Solenoid

Mateusz Dembny

University of Warsaw

Dynamical Systems student/PhD seminar, May 2020

Mateusz Dembny (MIMUW)

э

< □ > < 同 > < 回 > < 回 > < 回 >

Let $f : M \longrightarrow M$ be a diffeomorphism defined on manifold M. Definitions:

• A compact region $N \subset M$ is called a trapping region for f provided $f(N) \subset int(N)$.

3

イロト 不得下 イヨト イヨト

Let $f : M \longrightarrow M$ be a diffeomorphism defined on manifold M. Definitions:

- A compact region $N \subset M$ is called a trapping region for f provided $f(N) \subset int(N)$.
- A set Λ is called an <u>attracting set</u> provided there is a trapping region N such that $\Lambda = \bigcap_{k \ge 0} f^k(N)$.

イロト 不得 トイヨト イヨト 二日

Let $f : M \longrightarrow M$ be a diffeomorphism defined on manifold M. Definitions:

- A compact region $N \subset M$ is called a trapping region for f provided $f(N) \subset int(N)$.
- A set Λ is called an <u>attracting set</u> provided there is a trapping region N such that $\Lambda = \bigcap_{k \ge 0} f^k(N)$.
- Function $f|_{\Lambda}$ is called <u>chain transitive</u> if $\forall_{\delta>0}\forall_{x,y\in\Lambda}\exists_{x=x_0,x_1,x_2,...,x_n=y}$ $d(f(x_i), x_{i+1}) \leq \delta$ for all i = 0, 1, ..., n

< □ > < □ > < □ > < □ > < □ > < □ >

Let $f : M \longrightarrow M$ be a diffeomorphism defined on manifold M. Definitions:

- A compact region $N \subset M$ is called a trapping region for f provided $f(N) \subset int(N)$.
- A set Λ is called an <u>attracting set</u> provided there is a trapping region N such that $\Lambda = \bigcap_{k \ge 0} f^k(N)$.
- Function $f|_{\Lambda}$ is called <u>chain transitive</u> if $\forall_{\delta>0}\forall_{x,y\in\Lambda}\exists_{x=x_0,x_1,x_2,...,x_n=y}$ $d(f(x_i), x_{i+1}) \leq \delta$ for all i = 0, 1, ..., n
- A set Λ is called an <u>attractor</u> provided it is an attracting set and f|_Λ is chain transitive.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $f : M \longrightarrow M$ be a diffeomorphism defined on manifold M. Definitions:

- A compact region $N \subset M$ is called a trapping region for f provided $f(N) \subset int(N)$.
- A set Λ is called an <u>attracting set</u> provided there is a trapping region N such that $\Lambda = \bigcap_{k \ge 0} f^k(N)$.
- Function $f|_{\Lambda}$ is called <u>chain transitive</u> if $\forall_{\delta>0}\forall_{x,y\in\Lambda}\exists_{x=x_0,x_1,x_2,...,x_n=y}$ $d(f(x_i), x_{i+1}) \leq \delta$ for all i = 0, 1, ..., n
- A set Λ is called an <u>attractor</u> provided it is an attracting set and f|_Λ is chain transitive.
- An invariant set Λ is called a <u>chaotic attractor</u> if it is an attractor and f has sensitive dependence on initial conditions on Λ.

イロト 不得下 イヨト イヨト 二日

Let $f : M \longrightarrow M$ be a diffeomorphism defined on manifold M. Definitions:

- A compact region $N \subset M$ is called a trapping region for f provided $f(N) \subset int(N)$.
- A set Λ is called an <u>attracting set</u> provided there is a trapping region N such that $\Lambda = \bigcap_{k \ge 0} f^k(N)$.
- Function $f|_{\Lambda}$ is called <u>chain transitive</u> if $\forall_{\delta>0}\forall_{x,y\in\Lambda}\exists_{x=x_0,x_1,x_2,...,x_n=y}$ $d(f(x_i), x_{i+1}) \leq \delta$ for all i = 0, 1, ..., n
- A set Λ is called an <u>attractor</u> provided it is an attracting set and f|_Λ is chain transitive.
- An invariant set Λ is called a <u>chaotic attractor</u> if it is an attractor and f has sensitive dependence on initial conditions on Λ.
- An attrator with a hyperbolic structure is called a hyperbolic attractor.

