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Introduction

Consider a contractive IFS f, ..., fc : [0,1] — [0, 1] and the corresponding
coding map

{1l ., kN = [0,1], 7(a1,ay,...) ﬂfalo ([0, 1]).
Let v be a shift-invariant and ergodic measure on {1,..., k}\.

We are interested in geometric properties of the measure p = m,v on
[0,1].

If v = (p1, ..., Pk)®Y, then measure y is the stationary measure for the
random system ({f, ..., fk}, (p1, .-, Pk)), i.€. it satisfies

k
p=>pi(f)s
j=1
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Local dimensions

Definition
Let i be a Borel probability measure on R". Define lower and upper
local dimension of i at point x € supp(u) as

o logu(B(un) = logu(B(x,r))
d(p,x) = ||£n_>|(r)1f T and d(u, x) = prjgp T.

If the limit exists, then pu(B(x,r)) ~ rd(x).

w is called exact dimensional if d(u, x) = d(u, x) = const almost surely.
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Definition
Lower and upper Hausdorff dimensions of u:

dimy (1) = ess inf d(1, x), dimp(p) = ess sup d(j, )

Xl X~

Lower and upper packing dimensions of y:

dimp(p) = ess inf d(u,x), dimp(u) = ess sup d(u, x)
X

X~

For exact dimensional measures, all of the above coincide.
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Proposition
Let 7 = {f, ..., fc} be a contractive IFS on [0, 1] consisting of
similiarities, i.e.
fi(x)=rix+t;, r€(0,1).
Assume that sets £;([0,1]), i = 1, ..., k have disjoint interiors. Let

p = (p1, ..., px) be a probability vector and let y be the stationary
measure 1 = 7, (p®"). Then pu is exact dimensional with

K
og L
d(j %) entropy h(p) ,-;p' &
X) = = ==
& Lyapunov exponent  A(p) k
— > pilogr
i=1

almost surely.

This formula holds also for (well-behaved) infinite IFS and general
ergodic measures, as long as h(u) and A() are finite.

Main question: what if h(x) and A(u) are infinite?
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Proof: For a = (a1, a2,...) € {1,...,k}" and n € N define the n-th level
cylinder I(ay,...,a,) = fy, 0...0f ([0,1]).

For x = m(a), let I,(x) be the n-th level cylinder containing x (it is
unique for p-almost every x), hence if x = 7(a1, az, ...) then

In(x) = 1(a1,...,an).

| |
[

0 1
fayo...1f,
m(a) = x
[ | | | | . | |
[ [ | [ [ |
0 In(X) - I(alv ,3,—,) 1

We want to calculate Iim0 W for almost every a. First we will
r—

calculate the symbolic dimension

log 1(/n(x))

5(X) = n— o0 IOg |/n(X)‘
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For x = (a1, az,...)
(

| In ] I(a1,...,,an _ logp, -
5(x) = lim ogill(x)) _ . lognull(as ) _ o 108 Pa
n—oo log |I(x)] n—oo log|l(a1,...,an)] n—oo logry - - -
1 4 k
72 logps, > pilogpi
_ i 7 = _ h(w)
nLn;O n = % ( ) v-a.s.
5 2 logry, pilog r; :
Jj=1 i=1

How to relate 5(x) with d(x) and d(x)?
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Fix x = w(a) and r > 0. There exists unique n = n(r) € N such that
(9] < 7 < 1 (3]
Note that n(r) — co as r — 0

ln—l(X)

log 1(B(x, r)) > log u(l,(x)) and log r < log |l,—1(x)|, hence
log 1(B(x,r)) _ log p(n()) _ log n(1n())  log|ln()| -, 5y o

ogr  ~ log|lh1(x)]  1og|/n(x)| Tog [la(x)]
min{ri} 100 < [(x)] < max{ri} o1 (x)]-
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We have proven d(x) < §(x) almost surely. One can similarly prove

d(x) > 6(x).

