n(a1))€eX

holds for every atom permutation &. A subset of a pof set is called equivariant if its
intersection with each component is equivariant.
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Example 3. Consider the set A®. Up to atom permutations, this set contains five
kinds of elements, namely a non-repeating triple

(John, Eve, Tom),
three kinds of triples that use two atoms
(John, Eve,Eve), (John,Eve, Tom), (John, Tom,Eve),
and a triple where all atoms are the same
(John, John, John).

Every other element of A® can be mapped to one of the above five example using an
atom permutation, and the five kinds are all different, i.e. none of them can be mapped
to another by an atom permutation. If we want to choose an equivariant subset of A%,
we need to decide for each of the five kinds whether we want to include it or not. The
five decisions are independent, and therefore there are 2° possibilities of choosing an
equivariant subset. [

The kinds of elements, as described in the above example, will be called orbits.

This is because they are the special case of the general notion of orbits under a group
action, in the case where the group is the group of atom permutations.

Definition 1.3 (Orbit). The orbit of an element x in a pof set X is the set

{ m(x) | mis an atom permutation }.

Example 4. In Example 3, we showed that the set A3 has five orbits. More generally,
the number of orbits in A is the number of equivalence relations on the set {1,...,d}.
This number is called the Bell number, and it grows exponentially with d. For example,
the 4-th Bell number is 15, and the 5-th Bell number is 52. [J

In the above example, we have argued that for sets of the form A4, the number
of equivariant subsets is finite, albeit exponential. This extends to pof sets, which
are finite disjoint unions of such sets, and hence we get the following result, which
explains the expression “orbit-finite” in the name “polynomially orbit-finite”.

Lemma 1.4. Every pof set has finitely many equivariant subsets.

In Definition 1.2, we defined equivariant subsets of one pof set. This extends nat-
urally to relations on pof sets, e.g. binary relations

RCXXY,

where X and Y are pof sets. This is because the product of two pof sets can itself be
seen as a new pof set, by distributing products across disjoint unions:

(Z A% x (Z A%y = Z Adites,

i€l jeJ i€l
jeJ



Similarly, we can also talk about equivariant functions f : X — Y. These are the same
as binary relations that are both equivariant and functional, i.e. for every x € X there
exactly one y € Y that belongs to the relation.

Example 5. To represent booleans, we can use the atomless set

2 € A+ A

true false

For a pof set X, and equivariant function of type X — 2 is the same thing as an
equivariant subset of X. [

Example 6. There is only one equivariant function of type A — A, namely the
identity. Clearly the identity is equivariant, since the corresponding set of pairs is the

diagonal
{(a.a)] acA },

and this set is equivariant. Let us now prove that there is no other equivariant function
of this type. Suppose then that an equivariant function would map an atom a to some
atom b # a. From the pair (a, b) we can go to any pair (g, ¢) with a # ¢ by applying an
atom permutation. This would yield a violation — in fact infinitely many violations -
of the functionality condition, which says that each input has only one output. [J

Example 7. Let us list all equivariant functions of type f : A> — A. If the input
to such a function is a repeating pair (a,a) € A2, then the output has to be a, by
the same argument as in the previous example. If the input is a non-repeating pair
(a,b) with a # b, then the output could be either the first argument a or the second
argument b. Furthermore, this is uniform: if for some non-repeating pair the output
is the first coordinate, then this is true for all non-repeating pairs. This is because
every non-repeating pair can be mapped to every other non-repeating pair by an atom
permutation. Therefore, there are two possibilities for f it is either the projection to
the first coordinate, or the projection to the second coordinate. [J

Example 8. An example of an equivariant function of type A> — A is

c ifa#b
a ifa=0>h.

(a,b,c) {

O

As shown in Lemma 1.4, a pof set will have finitely many equivariant subsets.
Therefore, there will be finitely many equivariant relations R € X X Y, and only some
of these will be functions. Summing up, for every pofsets X and Y there will be finitely
many equivariant functions of type X — Y.

Exercises

Exercise 1. In the definition of an equivariant set from Definition 1.2, we have an equivalence
©, and we quantify over atom permutations, which can be briefly written as
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0. aeX & maeX forall permutationsn: A — A

Instead of a two-way implication, we can have a one-way implication in either of the two
directions, and we can quantify over functions that are not necessarily permutations, as in the
following variants:

1. aeX = m@eX forall permutationsz: A — A
2. aeX <« m@eX forall permutationszm: A — A
3. aeX ¢© n(a)eX forallfunctionszm:A — A
4. ae€eX = m@eX forallfunctionsz:A — A
5. a€eX <« m(@a)eX forallfunctionszm:A — A

Which ones are equivalent to the original definition, as in variant 0?
Exercise 2. Show that there is no equivariant function of type A? — A.
Exercise 3. Show that the number of equivariant subsets of A? is doubly exponential in d.

Exercise 4. Consider a pof set X and an equivariant binary relation R C X X X. Show that the
transitive closure of R is also equivariant.

1.1 Representation of equivariant subsets

The central idea of this book is that sets such as pof sets — and generalizations such
as (not polynomial) orbit-finite sets that will be defined in later chapters — can be
used as a new notion of finiteness, and the resulting computational problems can be
studied. A typical example is pof automata, which are automata where the state space
and input alphabet are pof sets, the initial and final subsets are equivariant, and the
transition relation is also equivariant. The automata from Examples 1 and 2 are pof
automata. As we will see in the next section, the emptiness problem is decidable for
pof automata.

In order to meaningfully discuss the decision problems based on pof sets and
equivariant subsets, we need to have some finite representation, so that they can be
used as inputs to algorithms. For pof sets, there is little doubt: a pof set

AN 4 A

is represented by the list of natural numbers dj, ..., d;, which describe the atom di-
mensions of the various components. The relevant question is about representation
of equivariant subsets. We think of an equivariant subset in a pof set as being a fam-
ily of equivariant subsets, one for each component A%, and therefore we focus on
representing equivariant subsets of individual components. There will be two repre-
sentations

1.1.1 Generating sets

For a pof set X, define the set generated by a subset Y C X to be all elements that can
be obtained by applying atom permutations to elements of Y, i.e.

{n(y)| y € Y and & is an atom permutation }.
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In other words, this is the union of orbits of the elements from Y.
Example 9. The full set A? is generated by the two pairs
(Eve, Eve), (John, Eve).

As explained in Example 4, the set A? is generated by a finite subset, whose size is the
d-th Bell number. The identity function of type A> — A2, when seen as a subset of
A%, is generated by

(John, John) — (John, John) (John, Eve) — (John, Eve).

In the above, we write a — b instead of (@, b) when describing pairs in the graph of a
function [

We can use finite generating subsets as a representation of equivariant subsets.
This assumes that we can represent individual atoms; for the moment we simply as-
sume that atoms are strings over some finite alphabet, but the issue of representations
will be discussed in more detail in Section 3.5. The representation by generating sub-
sets is general enough to cover all equivariant subsets, as shown in the following
lemma.

Lemma 1.5. Every equivariant subset of a pof set is generated by finitely many ele-
ments.

Proof. There are finitely many orbits, and an equivariant subset is a union of some of
these orbits. O

The above lemma shows that finite generating sets can be used as a way of repre-
senting equivariant subsets. The representation has several advantages, but concise-
ness is not one of them. (Non-conciseness can also be framed as an advantage, since
making the inputs longer for an algorithm can give a better bound on its running
time, as we will see in the next section.) For example, to represent the full subset of
A? we need a number of generators that is exponential in the dimension d. Also, this
representation is not well suited to basic operations on sets. For example, the empty
set has a very small representation, but its complement does not. Another example is
taking pairs.

Example 10. Consider the subset X C A¢ that contains only non-repeating pairs.
This subset is generated by one element, e.g. if d = 3 then a generator is

(John, Adam, Tom).

However, if we want to take the square X2, which is an equivariant subset of A
then we will need a number of generators that is exponential in d. This is because
X? consists of tuples of length 2d where the first half is non-repeating and the second
half is also non-repeating, but there is no further restriction on the equalities between
the first half and the second half. In particular, X*> will contain any tuple where the
second half is a permutation of the first half, such as

((John, Adam, Tom), (Tom, John, Adam)).
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It will also contain tuples where some atoms are shared between the first and second
half, and some atoms are not, such as

((John, Adam, Tom), (Tom, John, Eve)).

O

1.1.2 Formulas

As an alternative to generating sets, we can use formulas. For example, the set of
non-repeating tuples in A* can be described by the formula

X1 #F X2 AN X #F X3 A X3 F X3.

The formulas that we use have no quantifiers, they are only Boolean combinations of
equalities on the coordinates (quantifiers will appear later in the book). This repre-
sentation can be exponentially more concise than the generating set representation.
For example, the full set A? can be represented by the short formula “true”, while the
number of generators is exponential in d. Also, the representation efficiently sup-
ports such operations as complementation, which is implemented by adding — to the
formula. Similar comments apply to union and intersection, or to the product opera-
tion from Example 10. The following lemma shows that the formula representation is
equivalent to the generating set representation, in the sense that both define the same
subsets, namely the equivariant subsets.

Lemma 1.6. A subset X C A? is equivariant if and only if it can be defined by a
Sformulag(xi, ..., xq) that is constructed using equality comparisons x; = x; and Boolean
operations A, V, —.

Proof. For the implication <, we observe that if we apply an atom permutation to a
tuple in A?, then this will not change the pattern of equalities between coordinates,
and therefore the truth value of a formula that uses only equality will be preserved.
For the implication =, consider an equivariant subset X C A“. This subset is
generated by a finite set ¥ C X, thanks to Lemma 1.5. The orbit of generator y € Y is
described by a formula, which asserts the pattern of equalities in this generator:

(/\xizxj) A (/\xiixj).

N————— N—————
conjunction ranges over conjunction ranges over
i,jel{l,..., d} i,jefl,..., d}
such that y[i] = y[/] such that y[i] # y[/j]

Since there are finitely many generators, to define X we can take the finite disjunction
of these formulas, ranging over the generators. The size of the formula is the number
of generators, times a factor that is polynomial in the dimension d. O

Exercises
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Exercise 5. Consider the following problem: given two subsets of a pof set, represented using
formulas, decide if they are equal. Show that this problem is: (a) in deterministic logarithmic
space under generating set representation; and (b) complete for coNP under formula represen-
tation.

Exercise 6. To specify a subset of X C A¢, we can also use a formula with quantifiers (which
range over atoms). Show that for every such formula, there is an equivalent formula that is
quantifier-free. For example, the formula

e(x1,x2) = Ay (x1 2Y) A (x2 #Y),

is equivalent to “true”.
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Chapter 2

Automata for polynomial
orbit-finite sets

In this section, we discuss in more detail the generalization of automata from finite
sets to polynomial orbit-finite sets. We show that, despite being formally infinite,
these automata can be treated algorithmically, and some of their decision problems
can be decided. However, this comes at a certain cost — not all constructions are
allowed, and the model is less robust than for finite sets. For example, determinization
fails, because the powerset construction does not work.

2.1 Graph reachability

Before discussing automata and their emptiness, we begin with an even simpler com-
putational problem, namely reachability in directed graphs.

Definition 2.1. A directed pof graph consists of a set of vertices V, which is a pof
set, and an edge relation E C V? that is equivariant.

Example 11. A simple example is a clique on the atoms: the vertices are A, and all
edges are allowed, i.e.

E={a—b| abeA }

Here is a second example, where the edge relation is no longer symmetric. The vertices
are A2, and the edges are

E ={(a,b) > (b,c)| a,b,ce A }
Here is an example of a path in the second graph

(John, John) — (John, Eve) — (Eve, Tom).

11
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Both graphs are strongly connected, i.e. for every vertices v and w there is a path from
viow. O

A directed pof graph can be represented in a finite way, by giving the pof set
for the vertices, and some representation (generating set or formula) for the edge
relation. Therefore, it is meaningful to discuss decision problems for pof graphs, such
as reachability.

Theorem 2.2. The following problem is decidable:
« Input: A pof graph, and two equivariant subsets of vertices S,T C V.
» Question: Is there a path from some vertex in S to some vertex in T ?
The complexity depends on the representation of equivariant subsets:
« PSpAcE-complete under the formula representation;
« NL-complete under the generating set representation.

Proof. The main idea is that the set of vertices reachable from S is equivariant. There-
fore, we can search for a path from initial to final state in the automaton by just look-
ing at orbits of vertices under atom permutations. The rest, including the complexity
bounds, is mere bookkeeping.

Generating set representation. We begin with complexity of the problem under
the generating set representation. In order to formally speak of this representation,
we need to discuss how individual atoms are represented. We will assume that atoms
are bit strings, i.e. A = 2*. (This is a bit inconsistent with our convention of represent-
ing atoms as names, but of course names can be encoded in bit strings.) We will show
that, under this representation, the reachability problem is complete for the complex-
ity class of nondeterministic logarithmic space (NL). When talking about logarithmic
space, we need to use a two-tape model for Turing machines: a read-only input tape,
and a read-write work tape of logarithmic size.

+ Lower bound. A special case of our problem is reachability for finite graphs,
since pof sets subsume finite sets. The problem reachability problem is hard for
NL in the case of finite graphs, and therefore this lower bound carries over to
the more general atom version of the problem.

« Upper bound. We reduce the problem to the special case of finite graphs.
Reachability in the latter case can be solved in NL, using a naive algorithm that
nondeterministically guesses a path, and stores the current vertex by using a
pointer to the input tape (logarithmic space suffices for that). The reduction
produces the following instance:

— vertices are those that appear in generators of edges in the original in-
stance, or in generators of the source and target sets S and T;

— there is an edge v — w if the target state of the transition v is in the same
orbit as the source state of the transition w;
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— source vertices are generators of S;

— target vertices are generators of T'.
The correctness of the reduction is given in the following claim.

Claim 2.3. The original instance has a source-to-target path if and only if the
same is true in the new instance.

Proof. Using equivariance of the edge relation, one shows that for every vertex
in the original instance, it is reachable from a source if and only if some vertex
in the same orbit is reachable in the new instance. O

The reduction can be computed in logarithmic space, even deterministically,
and the reachability problem is in NL.

Formula representation. We now discuss the reachability problem under the for-
mula representation. Here, the complexity will be exponentially higher, namely poly-
nomial space instead of logarithmic space.

« Upper bound. We use the same kind of nondeterministic guessing algorithm
that was used in before. We are allowed to use nondeterminism, since PSPACE
is equal to NPSpAcCE by Savich’s Theorem. This time, we will store on the tape a
reachable vertex. At each step, the algorithm guesses a new vertex, with atoms
represented as strings, and it then checks if the formula for the edge relation
allows a connection. The space used by this algorithm is polynomial in:

1. the representation of the graph;

2. the space used to represent atoms.

We will now justify why the space used by atoms is small, in fact logarithmic
in the graph. In every transition, there are at most

d=dimV +dimV

atoms that are used, where dim is the atom dimension. When we are guessing
a new vertex, we might need to get some new atoms that were not seen in the
previous vertex. We can always take the shortest unused atoms, and so we will
always be using the first d atoms, which can be stored using log d bits.

+ Lower bound. Here, we reduce from the corridor tiling problem. In this prob-
lem, we have a finite set of square tiles, where each tile has a colour on each of
its four sides. This is formalized as a subset

IN,S,E, W} = C.
[ ——
a tile has colours on the four directions of the compass

Elements of this subset will be called tiles. Here is a picture of a set of tiles
which uses three colours:
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MEVFNE

We are also given source and target rows s, ¢, which are sequences of tiles of the
same length, say n. This length will be the width of the corridor. A solution to
the corridor tiling problem is an n X m rectangle labelled by the tiles, such that
the first row is s, the last row is 7, and every two adjacent tiles have the same
colour on their connecting side. Here is a picture of a solution:

source row —» .""

target row — “NN““

n

The corridor tiling problem, i.e. deciding if there exists a solution, is PSPACE-
complete. We will show that the corridor tiling problem reduces to the graph
reachability problem, under the formula representation, thus proving PSpAcE-
hardness for the latter problem. A vertex of the graph will store the representa-
tion of a row in the solution. Assuming that there are k = |C| colours, one row
will be represented by k + 4n atoms

(al,' ces Qs N, S1,€1, W1y o vo 5y sn9en,wn)'
N ——

distinct atoms four atoms for each tile in the row,
that represent corresponding to the colours on the sides
the tile colours north, south, east, west

Not all tuples of length k + 4n represent a row, but the tuples that do can be
specified by a formula that has size polynomial in k and d, as follows:

atoms for colours are distinct
A /\ € = Wiy1

colours match horizontally

A /\ \/ N = Qy(north) ASsi= Ai(south) ANej= Ay(east) Aw; = Ai(west) -
i€{l,...,n} teT

each position is occupied by a legitimate tile

We can further refine the above formula to say that the row represents the
source row, or the target row, by restricting the tile # from the last condition to
be the one that should be used. This way, we get formulas for the initial and
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final vertices. Finally, we need to specify the formula for the edge relation. This
formula has

k+4n+k+4n,

— =
old new
row row

variables. It says that both the old and new rows are valid, in the sense described
above, and furthermore the south atoms of the old row match the north atoms
of the new row. This, again, can be described by a formula polynomial in k£ and
n. It is now easy to see that accepting runs of the automaton correspond to so-
lutions of the corridor tiling problem, and therefore the nonemptiness problem
is PSPACE-hard.

Exercises

Exercise 7. Show that the reachability problem remains PSpAce-complete when we restrict it
to symmetric graphs, i.e. graphs where the edge relation is symmetric’.

Exercise 8. Consider an undirected pof graph, i.e. a graph where the edge relation is symmet-
ric. Does it necessarily have a spanning tree that is equivariant?

Exercise 9. Consider two undirected pof graphs, which are isomorphic. Is there necessarily
an isomorphism that is equivariant?

Exercise 10. Show that given a directed pof graph, one can compute a number k € {0, 1,...}
such that for every vertices s and ¢, if there is a path from s to #, then there is a path of length
at most k.

Exercise 11. Consider a directed pof graph. Show that there is an infinite path if and only if
there is a cycle.

Exercise 12. Consider a directed pof graph. Show that if the graph is acyclic, then there is a
finite upper bound k on the length of paths.
Exercise 13. Show that the following problem is decidable: given a directed pof graph, decide

if it has finite outdegree, i.e. for every vertex v, there are finitely many vertices w with an edge
Vo w.

Exercise 14. Assume the equality atoms. Show a graph which has an infinite path, but does
not have any infinite finitely supported path.

2.2 Automata and their emptiness problem

In this section, we introduce pof variants of deterministic and nondeterministic au-
tomata, and use the graph reachability result from the previous section to show that
the emptiness problem is decidable. We begin by formally defining the model.

!Note that in the case of finite graphs, the complexity drops from NL to L when restricting to symmetric
graphs, as shown by Rheingold.
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Definition 2.4 (Pof automaton). A nondeterministic pof automaton consists of:
1. an input alphabet X, which is a pof set;
2. a state space Q, which is a pof set;
3. initial and accepting subsets I, F C Q, which are equivariant;
4. atransition relation A € Q X X X Q, which is equivariant.

A deterministic pof automaton is the special case where there is exactly one initial
state, and where the transition relation is a function.

As was the case for graphs, the above definition is simply the usual definition,
except that finite sets are replaced by pof sets, and all subsets, relations and functions
are required to be equivariant. Using the same principle, one can consider pof vari-
ants of other structures, such as graphs, pushdown automata, context-free grammars,
Turing machines, etc. (This will be the content of Chapter 3.)

Using the result about graph reachability, we obtaine decidability of emptiness for
pof automata, deterministic or not.

Theorem 2.5. The emptiness problem is decidable for nondeterministic pof automata.
The complexity is the same as for the reachability problem in pof graphs.

Proof. The lower bounds for graph reachability transfer directly to the emptiness
problem, by considering automata over a one-letter alphabet, which are the same
as instances of graph reachability. For the upper bound under the formula represen-
tation, we can use the same straightforward nondeterministic algorithm as in graph
reachability. For the upper bound under the generating set representation, we simply
delete the input letters from the generators of the transitions, and then we solve the
corresponding instance of graph reachability. O

A corollary of the above theorem is decidability of language equivalence for de-
terministic pof automata (as we will see in the following section, the problem is no
longer decidable for nondeterministic automata).

Corollary 2.6. The following problem is decidable:

« Input: Two deterministic pof automata.

« Question: Do they recognise the same language?
The complexity is the same as for the emptiness problem.

Proof. We can use the product construction. A product Q; X Q, of two pof sets is
also a pof sets, and the corresponding operations on subsets and transitions preserve
equivariance. We then check if in the product automaton, one can reach states that
are accepting in one automaton, but rejecting in the other. ]
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In the equivalence algorithm from the above corollary, we use determinism. This
is because we implicitly complement an automaton by complementing its accepting
states, and this only works for deterministic automata. As we will see in the next sec-
tion, the equivalence problem becomes undecidable for nondeterministic automata.
Let us first show that we cannot solve this problem by determinizing. The natural
idea would be to use the powerset construction. Unfortunately, this fails. For ex-
ample, if we take the set A, then its powerset PA is not a pof set. In fact, not only
this construction fails, but there is no successful construction at all, as shown in the
following theorem.

Theorem 2.7. Languages recognised by nondeterministic pof automata are not closed
under complementation. Also, deterministic pof automata are strictly less expressive than
nondeterministic ones.

Proof. The first part of the theorem directly implies the second part, since determin-
istic automata are closed under complementation. To prove the first part, we use the
language

L ={we A"| some letter appears twice }.

In Example 2, we showed that this language is recognised by a nondeterministic pof
automaton. It remains to show that its complement is not recognised by any nonde-
terministic pof automaton.

The complement of L consists of words where all letters are pairwise different.
Suppose, toward a contradiction, that this complement is recognised by a nondeter-
ministic pof automaton. Let d be the atom dimension of the state space, i.e. the maxi-
mal number of atoms that can be stored in a state. Choose 7 so that it is strictly larger
than the atom dimension of the state space, and consider a word w with 2n pairwise
distinct atoms. This belongs to the complement of the language, and thus it must have
an accepting run. Consider the state ¢ in the middle of the accepting run, i.e. a state
with

wi wo
Isp—>qg—>reF,

where w; and w; are the two halves of w that have length n. By assumption on n, there
must be some atom a that appears in the first half w; but not in the state g. Similarly,
there must be some atom b that appears in the second half w, but not in the state q.
Let 7 be the atom permutation that swaps a and b. By equivariance, we have

7(wa)
n(q) — n(r) €F.
Since neither a nor b appear in g, we have n1(q) = ¢, and therefore we can stitch the

two runs above to get an accepting run over the concatenation of w and n(v), which
is a word that has an atom repetition, and therefore should be rejected. O

Exercises



18 CHAPTER 2. AUTOMATA FOR POLYNOMIAL ORBIT-FINITE SETS

Exercise 15. Find a deterministic pof automaton for the following language:

{we A" | the first and last letters are different }.

Exercise 16. Find a deterministic pof automaton for the following language:

{ w e A" | no two consecutive letters are the same }.

Exercise 17. Find a deterministic pof automaton for the language
{ w € A" | there are at least three different letters }.

Exercise 18. Consider a deterministic pof automaton. Show that after reading an input string
w, all atoms that appear in the state must also appear in w.

Exercise 19. Show that if the input alphabet is finite (i.e. a pof set of dimension zero), then

deterministic pof automata recognise exactly the regular languages.

Exercise 20. Consider a nondeterministic pof automaton, and let k be the maximal number
of atoms that can appear in a single transition. Let A be a finite set of k atoms. Show that if the
automaton is nonempty, then it accepts some word that uses only atoms from A.

Exercise 21. Define a left derivative of a language L C X* to be a language of the form
v’lwdéf{weﬁ*l welL }

for some word v € *. Are languages recognised by deterministic pof automata closed under
left derivatives?

Exercise 22. We say that two states p and ¢ in a deterministic pof automaton are behaviourally
equivalent if for every input string w, the states pw and gw are both accepting or both rejecting.
Show that behavioural equivalence is equivariant.

Exercise 23. A deterministic pof automaton is called minimal if one cannot find reachable
states p # g that are behaviourally equivalent. Show a language that is recognised by some
deterministic pof automaton but not by any minimal deterministic pof automaton.

Exercise 24. Show that the expressive power of nondeterministic pof automata does not

change if we allow e-transitions.

Exercise 25. Show that for every nondeterministic pof automaton, the set
{ne{0,1,...}| the automaton accepts some word of length n }

is ultimately periodic.

Exercise 26. Show that the question from Problem ?? has the same complexity if we restrict
to undirected graphs®

Exercise 27. Show a family of deterministic pof automata, such that in the n-th automaton
the input alphabet is A, the state space is A° + A", but the shortest accepted word is exponential
in n.

Exercise 28. Show that for every deterministic pof automaton one can compute some bound &
such that if two states p and g are not behaviourally equivalent, then they can be distinguished

2This is in contrast to atomless graphs, where the complexity drops to deterministic logspace, as proved
by Rheingold.
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by some word of length at most k. Show that this k can be exponential in the dimension of the
state space.
Exercise 29. Show that the following problem is decidable: given a deteriminstic pof automa-
ton, decide if its language is commutative.
Exercise 30. A language is called positively equivariant if for every function 7 : A — A which
is not necessarily a bijection, we have

welL = na(w)el.
Show that the following problem is decidable: given a determinstic pof automaton, decide if its
language is positively.

Exercise 31. Let L C X* be alanguage recognised by a deterministic pof automaton. Show that

there is some k with the following property: for every w € X* there are atoms ay,...,a; € A
such that for every atom permutation x that fixes all atoms from ay, ..., a, and every v € *
we have

wel & naw)elL.

Exercise 32. Suppose that L C X* is recognised by a nondeterministic pof automaton. Show
that there is some & such that for every w € Z* longer than k one can find

1. a decomposition w = xyz with y nonempty; and
2. an atom permutation 7 that moves finitely many atoms

such that for every n € {0, 1, ...} we have

Xy P - 7' (2) € L.

Exercise 33. Is there a deterministic pof automaton for the following language?

{we A" | all letters are different }

Exercise 34. Which of the following closure properties are true for the class of languages
recognised by deterministic pof automata?

complementation;
union;
intersection;
reverse;

concatentation;

SARERANEE I o

Kleene star.

Exercise 35. Which of the closure properties from Problem 34 hold for nondeterministic pof
automata?

Exercise 36. Show that the complement of the language
{ww| w e A*isnon-repeating }

is recognised by a nondeterministic pof automaton.

Exercise 37. In this exercise, we consider a variant of regular expressions. Consider the least
class of languages that:
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1. contains every equivariant set of words that has bounded length;
2. is closed under union and concatenation;

3. is closed under Kleene star L*.
Show that these languages are a strict subset of nondeterministic, pof automata.

Exercise 38. Show that the regular expressions from the previous exercise are not closed
under intersection.

