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Foliations
Roughly speaking,

m-dimensional foliation of a manifold M of
dimension n, m < n, is a decomposition of M into disjoint
immersed submanifolds (leaves) of dimension m.

Examples
1. M = R3.Family of planes of the form z = const form a
2-dimensional foliation.
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Family of lines y = αx + const, where α is a fixed real number,
form a foliation of R2. It may by projected to torus T2 = R2/Z2.
If α is irrational then every leaf is dense.
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F is of class C k if maps may be chosen such that ψ ◦ ϕ−1 is C k .



Class of codimension 1 foliation

F is of class C k if maps may be chosen such that ψ ◦ ϕ−1 is C k .



Class of codimension 1 foliation

F is of class C k

if maps may be chosen such that ψ ◦ ϕ−1 is C k .



Class of codimension 1 foliation

F is of class C k if maps may be chosen such that ψ ◦ ϕ−1 is C k .



Suspension
Fix a circle diffeomorphism f .



Suspension
Fix a circle diffeomorphism f .



Suspension
Fix a circle diffeomorphism f .



Suspension
Fix a circle diffeomorphism f .



Formulation of the problem

Problem
Let F be a transversally C 2 codimension 1 foliation of M

such
that every leaf is dense. If A a measurable union of leaves, then
must be Leb(A) = 0 or Leb(M \ A) = 0?

Problem
If G is a finitely generated group of C 2 circle diffeomorphisms
acting minimally, then is it ergodic with respect to the Lebesgue
measure? In other words, if A ⊆ S1 is a G -invariant set, then it
must be Leb(A) ∈ {0, 1}?
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Minimal diffeomorphisms with irrational rotation number

Theorem
If g is a circle C 1+bv diffeomorphism with irrational rotation
number, then it is ergodic with respect to the Lebesgue measure.

It does not follow from Denjoy theorem. The reason is Denjoy
theorem implies existence of conjugacy, but does not tell anything
about its absolute continuity.
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Minimal diffeomorphisms with irrational rotation number

Let R be a irrational rotation of the circle. Let q1 < q2 < . . . be
the moments of the closest return.

The interval In has the property that the sets
In,R(In), . . . ,Rqn+1−1(In)

I cover the circle,

I every point of the circle belongs to at most two of these sets.
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Minimal diffeomorphisms with irrational rotation number
Distortion of diffeomorphism g on the interval I ⊆ S1:

χ(g , I ) := sup
x ,y∈I

log
g ′(x)

g ′(y)
.

It follows that if I1, I2 ⊆ I are two intervals, then:

|g(I1)|
|g(I )|

≤ |I1|
|I |

eχ(g ,I ).
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Minimal diffeomorphisms with irrational rotation number
Proof:

Let g be C 1+bv minimal circle diffeomorphisms, and A be a
g-invariant subset of the circle.
Let x ∈ A be a point of density of A, i.e. such that

lim
diam(I )→0

Leb(A ∩ I )

Leb(I )
= 1

Let ϕ be a conjugacy of g to a rotation R, with ϕ(x) = 0.
Fix n. Let In be the set defined on one of the previous slides. Let
Jn := ϕ−1(In).
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The interval Jn has the property that the sets
Jn, g(Jn), . . . , gqn+1−1(Jn)

I cover the circle,

I every point of the circle belongs to at most two of these sets.
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Leb(gk(J) \ A)
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=

Leb(gk(J \ A))

Leb(gk(J))
≤ exp(χ(gk , J))

Leb(J \ A)

Leb(J)
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Sullivan’s exponential strategy

Theorem (Sullivan)

If G is a group of C 2 circle diffeomorphisms

and for every x ∈ S1
there exists g ∈ G with g ′(x) > 1, then the action by G is ergodic
with respect to the Lebesgue measure.
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Sullivan’s exponential strategy

Two distortion estimates:

1. If x0 ∈ I , then |f (I )||I | ≤ eχ(f ,I )f ′(x0).

2. Let G ⊆ G be a finite set and

CG := max
g∈G

max
x∈S1

(log g ′)′(x).

If Fi := fi ◦ . . . ◦ f1, where fj ∈ G. Put S :=
∑n

i=1 F ′i (x0).Then for
δ ≤ log(2)/(2CGS) one has

χ

(
Fn, (x0 −

δ

2
, x0 +

δ

2
)

)
≤ log(2).
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Sullivan’s exponential strategy

Let G be a finite set such that for all x ∈ S1 there is g ∈ G with
g ′(x) > λ > 1, where λ is a constant independent of x .