Gauss system - basic example of an infinite IFS

Gauss map

T:(0,1] = (0,1], T(x)=12— 1]

X

Gauss system

fi:[0,1] = [0,1], fi(x) = 45

x+i

eee .F = {f,(X) = Xil;-i ?il
N 1
m: NV —[0,1], w(a) =
\ a; +
Hitod ! 2
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Setting

Assumptions

Let T : (0,1] — (0, 1] be such that there exists a decomposition

(0,1] = U I(n) into closed intervals with disjoint interiors with lengths
n=1

ro = |I(n)| such that

(1) Tis C2on |J Int(/(n))

(2) there exists k > 1 such that inf { |(T*)'(x)| : x € U Int(/(n))} > 1
n=1

3) sup sup L(X)"z < oo (Rényi's condition
( ) nEN x,y,z€l(n) [T WIT (2] ( )

(4) T(I(n))=(0,1], I(n+1) < I(n)and rpy1 < ry
(5) 0 < K < rpp1/rm < K' < oo for some constants K, K’

(6) r, decays polynomially, i.e. @ =sup{t > 0: lim n'r, < co} satisfies
n—oo
l1<a<oo

(7) T is orientation preserving on each /(n)
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For a1, ..., a, € N define the n-th level cylinder

(a1, ...,an) = I(a)) N T X(I(a2)) N ...n T-(I(a,))

Let ¥ = NY and define the natural projection 7 : ¥ — (0, 1] by

31782,... ﬂlal,...,

7 is a continuous bijection satisfying w oo = T o, where o is the left
shift on .

For a symbolic cylinder C(ay, ...,a,) C £ we have
w(C(a1,...,an)) = I(a1, ..., an).

Let O= U U T "(8I(k)). For every x € (0,1] \ O there is a unique
n=0 k=1

n-th level Eylinder In(x) containing x.
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Proposition (consequence of the Rényi condition)
There exists D > 1 such that

0< DT l(ar, - an) < D

holds for every sequence (ay,...,a,) € N" and every
x € Int(/(a1,...,an))

Proposition (consequence of the previous one)
There exist Dy, D, > 0 such that for every (a1,...,a,) € N" and me N
we have
n
(1) [log|/(a,. .-, an)| = 3 log r,,| < nDy + D5
k=1

m ) n—1 m
(2) llog| U /(a1,. .., an+ )| = X log ra, —log(3_ ra,+j)| < nDy + Do

j=0 k=1 j=0

00 n—1 00
(3) |log| U I(a1,---,an+J)| — > log ra, —log(>" ray+j)| < nDi + D,
j=0 k=1 j=0
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Proof of |log|/(ay,...,a,)| — kzn:1 log ro,| < nDy + D,
By Rényi’s condition
—log D < log|l(a1,...,an)| +log(T")'(x) < log D for x € I(ay,...,an)-
We have
log(T" Zlog T'(T*x)
and, as Tkx € I(ak11),
—log D < log |I(akt1)| +log T'(T*x) = log r,,,, +log T'(T*) < log D,

hence summing over k =0,....,.n—1

n—1

fnlogD<ZlogT' (T*x) +Z|ograk§nlogD
k=0 k=1
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Gibbs measures

Definition
An ergodic shift invariant measure v on ¥ is called a Gibbs measure
associated to the potential ¢ : ¥ — R if there exist constants P € R and
A, B > 0 such that for every point x € C(ay,...a,)
A< v(C(ay,...,an))
exp ( —nP + 5,,<p(x)>

<B

)

where S, = Z ¢(c¥x) is the Birkhoff sum of ¢ at x. We will assume
=0

P=0 (otherW|se take ¢ — P as the potential).

Examples
(1) Bernoulli measures

(2) Markov measures

(3) (7~1).Leb, where 7 is the natural projection for the Gauss map

Adam Spiewak Dimension of stationary measures with infinite entropy




Let p = m,v.
Note: If v = p®Y, then y is stationary.

Set p, = p(/(n)) = v(C(n)).

v is a Gibbs measure for the potential ¢ : ¥ — R such that

vary () = sup{|e(x) — @(y)| : x,y € C(n),n € N} < o0

and
0< K < ppi1/pn < K' < oo for some constants K, K'.




For v-almost every a € &

. 1 o1
h(v) = nILn?>o - logv(C(a1,...,an) = — nILn;O Esncp(a) = —/gpdz/
Consequently h(v) = oo if and only if Y p,log p, = —o0, as for a choice
n=1
xn € 1(n)

oo o0
/sodv ~ > pap(xa) & > palog py
n=1 n=1

Proposition

There exist Gy, G > 0 such that for every (a1,...,a,) € N" and me N
we have

(1) | log:u(/(ah oo '7an)) - Z logpak‘ < nGl + GZ
k=1

m n—1 m

(2) logu( U I(a1, - -, an+))) = 3= log pay, —108( 3" pa,+j)| < nGi+G;

j=0 k=1 j=0
oo n—1 0o

(3) | log:u( U I(al7 <..5dn +J)) - /(2: logpak - lOg(Z pa,,+j)| S nGl + G2
—1 j=0

v
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Define the Lyapunov exponent of y as

Aw = [ log| T (0ldn(x).
[0,1]

[ee]

Similarly as before A(p) = oo if and only if — >~ pplogr, = 00
n=1

Fact

If h(n) = oo, then A\(u) =

Proof:
h(p) = h(v anlogpné anlogrn—A 1),

as both (p,)%2; and (r,,),,zl are probability vectors.