2.3 Undecidable universality

In Corollary 2.6, we showed that language equivalence is decidable for deterministic
pof automata. We will now show that this problem becomes undecidable for non-
deterministic automata. In fact, already a special case of the language equivalence
problem will be undecidable: given one nondeterministic pof automaton, we want
to decide if it accepts all words, i.e. it is equivalent to the automaton that accepts all
words. For finite automata, this problem is solved by complementing, and then test-
ing for emptiness. As we have seen above, this approach will fail for pof sets, since
nondeterministic pof automata are not closed under complementation. The following
theorem shows that no other approach will work, since the problem is undecidable.

Theorem 2.8. The following problem is undecidable:

« Input: A nondeterministic pof automaton.

« Question: Does it reject some word?

Proof. In the proof, we reduce from the halting problem for counter machines.

Let us begin by describing counter machines. This is a computational model that
uses counters which store natural numbers, and which can updated via increments,
decrements and zero tests. The syntax of the machine is given by a finite set of states
0, a finite set C of counters, and a finite set of transitions

A C X {inc, dec, zero} x C X
0 x{ } 0

source counter operations which target
state counteris  state
affected

The increment operation adds one to the affected counter and leaves the other coun-
ters unchanged, the decrement operation subtracts one, and the zero test transition
does not change the counters but is only enabled if the corresponding counter is equal
to zero. A decrement cannot be performed if the corresponding counter is zero, since
we require counters to be natural numbers. The semantics of the machine is its con-
figuration graph, which is a directed graph where the vertices are
c
0 x X

S——
state counter

valuation
and where the edges are given by the transitions in the expected way. The following
problem, which we call the halting problem for counter machines, is a classic undecid-
able problem:
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«+ Input: a counter machine, and two states p and q.
« Question: is there a path from (p, 0) to (¢, 0) in the configuration graph?

We will show that the above problem reduces to universality of nondeterministic pof
automata, and therefore the latter problem is also undecidable. (The halting problem
for counter machines is known to be undecidable even for two counters. However, we
do not need this in our reduction, since it will also work with more than two counters.)

In the reduction, we will use words with atoms to represent accepting runs of
the counter machine. The idea is to use atoms to represent the matching between
increments and their corresponding decrements. Formally speaking, define L to be
the set of words over the alphabet

AxA

which satisfy the following two conditions:

1. The first transition has the initial state p, the last transition has the target state
g, and consecutive transitions agree on states.

2. An atom can appear at most twice. Also:

(a) if an atom appears once, then its only appearance labels a zero test;

(b) if an atom appears twice, then the first appearance labels an increment,
the second appearance labels a decrement on the same counter, and there
are no zero tests on this counter between them.

It is not hard to see that L is nonempty if and only if there is a path as in the
halting problem. Therefore, if we could decide emptiness of L, then we could decide
the halting problem. Emptiness of L is the same as universality for its complement.
The following lemma shows that the complement is recognised by a pof automaton,
thus completing the reduction.

Lemma 2.9. The complement of L is recognised by a nondeterministic pof automaton.

Proof. A word belongs to the complement of L if and only if it violates one of the
two conditions 1 or 2 in the definition of L. Since nondeterministic pof automata are
closed under unions, it is enough to give separate automata for the two conditions.
Condition 1 does not refer to atoms, and therefore its complement can be recognised
by a finite automaton, because regular languages on finite (i.e. atom-less) alphabets
are closed under complementation. The interesting part is violations of condition 2.
This condition is violated if and only if at least one of the following holds:

(a) some atom appears at least three times; or

(b) some atom appears at least twice, but in a way that violates condition 2(ii),
i.e. either the two appearances are not matching increment/decrement pairs, or
there is a zero test between them; or

(c) some atom appears exactly once, but is label is not a zero test.



22 CHAPTER 2. AUTOMATA FOR POLYNOMIAL ORBIT-FINITE SETS

It is enough to give a separate automaton for each of the three kinds of violations.
Violations of kind (a) can be recognised by an automaton which stores the repeated
atom in its state, using state space
A+ A"+ A+ A
S~—— S~—— S—— S——
initial after first after second accepting

Violations of kind (b) can be recognised by several copies of the following automaton,
with one copy for each counter:
A+ A+ A
S~ S~ S~
initial after first accepting

The most interesting automaton is for violations of kind (c). The challenge is that the
automaton needs to check that the atom appears exactly once. For this reason, it must
guess the atom immediately, before having seen it, to check that it does not appear
earlier in the word. This is done by an automaton with a state space

A+ AV o+ A

SN~ SN~ S~
initial after first accepting
where the initial states stores an atom that is nondeterministically guessed. ]

Observe that the automaton in the proof of the lemma above had atom dimension
one, and therefore the universality problem is undecidable already for such automata.
O

Exercises

Exercise 39. To express properties of words in A*, we can use first-order logic, where the
quantifiers range over positions, and there are predicates for the order on positions, and equality
of data values. For example, the following formula says that the first position has the same atom
as some later position:

Vx Myy=2x) = Jyy>xAy~x).

x is the first position x has the same atom
as some later position

Show that satisfiability is undecidable for this logic, i.e. one cannot decide if a given formula is
true in some word from A*.

2.4 A decidable case of universality

In this section, we show that under extra assumptions, we can recover decidability
of universality for nondeterministic pof automata. There is not much space here,
since the undecidability argument used automata with atom dimension one, ie. a
state would store at most one register. Of course atom dimension zero would be suf-
ficient for decidability, since such automata determinize (even if the input alphabet is
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infinite), but we are looking for something more exciting. It turns out that the crucial
distinction is nondeterministic guessing of atoms that was used in the reduction in
the previous section. We formalize this in the following definition.

Definition 2.10. A nondeterministic pof automaton is called guessing if there is some
initial state that contains an atom, or some transition

a
pP—4q
where ¢ contains an atom that appears neither in p nor a.

The automaton for condition (c) in the proof of Lemma 2.9 used guessing, since its
initial states contained atoms. We will show that if the automaton is non-guessing,
and its state space has dimension at most one, then the universality problem is decid-
able. The bound is tight — if we lift allow guessing then we can use the undecidability
proof from Theorem 2.8, and if we allow dimension two, then we also get undecid-
ability, which is left as an exercise for the reader.

Theorem 2.11. The following problem is decidable:

« Input: A nondeterministic pof automaton, which is non-guessing and has a state
space of dimension at most one.

« Question: Does it accept all words?

We do not give any complexity bounds, since the algorithm that we provide is
highly inefficient, and is based on a brute-force procedure that searches through all
possible witnesses of some kind, with no explicit bound on the size of these witnesses.

The rest of Section 2.4 is devoted to proving the above theorem. As mentioned
in Section ??, the powerset construction does not work for pof sets. However, as
we will see in this proof, the two extra assumptions - dimension at most one and
non-guessing — will enable us to exhaustively search the state space in the powerset
automaton, despite this automaton not being a pof automaton.

For the rest of this proof, fix a nondeterministic pof automaton

A=(Q.%,ALF)

that we want to check for universality. We will discuss the usual powerset automaton,
which we denote by PA, despite this automaton not being a pof automaton. Let us
recall the construction of the powerset automaton. The input alphabet is the same.
States in the powerset automaton are sets of states in the original automaton, with
the initial state being /, and the final states being those that intersect F. The point of
the powerset automaton is that it is deterministic: when it is in a state P C Q, and it
reads an input letter a, then it deterministically goes to the state

{ge Q] piqforsomepeP ).

Although the powerset automaton is not a pof automaton, we will be able to represent
its reachable states in a finite way, under the extra assumptions from the theorem.

The non-guessing assumption will ensure that only finite sets of states appear in
the powerset automaton.
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Lemma 2.12. If the automaton A is non-guessing, then every reachable state in the
powerset automaton is a finite subset of Q.

Proof. By the non-guessing assumption, we know that if the powerset automaton
reads an input word w, then its state will be a subset of

{qg € Q] all atoms from g appear inw }.

The above set is finite, since a pof set can only have finitely many elements that use a
given finite set of atoms. O

Thanks to the above lemma, from now on, we will be working in the finite powerset
automaton, which is obtained from the powerset automaton by restricting its state
space to finite sets. The general idea behind our universality algorithm is that it will
exhaustively search for two kinds of witnesses:

« a finite witness that the automaton rejects some word; or
« a finite witness that the automaton accepts all words.

The witnesses of the first kind are straightforward: they are rejected words. The wit-
nesses of the second kind are described in the following lemma (we will later explain
why these witnesses can be viewed as finite).

Lemma 2.13. The automaton A accepts all words if and only if there is a family
R < Pu0
of states in the finite powerset automaton with the following properties:
1. R 3 1, i.e. R contains the initial state of the finite powerset automaton;

2. R contains only sets that intersect F, i.e. it only contains accepting states of the
finite powerset automaton;

3. R is closed under applying transitions of the finite powerset automaton;
4. R is equivariant, i.e. closed under applying atom permutations;

5. R is upward closed with respect to inclusion, when restricted to finite sets: if a finite
set P C Q contains some set from R, then also P € R.

Proof. The implication « is immediate; in fact it holds already if we only keep the
first three conditions 1-3. Let us now prove the implication =. Define R to be the
upward closure of the reachable states of the powerset automaton, i.e. R is the finite
sets that contain some reachable state of the powerset automaton. Conditions 1, 2
and 5 follow from the definition of R. By equivariance of the original automaton, the
set of reachable states in the powerset automaton is also equivariant, and therefore
so is its upward closure, thus proving condition 4. Finally, condition 3 follows from
monotonicity of the transition function of the powerset automaton: if we increase the
source state, then we also increase the target state. O
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As mentioned in the proof, the equivalence in the above lemma would continue to
hold without the last two conditions 4 and 5 about equivariance and upward closure.
The purpose of These conditions, and of the assumption that Q has dimension at most
one, is to ensure that R can be represented in a finite way. This representation will be
based on the following order on finite subsets of Q:

R CRy iff m(Ry) € R, for some atom permutation 7. (2.1)

It is not hard to see that two subsets are equivalent under the above order, i.e. they
are compared in both directions, if and only if they are in the same orbit under atom
permutations. It is also not hard to see that a subset R is upward closed with respect
to this order if and only if it satisfies conditions 4 and 5. The following lemma shows
that every upward closed set — and therefore also the set R from Lemma 2.13 - is
the upward closure of a finite set, and thus it can be represented in a finite way. The
lemma crucially uses the assumption on dimension one, and it would fail for atom
dimension two or more.

Lemma 2.14. Let Q be a pof set of dimension one. If R C Pg,Q is upward closed with
respect to the order C, then there is a finite set Ry C R such that

ReR iff Ro E R for some Ry € Ry.

Proof. To prove the lemma, we will use a similar observation about vectors of natural
numbers, equipped with the coordinatewise ordering

def
Xtee s X)) SO yd) = XISYIA-AXg < ya
This observation is called Dickson’s Lemma, and is stated below.

Dickson’s Lemma Let X C N? be a set that is upward closed with respect to the
coordinatewise ordering. Then there is some finite set Xo C X such that

xeX iff  xo < x for some xy € Xp.

We will reduce the present lemma to Dickson’s Lemma, using the assumption
that Q has atom dimension at most one. Let us decompose Q into components of
dimension zero and one:

Q0 = A'+...+A" + Al4... 4Al
— —

k components of ¢ components of

dimension zero dimension zero

For a finite set R C Q, define its profile to be the following information:
i. which elements from components of dimension zero belong to R;

ii. for each nonempty subset I C {1,...,{}, how many atoms a satisfy

iel iff the i-th copy of a belongs to P.
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The profile of a set identifies the set up to atom permutations, i.e. two finite subsets
of O have the same profile if and only if they are in the same orbit. Together with
equivariance of R, this implies that membership in R can be seen as a question about
profiles, i.e. we have

ReR =3 profile(R) € P, (2.2)

where P is defined to be the image of R under the profile map.
The point of profiles is that they are essentially vectors of natural numbers. More
precisely, we can view the profile as a function

answers to answers to
question (i) question (ii)

This allows us to view finite sets of states as vectors of natural numbers of fixed di-
mension, which will enable us to use Dickson’s Lemma. (Observe that this technique
would not longer work for dimension two, since we would need to describe how pairs
of atoms interact).

The profile map has the following monotonicity property, where profiles are or-
dered coordinatewise:

RICR, = profile(R;) < profile(R»). (2.3)

This is because increasing the profile corresponds to adding states to the set. Thanks (2.3)
and upward closure of R, the set of profiles # is upward closed under <. Therefore,
we can apply Dickson’s Lemma to conclude that £ is generated by some finite set of
profiles Py. Together with (2.2), this gives us

ReR & Py <profile(P) for some Py € P. (2.9)

Choose Ry so that its profiles are exactly those from $. The conclusion of the lemma
is proved in the following diagram:

ReR
y X\vard closure of R
Py < profile(R) RyCR
for some Py € Py @3) for some Ry € R

O

We are now ready to complete the proof of the theorem. Define a witness for uni-
versality to be a set R as in Lemma 2.13, which is represented by a finite set Ry as in
Lemma 2.14. Define a witness for non-universality to be a rejected word. The algo-
rithm exhaustively searches for witnesses of both kinds, and it is guaranteed to find
one in finite time. (As mentioned before, we have no explicit bounds on the running
time of the algorithm, beyond saying that it runs in finite time.) It remains to show
that one can verify a witness for universality, i.e. given a finite set R, one can check
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if its upward closure R satisfies the conditions of Lemma 2.13. The only interesting
condition to check is condition 3, which says that R is closed under applying tran-
sitions. By monotonicity of the transition function in the powerset automaton, this
reduces to checking if for every R in the finite set Ry and every input letter a € X, the
resulting state is in R. Although there are infinitely many possible letters a, we only
need to check this for finitely many choices, since we only need to use at most d fresh
atoms, where d is the atom dimension of the input alphabet and fresh atoms are those
that do not appear in R. This completes the proof of Theorem 2.11.

Exercises

Exercise 40. Show that languages recognised by one way non-guessing alternating automata
are not closed under reversals.

Exercise 41. Show that the order defined in (2.1) is no longer a well-quasi ordering if we use
infinite subsets of A.

Exercise 42. Show that the order defined in (2.1) is no longer a well-quasi ordering if we use
finite subsets of A? instead of A. For example, we have

{(John, Eve), John, John)} < {(Eve, Tom), (Mark, John), (Mark, Mark) .}
~—————

this pair to the remaining elements, we
is deleted apply an atom permutation with
Mark + John and John + Eve

Exercise 43. Consider the following ordering on A*. We say that w < v if one can obtain w
from v as follows: (a) first delete some letters from v; then (b) apply some atom permutation. Is
this a well-quasi-ordering?

Exercise 44. We say that a language L C X* is upward closed if it is closed under inserting
letters. In other words,

wwelL = wavelL foreveryw,veX'andacecX.

Is it true that every language that is both equivariant and upward closed is necessarily recog-
nised by a nondeterministic pof automaton?
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Chapter 3

More computational models
with atoms

In the previous sections, we discussed pof variants of deterministic and nondetermin-
istic automata. In this chapter, we give a sample of other models of computation,
namely alternating automata, two-way automata, circuits, context-free grammars,
and Turing machines. This material below is nothing but a collection of exercises,
each one preceded by a brief description of the relevant model of computation.

3.1 Alternating automata

Earlier in this chapter, we showed that in the pof setting, nondeterministic automata
are no longer equivalent to deterministic. There are two more examples of this phe-
nomenon, namely two other variants of automata that are equivalent to the usual au-
tomata in the atom-free case, but are no longer equivalent in the presence of atoms.
The first of these is alternating automata.

An alternating pof automaton is a generalization of nondeterministic automata,
which is self-dual in the sense that it does not priviledge existential choice over uni-
versal choice. Let us describe this model. The automaton has the same syntax as a pof
nondeterministic automaton, except that there is an additional equivariant partition
of the states into two parts, called the existential and universal states. The semantics
are changed as follows. We assume that the automaton has one initial state, and the
language of the automaton is defined to be the words accepted from this initial state.
The set of words w accepted from a state g is defined by induction on the length of the
word as follows!. The empty word is accepted from g if and only if g is a final state.
Consider now a nonempty word, say of the form aw where a is a letter and w is some
shorter word. The word aw is accepted from a state g if:

IThis model is often considered with e-transitions, but we avoid them for simplicity. However, we do
use e-transitions in Exercise 59, with the semantics being left to the reader.

29
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« the state g is existential, and w is accepted from p for some transition
q—p;

« the state g is universal, and w is accepted from ¢ for every transition

a

q—D.

Exercises

Exercise 45. Give an alternating pof automaton that recognises the language

{we A"| all letters in w are different }.

Exercise 46. Show that in the atom-less case, i.e. when the states and input alphabet have
atom dimension zero, this model recognises exactly the regular languages.

Exercise 47. Show that languages recognised by alternating pof automata are closed under
complement.

Exercise 48. Show that emptiness is undecidable for alternating pof automata.

Exercise 49. Show that emptiness continues to be undecidable for alternating pof automata
even if we require the state space to have atom dimension 1.

Exercise 50. Show a language that witnesses point 3 in Figure ??.

Exercise 51. Show a language that witnesses point 4 in Figure ??, possibly assuming conjec-
tures about complexity classes being distinct.

Exercise 52. Show that the non-guessing alternating pof automata are strictly weaker than
the general model.

Exercise 53. Show that emptiness becomes decidable for alternating pof automata if we
require the state space to have atom dimension 1, and the automaton must be non-guessing.

3.2 Two-way automata

We now describe a second extension of finite automata, which is equivalent to the
usual automata in the atom-free case, but not in the presence of atoms. This is a
two-way automaton, where the head can move both left and right. This model is the
same as Turing machines that have a read-only input tape and no work tape. We
will consider the pof variant of this model, in the deterministic case. A deterministic
two-way pof automaton is defined like a deterministic pof automaton, except that the
transition function is of type

O X (Z+{r,}) — {accept, reject} + (Q X {left, stay, right}).
——— —————

input letters or endmarkers head movement

The automaton can also reject by entering an infinite loop.
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Exercises

Exercise 54. Show that in the atom-less case, i.e. when the states and input alphabet have
atom dimension zero, this model recognises exactly the regular languages.

Exercise 55. Suppose that atoms are names, which can be written using the latin alphabet.
The atomless representation of an element in a pof set is the string over the finite alphabet, which
is obtained from the latin alphabet by adding letters for brackets and commas, that is obtained
by writing out each atom as a string. For example the triple

(John, Eve, John) € A®

has an atomless representation of 15 letters, where the first letter is an opening bracket and the
second letter is J. The atomless representation extends to words over a pof alphabet. Show that
for every two-way pof automaton, the set

{ atomless representation of w| the automaton accepts w }

is in the complexity class L, i.e. deterministic logarithmic space.

Exercise 56. Consider the nondeterministic variant of the previous exercise. Show that the
language of atomless representations is in NL, i.e. nondeterministic logarithmic space, and it
can be complete for that class®.

Exercise 57. Find a deterministic two-way register automaton which recognises the language

{a,---a, :ay,...,a, are distinct and n is a prime number}.

Exercise 58. Consider nondeterministic two-way register automaton A with one register and
labels X. Show that the following language is regular (in the usual sense, without data values):

{by---b, e : Aaccepts (by,ay): - (by,a,)

for some distinct atoms ay, ..., a, € A}.

Exercise 59. Show that for every nondeterministic two-way pof automaton, there is an equiv-
alent (one-way) alternating pof automaton with e-transitions.

3.3 Circuits

In this group of problems, we consider the pof version of circuits. A pof circuit consists
of:

1. apof set X of variables;
2. apof directed acyclic graph whose vertices are called gates;
3. a distinguished output gate;

4. an equivariant labelling from gates to X + {V, A}.

2A corollary of Exercises 55 and 56 is that
pof two-way automata determinize = NL =L.

It is likely that the assumption is false, but no proof is known as of this time.
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Given a valuation of the variables X — {true, false}, the circuit computes a value in
the natural way, which is the value of the output gate.

Exercises
Exercise 60. Show that satisfiability is undecidable for pof circuits.

Exercise 61. A circuit is called a formula if the directed acyclic graph is a tree. Show that
every pof circuit can be transformed into an equivalent formula.

Exercise 62. A pof circuit is said to be in DNF form if the root gate is a disjunction, its children
are conjunctions, and their children are variables or their negations. Show that satisfiability is
decidable for circuits in DNF form.

Exercise 63. CNF normal form is defined dually to DNF normal form. Show that not every
pof DNF circuit can be transformed into an equivalent pof CNF circuit.

3.4 Pushdown automata and context-free grammars

In this section, we discuss pof variants of pushdown automata® and context-free gram-
mars. We show that basic results, such as equivalence of pushdown automata and
context-free grammars, or decidability of emptiness, transfer easily to the pof setting.
We also motivate the models by giving examples of automata and grammars that use
atoms.

Definition 3.1. A pof pushdown automaton consists of

Q z r GgoeQ vyel,
states input stack initial state  initial stack

alphabet  alphabet symbol

such that the initial state and initial stack symbol are equivariant, together with an
equivariant transition relation

popped input pushed
—— —— ——
0 c O x I'M x EUe) x Q x I

such that the popped and pushed strings have bounded length.

The language recognised by such an automaton is defined in the usual way. We
assume that the automaton accepts via empty stack, i.e. a run is accepting if the last
configuration (state, stack contents) has an empty stack.

Similarly, we can define a pof pushdown grammar.

3Context-free languages for infinite alphabets were originally introduced by Cheng and Kaminski
(1998), who proved equivalence for register extensions of context-free grammars and pushdown automata.
The generalisation to orbit-finite pushdown automata and context-free grammars is from Bojanczyk et al.
(2014). See also Murawski et al. (2014); Clemente and Lasota (2015a,b).
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Definition 3.2. A pof context-free grammar consists of

N s RCNX(N+%)' SeN
—— N—— ~——
nonterminals input rules initial

alphabet nonterminal

where the nonterminals and input alphabet are pof sets, the set of rules is equivariant
and has bounded length, and the initial nonterminal is equivariant.

The language generated by a grammar is defined in the usual way.

Example 12. [Pushdown automaton for palindromes.] For a pof alphabet X, consider
the language of palindromes, i.e. words which are equal to their reverse. This language
is recognised by a pof pushdown automaton which works exactly the same way as
the usual automaton for palindromes, with the only difference being that the stack
alphabet I is now a pof set, namely X. For instance, in the case when £ = A, the
automaton keeps a stack of atoms during its computation. The automaton has two
control states: one for the first half of the input word, and one for the second half of
the input word. As in the standard automaton for palindromes, this automaton uses
nondeterminism to guess the middle of the word. [J

Example 13. [Pushdown automaton for modified palindromes.] The automaton in
Example 12 had two control states, which did not store any atoms. In some cases,
it might be useful to have a set Q of control states that uses atoms. Consider the
set of odd-length palindromes where the middle letter is equal to the first letter. A
natural automaton recognising this language would be similar to the automaton for
palindromes, except that it would store the first letter a; in its control state.

Another solution would be an automaton which keeps the first letter in every
token on the stack. This automaton has a stack alphabet of I' = X X X, and after
reading letters a; - - - a,, its stack is

(al’ al)? (al’ a2)9 e (ala an)~

This automaton needs only two control states. Actually, using the standard construc-
tion, one can show that every orbit-finite pushdown automaton can be converted into
one that has one control state, but a larger stack alphabet. [

The following example gives some motivation for studying orbit-finite pushdown
automata.

Example 14. [Modelling recursive programs] Pushdown automata without atoms are
sometimes used to model the behaviour of recursive programs with Boolean variables.
By adding atoms, we can also model programs that have variables ranging over atoms.
Consider a recursive function such as the following one (this program does not do
anything smart):

1| function f(a: atom)

| begin

b:=read() // read an atom from the input
if b != a then
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£(b)
if b != read() then
fail() // terminate the computation

5| end

The behaviour of this program can be modelled by a pof pushdown automaton. The
input tape corresponds to the read () functions. The stack corresponds to the call
stack of the recursive functions; the stack stores atoms since the functions take atoms
as parameters. Since the only variables are atoms, the set of possible call frames
(i.e. the stack alphabet) is a pof set. Pof pushdown automata could also be used
to model more sophisticated behaviour, including mutually recursive functions and
boolean variables. [

Theorem 3.3. Pushdown automata recognize the same languages as context-free gram-
mars. Furthermore, emptiness is decidable.

Proof. We just redo the classical constructions, which are so natural that they easily
go through in the pof extension.

« From a pushdown automaton to a context-free grammar. Without loss of gen-
erality, we assume that each transition either: pops nothing and pushes one
symbol; or pops one symbol and pushes nothing. We also assume that in every
accepting run, the stack is nonempty until the last configuration. Every push-
down automaton can be transformed into one of this form, without changing
the recognised language, by using additional states and e-transitions. The trans-
formation can be done in polynomial time, assuming that equivariant subsets
are represented using formulas.

Assuming that the pushdown automaton has the form discussed above, the cor-
responding grammar is defined as follows. The nonterminals are

N = (s} +  OxIxO0.
——
an initial nonterminal

The language generated by a nonterminal (p, v, ¢) is going to be the set of words
which label runs of the following form:
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the remains unchanged through the run

begins with state p ends with state g
and v on the top of and

the stack (but possi-

bly other symbols

below)

To describe these runs, we use the following grammar rules. All the sets below
are equivariant and have bounded length:

1. Transitive closure. For every p,q,r € Q and y € I', there is a rule
(P.v.q) = (p,y, (17, q).
2. Push-pop. For every transitions

(p.e,a,p'.y) q',v.,b,q,€)
push pop

there is a rule
(P.v.9) = a(p’,y'.q")b.
3. Starting. For every transition that pops the initial stack symbol 7y,
(p,70,4,9,€)
~—— ——
pop

there is a rule
S — (g0, 70, pa.

« From a context-free grammar to a pushdown automaton. The automaton keeps a
stack of nonterminals. It begins with just the starting nonterminal, and accepts
when all nonterminals have been used up. In a single transition, it replaces the
nonterminal on top of the stack by the result of applying a rule. This automaton
has one state (if we disregard the restriction that all transitions have to be either
push or pop).
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« Emptiness is decidable. We now show that emptiness is decidable. We use
the context-free grammars, and the usual algorithm. This algorithm stores an
equivariant subset of the nonterminals that are known to be nonempty (also
known as productive nonterminals). Initially, the subset is empty. In each step,
we add a nonterminal X to the subset if there is some rule in the grammar,
where the left hand side has X, and the right hand side has only terminals and
nonterminals that are already in the subsets. Because the set of rules is equiv-
ariant, in each step the subset is equivariant. Therefore, the subset can grow
only in finitely many steps before stabilizing. The number of steps is at most
the number of orbits in the set of nonterminals, which is at most exponential
in the representation of the grammar.

Exercises
Exercise 64. Consider the following extension* of pof pushdown automata, where a new

kind of transition is allowed:

fresh(a)
-

q )4 for states p, g and an input letter a € A.

When executing this transition, the automaton reads letter @ and changes state from g to p,
but only under the condition that all atoms from the input letter a are fresh (i.e. do not appear
in) with respect to every letter on the stack and the current state g. Show that emptiness is
decidable.

Exercise 65. Consider the following higher-order variant of orbit-finite pushdown automata®.
The automaton has a stack of stacks (one could also consider stacks of stacks of stacks, etc., but
this exercise is about stacks of stacks). There are operations as in a usual pushdown automaton,
which apply to the topmost stack. There is also an operation “duplicate the topmost stack” and
an operation “delete the topmost stack”. Show that emptiness is undecidable.