Let A be a G -invariant set and x0 its Lebesgue density point.

Fix M > 1. Let g1, . . . , gn be such that g ′i (gi−1 ◦ . . . ◦ g1(x0)) > λ
for i = 1, . . . , n, and (gn ◦ . . . ◦ g1)′(x0) > M.
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1
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:=
D.(independent of n!).

Using the second estimate χ(Fn,Vn) ≤ log(2) for
Vn = (yn − ε, yn + ε), ε := log(2)/(2CGD) (for all n, although the
length of Vn is independent of n).

Put Un := Fn(Vn). Then (Un) is

I a sequence of neighborhoods of x0,

I |Un| ≤ expχ(Fn,Vn)F ′n(y)|Vn| < 2 log(2)ε 1
M → 0 as n→∞,

I χ(Gn,Un) = χ(Fn,Vn) < log(2)
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Sullivan’s exponential strategy

Compactness yield existence of an interval V of length 2ε with
Leb(V \ A) = 0. Using minimality of the group action Leb(A) = 1.



Lyapunov expansion exponent

Let G be a finite set generating G as a semigroup.

λe(x) := lim sup
n→∞

max
g1,...,gn∈G

log(gn ◦ . . . ◦ g1)′(x)

n
.

Theorem (Hurder)

If G is a group of C 1+α diffeomorphisms of the circle, then λe is
constant Lebesgue almost everywhere.If this constant is positive,
then the action is ergodic with respect to the Lebesgue measure.

Problem: in all known examples of groups G where the constant is
positive there are no points with g ′(x) ≤ 1 for all g ∈ G .
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Property (∗)
We define the set of non-expandable points:

NE(G ) := {x ∈ S1 : ∀g∈Gg ′(x) ≤ 1}.

The group G of C 2 diffeomorphisms of the circle satisfies property
(∗) if it is finitely generated, acts minimally, and for every
x ∈ NE(G ) there exist g+, g− such that x is a fixed point of g+
isolated from the right, and x is a fixed point of g− isolated from
the left.
The next theorem was proved in “On the question of ergodicity for
minimal group actions on the circle” by B. Deroin, V. Kleptsyn, A.
Navas.

Theorem
If the group G of C 2 diffeomorphisms satisfies (∗), then the action
is ergodic with respect to the Lebesgue measure.
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Property (∗)

If I = gn
+([y , g−1+ (y)]) for sufficiently large n, then

|gn
+(I )| > 2eV |I |,

where V := var(log g ′+). By distortion estimate (gn)′(x) > 2 for
every x ∈ I .

For all y sufficiently close to x from the right there exist n such
that (gn

+)′(x) > 2. The same may be proved from the left side.



Property (∗)

If I = gn
+([y , g−1+ (y)]) for sufficiently large n,

then

|gn
+(I )| > 2eV |I |,

where V := var(log g ′+). By distortion estimate (gn)′(x) > 2 for
every x ∈ I .

For all y sufficiently close to x from the right there exist n such
that (gn

+)′(x) > 2. The same may be proved from the left side.



Property (∗)

If I = gn
+([y , g−1+ (y)]) for sufficiently large n, then

|gn
+(I )| > 2eV |I |,

where V := var(log g ′+).

By distortion estimate (gn)′(x) > 2 for
every x ∈ I .

For all y sufficiently close to x from the right there exist n such
that (gn

+)′(x) > 2. The same may be proved from the left side.



Property (∗)

If I = gn
+([y , g−1+ (y)]) for sufficiently large n, then

|gn
+(I )| > 2eV |I |,

where V := var(log g ′+). By distortion estimate (gn)′(x) > 2 for
every x ∈ I .

For all y sufficiently close to x from the right there exist n such
that (gn

+)′(x) > 2. The same may be proved from the left side.



Property (∗)

If I = gn
+([y , g−1+ (y)]) for sufficiently large n, then

|gn
+(I )| > 2eV |I |,

where V := var(log g ′+). By distortion estimate (gn)′(x) > 2 for
every x ∈ I .

For all y sufficiently close to x from the right there exist n such
that (gn

+)′(x) > 2. The same may be proved from the left side.



What is known about the set NE (G )?

I it may be nonempty (smooth representation of Thompson’s
group, PSL(2,Z)) (DKN “On the question of ergodicity...”)

I it is not invariant under change of coordinates (but property
(∗) is!)