Theorem (Volume Lemma)

If h(p) < oo or A(i) < oo, then i is exact dimensional with

li)

dim(p) = M)

Adam $piewak Dimension of stationary measures with infinite entropy



Main result
Assumptions

Assume that h(u) = oo and the decay ratio s = lim %2
n

Xists.
lim 1o, e sts

By the Stolz-Cesaro theorem (a.k.a. L'Hépital’s rule for sequences)

n

> px log px
k=1
L
> prlog ri
k=1

s= lim
n—o0

Theorem (F. Pérez)
Under all the Assumptions (including h(u) = oo)

(1) the symbolic dimension d(x) exists and equals s for p-a.e. x € (0,1]
(2) d(x) = s for p-a.e. x € (0,1]
(3) d(x) =0 for p-a.e. x € (0,1]
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More on s

Recall:
a=sup{t>0: lim n'r, < co} satisfies 1 < a < oo
n—oo

and we assume

oo o0
—> "pnlogpn=—>_ palogr, = oc.
n=1 n=1

S = — = S0,

where -
soo=inf{t20:Zr,f<oo}.
n=1




Proof of §(x) = s almost surely

Let x = 7(a) = w(a1, a2, ...). We have

n
_ Z log pa, +0O(n) > log pay
5(x) = limsup 8atl@an)) — jiqun it = © o jimgup il
= P Togi(ar,...an) p* = Pz '
n—o00 e n— o0 Z log ra, +0(n) n— o0 Z log ra,,

1 Z log r,, — —oo and 1 Z log pa, — —oo almost surely. Similarly

n
Z |Og pak
d(x) = lim |nf7 almost surely.

n—oo
Z log ra,
k=1

Define
fok(x)=#{ie{1,...,n} : a; = k}.

By the ergodic theorem
1
=fok(x) = px almost surely.
n
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Proof of J(x) = s almost surely

Denote m(n) = max{ax : 1 < k < n}. Fixe > 0 and let N € N be such
that

|
98 Pk —5’ < e for k> N.
log rx
We have almost surely
n N m(n) m(n)
Slogp,, > faklogpc+ > faklogpe  O(n)+ > foxlogpk
k=1 k=1 k=N-+1 - k=N+1
n TN m(n) m(n)
> logra, S faklogre+ > fuklogri Oo(n)+ > foxlogrk
k=1 k=1 k=N+1 k=N+1
m(n) m(n)
> faklogpe  (s+e) > foklogrk
= (in the limit) = kzlzl,:;l m(:)ZNH =s+e
> foxlogri > foxlogr
k=N-+1 k=N-+1
and similarly from below by s — &. O
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Local dimensions

Recall: for r > 0 there exists unique n = n(r) € N such that
[,(x)] < r < |l,—1(x)]. It satisfies

log 11(B(x,r)) _ log p(ln(x)) ~ log|/n(x)]
log r = log|lh(x)] log|lh_1(x)|

Proposition

For p-almost every x € (0, 1]

liminf 12810 _ 3 i sup (2810
mo 10 In—1(x)] e 10g | In—1()

This gives upper bound
d(x) <s,

but no bound on d(x).
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Better upper bound on d(x)

) ) . . log § Pm
Define the tail decay ratio § = lim —2%"—
n— oo |°g Z Im

m=n

d(x) < § almost surely.

If s = lim '98Pr exists, then § = 0.
n—oo 1081




Lemma

If s= lim {22 exists, then § = 0.
n—oo 98 'n

Proof: Fix small € > 0. For large m € N we have

<rm< Lo d > pste > ¢ _ ¢
mate — m = ma—¢ an Pm = Im = = mlate)(ste) — mlte’?
hence
C/ C//
Z m < Z me—¢e — a -1 _5)(,1_ 1)0(7176 < na—1l-e
and - -
C C
me =z Z mite’ > e'ne’
m=n m=n
Taking logarithms
o0
lo
gmz::,,pm - log C — loge’ — ¢’ logn e

— :
[e ) — " __ _— — — - —
log 3 logC" — (e —e—1)log(n—1)  a—-1-¢
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Proof of d(x) < § almost surely