Exercise 66. Show a language that is generated by a pof context-free grammar, but not by
any pof context-free grammar with a finite (not just pof) set of nonterminals.

Exercise 67. Show that emptiness for pof context-free grammars is ExpPTIME-complete.
Exercise 68. Show that if the set of terminals (i.e. the input alphabet), is finite (i.e. pof of di-
mension zero), then pof context-free grammars are the same as usual context-free grammars.
Exercise 69. Show that pof context-free grammars can be converted into Chomsky normal

form, where all rules are of the form X — YZ with X, Y, Z nonterminals, or X — a with X a
nonterminal and a a terminal.

3.5 Turing machines

In this section, we discuss the pof version of Turing machines. A pof Turing machine
is defined like a Turing machine, except that the set of states, and the alphabets are
pof sets, and the transition function is equivariant.

4This extension is based on Murawski et al. (2014).
>This exercise is based on (Murawski et al., 2014, Section 6).
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We assume that the reader is familiar with Turing machines, but we give a more
detailed description of our modal to fix notation. The input alphabet X, the work
alphabet I', and the set of states Q are all pof sets. We assume that the work alphabet
contains the input alphabet, and there is some designated blank symbol

blank e '\

that is equivariant. One could have a two tape model, but since we will not be inter-
ested in machines with sublinear space (e.g. logarithmic space), we use the one tape
model for simplicity. In this model, there is one tape that is read-write, which initially
contains the input string, and which is also used for storing intermediate computa-
tions. The tape is infinite in both directions. A configuration of the Turing machine
consists of the tape contents (i.e. each cell has some letter from the work alphabet), a
head position (which points to some cell), and a state from Q. The initial configuration

looks like this:

blanks input string blanks

—_—

—_—

a a, as

[

9o
head is in initial state,
and just before the first
input letter

The behaviour of the Turing machine is specified by its transition function, which
is an equivariant function of type

oxTI - {accept, reject} + (Q X {left, stay, right}x T' ).
—_—— ——
current state and head movement what is
letter under written on
the head the tape

Using the transition function, the machine computes a new configuration in the ex-
pected way, or it accepts/rejects. This leads to a computation (a sequence of config-
urations), which is either finite — when an accept/reject instruction is executed - or
infinite. In a nondeterministic machine, instead of a function we have a binary re-
lation, and an input string might have more than one computation. The language
recognized by a (possibly nondeterministic) Turing machine is the set of words that
have at least one accepting computation.

Example 15. [A Turing machine checking that all letters are different] Consider
the equality atoms. Assume that the input alphabet is A. We show a deterministic
Turing machine which accepts words where all letters are distinct. The idea is that the
machine iterates the following procedure until the tape contains only blank symbols:
if the first non-blank letter on the tape is a, replace it by a blank and load a into the
state, scan the word to check that a does not appear again (if it does appear again,
then reject immediately), and after reading the entire word go back to the beginning
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1 Sam Eve Tom 9 Eve Tom

2 - Sam Eve Tom 10 - Tom

I Eve

3 Eve Tom 11 Tom
Sam Eve

4 . Eve Tom 1 2 Tom

Sam

7 Eve Tom 1 5
! T
Tom
8 Eve Tom 1 6

Figure 3.1: An accepting run of the Turing machine from Example 15.
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of the tape. If the tape is entirely erased, then accept. The sets of states is A, plus two
extra states for the scanning, which are depicted using red and blue in Figure 3.1. O

Having defined Turing machines, we get the usual notions of semi-decidability
(the language of some Turing machine) and decidability (the language of some Tur-
ing machine that always halts). The Church-Turing Thesis states that there is only
one notion of decidable language, which is captured by Turing machines. Does intro-
ducing atoms give a violation of this thesis? What does that even mean? One way
of answering this question is to relate computation with atoms to the classical notion
of computation without atoms. A word with atoms can be represented by a word
without atoms, by writing down the atoms, such as “John” or “Mary” using a finite
alphabet. Under such a representation, we get a usual word over a finite alphabet,
which can be used as an input for the classical atom-free models of computation. We
will show later in this section that Turing machines with atoms can be simulated by
machines without atoms, and vice versa, and thus the two models of computation are
essentially equivalent. Using this equivalence, we can carry over to the atom world
classical results, such as equivalence of deterministic and nondeterministic machines
in the presence of unbounded computation time. However, in Chapter 8 we will dis-
cover a twist in the story — if we use a more general notion of pof sets, namely (not
necessarily polynomial) orbit-finite sets, then some of the equivalences break down,
for example nondeterministic machines are not equivalent to deterministic ones. Be-
fore we get to the twist, let us tell the un-twisted story, which involves pof sets.

We begin by formalizing what it means to “write down” an atom.

Definition 3.4. A representation of the atoms is any function
r:2"—=A

which is surjective (every atom has at least one representation) and such that one can
decide if two strings represent the same atom.

An alternative choice of definition would require the function to be bijective,
which would also give a simpler algorithm for deciding if two strings represent the
same atom. We choose to use the above definition because it will more naturally
extend to atoms with more structure.

Suppose that we have a representation of the atoms. We can extend it to represent
elements of a pof set: an element of such a set is described by indicating which com-
ponent A% is used, followed by a representation of the d; atoms in the tuple. We can
also extend the representation to describes words over a pof set, by using separator
symbols between the letters. Summing up, once we know how to represent atoms
with atom-less strings, we can do the same for words over a pof alphabet. In the fol-
lowing theorem, we show that the atom version of Turing machines correspond to
the usual Turing machines without atoms, via the representation. Furthermore, the
choice of representation is not important.

Theorem 3.5. The following conditions are equivalent for every language L C X over
a pof alphabet:

1. L is recognised by a deterministic pof Turing machine;
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2. L is recognised by a nondeterministic pof Turing machine;
3. L is equivariant and for every representation r,
{w| w represents, under r, some word in L }

is recognised by a nondeterministic Turing machine;
4. as in the previous item, but the machine is deterministic;
5. as in the previous item, but the representation r is quantified existentially.

Proof. The implications 1 = 2 and 3 = 5 are trivial. For the implication 2 = 3, we use
a straightforward simulation, where the simulating machine stores representations
of the simulated Turing machine. Implication 3 = 4 is the classical fact that, with-
out atoms, deterministic and nondeterministic Turing machines compute the same
languages. The interesting implication is 5 = 1, which is proved below.

Let r be a representation as in the assumption 5, and let us write s : 2* — X* for the
extension of this representation to words over the alphabet X. The main idea is that
this representation can be inverted, up to atom permutations, by a deterministic pof
Turing machine. This is proved in the following lemma, which we call the deatomi-
sation lemma, because it transforms a word with atoms into a representation without
atoms. (We use the standard notion of Turing machines for computing a function —
there is an output tape, the machine always halts, and the contents of the output tape
is the output of the function.)

Lemma 3.6 (Deatomisation). There is a function f : ¥ — 2*, computed by a de-
terministic pof Turing machine, such that every word w € X* is in the same orbit as

s(f(w)).

Before proving the above lemma, we use it to prove the implication 5 = 1. Using
the atom-less Turing machine from the assumption, we know that there is a Turing
machine that in puts w € ¥, and checks if s(f(w)) belongs to the language. By the
assumption that the language is equivariant, this is the same as checking if w belongs
to the language. It remains to prove the Deatomisation Lemma.

Proof. Consider some computable enumeration of representations of the atoms, i.e. an
infinite list of strings in 2* which is computed by a Turing machine, and such that
every atom is represented by exactly one string on the list. Such an enumeration can
be found for every representation.

Using this enumeration, we define the deatomisation function f from the state-
ment of the lemma. Consider an input string w € ¥*. The string w contains some
atoms, and these atoms can be listed in the order of their first appearance in the string.
For each of these atoms, we choose a string representation according to the enumer-
ation in the previous paragraph, i.e. the atom with the leftmost appearance gets the
first representation, the atom with the second leftmost appearance gets the second
representation, and so on. We then apply this choice consistently to the entire string.
All of this can be implemented by a deterministic pof Turing machine. ]
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This completes the proof of the implication 5 = 1, and therefore also of the the-
orem. We would like to remark that the proof of the Deatomisation Lemma given
above will fail for more general input alphabets which will be considered later in the
book. The issue is that the proof above refers to the order of appearance of atoms in
the input string, and this will no longer be meaningful for some input alphabets, such
as unordered pairs of atoms, which will be legitimate alphabets in the more general
settings. O

Exercises

Exercise 70. Give a deterministic pof Turing machine for the language

{ w#v| w,v € A* are in the same orbit }.

Exercise 71. Consider a two-tape model, which has a work tape with a separate head. Show
that for every pof Turing machine, deterministic or not, there is an equivalent one (in the two-
tape model) where the state space has atom dimension zero. (Attention: this will no longer be
true for orbit-finite sets, which are not polynomial orbit-finite.)

Exercise 72. Show that the answer to the previous problem is negative in the one-tape
model.
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Chapter 4

Orbit-finite sets

In this chapter, we define two of the main notions discussed in this book, namely finite
supports and orbit-finiteness. The motivating example is minimization of determin-
istic automata.

Minimization of automata. Suppose that we want to minimize a deterministic
pof automaton. The classical construction restricts the state space to the subset of
reachable states, and then quotients this subset under the Myhill-Nerode equivalence
relation

g~p «f gw € F & pw € F for every word w € X*.

For pof automata, we cannot apply this construction, since pof sets are not closed
under taking subsets, or quotients. This is illustrated in the following example.

Example 16. Consider the language
L={weA"| wuses at most two different atoms }.

This language is recognised by a pof automaton, which has a state space
A+ AT+ A%+ A0 L
~_— ——— ——
atoms seen so far reject

This automaton is not minimal, because the states from A2 store the order in a pair
(a, b), which is not needed for the language. To make this automaton minimal, we
should use a state space of the form

A%+ Al 4+ (};) +A°
——

sets of exactly
two atoms

This kind of feature is not available in pof automata. More formally, we will show
that for every deterministic pof automaton for this language, the states after reading

43
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the input words ab and ba must be different (while they should be equal in a minimal
automaton). Indeed, if the same state ¢ would be reached after reading both ab and
ba, then this state would satisfy

n(q) =gq where 7 is the atom permutation that swaps a and b.

If an element in a pof set satisfies the above condition, then it cannot use the atoms a
and b. This cannot happen in an automaton that recognises the language. [

If we would like our automata to be closed under minimization, then they should
support taking subsets and quotients. A quick and dirty solution is to simply add these
two features. We will describe this solution in Section 4.1. Later in this chapter, we
will show that the solution is not so dirty after all.

Exercises

Exercise 73. Define the orbit count of a deterministic pof automaton to be the number of or-
bits of reachable states. For a language, we can consider the set of deterministic pof automata
that recognise it, and have minimal orbit count for this property. Show that this set can con-
tain automata that are non-isomorphic. Here, an isomorphism between two automata is an
equivariant bijection

reachable states of A L) reachable states of B

such that for every input word, applying f to the state of A after reading a word gives the state
of B after reading the same word.

4.1 OQuotiented pof sets

To formalize subsets and quotients, we use partial equivalence relations. A partial
equivalence relation on a set X is defined to be a binary relation that satisfies

x~y = x=y and x~yandy~z = x~z.

symmetric transitive

This is like an equivalence relation, but the missing axiom is reflexivity x ~ x. Defining
a partial equivalence relation is the same as indicating some subset (the elements that
are equivalent to themselves), and then defining a (total) equivalence relation on the
subset. Therefore, partial equivalence relations subsume both subsets and quotients.
We write X, for the set of equivalence classes of ~, and we call this a quotient of the
original set!.

Definition 4.1. A quotiented pof set, qpof for short, is any quotient X,. of a pof set
X by a partial equivalence relation ~ that is equivariant.

1A more complete name would be quotiented subset, but we use the shorter name, despite the fact that
it subsumes both quotients and subsets.



4.1. QUOTIENTED POF SETS 45

Example 17. Quotiented pof sets subsume both subsets and quotients. Let us begin
by illustrating subsets. Every equivariant subset Y C X, can be seen as a quotiented
pof set, which corresponds to the partial equivalence relation

x~y if x=yandxeV.

One example of such a set is the set

) def

Al {(ai,...,aq) € A? | ai,...,a, are pairwise different },

which we call the set of non-repeating tuples. We will use these sets a lot. [

Example 18. In Example 16, we discussed the set

A

N
This is an example of a quotiented pof set. It is the quotient of A? under the partial
equivalence relation defined by

(a,b) ~ (@,b) if {a,b)={d,b'}Aa#b.

O

Similarly to the case of pof'sets, all structure on quotiented pof sets will be required
to be equivariant. Equivariance is defined in the same way as for subsets of pof sets:
membership in the set must be stable under applying atom permutations. Let us define
this more formally.

Definition 4.2. [Equivariant subset of a qpof set] A subset
YC X/

of a quotiented pof set is called equivariant if for every element of X,., which is an
equivalence class [x]. of some element x € X, we have

[x]l.eY & n([x].) € Y for every atom permutation 7.
————
image of &, when applied to the set
of elements that are in the equivalence class [x]

In the above definition, when we apply an atom permutation to an element of an
equivalence class, we take the image of all elements in the equivalence class. An al-
ternative approach would be to apply the atom permutation to a representative of the
equivalence class, and then take the equivalence class of the image. This would give
the same effect, since applying atom permutations commutes with taking equivalence
classes, as long as ~ is equivariant:

n([x].) = [7(x)]- .
———— ————
first take the equivalence class, first apply the atom permutation,

then apply the atom permutation then take the equivalence class
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Example 19. Consider the quotiented pof set

A
2
from Example 18, which is obtained by a quotient of X = A? with respect to a certain

equivalence relation ~. An element of the quotient is an equivalence class of pairs, as
in the following example:

(John, Mary) {(John, Mary), (Mary, John)} . (4.1)

element x € X its equivalence class in X

If we apply to the above equivalence class the atom permutation that swaps John and
Mary, then we get the same equivalence class. [J

In Definition 4.2, we defined equivariance for subsets of quotiented pof sets. Since
quotiented pof sets are closed under taking products X X Y, we can also talk about
equivariant relations on quotiented pof sets, by considering equivariant subsets of
the product X X Y. As a special case of relations, we can discuss equivariant functions
between quotiented pof sets.

Example 20. We will show that there is no equivariant function

s

In this proof, we treat elements of (‘i) as sets {a, b} of size two, although formally they
are defined to be equivalence classes of ordered pairs. Consider some hypothetical
function f, and some input-output pair

f(a.b}) = c.

We first rule out the case that ¢ ¢ {a, b}. If this were the case, then we could apply an
atom permutation to the input-output pair that moves ¢ without moving a and b, and
get a violation of functionality. Let us now rule out the case ¢ € {a, b}. If this were
the case, then we could apply an atom permutation that swaps a and b; this atom
permutation would not change the input, but it would change the output, and so it
would also be a violation of functionality. [

Quotiented pof sets are a solution to the problem of minimization of deterministic
pof automata. Indeed, if we have some pof automaton, then we can define a partial
equivalence relation on its states by

p~q &f p and g are both reachable, and accept the same words.

By equivariance of the automaton, this is an equivariant partial equivalence relation.
Therefore, the quotient Q,.. is a quotiented pof set. As usual, one can define a quotient
automaton A;. which recognises the same language as the original automaton A.
This automaton is well-defined (i.e. its structure is equivariant), and it is minimal in
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the appropriate sense. More details will be provided later in this chapter, when we
prove Myhill-Nerode Theorem.

Exercises

Exercise 74. How many equivariant functions are there of type

(o)
-

d e
ford,e €{0,1,...}?

Exercise 75. Find a deterministic gpof automaton for the language

{we (3) | some atom a appears in all letters }.

Exercise 76. Find a deterministic gpof automaton for the language

{we (3) | there are at most distinct 5 atoms used in the word }.

Exercise 77. Find a deterministic qpof automaton for the language
(we (A)* | some atom from the set in the first letter appears

3 an even number of times in the remaining letters

Exercise 78. Find a deterministic qpof automaton for the language:
A\ . L
{we ) | there exist a, b € A such that every letter in w intersects {a, b} }.

Consider the first two letters in the input string that are not equal to each other,
which are sets x and y of size two. If:

1. If the sets are disjoint, then the only candidates for a, b are from x U y. Then,
we can use the same kind of solution as in Exercise 77.

2. Otherwise, the only candidates for a and b are:

(a) the two atoms that are in the symmetric difference (x \ y) U (y \ x); or

(b) the atom in the intersection, and some other atom.

4.2 Orbit-finiteness

One could worry that quotiented pof sets are a hack that fixes the minimization issue
for automata, but does not have proper theoretical justification. In this section, we
ease such worries, by giving a more semantic concept, namely orbit-finite sets, and
showing that they are exactly the same as quotiented pof sets.
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Group actions. The semantic characterization will use two of the central notions

in this book: finite supports, and orbit-finiteness. These notions are defined in terms

of group actions, so begin by defining those.

Definition 4.3. An action of a group G on a set X is defined to be a function
GxX—>X,

which we denote by

(7, x) = 7 (x),

that satisfies the following two axioms:

(moo)x) = n(o(x)) and 1(x) = x.
| S’ L
compose in the group apply the action the group identity
and then apply the action two times does not move anything

In this book, the group G will always be permutations of the atoms, although in
later chapters will restrict the permutations to those that respect some extra structure
on the atoms, such as a linear order.

Example 21. Sets constructed using atoms are naturally equipped with an action of
the group of atom permutations. For example, the set A¢ is equipped with the action
defined by

n(aiy,...,aqg) = (n(ay),...,n(ay)).

We have been using this group action implicitly in the previous chapters. The action
also extends to other sets, such as A* or the powerset PA. In the case of the powerset,
we use the image, i.e.

aX)={na)| aeX }.

Finite supports. We now introduce the fundamental notion of supports. The gen-
eral idea is that the support of an element x in a set X consists of the atoms that are
needed to describe it. Since the notion is defined in abstract terms of group actions,
it will be useful to keep the following examples in mind while reading the formal
definition.

Set X ‘ Element x € X ‘ Support of x
A? (John, Mary) John, Mary
PA {a€e A| a# John } John

PA A 0
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Definition 4.4 (Supports). Consider a set X that is equipped with an action of atom

permutations. An element x € X is said to be supported by a list of atoms ay, . .., a, if
ma)=ayN---Anla,) =a, = n(x)=x (4.2)
we write this as 7(a) = a, where a is the list ay, ..., a

holds for every atom permutation 7. We say that x is finitely supported if it is supported
by some finite list of atoms.

Before continuing, let us remark on the notation. In the above definition, we use
finite lists for supports. The order of atoms in this list, or their repetitions, are not
relevant for the notion of support, since they do not affect the assumption of the
implication (4.2). Therefore, the only relevant information is the set of atoms that
appears on this list, which is why many authors present the support as a finite set
of atoms, and not a list. If one uses sets {ay,...,a,} for supports, then one should
remember that the assumption in implication (4.2) is not

a{ar,....an}) = a1, ..., an},
which is a weaker assumption, because it allows 7 to swap atoms inside the set.

Example 22. Let us discuss which elements of the powerset PA are finitely sup-
ported. If x € PA is finite, then it is finitely supported, namely by any list that con-
tains all atoms in this set. A similar result holds for co-finite sets, i.e. sets obtained by
removing finitely many atoms. For example, if we take

x = A\ {John, Mary},

then x is supported by the atoms John, Mary, because any atom permutation that fixes
both John and Mary will map the set x to itself, even if it permutes the other atoms.
Therefore, all finite and co-finite elements in PA are finitely supported.

The remaining elements of the powerset are not finitely supported. Let us prove
this formally. Suppse that x € PA is neither finite nor cofinite, and take some hy-
pothetical finite support a. There must be some atoms b, ¢ that are not in this finite
support, and such that b € x and ¢ ¢ x. Take the atom permutation that swaps b and
¢, and leaves all other atoms fixed. This permutation fixes the support, but moves x,
which contradicts the definition of finite support. O

Orbits and orbit-finiteness. We now introduce the second fundamental notion
of this book, which is orbit-finiteness. This idea was already discussed informally
before, but we now give a formal definition in terms of group actions. Consider a set
X equipped with an action of atom permutations. An orbit of X is defined to be any
subset of the form

{ 7(x)| mis an atom permutation },

for some x € X. We will be interested in sets that have finitely many orbits, and
where all elements are finitely supported. (In the exercises, we explain why these two
conditions are necessary for the theory to work.)
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Definition 4.5 (Orbit-finite set). An orbit-finite set is defined to be a set X, together
with an action of the group of atom permutations, such that every element x € X has
finite support, and there are finitely many orbits.

Example 23. Recall the set A that consists of non-repeating d-tuples of atoms.
This set has one orbit. The set A3 is orbit-finite. Like any orbit-finite set, this set
decomposes into a disjoint union of one-orbit sets, which in this case uses five orbits:

A+ AP AP AP AP
~~— —_— S~——

all atoms two atoms are equal, and all atoms
are equal one is diffferent, which are different
can happen in three ways

O

Example 24. The powerset PA is not orbit-finite, because sets of different finite size
are in different orbits. [J

Example 25. Consider the set A® of non-repeating triples. On this set, consider the
equivalence relation that identifies triples modulo cyclic shift:

(a,b,c) ~ (b,c,a) ~ (c,a,b) foralla,b,ceA.

Consider the quotient of under this equivalence relation. This is a one-orbit set. It is
also an example of a quotiented pof set, since we can view ~ as a partial equivalence
relation on (possibly repeating) triples that removes the repeating triples. [

The following theorem shows that orbit-finite sets are exactly the same as the
quotiented pof sets.

Theorem 4.6. Let X be a set equipped with an action of atom permutations. Then X is
orbit-finite if and only if it admits an equivariant bijection with a quotiented pof set.

Proof. The bottom-up implication is easy, so we only prove the top-down implication.
If a set is finitely many orbits, then it is a disjoint union of one-orbit sets. Since
quotiented pof sets are closed under disjoint union, it is enough to prove the top-
down implication for a one-orbit set X. Choose some x € X. By assumption on finite
supports, this element is supported by some atoms ay, . . ., a4. Define a partial function
from A? to X as follows: it consists of input-output pairs

n(ay,...,az) — n(x),

where 7 ranges over atom permutations. By definition of supports, this is a partial
function, i.e. if the inputs are equal then the outputs are equal. This function is surjec-
tive, since its range is the orbit of x, and we have assumed that X is a one-orbit set. The
function defines a bijection between X and the inputs, quotiented by the equivalence
relation “same output”. |
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A Myhill-Nerode Theorem. We now use the theory developped above to prove
an orbit-finite version of the Myhill-Nerode Theorem. In the classical, finite version,
the theorem says that a language is regular if and only if its syntactic congruence
has finite index (i.e. finitely many equivalence classes), with the syntactic congruence
defined as follows.

Definition 4.7. The syntactic congruence of a language L C X* is the equivalence
relation on X* that identifies two words w and w’ if they cannot be distinguished by
any future, i.e.

weLoewvel for every v € ",

The syntactic congruence can be applied also for infinite alphabets, such as quo-
tiented pof sets. We will show that in this case, orbit-finite index will correspond to
being recognised by a deterministic quotiented pof automaton.

We begin by explaining what it means for the syntactic congruence to have orbit-
finite index. The first observation is that the syntactic congruence is equivariant, as
long as the language itself is equivariant.

Lemma 4.8. Let X be a quotiented pof set. If a language L C X* is equivariant, then the
same is true for its syntactic congruence, i.e.

w~w & aw)~aw)

for every words w,w" € X* and atom permutations .

Proof. If the words w and w’ can be distinguished by some future v, then the words
n(w) and m(w’) can be distinguished by the future n(v), thanks to equivariance of
concatenation and of the language L. O

We now explain why the notion of orbits is applicable to the quotient of ¥* under
the syntactic congruence. Consider some set X with an action of atom permutations
(we care about X = X* in this example). Let ~ be an equivalence relation on this set
that is equivariant (we care about the syntactic congruence). The quotient X.. is also
equipped with an action of atom permutations, with the action defined by

equivalence class of x A equivalence class of m(x). (4.3)

By equivariance of ~, it is easy to check that this action is well-defined, i.e. it does not
depend on the choice of representative x in the equivalence class. Thanks to the above
observations, if X is a quotiented pof set, and L C X* is an equivariant language, then
we can equip the quotient

*
/syntactic congruence of L

with an action of atom permutations, and therefore we can ask if this quotient is
orbit-finite. As the following theorem shows, orbit-finiteness is equivalent to recog-
nizability by a deterministic quotiented pof automaton.
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Theorem 4.9. The following conditions are equivalent for an equivariant language L C
>* over a quotiented pof alphabet X:

1. L is recognised by a deterministic quotiented pof automaton;
2. the quotient of ¥* under the syntactic congruence of L is orbit-finite.

Proof. We use essentially the same proof as in the classical Myhill-Nerode Theorem,
except that we use “orbit-finite” instead of “finite”.

1= 2 Let us first show that if L is recognised by a deterministic quotiented pof au-
tomaton, then the quotient from item 2 is orbit-finite. Let Q be the reachable
states of the automaton. If two words give the same state of the automaton,
then they must be equivalent under the syntactic congruence. This gives us a
function from Q to the quotient. This function is surjective, since every word
gives some state, and it is easily seen to be equivariant. Therefore, we can de-
duce orbit-finiteness of the quotient by applying the following straightforward
lemma.

Lemma 4.10. Let f : X — Y be a surjective equivariant function between two
sets equipped with actions of atom permutations. If X is orbit-finite, then so is Y.

Proof. Every orbit of X is mapped to an orbit of Y. ]

2 = 1 We use the standard syntactic automaton whose state space is the quotient,
and whose transition function is given by

. a .
equivalence class of w —  equivalence class of wa.

We will justify that this is indeed a quotiented pof automaton. Directly from the
definition of the action on the quotient described in (4.3), we deduce that quo-
tienting preserves finite supports: if a tuple of atoms supports a word w € X7,
then the same tuple supports its equivalence class under syntactic congruence.
Therefore, every element in the quotient has a finite support. By Theorem 4.6,
the quotient is isomorphic to a quotiented pof set.

O

In the theorem above, we use quotiented pof sets. What about (non-quotiented)
pof sets, as discussed at the beginning of this book? If the input alphabet is non-
trivally quotiented, then we will also need quotients for the state space of the au-
tomaton, as explained in the following example.

Example 26. Consider the input alphabet

()

and a deterministic (non-quotiented) pof automaton. We claim that in this automaton,
all reachable states will have atom dimension zero, i.e. they will come from atom-free
components A°. To see why this is true, we use the following observation.
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Lemma 4.11. Letd > 0. There is no equivariant function

A d
f.(z)—>A.