Figure: Hyperbolic structure

Proposition: Let Λ be a compact invariant set in a finite-dimensional manifold. Then Λ is an attracting set if and only if there a exists an arbitrarily small neighbourhood V such that $V \subset \Lambda$, V is positively invariant and for all $p \in V \ \omega(p) \subset \Lambda$.

<u>Theorem</u>: Let Λ be an attracting set for f. Assume either that $p \in \Lambda$ is a hyperbolic periodic point or Λ has a hyperbolic structure and $p \in \Lambda$. Then $W^{u}(p) \subset \Lambda$.

Proof:

Recall $W^{u}(p) = \{x \in N : |f^{n}(x) - f^{n}(p)| \longrightarrow 0 \text{ as } n \to -\infty\}$ and $W^{u}_{\epsilon}(p) = \{x \in N : \forall_{n < 0} |f^{n}(x) - f^{n}(p)| < \epsilon\}$. $\Lambda \subset intN$, where N is a trapping region. So there exists $\epsilon > 0$ such that $W^{u}_{\epsilon}(f^{k}(p)) \subset N$ for all $k \in \mathbb{Z}$. Therefore for all $k \ge 0$ we have $W^{u}(f^{-k}(p)) = \bigcup_{j \ge 0} f^{j}(W^{u}_{\epsilon}(f^{-j-k}(p))) \subset N$ and $W^{u}(p) = f^{k}(W^{u}(f^{-k}(p))) \subset f^{k}(N)$. Thus $W^{u}(p) \subset \bigcap_{k \ge 0} f^{k}(N) = \Lambda$. \Box

A D N A B N A B N A B N

Definitions:

• The definition of topological dimension is given inductively. A set Λ has topological dimension 0 provided for each point $p \in \Lambda$ there exists arbitrarily small neighbourhood U of p such that $\partial U \cap \Lambda = \emptyset$. Then, inductively, a set Λ is said to have topological dimension n provided for each point $p \in \Lambda$ there exists arbitrarily small neighbourhood U of p such that $\partial U \cap \Lambda = \emptyset$.

< ロ > < 同 > < 回 > < 回 > < 回 >

Definitions:

- The definition of topological dimension is given inductively. A set Λ has topological dimension 0 provided for each point $p \in \Lambda$ there exists arbitrarily small neighbourhood U of p such that $\partial U \cap \Lambda = \emptyset$. Then, inductively, a set Λ is said to have topological dimension n provided for each point $p \in \Lambda$ there exists arbitrarily small neighbourhood U of p such that $\partial U \cap \Lambda = \emptyset$.
- Hyperbolic attractor Λ is an expanding attractor provided the topological dimension of Λ is equal to the dimension of the unstable splitting.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let

$$D^2 = \{z \in \mathbb{C} : |z| \le 1\}$$

 $S^1 = \{z \in \mathbb{R} \mod 1\}$

And consider solid torus $N = S^1 \times D^2$. Let $g: S^1 \longrightarrow S^1$ be a doubling map, given by $g(t) = 2t \mod 1$.

<u>Definition</u>: The solenoid map is the embedding $f : N \longrightarrow N$ of the form $f(t,z) = (g(t), \frac{1}{4}z + \frac{1}{2}e^{2\pi it})$

イロト 不得下 イヨト イヨト 二日

Figure: Smale-Williams Solenoid.

Mateusz Dembny (MIMUW)

Solenoids

DS seminar 2020 7 / 21

- 2

イロト イヨト イヨト イヨト

<u>Proposition</u>: Let $D(t) = \{t\} \times D^2$. Then $f : D(t) \longrightarrow D(t)$ is a contraction by a factor of $\frac{1}{4}$. Proof:

Let
$$p_1 = (t, z_1), p_2 = (t, z_2) \in D(t)$$
. Then
 $|f(p_1) - f(p_2)| = |(g(t), \frac{1}{4}z_1 + \frac{1}{2}e^{2\pi i t}) - (g(t), \frac{1}{4}z_2 + \frac{1}{2}e^{2\pi i t})| = |(0, \frac{1}{4}(z_1 - z_2)| = \frac{1}{4}|(t, z_1) - (t, z_2)| = \frac{1}{4}|p_1 - p_2|$. \Box

<u>Notation</u>: $D([t_1, t_2]) = \bigcup \{D(t) : t \in [t_1, t_2]\}.$

イロト イポト イヨト イヨト

Figure: Smale-Williams Solenoid 2.

