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Introduction

Consider a contractive IFS f1, ..., fk : [0, 1]→ [0, 1] and the corresponding

coding map

π : {1, ..., k}N → [0, 1], π(a1, a2, ...) =
∞⋂
n=1

fa1 ◦ . . . ◦ fan([0, 1]).

Let ν be a shift-invariant and ergodic measure on {1, . . . , k}N.

We are interested in geometric properties of the measure µ = π∗ν on

[0, 1].

If ν = (p1, ..., pk)⊗N, then measure µ is the stationary measure for the

random system ({f1, ..., fk}, (p1, ..., pk)), i.e. it satisfies

µ =
k∑

j=1

pj(fj)∗µ.
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Local dimensions

Definition

Let µ be a Borel probability measure on Rn. Define lower and upper

local dimension of µ at point x ∈ supp(µ) as

d(µ, x) = lim inf
r→0

logµ(B(x , r))

log r
and d(µ, x) = lim sup

r→0

logµ(B(x , r))

log r
.

If the limit exists, then µ(B(x , r)) ∼ rd(µ,x).

µ is called exact dimensional if d(µ, x) = d(µ, x) = const almost surely.
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Definition

Lower and upper Hausdorff dimensions of µ:

dimH(µ) = ess inf
x∼µ

d(µ, x), dimH(µ) = ess sup
x∼µ

d(µ, x)

Lower and upper packing dimensions of µ:

dimP(µ) = ess inf
x∼µ

d(µ, x), dimP(µ) = ess sup
x∼µ

d(µ, x)

For exact dimensional measures, all of the above coincide.
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Proposition

Let F = {f1, ..., fk} be a contractive IFS on [0, 1] consisting of

similiarities, i.e.

fi (x) = rix + ti , ri ∈ (0, 1).

Assume that sets fi ([0, 1]), i = 1, ..., k have disjoint interiors. Let

p = (p1, ..., pk) be a probability vector and let µ be the stationary

measure µ = π∗(p⊗N). Then µ is exact dimensional with

d(µ, x) =
entropy

Lyapunov exponent
=

h(µ)

λ(µ)
:=

k∑
i=1

pi log 1
pi

−
k∑

i=1

pi log ri

almost surely.

This formula holds also for (well-behaved) infinite IFS and general

ergodic measures, as long as h(µ) and λ(µ) are finite.

Main question: what if h(µ) and λ(µ) are infinite?
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Proof: For a = (a1, a2, . . .) ∈ {1, . . . , k}N and n ∈ N define the n-th level

cylinder I (a1, . . . , an) = fa1 ◦ . . . ◦ fan([0, 1]).

For x = π(a), let In(x) be the n-th level cylinder containing x (it is

unique for µ-almost every x), hence if x = π(a1, a2, . . .) then

In(x) = I (a1, . . . , an).

0 1

0 In(x) = I (a1, ..., an) 1

fa1 ◦ . . . fan
π(a) = x

We want to calculate lim
r→0

log µ(B(π(a),r))
log r for almost every a. First we will

calculate the symbolic dimension

δ(x) := lim
n→∞

logµ(In(x))

log |In(x)|
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For x = π(a1, a2, . . .)

δ(x) = lim
n→∞

logµ(In(x))

log |In(x)|
= lim

n→∞

logµ(I (a1, . . . , , an))

log |I (a1, . . . , an)|
= lim

n→∞

log pa1 · · · pan
log ra1 · · · ran

=

= lim
n→∞

1
n

n∑
j=1

log paj

1
n

n∑
j=1

log raj

=

k∑
i=1

pi log pi

k∑
i=1

pi log ri

=
h(µ)

λ(µ)
ν-a.s.

How to relate δ(x) with d(x) and d(x)?
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Fix x = π(a) and r > 0. There exists unique n = n(r) ∈ N such that

|In(x)| < r ≤ |In−1(x)|.

Note that n(r)→∞ as r → 0

In−1(x)

In(x)

fan

x

B(x , r)

logµ(B(x , r)) ≥ logµ(In(x)) and log r ≤ log |In−1(x)|, hence

logµ(B(x , r))

log r
≤ logµ(In(x))

log |In−1(x)|
=

logµ(In(x))

log |In(x)|
· log |In(x)|

log |In−1(x)|
→ δ(x) as

min{ri}|In−1(x)| ≤ |In(x)| ≤ max{ri}|In−1(x)|.
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We have proven d(x) ≤ δ(x) almost surely. One can similarly prove

d(x) ≥ δ(x).