For x = m(a1, a2,...) and n € N define

Lo(x) = |J I(a1,...,an+m) and  py = |La(x)].
m=0
| fn-1(x) |
i !
Lo g L In(x) X | |
i T 1 ! 1 !
Ln(x)
log pu(B(x, pn)) > log pu(L Z log pa, + log( Z Payim) — NG1 — G
n—1
log pp, = log | L,(x |<Z|ograk+|og Zra +m)+ nDy + Ds.
k=1 m=0
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Proof of d(x) < § almost surely

o0

n—1
> log ps, +log( Y- pa,im) — nGL— Go
k=1 m=0 <

— n—1 o] -
> logrs, +log( > ray4m)+ nDi+ Do
k=1 m=0

log u(B(x, pn))
log pn

if n and a, are large enough, then almost surely

n—1 00
(s4+¢€) > logra, + (5+¢)log( > ra,om) — nG — Gy
< k=1 m=0
- n—1 0
log ra, + log( >~ fa,+m) + nDi + D,
k=1 m=0

This has limit § 4+ ¢ along subsequences such that

oo
log( 3= ra,+m)
a, 300 and — ™9 o

n—1
> logr,,
k=1
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Proof of d(x) < § almost surely

Along a subsequence we have

n
> logr.
lOg |IH(X)| _ k=1 o -1 lOg ra, lOg la,
= =1+ , SO
log |lh—1(x)] n=1 n—1 n—1
log ra, > logrs, > logra,
k=1 k=1 k=1

On the other hand, for small § and a, large enough

ZOO G C \ =5 51
a+ a—90—
= a+d
Fap+m S a—0—1 C2< (¥+5) g C2ran ) hence
m=0 an an

ad a—0—-1
'og(z Fagtm) < “axs log rs, + log(C,), so
m=0

o0
lo r 5
g(mgo an+m) O‘T‘iéllog ra, + log( &)

n—1
> log ra,
k=1

— 0
n—1
> log ra,
k=1
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Proof of d(x) <'s

Lemma
For every € > 0 there exists kg € N such that for all k > kg and n € N

k+n
log > pm

m=k

k—+n

log > rm

m=k—1

<s+e.

Instead of the proof: for n =0

log pk < log px log px

log(r—1+r) ~ logCri  logrc+logC ~

For large n € N

k+n ]
log >= pPm log >~ pm
m=k ~ m=k ~&=0
k+n ~ o0 ~s=U
log > rm log > rm+logC
m=k—1 m=k
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Proof of d(x) <s

Fix x = m(a) and small ¢ > 0.
Let kg be as in the Lemma.

For r > 0 there exists unique n = n(r) € N such that
(9] < 7 < 1 ()]

Let i,,(X) = I(al, ceeydn—1, ko)
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Proof of d(x) <'s

Case 1: a, < kg

Then p,, > C(ky) = p1A, as A < 221 < B,

log p(B(x,7) _ logu(h(x) _ /5
logr  ~ loglh1(x)]

1
log pa, + log pa, + O(n)
1

IN

n—1
> logra, + O(n)
k=1

n—1
kz log pa, + O(n)
—1

~ S

n—1
> logra + O(n)
k=1
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Proof of d(x) <'s

Case 2: a, > ko but I(a1,...,a,-1, k) C B(x,r)

| /n—l(X)

Same as before but with u(B(x, r)) > u(ln(x)) = p(l(a1, ..., an-1, ko))
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Proof of d(x) <'s
Case 3: a, > ko and I,(x) ¢ B(x,r)

an
Let Ry(x) = U I(a1,...,an—1, m) be such that j > ko, R,(x) C B(x,r),

=j
but |R, (X)Ul(al,.. san—1,J — 1) >r
| h-1(x) |
[ |
P | | L ko
Fj”{ °l w . w \
B(x,r)
n—1
log p(B(x,r)) > log p(Ra(x)) > Zlogpak + Iogme + O(n)
= m=j
n—1
log r < log|R.(x)Ul(a1,...,an—1,j—1)| <Z|ograk+|og Z rm+0(n)
k=1 m=j—1
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Proof of d(x) <'s

log p,, + lo m+ O
g n(B(x.1) _ kZ £ +1ot £ pn + O

i <
ogr Zlograk+|og E rm + O(n)

_J]-

<

n—1

(s+¢) kgl log ra, + (s+¢)log azn rm + O(n)

m=j

< <s+e.

n—1 an
dilogrs, +log Y. rm+ O(n)
k=1

m=j—1
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Thank you for your attention!