Mateusz Dembny (MIMUW)

Solenoids

DS seminar 2020 9 / 21

æ

イロト イヨト イヨト イヨト

<u>Theorem</u>: Let $\Lambda = \bigcap_{k\geq 0} f^k(N)$. Then Λ is a hyperbolic expanding attractor for f, of topological dimension 1, called <u>the solenoid</u>. <u>Proof</u>: Conclusion of this lecture. \Box

Proposition: For all t_0 the set $\Lambda \cap D(t_0)$ is a Cantor set. Proof: If $f(t, z) \in D(t_0)$, then $g(t) = t_0 \mod 1$, so $t = \frac{t_0}{2}$ or $t = \frac{t_0}{2} + \frac{1}{2}$. Notice that $f(D(\frac{t_0}{2})) = (t_0, \frac{1}{4}D^2 + \frac{1}{2}e^{\pi i t_0})$ and $f(D(\frac{t_0}{2} + \frac{1}{2})) = (t_0, \frac{1}{4}D^2 - \frac{1}{2}e^{\pi i t_0})$. Now, since $\frac{1}{2} - \frac{1}{4} > 0$, equality $f(D(\frac{t_0}{2})) \cap f(D(\frac{t_0}{2} + \frac{1}{2})) = \emptyset$ is true. Since $\frac{1}{2} + \frac{1}{4} < 1$, inclusion $f(D(\frac{t_0}{2}))$, $f(D(\frac{t_0}{2} + \frac{1}{2})) \subset D(t_0)$ is true. As a consequence $f(N) \subset N$. Let

$$\mathcal{N}_k = \bigcap_{j=0}^k f^j(N) = f^k(N)$$

Figure: Cross section of $f(N)_{\square}$

Mateusz Dembny (MIMUW)

Solenoids

DS seminar 2020 11 / 21

≣। ≡ *•*0....

<u>Lemma</u>: For all $t \in S^1$ the set $\mathcal{N}_k \cap D(t)$ is the union of 2^k discs of radius $(\frac{1}{4})^k$.

Proof(Lemma): Induction. For k = 0 thesis is trivially true. Suppose lemma is true for some k. Then

 $\mathcal{N}_k \cap D(t) = f(\mathcal{N}_{k-1} \cap D(\frac{t}{2})) \cup f(\mathcal{N}_{k-1} \cap D(\frac{t+1}{2})).$ By induction $\mathcal{N}_{k-1} \cap D(\frac{t}{2})$ and $\mathcal{N}_{k-1} \cap D(\frac{t+1}{2})$ are union of 2^{k-1} discs of radius $(\frac{1}{4})^{k-1}$. Since f is $\frac{1}{4}$ -contraction, the sets $\mathcal{N}_k \cap D(t) = f(\mathcal{N}_{k-1} \cap D(\frac{t}{2})), f(\mathcal{N}_{k-1} \cap D(\frac{t+1}{2}))$ are the union of 2^{k-1} discs of radius $(\frac{1}{4})^k$. Together they the union of 2^k discs of the stated radius. \Box

Now,
$$\Lambda = \bigcap_{j \ge 0} f^j(N) = \bigcap_{j \ge 0} \mathcal{N}_j$$
, so $\Lambda \cap D(t_0)$ is a Cantor set. \Box

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition: The set Λ has the following properties:

• Λ is connected.

Proof:

• \mathcal{N}_j are compact, connected and nested. Hence $\Lambda = \bigcap_{j \ge 0} \mathcal{N}_j$ is connected.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proposition: The set Λ has the following properties:

- Λ is connected.
- Λ is not locally connected.

Proof:

- \mathcal{N}_j are compact, connected and nested. Hence $\Lambda = \bigcap_{j \ge 0} \mathcal{N}_j$ is connected.
- If t₂ − t₁ ∈ (0, 1), then D[t₁, t₂] ∩ N_k is the union of 2^k tubes. For all U there exists t₂, t₁, k such that U contains two of these tubes. Since each one contains some point of Λ, Λ is not locally connected.

Proposition: The set Λ has the following properties:

- Λ is connected.
- Λ is not locally connected.
- Λ is not path connected.