Gauss system - basic example of an infinite IFS

Gauss map

T : (0, 1]→ (0, 1], T (x) = 1
x − b

1
x c

Gauss system

fi : [0, 1]→ [0, 1], fi (x) = 1
x+i ,

F = {fi (x) = 1
x+i }

∞
i=1

π : NN → [0, 1], π(a) =
1

a1 +
1

a2 +
1

a3 +
1

. . .
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Setting

Assumptions

Let T : (0, 1]→ (0, 1] be such that there exists a decomposition

(0, 1] =
∞⋃
n=1

I (n) into closed intervals with disjoint interiors with lengths

rn = |I (n)| such that

(1) T is C 2 on
∞⋃
n=1

Int(I (n))

(2) there exists k ≥ 1 such that inf
{
|(T k)′(x)| : x ∈

∞⋃
n=1

Int(I (n))
}
> 1

(3) sup
n∈N

sup
x,y ,z∈I (n)

|T ′′(x)|
|T ′(y)||T ′(z)| <∞ (Rényi’s condition)

(4) T (I (n)) = (0, 1], I (n + 1) < I (n) and rn+1 < rn

(5) 0 < K ≤ rn+1/rn ≤ K ′ <∞ for some constants K ,K ′

(6) rn decays polynomially, i.e. α = sup{t ≥ 0 : lim
n→∞

ntrn <∞} satisfies

1 < α <∞
(7) T is orientation preserving on each I (n)
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For a1, . . . , an ∈ N define the n-th level cylinder

I (a1, ..., an) = I (a1) ∩ T−1(I (a2)) ∩ . . . ∩ T−(n−1)(I (an))

Let Σ = NN and define the natural projection π : Σ→ (0, 1] by

π(a1, a2, . . .) =
∞⋂
n=1

I (a1, . . . , an).

π is a continuous bijection satisfying π ◦ σ = T ◦ π, where σ is the left

shift on Σ.

For a symbolic cylinder C (a1, ..., an) ⊂ Σ we have

π(C (a1, ..., an)) = I (a1, ..., an).

Let O =
∞⋃
n=0

∞⋃
k=1

T−n(∂I (k)). For every x ∈ (0, 1] \ O there is a unique

n-th level cylinder In(x) containing x .
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Proposition (consequence of the Rényi condition)

There exists D ≥ 1 such that

0 < D−1 ≤ |(T n)′(x)| · |I (a1, . . . , an)| ≤ D

holds for every sequence (a1, . . . , an) ∈ Nn and every

x ∈ Int(I (a1, . . . , an))

Proposition (consequence of the previous one)

There exist D1,D2 > 0 such that for every (a1, . . . , an) ∈ Nn and m ∈ N
we have

(1) | log |I (a1, . . . , an)| −
n∑

k=1

log rak | ≤ nD1 + D2

(2) | log |
m⋃
j=0

I (a1, . . . , an + j)| −
n−1∑
k=1

log rak − log(
m∑
j=0

ran+j)| ≤ nD1 + D2

(3) | log |
∞⋃
j=0

I (a1, . . . , an + j)| −
n−1∑
k=1

log rak − log(
∞∑
j=0

ran+j)| ≤ nD1 + D2
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Proof of | log |I (a1, . . . , an)| −
n∑

k=1

log rak | ≤ nD1 + D2

By Rényi’s condition

− logD ≤ log |I (a1, . . . , an)|+ log(T n)′(x) ≤ logD for x ∈ I (a1, . . . , an).

We have

log(T n)′(x) =
n−1∑
k=0

logT ′(T kx)

and, as T kx ∈ I (ak+1),

− logD ≤ log |I (ak+1)|+ logT ′(T kx) = log rak+1
+ logT ′(T k) ≤ logD,

hence summing over k = 0, ..., n − 1

−n logD ≤
n−1∑
k=0

logT ′(T kx) +
n∑

k=1

log rak ≤ n logD.