Thanks to the observation in the above lemma, if the current state is of atom di-
mension zero, then the next state also has this property. Therefore, the reachable
states of the automaton have atom dimension zero. This will preclude recognizing
any language that depends on atoms in any way. [

The above example shows that we may need quotients if the input alphabet has
quotients. But what if the alphabet does not have quotients, i.e. it is a pof set? As
we will see later in this chapter, the Myhill-Nerode Theorem does hold in this case,
because we have an implication

recognised by a quotiented pof automaton and input alphabet is a pof set

l

recognised by a pof automaton-

However, proving this implication will require developping some extra theory, namely
least supports.

Exercises
Exercise 79. Show that a tuple @ supports x if and only if

(@) = o(a) implies n(x) = 0(x) for every atom automorphisms 7, 0.

Exercise 80. Find all equivariant binary relations on A.

Exercise 81. Show that a function f : X — Y is equivariant if and only if the following
diagram commutes for atom permutation 7:

S
——

N
e <—— 3¢
%T%

 ——
f

Exercise 82. Consider an enumeration a,, a,, . .. of some countably infinite set A. Define the
distance between two permutations of A to be 1/n where a, is the first argument where the per-
mutations disagree. Let X be a countably infinite set equipped with an action of permutations
of the equality atoms. Show that all elements of X are finitely supported if and only if

i g X = m(x
( (%))
permutation of A permutation of X

is a continuous mapping, and that this continuity does not depend on the choice of enumera-
tions of A or X.
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Exercise 83. Show a counterexample, in the equality atoms, to the converse implication from
Exercise 112. In other words, show a set which is not orbit-finite, but where every tuple of
atoms supports finitely many elements.

Exercise 84. Assume the equality atoms. Let R € A" be a finitely supported relation which
is total in the following sense: for every @ € A" there is some b € A* such that R(@b). Show
that there is a finitely supported function f : A" — A whose graph is contained in R.

Exercise 85. Show that in the equality atoms (actually, under any oligomorphic atoms), every
orbit-finite is Dedekind finite?, i.e. does not admit a finitely supported bijection with a proper
subset of itself.

Exercise 86. Show that in the equality atoms, there is a set that is not orbit-finite, but Dedekind
finite in the sense from Exercise 85.

Exercise 87. Call a family of sets directed if every two sets from the family are included in
some set from the family. Consider the equality atoms. Show that a set with atoms X is finite
(in the usual sense) if and only if it satisfies: for every set with atoms X C PX which is directed,
there is a maximal element in X.

Exercise 88. Call a family X of sets uniformly supported if there is some tuple of atoms which
supports all elements of X. Assume that the atoms are oligomorphic. Show that a set X is
orbit-finite if and only if: (*) there is a maximal element in every set of atoms X C PX which is
directed and uniformly supported.

Exercise 89. Show the following variant of Konig’s lemma. If a tree has orbit-finite branching
and arbitrarily long branches, then it has an infinite branch.

4.3 Least supports

An element x € X might have different supports. For example, we can add atoms to
a support, and it will still be a support. In this section, we show that adding useless
atoms to the support is the only phenomenon that can arise, because there is a least
support?.

Theorem 4.12 (Least Support Theorem). Let X be a set with an action of atom permu-
tation. If x € X has some finite support, then one can find atoms ay, . .. ,ay that support
X, and such that every finite support of x contains all atoms ay, ..., a,.

Another way of stating the above theorem is that finite supports are closed under
intersection, if they are viewed as sets (and not lists). It is important that we consider
finite supports. For example, any atom a is supported by the infinite set A — {a}, since
fixing this set is the same as fixing a. The intersection of the two supports {a} and
A — {a} is empty, but a does not have empty support.

Proof of the Least Support Theorem. It is enough to prove the theorem in the case when
X has one orbit; this is because every other set is a disjoint union of (possibly infinitely

This exercise is inspired by Blass (2013).

3This exercise is inspired by (Pitts, 2013, Section 5.5).

4The Least Support Theorem was first proved in (Gabbay and Pitts, 2002, Proposition 3.4). A generali-
sation of this theorem, for other kinds of atoms, can be found in (Bojanczyk et al., 2014, Section 10).
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many) one-orbit sets. Recall the set A of non-repeating tuples that was described
in Example 17. This is an equivariant single-orbit set. The key observation is the
following lemma.

Lemma 4.13. Assume that X has one orbit. There is somed € {0, 1,...} an equivariant
surjective function

f:AD > x
such that tuples with the same value under f are equal as sets:
flai,...,aq) = f(by,...,by) implies {ai,...,aq} = {b1,...,bg}.
Proof. By Lemma ?? there is an equivariant surjective function
f:Y—-X for some equivariant ¥ C A".

Take some equivariant orbit of f, with f viewed as a subset of ¥ X X. This orbit is
still an equivariant function whose image is also X. In other words, we can assume
without loss of generality that Y is a single equivariant orbit in A?. Such an orbit is
an equality type. By projecting away the duplicated coordinates in the equality type,
we can assume that Y contains only nonrepeating tuples. Summing up, we know that
there is a surjective equivariant function

f:AYD 5 X

We show below that the function either satisfies the condition in the statement of the
lemma, or the dimension d can be made smaller. If the condition in the statement of
the lemma is not satisfied, then

flai,....,aq) = f(by,...,by) (4.4)

holds for some tuples @, b which are not equal as sets. Without loss of generality, we
assume that the last atom a, in @ does not appear in the tuple 5. Choose some atom
permutation 7 which fixes the first d — 1 atoms in @ and all atoms in @, but does not
fix a,. We have

1@ 2 f®) " fB) ME 2By L n(p@) E fa@),
which proves that
flai,...,aq4-1,a9) = fai,...,a4-1,a) for some distinct a, ay, ..., ay.
The set of tuples a,ay,...,a; which satisfies the condition above is an equivariant

subset of A@+D, by equivariance of f. Therefore, if some tuple satisfies the condition,
then all tuples in A“*D satisfy it as well, i.e. we could also write “for all distinct” in
the above condition. In other words, the value of f depends only on the first d — 1
coordinates. Therefore, we can use the induction assumption. O
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Using the above lemma, we complete the proof of the Least Support Theorem.
Apply Lemma 4.13 yielding some equivariant function

fA® 5 X

Let x € X, and choose some tuple (ay, ..., a,) which is mapped by f to x. To prove
the Least Support Theorem, we will show that the atoms ay, ..., a, appear in every
support of x. Let then b be some atom tuple which supports x. Toward a contradiction,
suppose that b is not a permutation of aj, . . ., ay, and therefore one can choose atom
permutation 7 such that

n(b;) = b; foreveryiel{l,...,d}

n(a;) ¢ {ay,...,aq} forsomeie€{l,...,d}.
We have
x = (m fixes the support of x)
n(x) = (choice of ay,...,ay)

n(flay,...,aq) = (equivariance of f)

f(r(ay, ... aq)).
Since the tuple n(ay, . ..,a,) isnot equal to (ay, . . ., a,) as a set, it must have a different
value than x, by assumption on the function f. O

A representation theorem

Apart from the Least Support Theorem, another application of Lemma 4.13 is the
following representation theorem for equivariant orbit-finite sets. Let X be a one-
orbit set. Apply Lemma 4.13, yielding an equivariant function

fiAY - x

Because f is equivariant and permutations of coordinates commute with atom auto-
morphisms, the following conditions are equivalent for every permutation g of the
coordinates {1, ...,d}:

flai,...,aq0) = f(aguy, .- -, aea) for some (ay,...,ay) € A@ (4.5)
flar,...,aq0) = f(agy, .- -, Aea) for every (ai,...,aq) e A9, (4.6)

Permutations g which satisfy condition (4.6) form a group, call it G. This is a subgroup
of the group of permutations of the coordinates {1,.. ., d}. We claim:

flar,...;a0) = f(br,...,bs)
iff
Hg eG(ay,...,a;) = (bg(l), e ,bg(d)).
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The bottom-up implication is by definition. For the top-down implication, recall that
Lemma 4.13 asserted that tuples with the image under f must contain the same atoms,
and therefore some g € G must take one tuple to the other. Let us write

A9

to be A@ for the set of non-repeating atom tuples modulo coordinate permutations
from the group G. Since quotienting by G is exactly the kernel of the function f, we
have just proved the following theorem?:

Theorem 4.14. Let X be an orbit-finite set that has one orbit. Then X admits an equiv-
ariant bijection to a set of the form

A(n)/G
for some d € N and some subgroup G of the group of permutations of the set {1, ..., d}.

Example 27. Letd € {1,2,...} and let G be the group of all permutations of {1, ..., d}.
In this case, A/ is the same as

A

d b

i.e. unordered sets of atoms with exactly d elements. [J

Myhill-Nerode for pof sets

As we have mentioned after the proof of the Myhill-Nerode characterization in The-
orem 4.9, in the case of pof sets that are not quotiented, deterministic pof automata
are equivalent to deterministic quotiented pof automata. This is proved below.

Theorem 4.15. Assume that the input alphabet is a (non-quotiented) pof set Z. Then
the two equivalent conditions in Theorem 4.9 are also equivalent to

(3) L is recognised by a deterministic pof automaton.

Proof. Since pof sets are a special case of quotiented pof sets, it is enough to show
that if the input alphabet is a (non-quotiented) pof set, then for every deterministic
quotiented pof automaton, there is an equivalent (non-quotiented) pof automaton.
Consider a deterministic quotiented pof automaton. Let Q be its state space. By The-
orem 4.14, we can assume that the state space is

0=) AY/G,
iel

Consider the pof set
P=>" A"

5This result is from (Bojanczyk et al., 2014, Theorem 10.17), although a similar construction can already
be found in (Ferrari et al., 2002, Definition 2).
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There is a natural projection from P to Q, which is a partial function
Im: P—- Q.

This projection is defined on elements with non-repeating tuples of atoms, and it
returns the corresponding equivalence class. An important property of this projection
is:

(*) every output element arises from finitely many input elements.

Let us pull back the transition function of the original automaton to a transition rela-
tion on states P. In other words, define

ACPXXIXP

to be the inverse image, under the projection I, of the transition function of the orig-
inal automaton. We view A as a binary relation between two pof sets, namely P X
and P. Because the original automaton was deterministic, and thanks to the finite-
ness condition (*), we know that for every input in P X Z, the transition relation A has
finitely many outputs in P. Therefore, we can apply the following lemma to extract
an equivariant function contained in A.

Lemma 4.16. Let X and Y be pof sets, and let A C X X Y be an equivariant binary
relation such that for every x € X the set

{yeY| (x,y)eA }

is nonempty and finite. Then there is an equivariant function 6 : X — Y whose graph is
contained in A.

Proof. Homework. O

Exercises
Exercise 90. Consider a qpof group, i.e. the underlying set is a qpof, and the group operation
is equivariant. Show that such a group must be finite.

Exercise 91. Let X be a qpof. Show that if f : X — X is an equivariant surjective function,
then f is a bijection.

Exercise 92. Consider a chain

h £ 13 fn
Xo—l>'>X1 —2)->X2—>3'>...—»X,1
of equivariant surjective function between qpof sets. Show that the length of this chain is
bounded by a polynomial of the following two parameters of the first set X,: the orbit count,
and the atom dimension.



Chapter 5

Atoms beyond equality

So far, we have worked with atoms that have equality only. It turns out that the theory
developed in this book is also meaningful when the atoms have extra structure, like
an order. We take a logical approach, where the notion of atoms is specified by a
relational structure, i.e. a set with some relations on it. Here are some examples:

(N) (N, <) (Z,<) Q+).
—— —— —— ———
the natural numbers the natural numbers the integers the rational nunmbers
with no relations with order with order with a ternarny relation

for adition x +y = z

All of these structures will be candidates for atoms, however only the first and last one
will turn out to be appropriate. This chapter explains when a structure is appropriate,
and how the theory works when that happens.

5.1 Oligomorphic structures

The choice of atoms will be formalized by a relational structure, as in model theory.
Definition 5.1 (Relational structure). A relational structure consists of:

1. an underlying set A, called the universe of the structure;

2. a family of relations on this set, each one of the form R C A for some d.

We use letters like A or B to describe the atoms. A candidate for the atoms is a
relational structure. Not all candidates are appropriate, however. Here is an example
of an inappropriate one.

Example 28. [Presburger Arithmetic] Suppose that for the atoms we would like to
use the natural numbers with successor, i.e. the relational structure

A: ({O, 1,2,...},_X+y:z).
[N

a ternary relation for the successor

59
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This structure is also known as Presburger Arithmetic. We could consider polynomial
orbit-finite sets for this structure, and subsets of them that are definable using for-
mulas. This time, the formulas could use the relations given in the structure, namely
the successor relation and a zero test. In this setting, many of the problems that were
decidable previously, will become undecidable for the new choice of atoms. An ex-
ample is graph reachability — one can easily encode the halting problem for counter
machines. To implement a zero test on variable x, we check if x + x = x. [J

As we see from the above example, some structures, such as Presburger Arith-
metic, will not be a good choice for the atoms. This is despite Presburger Arithmetic
being a very tame structure, in particular it has a decidable first-order theory, as for-
malized in the following definition. (We assume that the reader is familiar with the
basics of first-order logic, such as what it means for a formula to be true in a structure,
or what free variables are. For a more detailed introduction, see Hodges (1993).)

Definition 5.2 (Decidable first-order theory). The first-order theory of a structure is
the set of first-order sentences that are true in it. Here, a first-order sentence is a
formula that is built using the following constructors

Yx dx vV A = xX=y R(x1,...,x2),
S—— S——— ~—— ~—_———

quantifiers Boolean combinations equality relations from the structure

and which has no free variables. A structure has a decidable first-order theory if there
is an algorithm that decides if first-order sentence belongs to the theory.

We will typically be interested in structures with a decidable first-order theory,
such as Presburger Arithmetic. In fact the latter structure is named Mojzesz Pres-
burger, who proved that its first-order theory is decidable. As we saw in Example 28,
having a decidable first-theory will not — on its own - be sufficient for our theory. It
will be equally important that the notion of equivariant subset is well-behaved.

So far, equivariance, which was defined in terms of atom permutations. When
the atoms are a structure with relations beyond equality, the role of permutations is
played by automorphisms, as described in the following definition.

Definition 5.3 (Automorphisms). An automorphism of a relational structure A is a
bijection 7 of its universe with itself, which preserves all relations, i.e.

aeRr = n(a) € R

holds for every relation R of arity d in the structure and every tuple @ € A¢.

Example 29. [Presburger arithmetic is rigid] Suppose that we define the atoms A to
be Presburger Arithmetic. The problem with this choice is that there are no non-trivial
automorphisms (such structures are called rigid). Indeed, an automorphism must map
0 to 0, and then it must map 1 to 1, and so on. Therefore, the only automorphism is
the identity. This means that every subset of A, or more generally A¢, is going to be
equivariant. In particular, this precludes any finite representation or algorithms that
would deal with equivariant subsets. [J
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Example 30. [Equality atoms] Suppose that we define the atoms A to be a structure
where the universe is some countably infinite set, and which has no relations. (Equal-
ity is assumed to be a given for first-order logic.) An automorphism in this case is the
same as a bijection of the universe with itself, i.e. a permutation of the universe, as
was the case for atoms with equality only. For this reason, we call this structure the
equality atoms. [J

Example 31. [Integers with order] Suppose that we define the atoms A to be (Z, <),
i.e. the integers with order. Automorphisms of this structure must preserve the order.
Therefore, they must also preserve the successor relation. Indeed, if two consecutive
elements x and x+1 would be mapped to non-consecutive elements, then the resulting
gap would be a violation of bijectivity. Therefore, automorphisms of this structure are
translations, i.e. functions of the form x — x+c for some ¢ € Z. In this structure, A has
one orbit, because one can go from every integer to every other integer by applying
some translation. However, A2 has infinitely many orbits, because the difference x; —
X between the two coordinates is preserved by translations. Therefore, there are
uncountably many equivariant subsets of A%, [J

As illustrated in the above examples, we want the structure to have finitely many
orbits under its automorphisms. This should not only hold for the structure A itself,
but also for its powers A?, since such powers will arise in our constructions (such as
pof sets). Hence the following definition.

Definition 5.4. A structure A is called oligomorphic! if for every d € {0, 1,...}, the
structure A? has finitely many elements up to automorphisms of A. More precisely,
for every d, the equivalence relation on A? defined by

a~b if 7(@) = b for some automorphism 7 of A

has finitely many equivalence classes.
Example 32. The equality atoms from Example 30, i.e. an infinite set without any
structure except equality, are oligomorphic. These are the atoms that we have studied

so far: automorphisms are permutations, and the number of orbits in A? is the d-th
Bell number. The other structures

N, +) (Z,<)

discussed in Examples 28 and 31 are not oligomorphic. For the second one, we need
to got to the second power to get infinitely many orbits. [J

Example 33. Every structure with a finite universe is oligomorphic. [J

The notion of oligomorphic structures comes from Ryll-Nardzewski (1959), Engeler (1959) and Sveno-
nius (1959), who proved that countable oligomorphic structures are exactly those which are w-categorical,
i.e. are the unique countable models of their first-order theory. This connection with first-order logic will
be important in Chapter ??, which discusses how orbit-finite sets can be represented using formulas of
first-order logic.
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Example 34. [Ordered atoms] Consider the structure (Q, <) of ordered rational num-
bers. We will call this structure the ordered atoms. This is because it will turn out that
this structure is the canonical way of modelling a total order in our theory, as we will
describe in Chapter 6. We will show that this structure is oligomorphic. An automor-
phism of this structure is any order-preserving permutation. For example, the affine
function
X3 2

is an automorphism. On the other hand, x* is not an automorphism, despite preserv-
ing the order. The reason is that cubing is not invertible on the rationals. To show
that this structure is oligomorphic, we will prove that two tuples

(ai,...,aq), (by,...,.bg) € Q?

are in the same orbit, with respect to atom automorphisms, if and only if they have
the same order type, i.e.

ai<a; © b <b; foralli, je(l,...,d}.

This will imply oligomorphism, since there are finitely many different order types for
each dimension d. Clearly if the tuples are in the same orbit, then they must have the
same order type, by definition of automorphisms. The converse implication is also
not hard to see, for example it is sufficient to consider piecewise affine maps. [

Example 35. The real numbers with order (R, <) are also oligomorphic. The same
argument as for the rationals works. However, we will not study this structure since
we care about countable ones only. [J

Example 36. Consider an undirected graph with two countably infinite cliques (with-
out self-loops). Here is a picture, with only 12 vertices shown for each of the two
cliques:

The graph, like any graph, can be viewed as a logical structure, where the universe
is the vertices, and there is one binary relation for edges, which is symmetric and
irreflexive. The automorphisms of this structure (which are the same as graph au-
tomorphisms in the usual sense) are generated by: permutations of the first clique,
permutations of the second clique, and swapping the two cliques. In particular, the
tuples

(al,...,ad) and (bl,...,bd)



5.1. OLIGOMORPHIC STRUCTURES 63

are equal up to atom automorphisms if and only if they have the same equality types
and the same equivalence types with respect to the equivalence relation “in the same
clique”. Since there are finitely many possibilities for every choice of n, it follows that
these atoms are oligomorphic. [

Polynomial orbit-finite sets. Many of the notions that we have described so far

make sense for other atoms, and not just the equality atoms. The only difference is that

instead of atom permutations, we use the more general notion of atom automorphism.

In the special case of the equality atoms, this will be the same as atom permutations.
We begin with the generalization of pof sets and their equivariant subsets.

Definition 5.5 (Polynomial orbit-finite sets for general atoms). Let A be an oligo-
morphic structure. A pof set over this structure is any set of the form

AN 44 A

A subset X of a pof set is called equivariant if membership in the subset is invariant
under atom automorphisms, i.e.

xeX © akx)eX for every automorphism 7 of A,
with the expected action of automorphisms on elements of the pof set.

The first part of the above definition, i.e. applying a polynomial to some structure,
makes sense for structures that are not necessarily oligomorphic. However, we intend
to study pof sets equipped with equivariant subsets, and equivariant subsets are well-
behaved only for oligomorphic structures.

As was the case for the equality atoms, we can consider pof automata, now for a
general structure.

Example 37. Consider the ordered atoms A = (Q, <) from Example 34, and the
language

{we A" | the letters in w are strictly growing }.

This language is recognised by a deterministic pof automaton. The automaton stores
the most recent letter, and enters a rejecting sink state if it sees a decrease. The state
space is

A+ A+ A0

N—— —— ——
initial last error
atom

and the transition function is defined as expected. [J

Exercises
Exercise 93. Show that the structure (Z, <) is not oligomorphic.
Exercise 94. For the atoms (Q, <), find all equivariant binary relations on A.

Exercise 95. Consider a structure A that is oligomorphic. Let B be a new structure, whose
universe is a pof set over A, and whose relations are equivariant (under automorphism of A).
Show that B is also an oligomorphic structure.



64 CHAPTER 5. ATOMS BEYOND EQUALITY

5.2 Representation of equivariant subsets

The purpose of the theory that is developed in this book is to have a generalization of
finiteness that is amenable to algorithms. In particular, equivariant sets should allow
for finite representations, and should have other good properties of finite sets. From
the very definition of oligomorphism we see that an equivariant subset can be chosen
in finitely many ways, as explained in the following lemma.

Lemma 5.6. Let A be a relational structure that is oligomorphic. Then every pof set has
finitely many equivariant subsets.

Proof. It is enough to show that pof sets of the form A? have finitely many equivariant
subsets, and the result will transfer to general pof sets, which are disjoint unions of
such sets. By definition of oligomorphism, there are finitely many orbits in A?, and
each equivariant subset is a union of such orbits. Therefore, there are finitely many
choices. ]

A corollary of the above lemma is that certain fixpoint algorithms will be guaran-
teed to terminate in finite time. A typical example is graph reachability, as illustrated
below.

Example 38. In Theorem 2.2, we showed that graph reachability is decidable pof sets
under the equality atoms. Suppose that we want to generalise this to any oligomorphic
atoms. A natural idea is to consider the chain

VowCcVicV,C--- (5.1)

where V, is the set of vertices that can be reached from some source vertex via a
path of length at most n. Assuming that set of source vertices is equivariant, and the
edge relation is also equivariant, the set V, will also be equivariant for every n. It
follows from Lemma 5.6 that the chain (5.1) will stabilize after finitely many steps,
and therefore the set of reachable vertices can be obtained in finitely many steps. [

In the above example, we showed an “algorithm” that decides graph reachability
by computing a finite increasing chain of equivariant subsets of vertices. However,
for this to be an algorithm, we need to be to represent subsets V,, from the chain in
a finite way; compute the new subsets based on the previous ones, and test equality
between such subsets. This leads us to the question:

How can we represent equivariant subsets of a pof set?
Of course, we want the representation to support certain basic operations, such as
checking if two subsets are the same (because the same subset might have several

representations), or Boolean combinations on subsets. Since a pof set is a finite union
of sets of the form A4, the question reduces to

How can we represent equivariant subsets of A¢?



5.2. REPRESENTATION OF EQUIVARIANT SUBSETS 65

In the case of the equality atoms, in Section 1.1 we proposed two representations,
namely generating subsets, and formulas. As it turns out, these two representations
carry over to general oligomorphic structures.

By definition of oligomorphic atoms, see Lemma 5.6, a pof set will have finitely
many orbits, and therefore every equivariant subset can be represented by giving one
element for each orbit. Therefore, we can use finite sets of generators to describe
equivariant subsets, at least as long as we can write down individual elements of the
structure. There are, however, some unresolved questions about this representation
for subsets. For example: how do we test equality of two subsets given by generators?
Or: how do we compute the complement? We will return to these questions in Sec-
tion 7.2; for the moment we will stick to the formula representation. As we will see
below, the formula representation is very well suited to the oligomorphic case, since
oligomorphic structures are exactly those where equivariant subsets can be defined
by first-order formulas.

Under the equality atoms, we represented an equivariant subset of A by a formula

o(x1,...,Xq)

that used Boolean combinations and equality. In the general oligomorphic case, we
will also use such formulas, but we will allow quantifiers, and other relations — beyond
equality - that are present in the structure. Subset of A that can be defined this way
are called first-order definable. For some structures, such as the equality atoms, we
can avoid quantifiers, but for others the quantifiers will be necessary, as illustrated in
the following example.

Example 39. Consider the following three-vertex graph:

o—o o

As mentioned in Example 36, this graph can be seen as a relational structure with
one binary relation. Like any finite structure, this structure is oligomorphic. There is
no quantifier-free formula that distinguished the isolated vertex from a non-isolated
vertex, despite the two vertices being in different orbits. [J

The following theorem shows that for oligomorphic structures which are count-
able (i.e. have a countable universe), equivariant subsets are exactly the first-order
definable ones.

Theorem 5.7. Let A be a countable oligomorphic structure. A subset X C A? is equiv-
ariant if and only if it is first-order definable.

Proof. In this proof, we use the name atom for elements of the universe. Consider the
following game (known as the Ehrenfeucht-Fraissé game), which is parametrised by
two tuples a, b € A? and a number of rounds k € {0, 1,2,...,w}. The game is played
by two players, called Spoiler and Duplicator. In each round:

« Spoiler chooses one of the tuples and extends it with one atom.

« Duplicator responds by extending the other tuple with one atom.
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Spoiler wins the game if, for some finite i < k, the (extended) tuples after playing i
rounds can be distinguished by some quantifier-free formula (using the relations from
the structure), otherwise Duplicator wins. The theorem follows immediately from the
equivalence of items 1 and 4 in the following lemma.

Lemma 5.8. The following conditions are equivalent for every tuples a,b € A¢:
1. the tuples belong to the same first-order definable subsets;
2. Duplicator has a winning strategy in the k-round game for every k < w;
3. Duplicator has a winning strategy in the w-round game;
4. the tuples are in the same orbit.

Proof.

« 1 implies 2. This is (half of) the classical Ehrenfeucht-Fraissé theorem?, which
says that if two tuples satisfy the same formulas of quantifier rank at most £,
then Duplicator has a winning strategy in the k-round game. Recall that the
quantifier rank of a formula is the maximal nesting of quantifiers.

« 2 implies 3. In this step, we use oligomorphism. The key observation is in the
following claim, which shows that Duplicator has a strategy that ensures stay-
ing in positions that satisfy 2.

Claim 5.9. Consider one round of the Ehrenfeucht-Fraissé game, which begins in
a position (i.e. a pair of atom tuples of same finite length) that satisfies condition 2.
For every move of player Spoiler, there is a response of player Duplicator which
ensures that the resulting position also satisfies condition 2.

Proof. Suppose that the round begins in a position (@, b). By symmetry, we only
consider the case when Spoiler extends the tuple @ with some atom a € A. By
condition 2, we know that for every k there is some response by € A of player
Duplicator, which guarantees that

Duplicator can win the k-round game from position (aa, bby,). (5.2)

Observe that the above condition is, which describes a property of tuples of
some fixed length, is equivariant. This is because the dynamics of the game
would not be affected if we applied an atom automorphism to all choices. By
oligomorphism, we know that there are finitely many orbits of tuples

(aa, bby)

that can be realized. Therefore, some orbit is hit by infinitely many choices of
by. By equivariance of (5.2), we can pick some b, that witnesses an orbit that
is hit infinitely often, and this b; will guarantee winning the k-round game for
infinitely many k, and therefore for all k. |

2See (Hodges, 1993, Section 3.2)
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Thanks to the above claim that if we play the w-round game and we start in
a position that satisfies 2, then Duplicator can play in a way that guarantees
always staying in positions that satisfy 2. In particular, Duplicator can win w-
rounds, thus witnessing 3.