Proof:

- \mathcal{N}_j are compact, connected and nested. Hence $\Lambda = \bigcap_{j \ge 0} \mathcal{N}_j$ is connected.
- If t₂ − t₁ ∈ (0, 1), then D[t₁, t₂] ∩ N_k is the union of 2^k tubes. For all U there exists t₂, t₁, k such that U contains two of these tubes. Since each one contains some point of Λ, Λ is not locally connected.
- Fix p ∈ Λ and create sequence q_k ∈ Λ ∩ D(t₀) such that q_k and q_{k-1} are in the same component of N_{k-1} ∩ D(t₀) and any path from p to q_k in N_k must go around S¹ at least 2^{k-1} times. By construction q_k is Cauchy sequence and let q be its limit.

Proposition: The set Λ has the following properties:

- Λ is connected.
- Λ is not locally connected.
- Λ is not path connected.
- The topological dimension of Λ is one.

Proof:

- \mathcal{N}_j are compact, connected and nested. Hence $\Lambda = \bigcap_{j \ge 0} \mathcal{N}_j$ is connected.
- If t₂ − t₁ ∈ (0, 1), then D[t₁, t₂] ∩ N_k is the union of 2^k tubes. For all U there exists t₂, t₁, k such that U contains two of these tubes. Since each one contains some point of Λ, Λ is not locally connected.
- Fix p ∈ Λ and create sequence q_k ∈ Λ ∩ D(t₀) such that q_k and q_{k-1} are in the same component of N_{k-1} ∩ D(t₀) and any path from p to q_k in N_k must go around S¹ at least 2^{k-1} times. By construction q_k is Cauchy sequence and let q be its limit.

Since Λ is closed, $q \in \Lambda$. This limit point q is in the same component of $\mathcal{N}_k \cap D(t_0)$ as q_k and any path from p to q in \mathcal{N}_k must go around S^1 at least 2^{k-1} times. Thus any continuous path form p to q have to go around S^1 infinitely many times. Contradiction.

• $\Lambda \cap D(t_0)$ is totally disconnected, hence have topological dimension 0. Since $\Lambda \cap D([t_1, t_2])$ is homeomorphic to $(\Lambda \cap D(t_1)) \times [t_1, t_2]$ and so has topological dimension 1.

Proposition: The map $f|_{\Lambda}$ has the following properties:

• Periodic points of $f|_{\Lambda}$ are dense in Λ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Since Λ is closed, $q \in \Lambda$. This limit point q is in the same component of $\mathcal{N}_k \cap D(t_0)$ as q_k and any path from p to q in \mathcal{N}_k must go around S^1 at least 2^{k-1} times. Thus any continuous path form p to q have to go around S^1 infinitely many times. Contradiction.

• $\Lambda \cap D(t_0)$ is totally disconnected, hence have topological dimension 0. Since $\Lambda \cap D([t_1, t_2])$ is homeomorphic to $(\Lambda \cap D(t_1)) \times [t_1, t_2]$ and so has topological dimension 1.

Proposition: The map $f|_{\Lambda}$ has the following properties:

- Periodic points of $f|_{\Lambda}$ are dense in Λ .
- $f|_{\Lambda}$ is topologically transitive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Since Λ is closed, $q \in \Lambda$. This limit point q is in the same component of $\mathcal{N}_k \cap D(t_0)$ as q_k and any path from p to q in \mathcal{N}_k must go around S^1 at least 2^{k-1} times. Thus any continuous path form p to q have to go around S^1 infinitely many times. Contradiction.

• $\Lambda \cap D(t_0)$ is totally disconnected, hence have topological dimension 0. Since $\Lambda \cap D([t_1, t_2])$ is homeomorphic to $(\Lambda \cap D(t_1)) \times [t_1, t_2]$ and so has topological dimension 1.

Proposition: The map $f|_{\Lambda}$ has the following properties:

- Periodic points of $f|_{\Lambda}$ are dense in Λ .
- $f|_{\Lambda}$ is topologically transitive.
- $f|_{\Lambda}$ has a hyperbolic structure on Λ .

Proof:

<u>Lemma</u>: The periodic points of g are dense in S^1 .