�
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Gibbs measures

Definition

An ergodic shift invariant measure ν on Σ is called a Gibbs measure

associated to the potential ϕ : Σ→ R if there exist constants P ∈ R and

A,B > 0 such that for every point x ∈ C (a1, . . . an)

A ≤ ν(C (a1, . . . , an))

exp
(
− nP + Snϕ(x)

) ≤ B,

where Snϕ =
n−1∑
k=0

ϕ(σkx) is the Birkhoff sum of ϕ at x . We will assume

P = 0 (otherwise take ϕ− P as the potential).

Examples

(1) Bernoulli measures

(2) Markov measures

(3) (π−1)∗Leb, where π is the natural projection for the Gauss map
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Let µ = π∗ν.

Note: If ν = p⊗N, then µ is stationary.

Set pn = µ(I (n)) = ν(C (n)).

Assumptions

ν is a Gibbs measure for the potential ϕ : Σ→ R such that

var1(ϕ) = sup{|ϕ(x)− ϕ(y)| : x , y ∈ C (n), n ∈ N} <∞

and

0 < K ≤ pn+1/pn ≤ K ′ <∞ for some constants K ,K ′.
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For ν-almost every a ∈ Σ

h(ν) = lim
n→∞

−1

n
log ν(C (a1, . . . , an)) = − lim

n→∞

1

n
Snϕ(a) = −

�
ϕdν

Consequently h(ν) =∞ if and only if
∞∑
n=1

pn log pn = −∞, as for a choice

xn ∈ I (n) �
ϕdν ≈

∞∑
n=1

pnϕ(xn) ≈
∞∑
n=1

pn log pn

Proposition

There exist G1,G2 > 0 such that for every (a1, . . . , an) ∈ Nn and m ∈ N
we have

(1) | logµ(I (a1, . . . , an))−
n∑

k=1

log pak | ≤ nG1 + G2

(2) | logµ
( m⋃
j=0

I (a1, . . . , an + j)
)
−

n−1∑
k=1

log pak − log(
m∑
j=0

pan+j)| ≤ nG1 +G2

(3) | logµ
( ∞⋃
j=0

I (a1, . . . , an + j)
)
−

n−1∑
k=1

log pak − log(
∞∑
j=0

pan+j)| ≤ nG1 +G2
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Define the Lyapunov exponent of µ as

λ(µ) =

�

[0,1]

log |T ′(x)|dµ(x).

Similarly as before λ(µ) =∞ if and only if −
∞∑
n=1

pn log rn =∞.

Fact

If h(µ) =∞, then λ(µ) =∞.

Proof:

h(µ) = h(ν) = −
∞∑
n=1

pn log pn ≤ −
∞∑
n=1

pn log rn = λ(µ),

as both (pn)∞n=1 and (rn)∞n=1 are probability vectors. �

Theorem (Volume Lemma)

If h(µ) <∞ or λ(µ) <∞, then µ is exact dimensional with

dim(µ) =
h(µ)

λ(µ)
.
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Main result

Assumptions

Assume that h(µ) =∞ and the decay ratio s = lim
n→∞

log pn
log rn

exists.

By the Stolz-Cesàro theorem (a.k.a. L’Hôpital’s rule for sequences)

s = lim
n→∞

n∑
k=1

pk log pk

n∑
k=1

pk log rk

.

Theorem (F. Pérez)

Under all the Assumptions (including h(µ) =∞)

(1) the symbolic dimension δ(x) exists and equals s for µ-a.e. x ∈ (0, 1]

(2) d(x) = s for µ-a.e. x ∈ (0, 1]

(3) d(x) = 0 for µ-a.e. x ∈ (0, 1]
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More on s

Recall:

α = sup{t ≥ 0 : lim
n→∞

ntrn <∞} satisfies 1 < α <∞

and we assume

−
∞∑
n=1

pn log pn = −
∞∑
n=1

pn log rn =∞.

Proposition

s =
1

α
= s∞,

where

s∞ = inf
{
t ≥ 0 :

∞∑
n=1

r tn <∞
}
.
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Proof of δ(x) = s almost surely

Let x = π(a) = π(a1, a2, . . .). We have

δ(x) = lim sup
n→∞

log µ(I (a1,...,an))
log |I (a1,...,an)| = lim sup

n→∞

n∑
k=1

log pak +O(n)

n∑
k=1

log rak +O(n)
= lim sup

n→∞

n∑
k=1

log pak

n∑
k=1

log rak

,

as 1
n

n∑
k=1

log rak → −∞ and 1
n

n∑
k=1

log pak → −∞ almost surely. Similarly

δ(x) = lim inf
n→∞

n∑
k=1

log pak

n∑
k=1

log rak

almost surely.