« 3 implies 4. In this step, we use countability. We need to show that if Duplica-
tor has a winning strategy in the w-round game for tuples @ and b, then there
is an automorphism that maps one tuple to the other. This is proved using a
back-and-forth argument. Fix some enumeration of the model A, which exists
by assumption on countability. Consider a play in the w-round game, where
Spoiler uses the following strategy:

- in even-numbered rounds, extend the a tuple with the least (according to
the enumeration) atom that does not appear in it;

- in odd-numbered rounds, do the same for the b tuple.

Suppose that Duplicator responds to the above strategy with a winning strategy.
In the resulting play, we get two infinite sequences

ap,a, ... b],bz,...

of atoms that extend the tuples @ and b, respectively. By the choice of Spoiler’s
strategy, every atom appears in the first infinite sequence, and also every atom
appears in the second infinite sequence. Therefore, the function a; — b; is
permutation of the atoms. Furthermore, this permutation is an automorphism,
since at every step in the game, the same same quantifier-free formulas must
be satisfied on both sides.

« 4 implies 1. By induction on the quantifier rank k, one shows that tuples in the
same equivariant orbit must satisfy the same first-order formulas of quantifier

rank k.
This completes the proof of the lemma, and therefore also of the theorem. O
O
Graph reachability

In the previous chapters, we showed that some decision problems — such as graph
reachability or emptiness for nondeterministic automata — can be decided. We now
show that these results carry over to other structures, under the suitable assumptions.
The first of these assumptions is that the structure is countable and oligomorphic, and
so we can use Theorem 5.7 to conclude that equivariant subsets can be represented in a
finite way, namely by first-order formulas. This assumption makes the decision prob-
lems well-posed, because the inputs (such as graphs or automata) can be represented
in a finite way. However, we also need to be able to operate on equivariant subsets.
For example, the same equivariant subset might have several representations, and we
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need to be able to test equality between them. This boils down to the question: given
two first-order formulas

O(X1, ..., Xq) and W(x1,. .., Xq),

decide if they define the same subset of A?. Already in the special case when d = 0,
i.e. when the formulas are sentences, this problem is the same as checking which
sentences are true in the structure. Therefore, in order to manipulate equivariant
subsets represented by formulas, we will want the first-order theory to be decidable;
this will be our second assumption. These two assumptions will be enough for many
algorithms. An example is graph reachability — the following theorem shows that the
decidability result from Section 2.1 transfers over from the equality atoms to general
oligomorphic structures.

Theorem 5.10. Assume that the atoms A are a countable oligomorphic structure with

a decidable first-order theory. Then reachability for pof graphs is decidable.

Proof. Although we have essentially described the algorithm in Example ??, we spell
out the details about the representation in this proof, to explain how exactly we ma-
nipulate equivariant subsets represented by formulas. The input to the problem con-
sists of a pof set

V:ZAA

iel

together with three equivariant relations:

ECV: S.TcCV
—_— ~———
edges source and target

vertices

An equivariant subset of V - such as the source and target sets — is represented by
a family of first-order formulas, with one formula for each component i € I of the
disjoint union in the set V. The formula for component i has d; free variables, and
tells us when a tuple of atoms belongs to the i-th component. A similar representation
is used for the binary relation E - for each pair of components i, j € I, there is a
formula with d; + d; free variables, which tells us when a tuple of atoms from the i-th
component is related to a tuple of atoms from the j-th component. We will use these
representations to implement a reachability algorithm.
We intend to compute the chain

VocVicV,C---
of sets, such that V, is the vertices that can be reached by a path of length at most

n. Each set V,, will be represented by a family of formulas, call these formulas {¢!};c;.
For n = 0, we use the formulas for the source set. Let us now show how to compute
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the formulas for V,,; based on the formulas for V,:

the formullg for the formula for the formula for
component i in V4 component i in V,, component jin V,
n+l1 n “n > E

gr®m = dm v T (P A ehE.),
jeI —_——
—_——— the formula for

choosing a component components i and j in
j€landatupley the edge relation E

of d; atoms is the same as
choosing an element of V

As explained in Example ??, this chain cannot grow infinitely often, because the set of
vertices has finitely many orbits, and each set in the chain is a union of these orbits.
Also, a new set in the chain is defined in terms of the previous one, and therefore once
we have V.| = V,, for some n, then the chain stabilizes forever. We can check when
the chain stabilizes by asking if the following first-order formula — which says that
no new elements have been added - is true in the atoms:

A VEQHE = ¢" (D).
iel

We can get an answer to this question, by the assumption that the atoms have a de-
cidable first-order theory. O

In the proof above, we did not give a more precise estimate on the computational
complexity of the problem, beyond saying that it is decidable. Later on in this book,
we will see that the algorithm is in PSPACE for most choices of atoms that we consider,
including the equality atoms (this was already shown in Section 2.1), and the ordered
atoms.

Exercises

Exercise 96. Consider a structure with a countable vocabulary. Show that if it is not oligo-
morphic, then there is some subset of A? that is equivariant, but not first-order definable.

Exercise 97. Consider an oligomorphic structure with a decidable first-order theory. Show
that the following conditions are equivalent:

1. the following function, called the Ryll-Nardzewski function, is computable:

de{0,1,...} - number of orbits in A%;

2. there is an algorithm that inputs d € {0, 1,.. .} and returns a formula with 2d free vari-
ables that defines the “same orbit” relation on A?.

Exercise 98. Consider a countable oligomorphic structure. Show that the following conditions
are equivalent for a sequence of orbits

X, CA X, C A%

1. there is some enumeration of the atoms such that X,, is the orbit of the first n atoms in
the enumeration;
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2. X, is obtained from X, by deleting the last coordinate, and every orbit in A* can be
obtained from some X, by deleting some coordinates.

Exercise 99. Consider the two conditions in Definition ??. Show that in the presence of the
first condition ??, the second condition ?? is equivalent to any of the following conditions:

1. the Ryll-Nardzewski function is computable, as in item 1 from Exercise 97;

2. there is an algorithm that inputs d € {0, 1, ...} and returns a list of tuples that generate
A, with one tuple for each orbit (i.e. no orbit is represented twice).

Exercise 100. Show that the following are equivalent for a countable oligomorphic structure:
1. hasa representation;

2. has a decidable first-order theory and a computable Ryll-Nardzewski function.

Exercise 101. Consider the following two conditions for an orbit-finite graph.
1. there is an directed path;
2. there is a cycle.

Find an atom structure where the two conditions are equivalent, and also an atom structure
where only the implication 1 < 2 is true.

Exercise 102. Show that under the assumptions of Theorem ??, there is an algorithm that
checks if condition 1 of Exercise 101 is satisfied, assuming that the graph, source and targets
are all hereditarily orbit-finite. Likewise for condition 2.

Exercise 103. An instance of alternating reachability is defined in the same way as an instance
of graph reachability, i.e. there is a directed graph with distinguished source and target vertices.
The difference is in the semantics: we play a game between players Odd and Even, with Odd
choosing the next edge in odd rounds, and Even choosing the next edge in even rounds. We
want to decide if player Odd has a strategy that guarantees seeing a target vertex in a finite
number of rounds, regardless of the choice of initial vertex in the source set®. Show that this
problem is decidable under the assumptions of Theorem 5.10.

Exercise 104. Assume the equality atoms. A Biichi game has the same syntax as alternating
reachability from Exercise 103. The game is played similarly, except that the objective of player
0 is to see vertices from 7 infinitely often. Give an algorithm that decides the winner in a Biichi
game represented by a set builder expression. Hint: use memoryless determinacy of Biichi
games without atoms, see (Thomas, 1990, Theorem 6.4).

Exercise 105. Consider the graph which is obtained by taking a disjoint union of all cliques,
one for each size n € {1,2,...}. This structure is not oligomorphic, but we can still consider pof
sets with first-order definable subsets. Show that graph reachability is decidable.

5.3 Orbit-finite sets

In Section 4.2, we gave a more semantic notion of finiteness for the equality atoms,
called orbit-finiteness. This notion, which is the central one for this book, extends to
other structures by using automorphisms instead of permutations.

3This type of game is called a reachability game. More general games, namely parity games, are studied
in (Klin and Letyk, 2017, Section 5.2)
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Definition 5.11 (Finite supports and orbit-finiteness). Let A be a relational struc-
ture, and consider a set X that is equipped with an action of atom automorphisms,
i.e. automorphisms of the structure A.

« Supports. An element x € X is supported by a list of atoms ay, ..., a, if
na=a = nakx)=x

holds for every automorphism 7 of the structure A. We say that x is finitely
supported if it is supported by some finite list of atoms.

« Orbit-finite set. The set X is called orbit-finite if every element x € X has finite
support, and there are finitely many orbits under the group action.

We will only be interested in orbit-finite sets for atoms that are oligomorphic. The
oligomorphic assumption will guarantee that basic operations, such as product X X Y,
can be implemented on orbit-finite sets.

Example 40. [Finitely supported subsets in the ordered atoms] Consider the ordered
atoms A = (Q, <). In this case, the automorphisms are order-preserving bijections.
Consider a subset X € A which is supported by a tuple of atoms a. We claim that X is
a union of intervals (open, closed, open-closed or closed-open) whose endpoints are
either —co, 0o, or appear in a. Indeed, consider atoms b, ¢ that are not in @ and are not
separated by an atom in & in terms of the order. There is an automorphism that fixes
a, and which maps b to c. Since the set X is supported by a, it follows that b € X if
and onlyifc e X. O

In Chapter 4, we defined quotiented pof sets under the equality atoms, and we
showed that they were the same as orbit-finite sets, up to equivariant bijections. The
notion of quotiented pof set extends to oligomorphic structures (a pof set quotiented
by an equivariant partial equivalence relation). Also, the characterization carries over,
as stated in the following theorem.

Theorem 5.12. Let A be an oligomorphic structure, and let X be a set that is equipped
with an action of atom automorphisms. Then X is orbit-finite if and only if it admits an
equivariant bijection with a quotiented pof set.

Proof. Same proof as the special case for equality atoms from Theorem 4.6. Oligo-
morphism is used in the easer right-to-left implication: every quotiented pof set is
orbit-finite. This is because (non-quotiented) pof sets are orbit-finite by definition of
oligomorphism, and quotienting does not increase the number of orbits. O

A corollary of the above theorem is that orbit-finite sets enjoy the same closure
properties as quotiented pof sets. For example, they are closed under Cartesian prod-
ucts X X Y, since quotiented pof sets have this property. Not all results carry over to
oligomorphic structures. For example, least supports can fail, as explained below.

Example 41. Consider an atom structure A which is the following graph:

o—o oo
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Consider the quotiented pof set A/ ~, where ~ is the equivalence relation “in the
same connected component”. An element of this set, i.e. a connected component, is
supported by any of the two atoms in it, but none of these supports is a least support. A
similar phenomenon can be observed in the structure of two cliques from Example 36.
In this case, each of the two cliques — when seen as an element of the finitely supported
powerset — is supported by any atom that appears in it. [

Exercises

Exercise 106. Assume that the atoms are oligomorphic. Show that for every orbit-finite set
X, there is some d € {0, 1, ...} and a surjective equivariant function f : A X

Exercise 107. Show that the atoms (Q, <) also have least supports.
Exercise 108. Show an example of oligomorphic atoms without least supports.

Exercise 109. Assume that the atoms are oligomorphic. Let X be a set with an action of group
automorphisms, which is not known to be orbit-finite. Let R C X X X be an equivariant binary
relation which is orbit-finite. Show that the transitive closure of R is also orbit-finite.
Exercise 110. Assume that the atoms are oligomorphic, and there are infinitely many atoms.
Show that orbit-finite sets are not closed under taking finitely supported function spaces:

" .
x5y ¢ {f:X — Y| fis finitely supported }.

Exercise 111. Assume oligomorphic atoms. Let X, Y be orbit-finite sets and let F be an

equivariant subset of the finitely supported function space from the previous exercise. Show

that F is orbit-finite if and only if there is some n € {0, 1,2,...} such that every function f € F

has a support of size at most n.

Exercise 112. Assume oligomorphic atoms. Show that in an orbit-finite set, for every atom
tuple a there are finitely many elements supported by a.

Exercise 113. Show that Exercise 84 fails in (Q, <).

Exercise 114. Show that Exercise 84 fails in some atoms, even for a relation R such that for
every first argument, there are finitely many second arguments related by the relation.

Exercise 115. Assume that the atoms are oligomorphic. Let X be an orbit-finite set and let
a be a tuple of atoms. Consider the family of equivalence relations on X which are supported
by a and where every equivalence class is finite. Show that this family has a greatest element

with respect to inclusion (i.e. a coarsest equivalence relation).
zZ

Exercise 116. Show that the following statement is true in the equality atoms but not in (Q, <).
Let X be a set equipped with an action of atom automorphisms, where every element is finitely
supported. Then X is orbit-finite if and only if: (***) for every equivariant family of finitely
supported subsets of X which is totally ordered by inclusion, there is a maximal element.



Chapter 6

Homogeneous atoms

To define orbit-finiteness, we need atoms that are oligomorphic. How does one get
oligomorphic structures?

This chapter is devoted to a method of producing oligomorphic structures, which
is called the Fraissé limit'. The idea behind the Fraissé limit is that it inputs a class
of finite structures, sufficiently well-behaved, and outputs a single countably infinite
structure which contains all the finite structures, and does so in a certain homoge-
neous way. The Fraissé limit can be applied to classes of finite structures such as all
finite total orders, all finite directed graphs, all equivalence relations on finite sets,
etc.

6.1 Homogeneous structures

Before defining homogeneous structures, we begin by recalling some terminology
from logic. In the previous chapter, there was one structure, and we used logic to
define relations on this structure. In this chapter, there will be many structures, but
we will still want to compare them using a single formula. To do this, we use the
notion of a vocabulary: this is a set of names for relations, each one with an associated
arity in {0, 1, ...}. Here are some examples of vocabularies:

x<y edge(x,y) X+y=z xXy=z.
—— N———
the vocabulary for the vocabulary for graphs the vocabulary for rings
ordered structures has one binary relation has two ternarny relations

has one binary relation

Note that the first two vocabularies are essentially the same, since they both have
one relation of arity two. However, is useful to give different names to convey dif-
ferent intentions. In the third vocabulary, we use ternary relations instead of binary
functions - this is because we want to stick to relational vocabularies for simplicity. A
structure over a given vocabulary is a structure in the sense of Definition 5.1, together
with a function (called the interpretation of the vocabulary) that assigns each relation

!This is a basic notion in model theory. For further information, see e.g. (Hodges, 1993, Section 7).

73
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name from the vocabulary to relation in the structure of the same arity. Thanks to the
interpretation, we can evaluate a formula over the vocabulary in any structure over
this vocabulary.

Consider two structures A, B over the same vocabulary. An embedding f : A — B
is any injective function from the universe of A to the universe of B which preserves
and reflects the relations in the following sense

R(ay,...,ay) <& R(f(ay),...,[f(a,)).
————

in A inB

An isomorphism is the special case of an embedding where the function is a bijection.
An embedded substructure of a structure is defined to be any structure that embeds
into it. A substructure is the special case where the embedding is simply an inclusion
map. We will be mainly interested in (embedded or not) substructures that are finite,
i.e. have finite universes. Here is the fundamental definition for this chapter.

Definition 6.1 (Homogeneous structure). A structure is called homogeneous if ev-
ery isomorphism between finite substructures extends to a full automorphism of the
entire structure.

Here is a diagram that describes the above definition.

B isomorphism C
V4 subset \Lsubset
A—F A

automorphism

Example 42. The equality atoms and the ordered atoms (Q, <) are homogeneous. Let
us do the proof for the ordered atoms. A finite substructure is the same as a choice of d
rational numbers x| < -+ < x4. Any two such choices will be isomorphic, assuming
the same dimension d. If we take two such choices, they will be in the same orbit,
i.e. the isomorphism will extend to an automorphism. [J

Example 43. Consider the structure which consists of finite subsets of natural num-
bers, equipped with a binary relation for subset inclusion:

A = (Pan(N), ©).

We will show that this structure is not homogeneous. Consider a finite substructure
B that has only one element, namely the empty set, and another finite substructure
C that also has only one element, namely the singleton set {1}. As finite structures,
they are isomorphic — the subset relation connects the unique element with itself in
both of them. However, there is no automorphism of A that maps the empty set to a
nonempty set. This structure is also not oligomorphic, because it has infinitely many
orbits already in A!, namely sets of different finite sizes will be in different orbits. [J

In principle, oligomorphism and homogeneity are incomparable notions, as ex-
plained in the following two examples.
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Example 44. [Oligomorphic ## homogeneous] Every finite structure is oligomorphic,
but not every finite structure is a homogeneous. For example, consider the three
element path

o—0o o

Let the vertices be 1,2, 3. The substructures {1} and {2} are isomorphic, but there is
no automorphism that maps 1 to 2. [J

Example 45. [Homogeneous # oligomorphic] Consider an infinite structure which
has one unary relation for every possible singleton. This structure has no automor-
phism, and therefore it has infinitely many orbits. However, it is homogeneous for
the trivial reason that the only isomorphism between finite substructures are between
identical subsets. [

However, the differences exhibited in the above examples are rather superficial.
Every oligomorphic structure can be made homogeneous one by adding (infinitely
many) relations: we can simply add a d-ary relation for every orbit in A?. For the con-
verse implication, the following theorem shows that most reasonable homogeneous
structures are in fact oligomorphic.

Theorem 6.2. If a structure is homogeneous, then it is oligomorphic if and only if

(*) foreveryd € {0,1,...}, it has finitely many substructures of size d, up to isomor-
phism.

Proof. If we take tuples (ay,...,ay) and (by,...,by) that are in the same orbit, then
the function a; — b; is an isomorphism between the substructures generated by the
tuples. Therefore, if there are finitely many orbits in A?, then there are finitely many
kinds of substructures of size d, up to isomorphism, which proves the left-to-right
implication. For the converse implication, we use homogeneity: the orbit of a tuple
is uniquely determined by the isomorphism type of the induces substructure, and the
order and repetitions of the elements in the tuple, which can be chosen in finitely
many ways. O

A corollary of the above theorem is that for finite vocabularies, homogeneity im-
plies oligomorphism. This is because condition (*) will automatically hold in the pres-
ence of a finite vocabulary.

One of the fundamental properties of oligomorphic structures was that equivari-
ant relations were exactly those that could be defined in first-order logic, see Theo-
rem 5.7. For homogeneous structures, quantifier-free formulas are enough.

Theorem 6.3. Consider a homogeneous structure A.

1. Twotuples in A? are in the same orbit if and only if they satisfy the same quantifier-
free formulas.

2. If A additionally satisfies condition (*) from Theorem 6.2, then the equivariant
subsets of A? are exactly those that are definable by quantifier-free formulas.
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Proof. We begin with the equivalence in the first item. The right-to-left implication is
immediate: the truth-value of quantifier-free formula does not change when an auto-
morphism is applied. Conversely, if two tuples of atoms satisfy the same quantifier-
free formulas, then one can build an isomorphism between the substructures gen-
erated by them, which will extend to an automorphism of the entire structure by
homogeneity.

The second item follows from the first item, and the observation that under as-
sumption (*), there are finitely many possible quantifier-free formulas with d vari-
ables, up to logical equivalence. ]

Exercises

Exercise 117. Which finite graphs are homogeneous?

6.2 The Fraissé limit

In this section, we describe the Fraissé limit, which is a way - in fact the only way —
of constructing countable homogeneous structures. Before defining the Fraissé limit,
consider the following problem: for a class .27 of finite structures, find some (possibly
infinite) structure A such that

&/ ={B| B is a finite structure that embeds into A }.

this is called the age of the structure A

For example, if o7 is the class of all finite structures over an empty vocabulary, then
it is the age of any infinite structure over the empty vocabulary. If &7 is the class of
finite total orders, then it is the age of any infinite total order, such as

N, <) Z,9 Q< R,<.

However, if we want the total order to be countable and homogeneous, then the only
choice is the rational numbers. Finally, not every class arises as the age of some struc-
ture. A necessary condition is that every two structures from ./ can be embedded
into a single structure from .27, since this is a property that will hold for the age of a
single structure A. For this reason, the class

& ={G| G isagraph with at most 10 edges }

is not the age of any structure. The purpose of this chapter is to identify conditions
which guarantee that <7 can be obtained as the age of some structure, and furthermore
we want this structure to be homogeneous. These conditions are described in terms
of amalgamations, so we begin by defining amalgamation.

Definition 6.4 (Amalgamation). An instance of amalgamation is two embeddings

with a common source:
A
j‘/ \f: (6.1)
B, B,
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A solution of the instance is a structure C and two embeddings gi, g» such that the
following diagram commutes:

A

h f
B, / \ B, (6.2)
™ - s

Definition 6.5 (Fraissé class). A Fraissé class is a class of finite structures over a
common vocabulary which is closed under isomorphism, substructures, and also:

« itis closed under amalgamation, which means that for every instance of amal-
gamation which uses structures from the class, there is a solution which also
uses a structure from the class.

A Fraissé class is called countable if it has countably many structures, up to iso-
morphism. We are now ready to state the Fraissé theorem, which says that Fraisse
classes are in one-to-one correspondence with countable homogeneous structures.

Theorem 6.6 (Fraissé Theorem). The map
A - age of A

is a bijection between countable homogeneous structures (modulo isomorphism) and count-
able Fraisseé classes. In other words:

1. the age of every countable homogeneous structure is a countable Fraissé class; and
2. every countable Fraissé class is obtained this way; and

3. if two countable homogeneous structures have the same age, then they are isomor-

phic.

The inverse of the age operation, i.e. the map which inputs a Fraissé class and
outputs the corresponding countable homogeneous structure (which is unique up to
isomorphism thanks to the above theorem), is called the Fraissé limit. Before prov-
ing Theorem 6.6, we give some examples and non-examples of Fraissé classes. In all
these examples, closure under substructures and isomorphism is immediate, and only
amalgamation need be discussed.

Example 46. Consider the class of all finite structures over an empty vocabulary (in
which case formulas can talk only about equality). This class is closed under amalga-
mation, by taking the disjoint union of two sets with a common subset. Here is an
example of an instance of amalgamation and its solution:
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When drawing amalgamation diagrams, we use the red colour for elements of A. In
general, the same instance might have several solutions. Here is an example of a
different solution to the instance above:

e

In fact, the above instance has infinitely many solutions (because the solution can be
arbitrarily large). Note how the second solution uses the same black element as the
target of both black nodes in the second row. [J

Example 47. Consider the class of finite undirected graphs. In other words, this is
the class of all finite structures over a vocabulary which has one binary relation that
is required to be symmetric and irreflexive. This class is closed under amalgamation
(the same argument works for directed graphs), by taking the disjoint union of two
directed graphs with a common induced subgraph. Here is an example:

As in Example 46, there are also other solutions to the above instance. More generally,
for every relational vocabulary, the class of all finite structures over this vocabulary
is closed under amalgamation. In particular, by Theorem 6.6, each of these classes
has a Fraissé limit. The limit for undirected graphs will be discussed in more detail in
Section 6.3.1. [

Example 48. Consider the class of finite planar graphs. To simplify this example,
we assume that a graph is modelled (unlike in Example 47) as a structure where the
universe is vertices and edges, and there is a binary incidence relation between edges
and vertices. (This way of modelling a graph means that an embedding can add edges
without adding vertices.) The class is not closed under amalgamation. Here is an
instance without a solution:
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Any hypothetical solution to the above instance would have the 5-clique as a minor,
and would therefore not be planar. A similar but more elaborate example would show
failure of amalgamation for planar graphs under the modelling of graphs used by
Example 47, where the universe of the structure is the vertices and there is a binary
relation for the edges. U

Example 49. Consider directed graphs where the edge relation is a partial successor,
i.e. vertices have out-degree and in-degree at most one, and no loops. The class is not
closed under amalgamation, here is an instance without a solution:

d

Example 50. Consider the class of finite total orders. This class is closed under amal-
gamation. Here is an example of an instance of amalgamation and its solution:

0

We now begin the proof of the Fraissé Theorem. We first show item 1, which
says that the age of a countable homogeneous structure is a Fraissé class. We prove a
slightly stronger result, which does not assume countability.

Lemma 6.7. For every homogeneous structure, not necessarily countable, its age is a
Fraissé class.

Proof. The only nontrivial part is amalgamation. Let H be a homogeneous structure.
Consider an instance of amalgamation which uses structures that embed into H, as in
the following diagram (all arrows are embeddings):

A
2N
B B,
ym m
H H
The diagram distinguishes the targets of & and s, because the embeddings i o f;
and hy o f, need not be the same embedding of A in H. However, the images of
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both of these embeddings are isomorphic finite substructures of H. Therefore, by
homogeneity there is an automorphism 7 which extends this partial automorphism.
In other words, the following diagram commutes:

N

B, B,
I b
H H

If we restrict the right copy of H to the union of the images of the maps s, and 7 o A,
then we get a solution of amalgamation. ]

If a homogeneous structure is countable, then it has countably many embedded
finite substructures. Therefore, by the above lemma, the age of a countable homoge-
neous structures is a countable Fraissé classes. We now establish item 3 in the theo-
rem, which says that the age uniquely identifies a countable homogeneous structure.

Lemma 6.8. A countable structure H is homogeneous if and only if:

(*) If A, B are finitely generated substructures of H then

Vi B—>A

NS

H

Furthermore, countable homogeneous structures with the same age are isomorphic.
Proof.

« Homogeneous structures satisfy (*). Let g, f be as in (*). We assume without loss
of generality that g is an inclusion. Let f” be an embedding of A into H, which
exists by the assumption that A is a substructure. Here is a picture:
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By following the inverse of f and then f’, we get a partial automorphism be-
tween two finitely generated substructures of H, namely the two red parts on
the right. By homogeneity, this partial automorphism extends to a full auto-
morphism. The function f’ composed with the inverse of that automorphism is
the desired embedding.

Structures satisfying (*) are homogeneous. Here we use countability. The follow-
ing claim, in the special case of H = H,; = Hj, shows that H is homogeneous.

Claim 6.9. Let H;,H, be countable structures with the same age. If both satisfy
(*), then every partial isomorphism between finite substructures of H, and H,
extends to a full isomorphism.

Proof. Let f be an isomorphism between structures in the ages of H; and H,,
respectively, and let a be an element of H;. Let A be the substructure of Hj
whose universe is a plus the domain of f. Here is a picture:

The structure A is in the age of H;, and therefore by the assumption of the
claim it embeds into Hy. By (*), f extends to an embedding of A into H,. This
argument, and a symmetric one where a is in Hj, establishes that:

(**) For every isomorphism between structures in the ages of H; and Hp, re-
spectively, and every element a of either H; or Hj, the partial isomorphism
can be extended to be defined also on a.