I in the case of free, minimal, analytic groups property (∗)
always holds (DKN “On the ergodic theory of free group
actions by real-analytic circle diffeomorphisms”)
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Conjecture (Y. Guivarc’h, V. Kaimanovich, F. Ledrappier)

For any finitely supported measure m on a lattice Γ < PSL(2,R)
whose support generates Γ, the corresponding stationary measure
on the circle is singular w. r. t. Lebesgue.

Proven for noncompact lattices by Guivarc’h and Le Jan.
(“Asymptotic winding of the geodesic flow on modular surfaces
and continued fractions”).

Problem
Given group G of C 2 diffeomorphisms, does there exists a
distribution on G such that its support generates G , and the
corresponding stationary measure on the circle is absolutely
continuous to the Lebesgue measure?
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Let P be a distribution on a group G acting minimally such that
support of the measure generates G .

Then the corresponding
stationary measure on the circle µ is unique.

Theorem (Baxendale)

If G is a group of C 2 diffeomorphisms like above,not topologically
conjugated to a group of rotations, then

λ :=

∫
G×S1

log g ′(x)µ(dx)P(dg) < 0

From the Birkhoff ergodic theorem for µ almost every point x ∈ S1

log(gωn ◦ . . . ◦ gω1)′(x)

n
→ λ a.s
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For µ a.e. x ∈ S1 and P a.e. ω there exists n with

log(gωn ◦ . . . ◦ gω1)′(x)

n
< λ/2 < 0.

Hence for y := gωn ◦ . . . ◦ gω1(x) we have

log(g−1ω1
◦ . . . ◦ g−1ωn

)′(y)

n
> −λ/2 > 0.

y is expanding!
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Theorem
If G is a group of C 2 diffeomorphisms acting minimally,

not
topologically conjugated to a group of rotations, P is a probability
distribution on G , whose support generates a group, µ is the
corresponding unique stationary measure, then the Lyapunov
expansion exponent

λe(x) := lim sup
n→∞

max
g1,...,gn∈G

log(gn ◦ . . . ◦ g1)′(x)

n

is positive µ a.e.

Corollary

If the Lyapunov expansion exponent is zero Lebesgue a.e., then for
every probability distribution P on the group such that its support
generates G , the corresponding stationary measure is singular w.r.t
the Lebesgue.



Theorem
If G is a group of C 2 diffeomorphisms acting minimally,not
topologically conjugated to a group of rotations,

P is a probability
distribution on G , whose support generates a group, µ is the
corresponding unique stationary measure, then the Lyapunov
expansion exponent

λe(x) := lim sup
n→∞

max
g1,...,gn∈G

log(gn ◦ . . . ◦ g1)′(x)

n

is positive µ a.e.

Corollary

If the Lyapunov expansion exponent is zero Lebesgue a.e., then for
every probability distribution P on the group such that its support
generates G , the corresponding stationary measure is singular w.r.t
the Lebesgue.



Theorem
If G is a group of C 2 diffeomorphisms acting minimally,not
topologically conjugated to a group of rotations, P is a probability
distribution on G , whose support generates a group, µ is the
corresponding unique stationary measure, then the Lyapunov
expansion exponent

λe(x) := lim sup
n→∞

max
g1,...,gn∈G

log(gn ◦ . . . ◦ g1)′(x)

n

is positive µ a.e.

Corollary

If the Lyapunov expansion exponent is zero Lebesgue a.e., then for
every probability distribution P on the group such that its support
generates G , the corresponding stationary measure is singular w.r.t
the Lebesgue.



Theorem
If G is a group of C 2 diffeomorphisms acting minimally,not
topologically conjugated to a group of rotations, P is a probability
distribution on G , whose support generates a group, µ is the
corresponding unique stationary measure, then the Lyapunov
expansion exponent

λe(x) := lim sup
n→∞

max
g1,...,gn∈G

log(gn ◦ . . . ◦ g1)′(x)

n

is positive µ a.e.

Corollary

If the Lyapunov expansion exponent is zero Lebesgue a.e., then for
every probability distribution P on the group such that its support
generates G , the corresponding stationary measure is singular w.r.t
the Lebesgue.



Theorem (Eskif, Rebelo)

If G ⊆ Diff ω(S1) is a finitely generated,

locally C 2-non-discrete
group acting minimally, not topologically conjugated to a group of
rotations,then there exists a probability distribution on G such that
the corresponding stationary measure is absolutely continuous with
respect to the Lebesgue measure.

Proof in “Global rigidity of conjugations for locally non-discrete
subgroups of Diff ω(S1)”, Eskif, Rebelo.
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Thank you!