Define

fn,k(x) = #{i ∈ {1, . . . , n} : ai = k}.

By the ergodic theorem

1

n
fn,k(x)→ pk almost surely.
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Proof of δ(x) = s almost surely

Denote m(n) = max{ak : 1 ≤ k ≤ n}. Fix ε > 0 and let N ∈ N be such

that ∣∣∣ log pk
log rk

− s
∣∣∣ < ε for k ≥ N.

We have almost surely

n∑
k=1

log pak

n∑
k=1

log rak

=

N∑
k=1

fn,k log pk +
m(n)∑

k=N+1

fn,k log pk

N∑
k=1

fn,k log rk +
m(n)∑

k=N+1

fn,k log rk

=

O(n) +
m(n)∑

k=N+1

fn,k log pk

O(n) +
m(n)∑

k=N+1

fn,k log rk

=

= (in the limit) =

m(n)∑
k=N+1

fn,k log pk

m(n)∑
k=N+1

fn,k log rk

≤
(s + ε)

m(n)∑
k=N+1

fn,k log rk

m(n)∑
k=N+1

fn,k log rk

= s + ε

and similarly from below by s − ε. �
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Local dimensions

Recall: for r > 0 there exists unique n = n(r) ∈ N such that

|In(x)| < r ≤ |In−1(x)|. It satisfies

logµ(B(x , r))

log r
≤ logµ(In(x))

log |In(x)|
· log |In(x)|

log |In−1(x)|
.

Proposition

For µ-almost every x ∈ (0, 1]

lim inf
n→∞

log |In(x)|
log |In−1(x)|

= 1 and lim sup
n→∞

log |In(x)|
log |In−1(x)|

=∞.

This gives upper bound

d(x) ≤ s,

but no bound on d(x).
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Better upper bound on d(x)

Define the tail decay ratio ŝ = lim
n→∞

log
∞∑
m=n

pm

log
∞∑
m=n

rm

.

Theorem

d(x) ≤ ŝ almost surely.

Lemma

If s = lim
n→∞

log pn
log rn

exists, then ŝ = 0.
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Lemma

If s = lim
n→∞

log pn
log rn

exists, then ŝ = 0.

Proof: Fix small ε > 0. For large m ∈ N we have

C

mα+ε
≤ rm ≤

C ′

mα−ε and pm ≥ r s+ε
m ≥ C

m(α+ε)(s+ε)
=

C

m1+ε′
,

hence
∞∑

m=n

rm ≤
∞∑

m=n

C ′

mα−ε ≤
C ′

(α− 1− ε)(n − 1)α−1−ε ≤
C ′′

nα−1−ε

and
∞∑

m=n

pm ≥
∞∑

m=n

C

m1+ε′
≥ C

ε′nε′
.

Taking logarithms

log
∞∑

m=n
pm

log
∞∑

m=n
rm

≤ logC − log ε′ − ε′ log n

logC ′′ − (α− ε− 1) log(n − 1)
→ ε′

α− 1− ε
.

�
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Proof of d(x) ≤ ŝ almost surely

For x = π(a1, a2, . . .) and n ∈ N define

Ln(x) =
∞⋃

m=0

I (a1, . . . , an + m) and ρn = |Ln(x)|.

In−1(x)

In(x) x

Ln(x)

logµ(B(x , ρn)) ≥ logµ(Ln(x)) ≥
n−1∑
k=1

log pak + log(
∞∑

m=0

pan+m)− nG1 −G2

log ρn = log |Ln(x)| ≤
n−1∑
k=1

log rak + log(
∞∑

m=0

ran+m) + nD1 + D2.
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Proof of d(x) ≤ ŝ almost surely

logµ(B(x , ρn))

log ρn
≤

n−1∑
k=1

log pak + log(
∞∑

m=0
pan+m)− nG1 − G2

n−1∑
k=1

log rak + log(
∞∑

m=0
ran+m) + nD1 + D2

≤

if n and an are large enough, then almost surely

≤
(s + ε)

n−1∑
k=1

log rak + (ŝ + ε) log(
∞∑

m=0
ran+m)− nG1 − G2

n−1∑
k=1

log rak + log(
∞∑

m=0
ran+m) + nD1 + D2

This has limit ŝ + ε along subsequences such that

an →∞ and

log(
∞∑

m=0
ran+m)

n−1∑
k=1

log rak

→∞
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Proof of d(x) ≤ ŝ almost surely

Along a subsequence we have

∞← log |In(x)|
log |In−1(x)|

=

n∑
k=1

log rak

n−1∑
k=1

log rak

= 1 +
log ran

n−1∑
k=1

log rak

, so
log ran

n−1∑
k=1

log rak

→∞.