The conclusion of the claim follows from (**) using a back-and-forth construc-
tion. Define inductively a sequence of partial isomorphisms between finitely
generated substructures of H; and Hj, such that the next one extends the pre-
vious one, and every element of both structures appears eventually in the source
or target of a partial isomorphism from the sequence. The full isomorphism is
then the limit of these partial isomorphisms. O

Homogeneous structures are uniquely determined by their finitely generated sub-
structures. By Claim 6.9 applied to the empty partial isomorphism between H;
and Hl,, we see that countable homogeneous structures are uniquely determined
— up to isomorphism - by their age.

To finish the proof of Fraissé Theorem, we need to show item 2.
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Lemma 6.10. Every countable Fraissé class of arises as the age of some countable ho-
mogeneous structure.

Proof. Choose some enumeration
Ap A, ... (6.3)

of the structures in <7, which represents every structure up to isomorphism. We
define a sequence

HycH, c--- (6.4)

of structures in .27 as follows. Choose the first structure Hy arbitrarily, say the empty
structure. A new structure is obtained by applying the following claim.

Claim 6.11. Suppose that H, is already defined. There is a structure H,,; 2 H,, in &7
such that for every instance of amalgamation

2

B H,

where both A,B are among the first n structures in the enumeration of o7, there is a

solution of the form
B H,
X /rzcl)usion
H

n+1

Proof. There are finitely many possible instances of amalgamation as in the claim,
because A and B can be chosen in finitely many ways, and there are finitely many
possible embeddings between two finite structures. Let m be the number of instances.
By induction on i € {1,...,m}, we create a structure Hfl N that solves the first i in-
stances; once we have done this we can use H;”H as the solution for all instances. The
induction step is proved by applying amalgamation to the previous solution. ]

Define H to be the limit (i.e. union) of the sequence H;, Hy, . ... By construction,
H satisfies condition (*) from Lemma 6.8, and is therefore homogeneous.

To complete the proof, we justify that the age of H is exactly <7. Every finite
structure that embeds into the limit H must embed into some H,,, and is therefore in
&, because Hl, € &/ and the class is closed under substructures. Therefore, the age
of H is contained in &7. Let us prove the converse inclusion. Suppose that A € 7.
At some point 7 in the enumeration, we have seen both A and the empty structure.
Therefore, H,,; will contain a solution to an instance of amalgamation where the
empty structure is embedded into both A and H,,,;. This means that Hj,,| contains an
isomorphic copy of A. ]

This completes the proof of Fraissé Theorem.
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Computability. The Fraissé limit not only exists, but under mild assumptions on
the Fraissé class, it can be computed. What does it mean to compute an infinite struc-
ture? This is formalized in the following theorem, which shows that one perform basic
computational operations, such as counting orbits, deciding the first-order theory, and
representing elements.

Theorem 6.12. Let <7 be a Fraissé class such that:

(*) there is an algorithm that inputs d and returns a finite list of all structures that
represents all structures of size d in <7, up to isomorphism.

Then its Fraissé limit, call it A, has the following properties:
1. it is oligomorphic, and given d one can compute the number of orbits in AY;

2. it has effective quantifier elimination, i.e. for every first-order formula, one can
compute an equivalent one that is quantifier-free;

3. there is a function p : 2* — A, called a representation, which has the following
properties (when atoms are used in algorithms, they are represented as strings
using the representation):

(a) every atom is represented by at least one string;

(b) given a first-order formula ¢(xy,...,x4) and ay,...,aq € A, one can decide

if
AFE(ar,.... a);
(c) given two tuples in A?, decide if they are in the same orbit.

Proof. We begin with item 1. By assumption (*), there are finitely many substructures
of size d in o7, up to isomorphism. Therefore, A is oligomorphic by Theorem 6.2. An
orbit in A? is the same thing as a substructure with at most d elements, together with
a list of length d that covers all of its elements, possibly with repetitions. We can
count such objects, up to isomorphism, using assumption (*).

We now show item 2, about quantifier elimination. We assume that “true” and
“false” are quantifier-free formulas; these will be the only possible formulas when we
apply the quantifier elimination to a sentence, i.e. a formula without free variables.
The proof is by induction on the size of the formula. The only non-trivial case is
eliminating a single quantifier, say an existential one (because eliminating a universal
quantifier reduces to this case by De Morgan’s laws):

Ax(xy,. .., X, X).
N —
quantifier free
The inner formula ¢ can be seen as describing structures with n + 1 distinguished
elements; with the distinguished elements not being necessarily pairwise distinct. Let
us write 7, for the corresponding structures, i.e. this is the class
a

Ay ={(A,ai,...,a,,a) : A€ &/ and ay, ..., a,,a are elements that satisfy ¢}.
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Up to isomorphism, the above class is finite and can be computed thanks to assump-
tion (*). Because the Fraissé limit is homogeneous, a tuple aa in the Fraissé limit
satisfies ¢ if and only if %7, contains the substructure generated by a (together with
the distinguished @). Define 7, to be the following projection of <,: for each
(A, aa) € 4, remove the last element a from the list of distinguished elements. A
tuple a in the Fraissé limit satisfies the quantified formula Ix¢ if and only if 274,
contains the substructure generated by a (together with the distinguished a). This
property can be expressed using a quantifier-free formula.

We now prove the last item 3, about the representation. Here, we revisit the con-
struction of the Fraissé limit in the proof of Lemma 6.10. In that proof, we started off
with an enumeration, see (6.3), which represents all structures in 7 up to isomor-
phism. Thanks to assumption (*), we can assume that this enumeration is effective in
the following sense: there is an algorithm that inputs n and returns the n-th struc-
ture A, in the enumeration. The construction in Claim 6.11 preserves this notion of
effectiveness, and therefore also the sequence Hi, is effective. Since the Fraissé limit
is defined to be the union of the latter enumeration, it follows that the Fraissé limit is
effective in the sense that one can define a surjective representation p : 2* — H that
allows us to test if a given tuple of elements satisfies a given relation from the vocabu-
lary. (The string representing an element from H stores the following information: at
which stage n did the element appear in H,, and which element of H, it is.) If we can
decide the relations from the vocabulary, then we can decide quantifier-free formulas,
and so we can also decide first-order formulas, as required by item 3b, thanks to the
previous item about quantifier elimination. The last part of the theorem, in item 3c,
is about deciding if two tuples are in the same orbit. By Theorem 6.3, we know that
two tuples are in the same orbit if and only if they satisfy the same quantifier-free for-
mulas. Although the vocabulary is in principle infinite, we can use assumption (*) to
show that for every d, there is some finite part of the vocabulary such that quantifier-
free formulas using only that part are enough to distinguish different orbits in A. In
combination with the previous observations about deciding quantifier-free formulas,
we can get an effective criterion for checking if two tuples from A? are in the same
orbit. O

All Fraissé classes discussed in this chapter satisfy the assumptions of the above
theorem. In particular, the corresponding Fraissé limit will have a decidable first-
order theory, thanks to the special case of item 3b for formulas without free variables.
Therefore, we can apply Theorem 5.10 to decide graph reachability. In the Chapter 7,
we will see many other examples of algorithms, beyond graph reachability, which can
be used for atoms that arise a Fraissé limit. Before we do that, however, we present
several interesting examples of Fraissé limits, which will illustrated the scope of ap-
plicability for the algorithms that will be presented in Chapter 7.

Exercises

Exercise 118. Consider the class of all finite partial orders, i.e. binary relations that are
reflexive and transitive. Show that this class is closed under amalgamation.

Exercise 119. Are series parallel graphs closed under amalgamation?
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Exercise 120. Show a Fraissé class where solutions to amalgamation necessarily violate the
following condition:

(*) the intersection of the images of g; and g, as per diagram (6.2), is exactly the image of
A.

Exercise 121. Assume a finite relational vocabulary. Suppose that </ is a class of struc-
tures that satisfies the assumptions of Theorem 6.6, and let A be its Fraissé limit. Show that if
membership in ¢/ is decidable, A is an effective structure.

Exercise 122. Let </ be a class of structures over a finite vocabulary, possibly including
functions, which:

1. has decidable membership;
2. is closed under substructures, isomorphism and amalgamation;

3. given k € N one can compute some n € N such that structures in ./ with k generators
have size at most n.

Show that the Fraissé limit of .« has a decidable first-order theory with constants and a com-
putable Ryll-Nardzewski function.

Exercise 123. Define monadic second-order logic (Mso) to be the extension of first-order logic
where one can also quantify over sets of vertices. A famous result on Mso is Rabin’s Theorem?,
which says that the structure {0, 1}* equipped with functions x + x0 and x — x1 has decidable
Mso theory, i.e. one can decide if a sentence of Mso is true in it. Show that (Q, <) has decidable
Mso theory.

Exercise 124. If X is a finite alphabet. We model a word w € X* as a structure, where the
universe is positions in w, there is a binary predicate < for the order relation, and for every
label a € X there is a unary predicate a(x). We denote the vocabulary used for this structure by
Y. Show that for every regular language L C X* there is a homogeneous structure A over a
vocabulary containing X. such that the age of A after restricting to . is exactly the structures
corresponding to L.

6.3 Examples of homogeneous atoms

We end this chapter with three extended examples of homogeneous structures.

6.3.1 The random graph

We begin with the Fraissé limit of all finite undirected graphs. As shown in Exam-
ple 47, this is a Fraissé class, and therefore it has a Fraissé limit. Call this limit the
random graph. The name is justified by the following observation.

Theorem 6.13. Consider a countably infinite undirected graph, where each the pres-
ence/absence of an edge is chosen independently with equal probability one half. Almost
surely (i.e. with probability one) this graph is isomorphic to the random graph.

2For an introduction to Mso and Rabin’s Theorem, see (Thomas, 1990, Theorem 6.8).
3The conclusion of the theorem would not change if we used a different distribution, e.g. there would
be an edge with probability 0.99.
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Proof. Let us write H for the graph that is chosen randomly. For a finite graph G, and
a function 4 from vertices of an induced subgraph F C G to vertices of H, consider
the event: “either / is not an embedding, or it can be extended to an embedding of G”.
This event happens almost surely because failing the event would require infinitely
many independent random events that go wrong. Since there are countably many
choices of F € G and functions %, up to isomorphism, it follows that almost surely
the graph H satisfies condition (*) of Lemma 6.8, and therefore it is isomorphic to the
random graph. ]

Since the class of finite undirected graphs is clearly countable, its Fraissé limit is
oligomorphic and has all of the computability properties in the conclusion of Theo-
rem 6.12. It follows that problems such as graph reachability or automaton emptiness
are decidable, assuming that the inputs are pof automata, or quotiented pof automata.

Exercises

Exercise 125. Assume that the atoms are the random graph. Is the language
{a ---a, € A : the subgraph induced by a, ..., a, is connected}

recognised by a nondeterministic orbit-finite automaton?
Exercise 126. Assume that the atoms are the random graph. Give examples and non-examples

of graph properties X such that the following language is recognised by a nondeterministic
orbit-finite automaton:

Ly ={a, ---a, : the subgraph induced by ay, ..., a, satisfies X}.

To recognise Ly, the automaton should be prepared for an arbitrary enumeration of the vertices
of the graph, possibly with repetitions.

Exercise 127. Assume that the atoms are the random graph. Show that there is no finitely
supported total order on the random graph.

Exercise 128. Show that there is no orbit-finite automaton, even nondeterministic, which
recognises the language of width k path decompositions.

Exercise 129. Assume that the atoms are the random graph. Show that for every mso formula
@(x1, ..., x,) with free variables that represent vertices (not sets of vertices) there is formula of
first-order logic which is equivalent on the random graph. Nevertheless, there is no algorithm
which computes such equivalent formulas.

Exercise 130. Assume that the atoms are the random graph. Show that solving equations, as
discussed in Section 7.4, is undecidable.

6.3.2 Bit vectors

This section is about the Fraissé limit of finite vector spaces over the two element
field. These atoms will also be discussed in Chapter 8, where we will show that, over
these atoms, deterministic polynomial time orbit-finite Turing machines are weaker
than the nondeterministic ones.

For the rest of this section, we only study vector spaces over the two element
field, so we say vector space with the implicit assumption that the underlying field is
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the two element field. Every vector space of finite dimension (which is equivalent to
having finitely many vectors) is isomorphic to

({0,1}%,+)  forsomed € {1,2,...}

where addition is modulo two. We model a — possibly infinite — vector space V as
a structure over the following infinite vocabulary: for every d € {0, 1,...} there is
a relation which selects d-tuples of vectors that are linearly independent. Here, a
d-tuple v € V¥ is called linearly independent if it does not satisfy any non-trivial
dependency

vy + -+ agvg =0,

where non-trivial means that at least one of the coefficients «; is nonzero. In particular,
if the tuple contains a repetition, then it is linearly dependent. If the vector space
has finite dimension, then the relation will not select any tuple, once d exceeds the
dimension.

It is not hard to see that finite vector spaces are a Fraissé class. Embeddings are the
same thing as injective linear maps. To amalgamate two vector spaces, of dimensions
say d and dj, one needs a vector space of dimension max(d,, d,). Therefore, there is
a Fraissé limit of the finite vector spaces; and thanks to Theorem 6.12 this limit is a
countably oligomorphic structure.

One can also construct the Fraissé limit explicitly. The Fraissé limit must be a
vector space, since any violation of the vector space axioms would need to happen
already in a finitely generated substructure. Since the Fraissé limit is countable, its di-
mension must be countable, and since the Fraissé limit embeds all finite vector spaces,
its dimension must be infinite. Therefore, the Fraissé limit is a vector space of count-
ably infinite dimension. Up to isomorphism, there is a unique vector space like this.
One way of representing this unique vector space is as follows. The elements are bit
vectors, which are defined to be w-sequences of zeroes and ones which have finitely
many ones (if we allowed infinitely many ones, the resulting vector spaces would have
uncountable dimension). By ignoring trailing zeroes, a bit vector can be represented
as a finite sequence, such as 00101001. Define the bit vector atoms to be the bit vectors
equipped with a function for coordinatewise addition modulo two:

01011 + 11001 = 1001.
An example basis consists of bit vectors which have a 1 on the n-th coordinate:
1,01,001,0001,....
Another example of a basis is

I, 11,111, 1111, ....

Least supports. We prove below that for the bit vector atoms, a version of the Least
Support Theorem is true. For bit vectors, least supports are not unique as sets, but as
spanned subspaces. For example, the pair of atoms (01, 10) is supported by itself,
but it is also supported by (11,01). More generally, the following lemma shows that
supporting and spanning are the same concepts, when talking about tuples of atoms.
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Lemma 6.14. Assume the bit vector atoms. An atom tuple @ supports an atom tuple b
if and only if all atoms in b are spanned by a.

Proof. The right-to-left implication is immediate. For the converse implication, sup-
pose that some atom in b is not spanned by a. By the Steinitz exchange lemma, this
atom can be mapped to some other atom by a a-automorphism. ]

We are now ready to state the Least Support Theorem for bit vector atoms.

Theorem 6.15 (Least Support Theorem). Assume the bit vector atoms. Let X be a set
equipped with an action of atom automorphisms. If x € X has finite support, then there
exists a tuple @ of atoms which supports x, and which is least in the sense that ifb supports
X, then @ supports b.

Proof. Without loss of generality, we assume that X has one orbit. The proof follows
the same lines as the proof for the equality atoms, except that vector independence
plays the role of equality. Let us write A for the set of d-tuples of atoms which are
linearly independent. This is a one orbit set.

Lemma 6.16. There is an equivariant function
fiAD 5 x
which satisfies the following condition® for everya,b € A?D:
f@ = f(b) = everyatomina is spanned by b and vice versa.

Proof. We start with some function f : A — X that is equivariant, but which does
not necessarily satisfy the condition in the lemma. Such a function can be found, by
taking some tuple a of independent atoms that supports some element x € X, and
extending it to an equivariant function. We will now show that either f satisfies the
condition, or the dimension d can be made smaller. By iterating this argument at most
d times, we get the conclusion of the lemma.

Suppose that f violates the condition in the lemma, as witnessed by tuples a and
b, which have the same image under f but do not span each other. Some coordinates
in @ are spanned by b, but at least one coordinate is not. Without loss of generality,
we assume that the first i coordinates in the tuple @ are not spanned by b, and the
remaining coordinates are spanned by b. In other words, the tuple

(ai,...,ai,b1,...,by)

first i atoms  all atoms in
in the tuple @ the tuple b

is linearly independent. Since the vector space A has infinite dimension, one can
choose a},...,a; € A which are linearly independent, and which are not spanned by
ab. It follows that

w
(a,...,a) v (d,....a)

4Condition (??), as well as the related condition from Lemma 4.13, is equivalent to saying that @ and b
have the same algebraic closure, in the model theory sense, see (Hodges, 1993, Chapter 4).
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holds for some atom automorphism 7 that fixes b. Because b supports f(b), which is
the same as f(b), we have

f(@) = f(x(a)).

Since we have assumed that the last d — i coordinates of @ are supported by b, it
follows that the last d — i coordinates in 71(@) are the same as in a. Summing up, we
have found two inputs for the function f, namely @ and n(a), which agree on the last
d — i coordinates, but which have independent atoms on the first i coordinates. By
equivariance of f, this means that the first i coordinates in a tuple from A can be
replaced by fresh independent atoms without affecting the value of f. It follows that
f does not depend on the first i coordinates, and hence we can lower the dimension

d. |

Take the function f from the above lemma. This function is surjective, since an
input orbit is mapped to an output orbit, and X is assumed to be a one-orbit set. We
will show that if a is a least support, in the sense of the theorem, for f(a). Indeed,
suppose that f(a@) would be supported by some tuple » which does not span a. Then
there would be an atom automorphism 7 that would fix » - and therefore also the
output of the function — but would map a to some tuple not spanned by a. In this
case, the inputs a and 7(a) would be a violation of the above lemma. ]

Exercises

Exercise 131. Let B be the structure where the universe is the same as in the bit vector atoms,
but we only have the independence predicate for dimension 3, i.e. there is a ternary predicate
“the atoms a, b, ¢ are linearly independent”. Show that B has the same automorphisms as the
bit vector atoms.

Exercise 132. Show that the structure B from Exercise 131 is not homogeneous.

Exercise 133. Consider vector spaces over the three element field, with the independence
relations. Is the class of finite-dimensional vector spaces a Fraissé class?

6.3.3 Trees and forests

In this section, we study the Fraissé limit of trees and forests®. The trees and forests
we study are rooted, unlabelled, and unordered, as explained in the following picture:

there are distinguished roots \

no order on the children,
and no restrictions on their
number

>This section is based on Bojanczyk et al. (2013b).
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A tree is the special case of a forest when there is exactly one root.

The purpose of this section is to show that care is needed when choosing predi-
cates and functions to model a combinatorial object, like a tree or forest, if we want to
have a Fraissé limit. The following list shows three ways of modelling trees as logical
structures; only the third way will admit a Fraissé limit. In all cases, the universe of
the structure is the nodes of the tree.

1. There is a binary predicate for the parent relation. A finite forest is charac-
terised by the requirement that each node has at most one parent. This way of
modelling forests leads to a class that is not closed under amalgamation. Here
is an instance of amalgamation that has no solution:

2. There is a binary predicate for the ancestor relation. A finite forest is charac-
terised by the requirement that for every node, its ancestors are totally ordered.
This way of modelling forests also leads to a class that is not closed under amal-
gamation. Here is an instance of amalgamation that has no solution:

3. We have a ternary relation
z = closest common ancestor of x and y.

The class of trees modelled this way is closed under amalgamation, as illustrated
in Figure 6.1. Therefore, it has a Fraissé limit, which we call the universal forest.
(This forest is connected, because by amalgamation we can connect any two
forests.)

Exercises

Exercise 134. Assume the universal forest atoms. Find a finitely supported equivalence
relation on the atoms which has infinitely many infinite equivalence classes.

Exercise 135. Assume the universal forest atoms. Show that one cannot find an infinite
equivariant set X and an equivariant relation on it which is a total dense order. Equivariance is
important here, since if we only want a finitely supported one then this is easily accomplished
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an instance of amalgamation

its solution

Figure 6.1: Amalgamation for forests with a closest common ancestor relation.
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by taking the path connecting some two atoms a < b, and using the order inherited from the
atoms.

Exercise 136. Show that the universal forest has decidable Mso theory.



Chapter 7

Algorithms on orbit-finite sets

In this chapter, we give examples that illustrate how algorithms can be generalized
from finite sets to orbit-finite sets. For all algorithms in this chapter, we make the
following assumptions about the atom structure.

Definition 7.1. A structure A is called effectively oligomorphic if:
1. itis oligomorphic and countable;
2. it has a decidable first-order theory;
3. givend € {0, 1,.. .}, the number of orbits in A? can be computed.

These assumptions are satisfied by all atom structures that have been discussed
so far, such as the equality atoms, the order atoms, the graph atoms, or the bit vector
atoms.

7.1 Representing orbit-finite sets

To discuss algorithms, we need a finite representation of orbit-finite sets and their
equivariant subsets. In the special case of polynomial orbit-finite sets, we already
discussed such a representation in Section 5.2, when deciding graph reachability. This
representation was defined for polynomial orbit-finite sets, but it extends naturally to
(not necessarily polynomial) orbit-finite sets, as described below.

« How do we represent an orbit-finite set? By Theorem 5.12, every orbit-finite set
admits an equivariant bijection with a quotiented pof set, and so we will use
quotiented pof sets as our representation of orbit-finite sets. A quotiented pof
set is of the form

AN oy A%
/~1 I~

where each ~; is an equivariant partial equivalence relation on A%. By Theo-
rem 5.7, each of the equivalence relations ~; is necessarily first-order definable,

93
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and therefore it can be represented by a first-order formula. This formula has
2d; variables, because it is a binary relation on A%. Summing up, an orbit-finite
set is represented by a list of dimensions dj,...,d; € {0, 1,...}, one for each
component, together with a list of first-order formulas ¢y, . .., ¢, that describe
partial equivalence relations on these components. We would like the syntax to
be decidable, which in this case means checking if the first-order formulas do
indeed define partial equivalence relations. This can be formalized by writing a
first-order sentence:

VEF,ZEAY  pi(%7) © ¢i3,%) A 9i(XT)Aei(5,2) = @iX,7).
[ —

symmetry transitivity

i€{1,...k}

Since the first-order theory is decidable for an effectively oligomorphic struc-
ture, we can check if the above formula is true, and so the syntax is decidable.

« How do we represent an equivariant subsets of an orbit-finite set? Apart from
orbit-finite sets, we also need to represent their equivariant subsets (which
themselves can be seen as new orbit-finite sets.) Suppose that we have an orbit-
finite set as in the previous item. To describe an equivariant subset, we need
to specify for each component A% an equivariant subset, which is required to
be stable under the equivalence relation ~;. This subset can be described by a
first-order formula y;, and stability can be formalized by a first-order sentence

Vie A" yi(® = @53 A VieAY p(F,5) = vi).

et .ok} each element subset is closed under replacing

is in some elements with equivalent ones
equivalence class

In the rest of this chapter, we will present algorithms that operate on orbit-finite
sets and their equivariant subsets, using the representation described above. For the
moment, we need to care about the representation, and we will need to justify how
various operations, such as Boolean operations or certain kinds of loops, can be imple-
mented on this representation. Later on in this book, we will present a more principled
approach, namely a programming language that takes care of all of these operations.

7.2 Representing elements of orbit-finite sets

In the previous section, we explained how we can represent orbit-finite sets and their
subsets. It would also be desirable to represent individual atoms; for example this
would be needed to use a representation of sets in terms of generators, as we did in
Section 1.1.1 for the equality atoms. Before moving on to the algorithms, we discuss
how individual elements can be represented. Of course such a representation should
support certain basic operations, such as testing equality. This is formalized in the fol-
lowing definition, which uses the same three conditions as in item 3 of Theorem 6.12.

Definition 7.2 (Atom representation). An atom representation for a structure A is a
function r : 2* — A which has the following properties (when atoms are used in
algorithms, they are represented as strings using the representation):
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(a) every atom is represented by at least one string;

(b) given a first-order formula ¢(xy,...,xs) and ay,...,as € A, one can decide if
AEgai,...,aq);

(c) given two tuples in A¢, decide if they are in the same orbit.

In Exercise 137 we show that if an atom representation exists, then it is essentially
unique, since there are computable translations between any two atom representa-
tions. The following theorem shows that atom representations exist, under our usual
effectivity assumption.

Theorem 7.3. Every effectively oligomorphic structure has an atom representation.

Proof. We will use Theorem 6.12, whose conclusion says that there is an atom repre-
sentation. An oligomorphic structure A can be seen as a homogeneous structure H,
which has the same elements, but its vocabulary is extended so that it has one relation
for every first order formula. (The vocabulary is infinite.) Let .5 be the age of H. By
the assumption that A is effectively oligomorphic, there is an algorithm that inputs
d, and returns all structures in J# up to isomorphism' In other words, <7 satisfies
assumption (*) of Theorem 6.12. Therefore, we can apply that theorem, which yields
an atom representation for the Fraissé limit H], because item 3 of Theorem 6.12 is the
same as the definition of an atom representation. This in turn yields a representation
for A. O

The atom representation which arises from the above theorem will be very inef-
ficient. In cases of interest, such as the equality atoms or the order atoms, it will be
better to manually prepare more efficient atom representations.

One application of atom representations will be discussed in Chapter 8, where we
will study what it means for alanguage L C A” to be decidable. In the presence of atom
representations, we can simply require that this language is decidable in the usual
sense, assuming that atoms are given as strings that represent them. This requirement
will be a baseline, to which we will compare other notions, such as orbit-finite Turing
machines.

Another application is to represent equivariant subsets of A¢ by finite generating
sets. This is the same method as in Section 1.1.1: a generating set for a subset X C A?
is any set that contains at least one tuple per orbit. The assumptions on an atom
representation will enable us to perform basic operations on subsets represented this
way, such as Boolean combinations. For union, we can simply combine the two sets
of generators (which might result in some orbits being represented by more than one
generator). For intersection, we can use the “same orbit” test to check which orbits are
represented in both sets. The most interesting operation is complementation, where
we need to be able to describe orbits that are not represented. For this, we use the
following lemma.

Tt is worth explaining how one “returns” a structure over an infinite vocabulary. This means that we
return a list of its elements, together with an algorithm which inputs a relation name, and tells us which
tuples are selected by the relation.
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Lemma 7.4. For an atom representation of an effectively oligomorphic structure, there
is an algorithm which does the following:

(d) given d, compute a list of tuples that represents every orbit in A,

Proof. By assumption on being effectively oligomorphic, we know the number of or-
bits. We can then start enumerating all of A?, until we have represented all orbits,
which can be checked using the “same orbit” test from item (c). O

Of course, in cases of interest we will want to use more efficient algorithms than
the one which is given in the proof of the above lemma.

Exercises

Exercise 137. Consider an effectively oligomorphic structure, and two atom representations
r1, 2. Show that there is some computable function f : 2* — 2* which inputs a representation
of some atom under ry, and returns a representation of the same atom under r,.

7.3 Orbit-finite graphs and automata

Having discussed representations of orbit-finite sets and their elements, we now start
to present algorithms that operate on them. The first group of results, presented in
this section, is about orbit-finite automata. These results are mainly based on the
graph reachability result from Theorem 5.10, which showed that graph reachability
is decidable for effectively oligomorphic atoms (in fact, the proof did not use the full
power of the assumption, since it did not require that we can compute the number of
orbits in Ad). Quotients do not affect the algorithm, and so it extends to orbit-finite
graphs, as stated in the following theorem.

