Asymptotics for eigenfunctions of the laplacian in domains with small holes

Massimo Grossi

Department SBAI University of Roma Sapienza Roma, Italy massimo.grossi@uniroma1.it

Let us consider the following eigenvalue problem in \mathbb{R}^N , $N \ge 2$,

$$\begin{cases} -\Delta u_{\epsilon} = \lambda_{\epsilon} u_{\epsilon} & \text{in } \Omega_{\epsilon} = \Omega \setminus B(P, \epsilon), \\ u_{\epsilon} = 0 & \text{on } \partial (\Omega \setminus B(P, \epsilon)). \end{cases}$$
(1)

where $B(P, \epsilon)$ is the ball centered at $P \in \Omega$ and small radius ϵ . It is well known that the previous problem "converges as $\epsilon \to 0$ " in a suitable sense to

$$\begin{cases} -\Delta u = \lambda u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(2)

In this talk we want to give additional information on the convergence of the pair $(\lambda_{\epsilon}, u_{\epsilon})$ to (λ, u) as $\epsilon \to 0$. In particular we try to give an answer to the following questions,

- If $u(P) \neq 0$ we have that u_{ϵ} does not converge uniformly to u near $\partial \Omega_{\epsilon}$. Is it possible to describe more precisely the behavior of u_{ϵ} near $\partial \Omega_{\epsilon}$?
- If λ is a multiple eigenvalue is it true that the eigenvalues λ_{ϵ} are simple (Uhlenbeck's property) for ϵ small?
- What about the nodal region of u_{ϵ} near $\partial B(P, \epsilon)$?

This is a joint paper with Laura Abatangelo (Politecnico di Milano, Italy).