On the other hand, for small δ and an large enough

∞∑
m=0

ran+m ≤
C1

aα−δ−1
n

= C2

( C

aα+δ
n

)α−δ−1
α+δ ≤ C2ran

α−δ−1
α+δ , hence

log
( ∞∑
m=0

ran+m

)
≤ α− δ − 1

α + δ
log ran + log(C2), so

log(
∞∑

m=0
ran+m)

n−1∑
k=1

log rak

≥
α−δ−1
α+δ log ran + log(C2)

n−1∑
k=1

log rak

→∞

�
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Proof of d(x) ≤ s

Lemma

For every ε > 0 there exists k0 ∈ N such that for all k ≥ k0 and n ∈ N

log
k+n∑
m=k

pm

log
k+n∑

m=k−1

rm

≤ s + ε.

Instead of the proof: for n = 0

log pk
log(rk−1 + rk)

≤ log pk
logCrk

=
log pk

log rk + logC
≈ s.

For large n ∈ N

log
k+n∑
m=k

pm

log
k+n∑

m=k−1

rm

≈
log

∞∑
m=k

pm

log
∞∑

m=k

rm + logC
≈ ŝ = 0.
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Proof of d(x) ≤ s

Fix x = π(a) and small ε > 0.

Let k0 be as in the Lemma.

For r > 0 there exists unique n = n(r) ∈ N such that

|In(x)| < r ≤ |In−1(x)|.

Let În(x) = I (a1, . . . , an−1, k0).
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Proof of d(x) ≤ s

Case 1: an ≤ k0

In−1(x)

In(x) xÎn(x)

Then pan ≥ C (k0) = p1A
k0 , as A ≤ pn+1

pn
≤ B.

logµ(B(x , r))

log r
≤ logµ(In(x))

log |In−1(x)|
≤

n−1∑
k=1

log pak + log pan + O(n)

n−1∑
k=1

log rak + O(n)

≤

≤

n−1∑
k=1

log pak + O(n)

n−1∑
k=1

log rak + O(n)

≈ s
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Proof of d(x) ≤ s

Case 2: an > k0 but I (a1, . . . , an−1, k0) ⊂ B(x , r)

In−1(x)

În(x)xIn(x)

B(x , r)

Same as before but with µ(B(x , r)) ≥ µ(În(x)) = µ(I (a1, . . . , an−1, k0)).

Adam Śpiewak Dimension of stationary measures with infinite entropy



Proof of d(x) ≤ s

Case 3: an > k0 and În(x) 6⊂ B(x , r)

Let Rn(x) =
an⋃

m=j

I (a1, . . . , an−1,m) be such that j > k0, Rn(x) ⊂ B(x , r),

but |Rn(x) ∪ I (a1, . . . , an−1, j − 1)| > r

In−1(x)

În(x)xIn(x)

B(x , r)

Rn(x)

logµ(B(x , r)) ≥ logµ(Rn(x)) ≥
n−1∑
k=1

log pak + log
an∑

m=j

pm + O(n)

log r ≤ log |Rn(x)∪I (a1, . . . , an−1, j−1)| ≤
n−1∑
k=1

log rak +log
an∑

m=j−1

rm+O(n)
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Proof of d(x) ≤ s

logµ(B(x , r))

log r
≤

n−1∑
k=1

log pak + log
an∑

m=j

pm + O(n)

n−1∑
k=1

log rak + log
an∑

m=j−1

rm + O(n)

≤

≤
(s + ε)

n−1∑
k=1

log rak + (s + ε) log
an∑

m=j

rm + O(n)

n−1∑
k=1

log rak + log
an∑

m=j−1

rm + O(n)

≤ s + ε.

�
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Thank you for your attention!
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