Theorem 7.5. Assume that the atoms are effectively oligomorphic. Then the reachability
problem for orbit-finite graphs (represented as in Section 7.2) is decidable.

Proof. Same as for Theorem 5.10. m]

The emptiness problem for automata is the same as the reachability problem for
graphs, and therefore we can use the above theorem to decide emptiness for orbit-
finite automata. Let us begin by formally defining the model. Similarly to graphs, the
definition of an orbit-finite automaton is the same as in the finite case, except that the
word “finite” is replaced by “orbit-finite”, and all subsets must be equivariant.

Definition 7.6 (Nondeterministic orbit-finite automaton). Let A be an oligomorphic
structure. A nondeterministic orbit-finite automaton over A is a tuple

A=(_ 0, z, 1¢CQ, FCQ, J§COxXIxQ),
states input alphabet initial states  accepting states transitions

where O and X are orbit-finite sets, and the subsets /, F, ¢ are equivariant.
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The semantics of the automaton are defined as for nondeterministic finite au-
tomata. The language recognised by such an automaton is equivariant, since the set
of accepting runs is equivariant. An automaton is called deterministic if it has one
initial state, and ¢ is a function from Q X X to Q.

Theorem 7.7. Assume that the atoms are effectively oligomorphic. Then the empti-

ness problem for nondeterministic orbit-finite automata (represented as in Section 7.2) is
decidable.

Proof. An immediate corollary of Theorem 7.5. O
Other positive results that generalise easily to orbit-finite automata include:
« e-transitions do not add to the power of nondeterministic automata (Exercise 138);
« one can minimize deterministic automata (Theorem 7.9);
« one can decide if a nondeterministic automaton is unambiguous (Exercise 139).

Negative results for the equality atoms generalise to other oligomorphic atoms, when
the atoms are infinite:

« nondeterministic automata are not closed under complement;
« the universality problem is undecidable;
« deterministic automata are strictly weaker than nondeterministic ones.

To illustrate the scope of the above results, we give several examples of determin-
istic or nondeterministic orbit-finite automata, in various oligomorphic atoms.

Example 51. Assume that the atoms are the random graph from Section 6.3.1. This
structure is effectively oligomorphic, because it is the Fraissé limit of a Fraissé class
that can be enumerated as in the assumptions of Theorem 6.12. The set of paths in the
random graph can be viewed as a language

{a)---a, € A : for every i < n there is an edge from q; to a;4;} € A"

This language is recognised by a deterministic orbit-finite automaton, which uses its
state to stores the last seen vertex. The set of cycles is also recognised by a determin-
istic automaton, this automaton also needs to remember the first vertex to check if it
is connected to the last one. [

Example 52. Assume that the atoms are the random graph, and consider the lan-

guage
{w e A" | the subgraph of A induced by atoms from w is a clique }

This language cannot not be recognized by an orbit-finite automaton, even nondeter-
ministic, as we show in the Exercise 140. [
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Example 53. Assume that the atoms are the random graph. The graph atoms are a
natural setting to talk about path and tree decompositions of graphs, as used in the
graph minor project of Robertson and Seymour. To make notation lighter, we only
discuss path decompositions. A width k path decomposition for a finite subset V C A
is defined to be a list of (not necessarily disjoint) subsets Vy,...,V, € V such that:
(a) every vertex from V appears in at least one bag; and (b) if two vertices from V are
connected by an edge, then they appear together in at least one bag; and (c) if a vertex
appears in some two bags, then it also appears in all other bags between them.

If k is fixed, then such a path decomposition can be seen as a word over an orbit-
finite alphabet, namely the sets of at most k atoms. (The number of orbits in this alpha-
bet is the number of isomorphism types of graphs with at most k vertices.) Therefore,
a path decomposition can be used as the input to an orbit-finite automaton. We now
show that interesting properties of the underlying graph can be recognised by such
automata.

Claim 7.8. There is a deterministic orbit-finite automaton A such that
A accepts Vy---V, iff thegraphV, U---UYV, is connected

holds for input which is a width k path decomposition®.

Proof. After reading a path decomposition Vi, ..., V, the automaton stores in its state
the last bag V,, together with the equivalence relation ~, on it which identifies vertices
from the last bag if they are in the same connected component of the underlying
graph V| U --- U V,. The states of the automaton are pairs (set of at most k atoms, an
equivalence relation on this set); this state space is orbit-finite. The initial state is the
empty set equipped with an empty equivalence relation, and the accepting states are
those where the equivalence relation has one equivalence class. The definition of the
transition function is left to the reader. ]

Similar constructions as in the above claim can be done for any property of graphs
of bounded pathwidth that is recognisable in the sense of Courcelle, which covers
all graph properties that can be defined in monadic second-order logic®. Using tree
automata instead of word automata, one can also cover tree decompositions. O

Example 54. Consider the bit-vector atoms and the language
{we A" | wislinearly dependent }.

The linear dependence in the above language is the same as the one discussed when
defining the bit-vector atoms, i.e. w is viewed as a list and not as a set. This means
that any repetition in the list will immediately be a dependence. This language is
recognised by a nondeterministic orbit-finite automaton. The state space is A, the

2The automaton does not check if the input is a path decomposition, in fact this cannot be done, see
Exercise 128.

3For more on recognisability, pathwidth, and monadic second-order logic, see (Courcelle and Engelfriet,
2012, Chapter 5.3).
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initial subset is the singleton of the zero vector {0}, and the accepting subset is the set
of non-zero vectors. The transition relation is

{pSql prta=qorp=gq ).

One can show that the nondeterminism in the above automaton is unavoidable -
the language is not recognised by a deterministic orbit-finite automaton. In fact, we
will show an even stronger result later in this book, namely that the language is not
recognised by any deterministic Turing machine running in polynomial time. [J

Minimization of deterministic automata. In Chapter 5, one of our motivations
for introducing orbit-finite sets as a generalization of pof sets was to minimize de-
terministic automata. In Theorem 4.9, we showed a version of the Myhill-Nerode
Theorem for the equality atoms, which gave a machine independent characterization
of deterministic orbit-finite automata, in terms of an orbit-finite syntactic congruence.
The same result carries over to general oligomorphic atoms.

Theorem 7.9. Assume that the atoms are oligomorphic. The following conditions are
equivalent for an equivariant language L C X* over an orbit-finite alphabet X:

1. L is recognised by a deterministic orbit-finite automaton;
2. the quotient of ¥* under the syntactic congruence of L is orbit-finite.

Proof. The same proof as for Theorem 4.9, and in fact, for the original Myhill-Nerode
Theorem for finite sets. We simply construct a deterministic automaton on the equiv-
alence classes of syntactic congruence. The assumption that the language is equivari-
ant guarantees that the structure of the automaton - the transition function and the
accepting states — is also equivariant. O

If the atoms are not only oligomorphic, but they are effectively oligomorphic, then
the syntactic automaton (i.e. the automaton that arises from the above theorem, also
known as the minimal automaton) can be computed based on any other deterministic
automaton.

Theorem 7.10. If the atoms are effectively oligomorphic, then the syntactic automaton
can be computed based on any deterministic orbit-finite automaton.

Proof. We use what is called the Moore algorithm, i.e. a fixpoint procedure that com-
putes equivalence on states*. Suppose that we are given a deterministic orbit-finite
automaton, whose states are Q. We first use the graph reachability algorithm from
Theorem 7.5 to restrict the state space to reachable ones. Next, we quotient the state
space with respect to syntactic equivalence, i.e. recognizing the same language, as
described below.

Forn € {0, 1, ...}, define ~, to be the equivalence relation on states, which iden-
tifies two states if they accept the same words of length at most n. It is easy to see

“The computational complexity of automata minimisation is studied in Murawski et al. (2015), using
the equality atoms and a more concrete model with registers and control states.
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that this equivalence relation is equivariant, and each ~, can be computed using the
formula representation of equivariant subsets. The chain

~1ot2 73

is a decreasing sequence of equivariant subsets of QX Q, and therefore it must stabilize
after finitely many steps. The stable value of this sequence is the syntactic equivalence
relation, and the minimal automaton is obtained by quotienting its state space under
this relation. |

Exercises

Exercise 138. Show that adding e-transitions does not change the expressive power of non-
deterministic orbit-finite automata.

Exercise 139. Show that, under the assumptions of Theorem 7.5, one can check if a nondeter-
ministic orbit-finite automaton is deterministic. Likewise for unambiguous (each input admits
at most one accepting run).

Exercise 140. Consider the graph atoms. Show that the language of cliques, i.e. words in
A* where every two letters are connected by an edge, is not recognised by a nondeterministic
orbit-finite automaton.

Exercise 141. Consider the equality atoms. For a language L C X*, consider the two-sided
Myhill-Nerode equivalence relation which identifies words w,w’ € X* if

uwveL iff wuw'vel for every u,v € X"

The quotient of X* under this equivalence relation is called the syntactic monoid of L. Show
that if the syntactic monoid is orbit-finite, then the syntactic automaton is orbit-finite, but the
converse implication fails.

Exercise 142. Let L C X* be a language, and let Q be the states of its syntactic automa-
ton. Show that the syntactic monoid defined in the previous exercise is isomorphic to the sub-
monoid of functions Q — Q which is generated by the state transition functions {g — ga},es
of the syntactic automaton.

Exercise 143. Let L C X" andlet & : ¥* — M be its syntactic homomorphism, i.e. the function
which maps a word to its equivalence class under two-sided Myhill-Nerode equivalence. Show
that M is orbit-finite if and only if the syntactic automaton of L is orbit-finite and there is some

k €{0,1,...} such that all elements of M have support of size at most .

Exercise 144. We say that a monoid M is aperiodic if for every m € M there is some
k €{0,1,...} such that m* = m**!. Let L be a language with an orbit-finite syntactic automaton.
Show that the syntactic monoid of L is aperiodic if and only if for every state g of the syntactic
automaton and every w € X* there is some k € {0, 1, ...} such that gw* = gw**!.

Exercise 145. Suppose that M is an orbit-finite monoid. Can one find an infinite sequence
MM 2M, 2M; 2 -

such that each M; is a submonoid?

Exercise 146. Consider an orbit-finite monoid M. We define the prefix relation on this monoid
as follows: a is an infix of b if b = ax for some x € M. Show that under the equality atoms, the
prefix relation is well-founded, but this is no longer true under the order atoms.
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7.4 Systems of equations

In the previous section, we discussed automata problems, which were based on graph
reachability. Using a similar approach, the results on context-free grammars from
Section 3.4 can be extened from the equality atoms to effectively oligomorphic atoms.
Let us now give a new algorithm, which is based on a different approach®. In this
algorithm, we use only two kinds of atoms, namely the equality atoms and the ordered
atoms, but curiously enough, the ordered atoms are needed to analyze the equality
atoms.
Consider a system of equations in the two element field Z,, like this one:

x+y = 1
x+z =1
y+z = 1

The system above does not have a solution, because some two variables need to get
the same value, violating the equations. The system has finitely many equations. In
this section, we consider systems where the set of equations is orbit-finite, but each
individual equation is finite.

Example 55. Consider the equality atoms. The variables are pairs of distinct atoms,
and the set of equations is

(a,b) + (b,a) =1 foralla # b € A.
—— ——

one variable  one variable

A solution in Z, to this system amounts to a choice function, which chooses for every
two atoms a # b € A exactly one of the pairs (a, b) or (b, a). It follows that the above
system has a solution, but no equivariant supported solution. [J

The above example shows that, under the equality atoms, an equivariant system
of equations might have a solution, but it might not have an equivariant solution. If
we use the ordered atoms, then the problem goes away, as shown in the following
theorem.

Theorem 7.11. Assume the atoms (Q, <). Let & be an equivariant orbit-finite set of
equations. If & has any solution in Z,, then it has a solution in Z, that is equivariant.

Proof.

1. In the first step, we show that without loss of generality we can assume that
the variables are tuples of atoms. Let X be the orbit-finite set of variables that
appear in the equations &. By the representation result from Theorem 5.12, see
also Exercise 106, there is some k € {0,1,2...} and an equivariant surjective
function

fAF > X

>This section is based on Klin et al. (2015)
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Define ¥ to be the following set of equations over variables A*:

x=y Vit ot yn =i
————
when f(x) = f(y) when & contains an equation

Xyt x, =i
where f(y1) = x1,..., fOn) = xu

It is easy to see that if & has a solution if and only if # has a solution. Likewise
for equivariant solutions.

2. Let ¥ be the system of equations produced in the previous item. To prove the
theorem, it remains to show that if ¥ has a solution

SZAk—>Z2

then it also has an equivariant one. We prove this using the Ramsey Theorem.
By the Ramsey Theorem, there is an infinite set A C A such that

sar,...,an) = s(by, ..., by)

holds for all @ and b which are strictly growing tuples from A. Again by the
Ramsey Theorem, there is an infinite set B C A such that

s(al,...,a,,) = S(bl,...,bn)

holds for all @ and b which are strictly decreasing tuples from B. Repeating this
argument for all finitely many order types, i.e. for all orbits in A¥, we get an
infinite set Z C A such that

s(at,...,ay) = s(by,...,by)

holds whenever @ and b are tuples from Z* with the same order type (in other
words, in the same equivariant orbit of Ak). Define

S’ZAk—>Z2

to be the function that maps a to s(b) where b is some tuple from Z* in the
same equivariant orbit as @ Such a tuple b exists, and furthermore s(b) does
not depend on the choice of b by construction. Because s’(@) depends only on
the equivariant orbit of @, the function s’ is equivariant. It is also a solution to
¥ . This is because every equation from # can be mapped to some equation in
¥ which uses only variables from Z, and s’ satisfies those equations.

O

Corollary 7.12. Assume that the atoms are (Q, <). Given an equivariant orbit-finite
system of equations, one can decide if the system has a solution in Z,. Likewise for the
equality atoms.
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Proof. Assume the atoms are (Q, <). By Theorem 7.11, it is enough to check if the
system has an equivariant solution. By Lemma ??, we can compute all equivariant
orbits of the variables, and therefore we can check all equivariant functions from the
variables to Z;, to see if there is any solution.

Consider now the equality atoms. We reduce to (Q, <). Every equivariant orbit-
finite set over the equality atoms can be viewed as an equivariant orbit-finite set over
(Q, <), by using the same set builder expressions. This transformation does not affect
the existence of solutions, and for systems of equations over atoms (Q, <) we already
know how to answer the question. O

Exercises

Exercise 147. Assume that the atoms are Presburger arithmetic (N, +). Consider sets of
equations over the field Z,, where both the variables and the set of equations are represented
by set builder expressions. Show that having a solution is undecidable.

Exercise 148. What is the effect on the decidability of the problem in Exercise 147 if we
assume that the set of variables is A, i.e. the natural numbers? What if the variables are atoms
and every equation has at most two variables?

Exercise 149. Consider the following atoms®. The universe is the set of bit strings {0, 1}*

which have finitely many 1’s. The structure on the atoms is given by the following relation of
arity four:

a+b=c+d,

where addition is coordinatewise. This structure is oligomorphic. Show two sets that are equiv-
ariant and orbit-finite, such that there is a finitely supported bijection between them, but there
is no equivariant bijection.

Suggested by Szymon Torunczyk.
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Chapter 8

Turing machines

Without atoms, the notion of “computability” is formalised using Turing machines,
and there is a thesis — called the Church-Turing Thesis — which says that there is
any other hypothetical model of computation would need to be captured by Turing
machines.

What happens to this thesis in the presence of atoms? We begin a discussion in this
chapter, by introducing orbit-finite Turing machines. This is an interesting and natural
model of computation. However, as we will discover already in this chapter and then
later on in this book, using Turing machines as the definition of computability is
problematic. The main issue is that the basic data structure in a Turing machine is a
list, and arranging objects in lists requires a form of choice, which typically impossible
in the presence of atoms. We will overcome these limitations in later chapters, by
using models of computation that are based on sets instead of lists.

Nevertheless, there are interesting things to say about Turing machines with atoms,
and we say some of them in this chapter. The highlights are that, for Turing machines
with atoms, one can prove nontrivial separations for complexity classes:

« In Section 8.2, we prove that P # Np holds in the bit vector atoms. It is worth
underlying that this result has no bearing on the usual version of the ques-
tion, without atoms. This is because we prove a much stronger result, which is
clearly false without atoms, namely that deterministic orbit-finite Turing ma-
chines running in polynomial time are incapable of recognizing even some lan-
guages that are recognized by nondeterministic orbit-finite automata. The sep-
arating language is

{a;---a,€A:ay,...,a, are not linearly independent}.

This language is recognised in by a nondeterministic automaton (guess the lin-
ear combination that gives zero) or deterministic exponential time Turing ma-
chine (try all combinations), but it is not reocognized in deterministic polyno-
mial time.

« In Section 8.3, we prove a similar separation for the equality atoms. We show
that there is a language which is recognised by a nondeterministic Turing ma-

105



106 CHAPTER 8. TURING MACHINES

chine (even in polynomial time), but not recognised by any deterministic Turing
machine (even without restrictions on running time). This separation is harder
than in Section 8.2, and uses the Cai-Firer-Immerman construction from finite
model theory. As in the previous item, this separation is unlikely to be useful
in separating complexity classes without atoms. The accompanying proof is
based on the limited access that Turing machines have to their input and on the
symmetries that result from applying atom automorphisms.

8.1 Orbit-finite Turing machines

Before presenting the separation results about Turing machines, we begin by defining
the model and discussing some examples.

Definition 8.1 (Orbit-finite Turing machine). An orbit-finite Turing machine is de-
fined in the same way as in Section 3.5, except that instead of polynomial orbit-finite
sets, we use (not necessarily polynomial) orbit-finite sets, and the atoms need not be
the equality atoms, but they can be any oligomorphic structure.

At first glance, the difference seems to be minor. By Theorems 4.6 and 5.12, an
orbit-finite set is the same as a polynomial orbit-finite set quotiented by some partial
equivalence relation, and therefore the only difference between pof sets and orbit-
finite sets is the presence of quotients. As we will see, the quotients have profound
impact, and break results such as the characterization from Theorem 3.5, even under
the equality atoms.

To illustrate the roles of quotients, consider the following example. The example
is a positive one — i.e. we can still solve the problem using a deterministic orbit-finite
Turing machine - but later on we will see negative examples.

Example 56. [An input alphabet with quotients] Consider the equality atoms. Let
the input alphabet T be sets of atoms of size at most ten. This is the quotient of A'”
under the partial equivalence relation that identifies two tuples if they use the same
set of atoms. (Formally speaking, this quotient does not cover the empty set. To
work around this minor issue, we can either use A% + A%, or we can stay with A0
and modify the equivalence relation, so that the empty set is represented by some
redundant orbit. This is because sets of non-maximal size, say size 1, are represented
by many orbits, and one of these can be spared to represent the empty set.)
Here is an example of an input word over this alphabet X that has six letters:

{John, Eve, Mary}{John, Eve, Tom}{John, Eve}{John, Eve, Mary}{John, Eve}{Tom}.

The letters are sets, which means that there is no order on the atoms that appear in
a given letter. This will prevent a machine from doing operations like “load the first
atom from the letter under the head”, witnessing the difficulties of input alphabets
with quotients. However, as we show in this example, the diffiulties can be overcome
for this particular input alphabet.

Consider the language: “some atom appears in an odd number of letters”. This
language can easily be recognized by a nondeterministic Turing machine, in fact even
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a nondeterministic orbit-finite automaton. The challenge is doing this with a deter-
ministic machine, because there is no apparent mechanism for pointing to the atom
that appears in an odd number of letters. To see this, consider the example input word
from the previous paragraph. Both atoms John and Eve appear in an odd number of
letters, but an equivariant deterministic Turing machine cannot see any difference be-
tween these two atoms, because every set contains either both or none of the atoms
John and Eve.

Here is a solution to the problem, i.e. a deterministic orbit-finite Turing machine
that recognizes the language. Suppose that the input word is A; - - - A,, where each
A, is a letter from the alphabet, i.e. a set of at most ten atoms. The Turing machine
executes the following program:

1. Generate a copy of the input word. After this step the tape has the form

Al An AL+ A, .
——— —

first copy  second copy

2. Aslong as possible, iterate these steps on the second copy of the tape:

(a) if some set appears multiple times, remove all the duplicates;

(b) if A, B are two distinct intersecting sets that appear in the second copy,
then remove them and add the three sets A\ B,B\ A,AN B.

This stage ends when all sets in the second copy are pairwise disjoint.

3. At this point, the second contains contains equivalence classes of the relation
“appears in the same sets from Ay,...,A,”. Check if some equivalence class
(i.e. some set from the second copy) is contained in an even number of sets
from the first copy.

All the above steps can be performed by a deterministic orbit-finite Turing ma-
chine. To process sets, the machine can use state space which stores a set of at most
10 atoms. [J

In the above example, the symmetries in the input alphabet required some non-
trivial programming tricks. As we will see later in this chapter, when the symmetries
get more complicated, the tricks will run out.

Before showing these negative results, we begin with a positive result, which in-
volves nondeterministic machines. In Theorem 3.5, we showed that for the equality
atoms and polynomial orbit-finite sets, Turing machines with atoms are computa-
tionally complete, in the sense that they recognize the same languages as the usual
atom-less Turing machines, assuming that atoms are represented in an atom-less way.
The proof of that theorem does not extend to (not necessarily polynomial) orbit-finite
sets. The issue is with the deatomisation construction in Lemma 3.6, which assumes
that one can order the atoms from the input string in their order of appearance, and
speak of the “leftmost atom”, or the “second leftmost atom”. Such an order exists
when the alphabet is a pof set, because letters are ordered tuples of atoms, but it does
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not necessarily exist for more general alphabets, e.g. when letters are sets as in Ex-
ample 56. Therefore, we need to revisit the questions for the more general setting of
orbit-finite sets.

Later in this chapter, we will show that not only the proof of Theorem 3.5 fails
to work for orbit-finite sets that are not polynomial, but the result itself is false, be-
cause deterministic and nondeterministic orbit-finite machines have different compu-
tational power. However, we can at least show that the nondeterministic machines
are computationally complete, under a mild assumption on the atoms, which is true
for all atom structures discussed in this book.

The additional assumption is that the vocabulary is finite, and every first-order
formula is equivalent to an existential formula, which is a formula of the shape

¢(x17"'7‘xn) = Hyl""’ym ¢(x17""xn’y17"',ym)'
N————
prefix of existential  a quantifier-free formula
quantifiers

Most atom structures that we have used so far — such as the equality atoms, the or-
dered atoms, or the graph atoms — have an even stronger property, namely every for-
mula is equivalent to a quantifier-free formula. This is because they are homogeneous
structures over a finite vocabulary, and for homogeneous structures, every first-order
formula is equivalent to a quantifier-free formula, see Theorem 6.3. The only excep-
tion is the bit-vector atoms, which are homogeneous, but over an infinite vocabulary.
However, also these atoms can be made compliant, if we change the vocabulary, as
explained in the following example.

Example 57. Consider the bit-vector atoms. As we have defined them in Section 6.3.2,
this is a homogeneous structure over an infinite vocabulary, which has a dependence
relation for every dimension d. We can, however, use a different vocabulary, namely
one ternary relation

xX+y=¢z

for addition of vectors. This relation is equivariant, since automorphisms of the atoms
are linear maps, and therefore it can be defined using a quantifier-free formula by The-
orem 6.3, see Exercise 150 for an explicit formula. Conversely, each of the dependence
relations can be expressed using only the addition relation. Therefore, we can think
of the bit-vector atoms as having only on relation, namely addition. (For this new
vocabulary, the structure is no longer homogeneous, see Exercise 151.) In the new
vocabulary, every first-order formula is equivalent to an existential one, since: (a) ev-
ery first-order formula is equivalent to a quantifier-free formula using dependence
only, and (b) both dependence and independence can be defined using existential for-
mulas that use addition only. [J

In Theorem 8.2 below, we will show that nondeterministic orbit-finite Turing ma-
chines are computationally complete, which means that they are equivalent to Turing
machines that use atom-less strings as representations of atoms. This notion of rep-
resentation was formalised in Definition 7.2, as a function r : 2* — A, subject to
certain assumptions. Once we know how to represent individual atoms as atom-less
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strings, we can easily extend the representation to represent elements of pof sets, or
elements of orbit-finite sets, or words over an orbit-finite alphabets. These extensions
are used in the following theorem, which shows that nondeterministic orbit-finite
Turing machines are the “right” model for languages over orbit-finite alphabets.

Theorem 8.2. Assume that the atoms are effectively oligomorphic, have a finite vocabu-
lary, and every first-order formula is equivalent to an existential one. Then the following
conditions are equivalent for every L C X* where X is an orbit-finite alphabet:

1. L is recognised by a nondeterministic orbit-finite Turing machine;
2. L is equivariant and for every atom representation, see Definition 7.2, the language
{we2"| wrepresents some word in L }
is recognised by a nondeterministic Turing machine (without atoms);
3. as in the previous item, but the machine is deterministic;
4. as in the previous item, but the representation is quantified existentially.

Proof. The implications 1 = 2 = 3 = 4 are proved in the same way as in Theorem 3.5.
Let us very briefly recall those arguments. For the implication 1 = 2, we extend the
representation from atoms to configurations of Turing machines, and show that the
one-step successor relation is decidable, which can be used to recognize the language
in item 2. The implication 2 = 3 follows from the fact that deterministic and nondeter-
ministic Turing machines without atoms recognize the same languages. Finally, the
implication 3 = 4 is trivial (“every” implies “some”, as long as an atom representation
exists, and it does exist by by Theorem 7.3).

We are left with the implication 4 = 1. We begin by reducing to the case where
the input alphabet is A.

Lemma 8.3. If the implication 4 = 1 holds in the special case when the input alphabet
X is A, then it holds for every orbit-finite alphabet.

Proof. The reduction is based on the following observation.

Claim 8.4. For every orbit-finite set T there existsd € {0, 1, ...} and a surjective equiv-
ariant function f : A4 — X.

Proof. By Theorem 5.12, we know that X admits an equivariant bijection with a quo-
tiented pof set. By removing the quotients, it follows that there is a surjective equiv-
ariant function from some (un-quotiented) pof to X. Therefore, it enough to prove the
claim for (un-quotiented) pof sets. To get such a surjective function

frAY - AT 4 A%
————
an (un-quotiented pof set)
we choose d to be the maximal dimension among dj,...,d; plus some constant e,
which is chosen to be so that A° has at least k orbits. We use the orbit of the last e

atoms to choose the component in i € {1,...,k}, and the remaining atoms to get the
content of tuple in A%, O
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We use the above claim to prove the lemma. Let L € X* be a language over
some orbit-finite alphabet, which satisfies condition 4. Apply the above claim to get
a surjective function f, and extend it to lists, giving a surjective equivariant function

A > E
We can pull back the language L along f*, yielding a new language
K={ve @) | ffmeL ).

We can think of the new language as being a language over alphabet A, which contains
only words with length divisible by k. Therefore, we can apply the implication 4 = 1 to
the new language. To complete the proof of the lemma, we will show that condition 4
transfers from the original language L to the new language K, and that condition 1
transfers in the opposite direction.

Let us first explain how condition 4 transfers from the original language to the
new language. Condition 4 speaks about machines which work on atom-less repre-
sentations. Given a representation of a word for the new language, an orbit-finite
Turing machine can compute a representation for its image under f*, and then use
the Turing machine for the original language. This shows the transfer of condition 4.

Let us now explain how condition 1 transfers from the new language to the origi-
nal language. Given an input word for the original language, the orbit-finite machine
uses nondeterminism to guess some input for the new language which maps to it
along f*, and then calls on the Turing machine for the new language. O

The proof of the above lemma crucially uses nondeterminism, in the last step
where an inverse image under f* is guessed. As we will see later in this chapter,
this is unavoidable, since nondeterministic orbit-finite Turing machines are strictly
more expressive than deterministic ones.

Having proved the reduction in Lemma 8.3, it remains to prove implication 4 =
1 for languages over the alphabet A. Let then L C A* be a language that satisfies
condition 4. When we speak of representations of atoms or lists of atoms below, we
refer to the representation this condition.

We begin by showing that if we bound the computation time, then the accepted
words can be defined using first-order formulas.

Lemma 8.5. Given an input length d and bounds t and s on the time and space of the
computation, one can compute a first-order formula which defines the language

a some word in the orbit of w has a representation which
is accepted by M in time at most t and space at most s

}

{weA

Proof. Let F be the finite set of words (without atoms) that are accepted by M in at
most n computation steps, and which represent some word in A?. This set can be
computed given the parameters d, s,f. To prove the lemma, we show that we can
compute formulas that describe the orbits of the words represented by F. The main
observation is in the following claim, which shows that the partition of A4 into orbits,
with each orbit described by a first-order formula, can be computed.



8.1. ORBIT-FINITE TURING MACHINES 111

Claim 8.6. Givend, one can compute first-order formulas that describe all orbits in A?.

Proof. By the assumption that the structure is effectively oligomorphic, we can com-
pute the number of orbits in AY, say it is n. Next, we can start enumerating n-tuples
of first-order formulas in d variables, until we find an n-tuple where all formulas de-
scribe nonempty subsets which are pairwise disjoint. These subsets must be the orbits
of A?. The stopping criterion is decidable, since the structure has a decidable first-
order theory, and the procedure must stop, since every orbit is first-order definable
by Theorem 5.7. O

Using the above claim, we can check which of the orbit formulas are satisfied by
the tuples (represented by strings) in F'. This check is decidable, by definition of atom
representations. The disjunction of the resulting formulas defines the language in the
statement of the lemma. O

We are now ready to prove that the language L is recognised by a nondeterministic
orbit-finite Turing machine. Thanks to the above lemma, we can compute a first-order
formula which tells us if the input word belongs to the language as witnessed by a
run of given length. The Turing machine recognising L will evaluate the formula, for
ever larger resource bounds, and it will accept once it finds some resource bounds for
which the formula is true. If the word is not in the language, then the procedure will
not terminate, since no resource bounds be found. The important thing, however, is
that the procedure will terminate with acceptance when the word is in the language.
To evaluate the formulas, we use the following lemma, which completes the proof
that L is recognised by a nondeterministic orbit-finite Turing machine, and also the
proof of the theorem.

Lemma 8.7. There is a nondeterministic orbit-finite Turing machine that inputs

ap---ag € A* and O(X1,5 .y Xg)
| — —_———
a list of atoms a first-order formula

and answers if the formula is true for the given atoms.

Proof. The input alphabet is the disjoint union of A, which is used for the list of atoms,
and some finite alphabet which is used to represent the formula. The proof of this
lemma is the only place where we use the assumption that every formula is equivalent
to an existential one.

We begin by proving the lemma in the special case when the formula ¢ is quantifier-
free. A quantifier-free formula is a Boolean combination of atomic formulas

R(X,‘l yeeey x,‘k)

where R is a relation from the vocabulary, and the indices iy, . . ., iy indicate the vari-
ables in question. For each such atomic formula, the Turing machine moves it head to
the positions iy, . . ., iy on the input list of atoms, and collects their values into a single
tuple from A*. Since the vocabulary is finite, the dimension k has a fixed upper bound
that does not depend on the input, and therefore this tuple can be stored in the state.
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The relations from the vocabulary can be hard-coded into the transition function of
the Turing machine, since they are equivariant, and there are finitely many possibil-
ities by the assumption that the vocabulary is finite. Therefore, the Turing machine
can use a single transition to check if the relation R is satisfied by a tuple that is stored
in its state.

We now consider the general case, where the input formula is not necessarily
quantifier-free. By the assumption on the atom structure, we know that the input
formula is equivalent to an existential formula

) IEEEE= |AT/(C T 7 1 U T, ) §

Not only does this existential formula exist, but we can also compute it. This is done
by enumerating all candidates for the existential formula and using decidability of
the first-order theory to check if the candidate is equivalent to the input formula. We
know that an equivalent candidate will eventually be found. Once we have found the
appropriate candidate, it can be evaluated for the input list of atoms: use nondeter-
minism to guess the values of the existential variables, write them on the tape, and
then check if the quantifier-free part ¢ is true using the procedure from the previous
paragraph. O

O

In the above theorem, we use nondeterministic Turing machines and the assump-
tion that first-order logic collapses to its existential fragment. This assumption covers
all atom structures used in this book, and we are not aware of any example that is not
covered. However, it is natural to ask about what happens without this assumption.
We will show that without this assumption, a variant of the above theorem can still
be recovered, at the cost of using a slightly more general model, namely alternating
machines.

Let us begin by describing the model. The syntax of an alternating Turing machine
is the same as for a nondeterministic one, except that the states are additionally par-
titioned into two parts: existential and universal. (The idea is that a nondeterministic
machine is the special case when all states are existential.) The semantics of is de-
fined in terms of a game, which is played by two players, called the existential player
and the universal player. A position in the game is a configuration of the machine.
In a given configuration, the player who owns the control state chooses a transition,
which results in a new configuration, or in acceptance/rejection. The language rec-
ognized by the machine is defined to be the words for which the existential player
has a strategy in the game that ensures acceptance, assuming that one begins with
the initial configuration for the input string. This means that for every strategy of the
universal player, a finite number of rounds is played and then the machine accepts.

Theorem 8.8. Assume that the atoms are effectively oligomorphic and have a finite
vocabulary. Then for every language L C X* over orbit-finite alphabet, conditions 2—4
from Theorem 8.2 are equivalent each other, and also to:

1* L is recognised by an alternating orbit-finite Turing machine.
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Proof. The implications 1* = 2 = 3 = 4 are proved in the same way as in Theorem 3.5.
The only difference is that for the first implication, we need the observation that with-
out atoms, alternating and nondeterministic Turing machines are equivalent. This is a
classical result, which is proved by showing that a nondeterministic Turing machine
can enumerate through all possible strategies for the existential player.

For the implication 4 = 1%, we can use the same proof structure as in the proof of
Theorem 8.2. As we remarked in that proof, Lemma 8.7 is the only part of the proof
which used the assumption that every formula is equivalent to an existential one.
Therefore, it remains to prove that lemma, without this assumption, but using alter-
nating machines instead of nondeterministic ones in the conclusion. In this version,
the lemma becomes essentially trivial, since the alternation can be used to simulate
both kinds of quantifiers, universal and existential. O

Exercises

Exercise 150. Consider the bit-vector atoms. Write a quantifier-free formula for x +y = z,
which uses the dependence relations.

Exercise 151. Consider the bit-vector atoms with the ternary addition relation from Exam-
ple 57 and no other relations. Show that this structure is not homogeneous.

Exercise 152. Assume oligomorphic atoms. Let M be a nondeterministic orbit-finite Turing
machine with input alphabet A. Show that there is a finite family R of equivariant relations on
the atoms such that for every n,t, s € {0, 1, .. .}, the property

{we A" | M accepts w in time at most ¢ and space at most s}

can be defined by an existential formula that uses only relations from R.

Exercise 153. Assume that the atoms are effectively oligomorphic. Prove a converse of The-

orem 8.2: if the conditions in the theorem are equivalent, then every first-order formula is

equivalent to an existential one.

Exercise 154. Assume that the atoms are oligomorphic. Let X be an orbit-finite input alphabet.

Show that a language L C X* is recognised by a deterministic orbit-finite Turing machine if and

only if:

(*) There is an orbit-finite set A 2 X, a finite set # of functions (each one being an equiv-

ariant function A¥ — A for some k) and an equivariant subset F C A such that given
n € N, one can compute a term using the functions ¥ and has n variables such that

ay---a, €L iff tay,...,a,) €F for every aj,...,a, € X.

Exercise 155. Assume that the atoms are oligomorphic and admit least supports. Show that
a language L C A" is recognised by a deterministic orbit-finite Turing machine if and only if:
(**) There exists a finite family # of functions (each one being an equivariant function A¥ —
A for some k) and relations (each one being a subset of A* for some k) such that given
n € N, one can compute a quantifier-free formula with functions # that has n free
variables and defines L N A".

Exercise 156. Assume that the atoms admit least supports, and are homogeneous over a rela-
tional vocabulary. Show that nondeterministic and deterministic orbit-finite Turing machines
recognise the same languages over input alphabet A.
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8.2 For bit vector atoms, P # NP

Recall the bit vector atoms that were introduced in Section 6.3.2. This is the vector
space over the two-element field of countably infinite dimension, i.e. these are vectors
in {0, 1}* that have finitely many nonzero entries. Equivalently, this is the Fraissé
limit of finite-dimensional vector spaces over this field. As explained in Example 57,
we can view this as a structure with one ternary relation x + y = z, or alternatively
with infinitely many relations for linear dependence.

In this section, we show that p # NP holds for these atoms. Actually, we prove that
deterministic polynomial time orbit-finite Turing machines are not even capable of
simulating nondeterministic orbit-finite automata. The separating language consists
of lists of vectors that have some nontrivial linear dependency.

Theorem 8.9. Assume the bit vector atoms. The language
{a,---a, € A"| for some nonempty subsetI C {1,...,n} we have0 = Y;;;a; }

is recognised by a nondeterministic orbit-finite automaton (and therefore also by a non-
deterministic polynomial time orbit-finite Turing machine), but it is not recognised by
any deterministic polynomial time orbit-finite Turing machine.

Proof. The upper bound in the theorem - about recognisability by an orbit-finite au-
tomaton — was shown in Example 54. One can also have an alternative upper bound:
the language can be recognised by a deterministic orbit-finite Turing machine in ex-
ponential time, by enumerating through all possible coefficients in the linear combi-
nation.

The rest of this section is devoted to proving the lower bound for determinis-
tic Turing machines that run in polynomial time. Fix some deterministic orbit-finite
Turing machine. We will show that if the machine runs in polynomial time and re-
jects some linearly independent tuple, then it will also reject some linearly dependent
tuple.

We begin by introducing some notation. Let I' be the work alphabet and let Q be
the state space of the fixed Turing machine. A computation of the machine that uses
t time steps and s units of space can be seen as a rectangular grid

el ... tpx{l,...,s} > T+ xQ,

pairs in this set labels of tiles
will be called tiles

where labels from I X O are used for tiles containing the head, and labels from I
are used for the other tiles. Not every function p of the above type is a computation,
because p must also respect the transition function of the machine. The following
straightforward lemma says that respecting the transition function is a property that
depends on at most three tiles at a time.

Lemma 8.10. Suppose that

p,o:{lL ...t} x{l,...,s} > T+T'xQ
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are similar in the sense that for every three tiles x,y, z, the triples

(), p(,p())  (0(x),0(y),0(2))

are in the same orbit. Then p is a computation if and only if o is a computation, and p
is rejecting if and only if o is rejecting.

Proof. The semantics of a Turing machine involves comparing at most three tiles at
the same time, as in the following picture:

The assumption of the lemma could even be weakened to triples of tiles that are adja-
cent in the grid as in the above picture, but we will not need this stronger variant of
the lemma. O

We use the above lemma to show that a rejecting computation of the Turing ma-
chine that has polynomial size can be converted into another rejecting computation,
whose input word is linearly dependent, and therefore should be accepted. The result-
ing contradiction will show that the language cannot be recognised by a deterministic
polynomial time Turing machine.

By Claim 8.4, there is a surjective equivariant function

f:A?ST+Tx0.
Consider an input string w € A* that is linearly independent, and let
p{lL...t)x{l,...,s} >T+I'xQ

be the corresponding computation of the Turing machine. This is a rejecting compu-
tation, because the input string is linearly independent. Define a support list of this
computation to be any

ool 0y x{l,..., s} > A?

which is yields p after extending with f. The support list can be viewed as a list of
atoms of length std. This length of this list is polynomial in the input length, since the
time and space of the Turing machine is polynomial, and the dimension d is fixed. We
claim that if the input length 7 is large enough, then there is some atom a € A which

1. is spanned by the n independent atoms in the input string w;

2. is not spanned by any subset of 3d atoms in the support list p.
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This is because the number of atoms spanned by a is exponential in n, while the num-
ber of subsets from the second item is polynomial.

Choose a linear map ¢ : A — A whose kernel is {0, a}. (This is done by choosing
a basis of A which contains a, and then sending the basis vector a to zero, and the
remaining basis vectors to themselves). This linear map is not an atom automorphism,
since it is not invertible. Nevertheless, we can still apply it to atoms and lists of atoms
(however, it will not be guaranteed to preserve orbits). Apply it to the support list p,
yielding a new support list

g {l,...,.0x{1,...,s} > AL
Finally, let
o {1, 0x{1,..., s} > A?

be the result of extending & with f. We will now show that ¢ is in fact a computation
of the Turing machine, and that it is also rejecting. This will yield a contradiction,
since the input string becomes linearly dependent after applying ¢, and therefore we
get a rejecting computation on a string that should be accepted.

Lemma 8.11. The function o is a rejecting computation of the Turing machine.

Proof. The essential idea is that while the linear map ¢ is not an atom automorphism,
it still preserves the orbit of short lists of atoms, and this will be enough to preserve
computations of the Turing machine.

Thanks to Lemma 8.10, it suffices to show that for every three tiles x, y, z, the triples
orbits of these three tiles are the same in p and 0. To prove this, we use the following
straightforward characterisation of the same orbit relation.

Claim 8.12. Two tuples a, b € A* are in the same orbit if and only if

Da=0 iff > flap=0  foreveryI C{l,....kl.

i€l i€l

Proof. The left-to-right implication is immediate. For the right-to-left implication, we
observe that if the same subsets of coordinates have zero sum, then the two tuples sat-
isfy the same quantifier-free formulas under the vocabulary that uses the dependence
relations. Under this vocabulary, the structure A is homogeneous, see the discussion
in Example 57. Therefore, if the two tuples satisfy the same quantifier-free formulas,
then they are in the same orbit, by Theorem 6.3. O

Using the claim, we complete the proof of the lemma. By definition, the sup-
port list & was obtained from p by applying the linear map ¢, which preserved non-
zeroness of linear combinations of size at most 3d. Since a tile uses at most d atoms,
it follows from the above claim that for every three tiles, the corresponding triples of
labels in & and p are in the same orbit. This relation continues to hold after applying
the equivariant map f, and therefore every triple of tiles in p has a triple of labels that
is in the same orbit as the corresponding triple of labels in o=. This shows that o is
also a rejecting computation of the Turing machine. ]
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The above lemma shows that the Turing machine must also reject some linearly
dependent tuple, which is a contradiction. Therefore, the language cannot be recog-
nised by a deterministic polynomial time Turing machine. O

Exercises

Exercise 157.  Assume the bit vector atoms. Show that if the input alphabet is A, then
nondeterministic orbit-finite Turing machines have the same expressive power as deterministic
orbit-finite Turing machines (although with possibly exponential slowdown).

8.3 For equality atoms, Turing machines cannot be
determinised

This section describes another thing that deterministic Turing machines with atoms
cannot do. This time, the atoms are the equality atoms.

Theorem 8.13. Assume the equality atoms. There is a language which:
1. is recognised by a nondeterministic orbit-finite Turing machine;
2. is not recognised by any deterministic orbit-finite Turing machine.

In other words, deterministic orbit-finite Turing machines are not computationally
complete!, which witnesses the tightness of Theorem 8.2.

The rest of Section 8.3 is devoted to proving Theorem 8.13.

Recall from Theorem 3.5 that, when the input alphabet is a pof set, then deter-
ministic orbit-finite Turing machines are computationally complete. Therefore, the
language in the theorem needs to use an input alphabet that is not a pof set.

The language in Theorem 8.13 will be recognised by a polynomial time nondeter-
ministic machine. Therefore, the theorem gives another example of NP#p. Again, as
mentioned at the beginning of this chapter, the theorem is unlikely to shed new light
on the NpP#£P question without atoms, since the proof is based on the limited way that
a Turing machine can access the atoms in its tape.

The separating language. Define a tile to be a tuple of 8 distinct atoms, i.e. an
element of A®. We draw tiles like this:

1,2,3,4,5,6,7,8) is drawn as

The results in this section are based on Bojanczyk et al. (2013a).
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We will arrange tiles on a square grid with torus topology. For n € {1,2,...}, define
an n X n tiling to be a function

Tinxn—A®  wherenxn = {0,1,....n-1}x{0,1,...,n—1}.

A tiling is called consistent if it satisfies the following constraints:

The grid has a

torus topology, and
Each atom therefore the first
appears and last rows are
exa.lctly / adjacent, likewise
twice, on for columns.
adjacent
positions.

#

We begin with an informal description of the language that is difficult for deterministic
Turing machines. One is given partial information about a tiling, namely each tile is
known up to an even number of flips (see below). The question is: can the partial
information be instantiated to a tiling that is consistent? This question will turn out
to be doable using a nondeterministic machine — by guessing the instantiation — but
will be impossible for a deterministic machine.

We now describe the partial information in more detail. A flip on a tile is defined
to be a transposition of atoms that appear on one side, as shown in the following
picture:

atile one of its flips

Define ~ to be the equivalence relation on tiles, which identifies two tiles if one can
be obtained from the other by doing an even number of flips. Each equivalence class
of ~ has eight tiles, as shown in the following picture:
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Define A(i) to be the set of equivalence classes of tiles. This is an orbit-finite set.
We are now ready to define the separating language.

Definition 8.14 (cr1 property). Define an n X n =-tiling to be a function
T :nxn— Ai)

We say that 7~ satisfies the cF1 property? if there exists a consistent tiling
S:nxn— A®

which projects to 7~ when tiles are replaced by their equivalence classes.

Formally speaking, the separating language required for Theorem 8.13 should be
a set of words, and not ~-tilings, because Turing machines input words. Therefore,
we assume some convention on linearly ordering the tiles in an ~-tiling, e.g. the tiles
are ordered first by columns then by rows. Under such a convention, an n X n =-tiling
can be encoded uniquely as a word of length n? over the alphabet A(/i).

To prove Theorem 8.13, we will show that a nondeterministic orbit-finite Turing
machine can check if an =-tiling satisfies the cr1 property, but a deterministic one
cannot.

The positive part about nondeterministic machines is immediate. The work al-
phabet of the machine is Aﬁ) U A® plus additional symbols that are used as markers.
Given an input word representing some ~-tiling 7, the machine uses nondeterminism
to guess the consistent tiling S which witnesses the cF1 property. Then, it determin-
istically checks if the adjacency constraints of a consistent tiling are satisfied by S.
This computation can be done in a polynomial number of steps.

The interesting part is that deterministic machines cannot check the cr1 property.

The CFI property is not recognised by any deterministic Turing machine. We
begin by discussing a doubt the reader might have at this point. Given an input repre-
senting a =-tiling 7, there are only finitely many (if exponentially many) possibilities

2The name stands for Cai, Fiirer and Immerman, who first studied this property in Cai et al. (1992).
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for choosing the witness S as in Definition 8.14. Why not use a deterministic algo-
rithm that exhaustively enumerates all the possibilities? The problem is that such
an algorithm cannot be implemented as a deterministic Turing machine. The intu-
itive reason is that even if a ~-equivalence class has only 8 tiles, one cannot choose
deterministically any single one among them (i.e. there is no notion of the “first” or
“second” element of the equivalence class) to write it down on the tape.

We now proceed to give a formal proof of why the cFI property is not recognised
by any deterministic Turing machine. This will be a consequence of Lemma 8.16 be-
low, which says that a deterministic Turing machine, unlike the cF1 property, is in-
sensitive to certain well chosen flips in an ~-tiling.

We lift the notion of flips from tiles to their ~-equivalence classes as follows. If
is a tile, then the flip of its ~-equivalence class is defined to the ~-equivalence class
which contains some (equivalently, any) flip of 7. It is easy to see that this notion does
not depend on the choice of 7 in its ~-equivalence class, nor does it depend on the
choice of which side was flipped. Flipping is an involution on ~-equivalence classes,
i.e. doing a flip twice leads back to the same ~-equivalence class.

The following lemma shows that flips violate the cF1 property.

Lemma 8.15. Let 7T be an n X n =-tiling which satisfies the c¥1 property. Then for every
X € n X n, the following =-tiling violates the CF1 property:

T flipof T ify=x;
! T () otherwise.

Proof. A parity argument. We view an n X n grid as a graph, where vertices are grid
positions, and grid positions are connected by an edge if they are adjacent in the
(torus) grid topology. For S : nxn — A® define the conflict set to be the set of edges
e in the graph corresponding to n X n such that the colours of the two sides adjoining
on e are different. Here is a picture:

vertex

—
conflicting edge

——
non-conflicting edge

Using this terminology, an ~-tiling 7~ satisfies the cF1 property only if there exists
some S which has an empty conflict set and such that 7 is the ~-equivalence class
of S. The key observation is that S ~ &’ implies that the conflict sets have the
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same parity (i.e. size modulo two); and furthermore making one flip makes this parity
change. O

We are now ready to prove the main lemma which witnesses that the cr1 prop-
erty is not recognised by any deterministic orbit-finite Turing machine. Fix a deter-
ministic orbit-finite Turing machine. We use the formalisation of computations from
Section 8.2, i.e. a computation is a function p : N2 — A, where the A is the work
alphabet plus pairs (letter of the work alphabet, state of the machine). If 7~ is an ~-
tiling, we write pg for the unique computation of the fixed Turing machine on the
word representing 7.

Lemma 8.16. There exists k € {0, 1,...} with the following property. Letn € {0, 1,...}
be sufficiently large, and let 7 be an n X n ~-tiling which satisfies the CF1 property.
Assuming the notation 7 defined in Lemma 8.15, the following holds for every i, j € N:

pr(, j) = pr.(, J) for all x € n X n with at most k* exceptions. ™)

Before proving the lemma, we use it to finish the proof of Theorem 8.13. Take k
as in the lemma, and let n be sufficiently large. Let 7~ be some n X n =-tiling which
satisfies the cF1 property. Consider the computation ps, and let (i, j) be the place in
the computation which contains the head at the moment when it accepts. If n > k2,
then (*) in the lemma implies that there is some x € n X n such that p7, has the same
contents. In particular, the machine also accepts 7. This contradicts Lemma 8.15.

Proof of Lemma 8.16. Choose k so that

k/2 > support size for the Turing machine + support size for cell contents.

smallest / such that p7(i, j) has a

support of size [ for every i, j € N
We prove (*) by induction on i, i.e. the number of computation steps of the Turing
machine. For the induction base of i = 0, we observe that the contents of a cell in
time i = O depend only on the value of the input in at most one grid position, and
hence (*) holds with at most one exception.

For the induction step, suppose that (*) is true for i — 1 and consider the case
of i. In the computation of a Turing machine, the contents of a cell in time i are
uniquely determined by the contents of at most two cells in time i — 1: the cell in
the same column (offset from the beginning of the tape), plus possibly the contents
of the unique cell in time i — 1 which contains the head of the machine. Hence, using
the induction assumption we can conclude the following weaker version of (*), which
uses 2k? exceptions instead of k*:

pr(, j) = pr.(, ) for all x € n x n with at most 2k> exceptions. )

In the rest of this proof, we bring back the number of exceptions down to k*. To do
this, we talk about connected components in 7 after removing some grid positions
from the input 7. For a subset X C n X n of grid positions, define its connected
components to be the connected components in the subgraph of the graph of n X n (as
defined in the proof of Lemma 8.15) induced by X. Here is a picture of a set X together
with its partition into connected components:
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\ are in component 2 because of torus topology

component 1

component 2

set X

component 3

We now resume the proof of the implication from (**) to (*). Choose a tuple of
atoms a which supports both the Turing machine and the cell contents ps(i, j). By
choice of k, we can assume that a less than k/2 atoms. Define

ZCnXxn

to be the grid positions where 7~ uses at least one atom from a. The set Z has less
than & grid positions, since every atom appears in at most two grid positions and &
is more than twice the size of a. By a straightforward analysis of connectivity in an
n X n grid, one can conclude that if n is big enough, then the graph corresponding to
nXn—Z has a connected component, call it X, which contains all grid positions from
n x n with at most k% exceptions. If n is big enough, then

2% < -k
S~ ~——
number of exceptions in (**) size of X

and therefore there is some x; € X which satisfies

PT(l, J) = P’Tx(i’ .]) (0)

Using this xo, we will show that all x € X also satisfy (¢), thus proving (*). Let x € X.
Since X is connected and disjoint from Z, in the graph corresponding to n X n there is
a path which goes from x to x( and avoids grid positions from Z. Here is a picture:
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Every edge e of the grid n X n corresponds to two distinct atoms. Define 7 to be
the atom automorphism which swaps, for every e on the path from x to xp, the two
atoms that correspond to the edge e. This atom automorphism fixes all atoms from a.
For each tile except those corresponding to x and xo, the automorphism flips an even
number of sides, and hence we have:

Ty =m(Ty)- (8.1)

The path from x to xo was chosen so that it avoids atoms in the support of the Turing
machine, and therefore

7(07) = Pr(7) for every input 7~ to the machine. (8.2)

We are now ready to prove that x satisfies (¢):

pr.(.j) = (by(81)

Pr(7) (D> J) (by (8.2))
(o7, ) (because x, satisfies (¢))
(o7, 1)
pr (i, J).

(because 7 fixes the support of p7(i, j))

This completes the proof of the lemma, and therefore also of Theorem 8.13. O

Exercise 158. Assume the equality atoms. Show that if k < 3 and the input alphabet X is
k-tuples of atoms modulo some equivariant equivalence relation, then every nondeterministic
Turing machine over input alphabet X can be determinised.

Exercise 159. In the proof of Theorem 8.13, we used an input alphabet which consisted of
8-tuples of atoms modulo some equivalence relation. Improve the proof to use 6-tuples modulo
some equivalence relation®.

Exercise 160. Assume the equality atoms and consider the alphabet

{{{a,b,c}. {d, e, f}} : a,b,c,d, e, f are distinct atoms}.

3This exercise is based on Klin et al. (2014); in particular Section 5.1 of that paper shows that 5 is the
smallest dimension where Theorem 8.13 holds.
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Show that Turing machines over this input alphabet cannot be determinised.
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