If g^k(t₀) = t₀, then f^k(D(t₀)) ⊂ D(t₀). f^k takes D(t₀) into itself with a contraction factor of 4^{-k}, so f^k has a fixed point in D(t₀). By lemma, fibers with a periodic point for f are dense in the set of all fibers. Take p ∈ Λ and a neighbourhood U of p. There exists k, t₁, t₂ such that f^k(D[t₁, t₂]) ⊂ U. We showed above that f has periodic point in D[t₁, t₂] and so in U.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof:

<u>Lemma</u>: The periodic points of g are dense in S^1 .

- If g^k(t₀) = t₀, then f^k(D(t₀)) ⊂ D(t₀). f^k takes D(t₀) into itself with a contraction factor of 4^{-k}, so f^k has a fixed point in D(t₀). By lemma, fibers with a periodic point for f are dense in the set of all fibers. Take p ∈ Λ and a neighbourhood U of p. There exists k, t₁, t₂ such that f^k(D[t₁, t₂]) ⊂ U. We showed above that f has periodic point in D[t₁, t₂] and so in U.
- Let U and V be two open subsets of Λ . Thus there exists sets U', V'such that $U' \cap \Lambda = U$ and $V' \cap \Lambda = V$ and constants k, t_1, t'_1, t_2, t'_2 such that $f^k(D[t_1, t_2]) \subset U'$ and $f^k(D[t'_1, t'_2]) \subset V'$. There is j > 0such that $f^j(D[t_1, t_2] \cap \Lambda) \cap D[t'_1, t'_2]] \cap \Lambda \neq \emptyset$. Thus $f^j(f^k(D[t_1, t_2]) \cap \Lambda) \cap f^k(D[t'_1, t'_2]]) \cap \Lambda \neq \emptyset$ and $f^j(U) \cap V = f^j(U' \cap \Lambda) \cap (V' \cap \Lambda) \neq \emptyset$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• In terms of the coordinates on $S^1 imes D^2$

$$Df(t,z) = \begin{pmatrix} 2 & 0 \\ \pi i e^{2\pi i} & \frac{1}{4} I d_{\mathbb{C}} \end{pmatrix}.$$

Let $E^s = \{0\} \times \mathbb{R}^2$. Then for $(0, v) \in E^s$

$$Df(t,z)\begin{pmatrix}0\\v\end{pmatrix} = \begin{pmatrix}0\\\frac{1}{4}v\end{pmatrix}$$

and

$$Df^{k}(t,z) \begin{pmatrix} 0\\ v \end{pmatrix} = \begin{pmatrix} 0\\ (rac{1}{4})^{k}v \end{pmatrix}$$

which goes to 0 as k tends to ∞ . Therefore E^s is indeed the stable bundle at each $(t, z) \in \Lambda$.

To find E^u it is necessary to use cones.

< ロ > < 同 > < 回 > < 回 > < 回 >

Figure: Cones

Mateusz Dembny (MIMUW)

Solenoids

DS seminar 2020 17 / 21

3

イロト イヨト イヨト イヨト

Let $C_p^u = \{(v_1, v_2) : v_1 \in TS^1, v_2 \in \mathbb{R}^2 \text{ such that } |v_1| \ge \frac{1}{2}|v_2|\}$. We will prove our statement in three steps. <u>STEP 1</u>: $Df(p)(C_p^u) \subset C_{f(p)}^u$.

 $Df(p) \begin{pmatrix} 0\\v \end{pmatrix} = \begin{pmatrix} 2v_1\\\pi i e^{2\pi t i} v_1 + \frac{1}{4} v_2 \end{pmatrix} = \begin{pmatrix} v'_1\\v'_2 \end{pmatrix}.$ Then $|v'_1| = 2|v_1| = \frac{1}{2}|4v_1| > \frac{1}{2}(\pi |v_1| + \frac{1}{2}|v_1|) \ge \frac{1}{2}(\pi |v_1| + \frac{1}{4}|v_2|) \ge \frac{1}{2}|v'_2|.$ <u>STEP 2</u>: $\bigcap_{k \ge 0} Df^k(f^{-k}(p))(C^u_{f^{-k}(p)}) = E^u$ is a line in the tangent space.

The sets

$$\bigcap_{j=0}^{k} Df^{j}(f^{-j}(p))(C^{u}_{f^{-j}(p)}) = Df^{k}(f^{-k}(p))(C^{u}_{f^{-k}(p)})$$

are nested.

We will prove that the angle between any two vectors in these finite intersection goes to 0 as $k \to \infty$.

Let

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \in C^u_{f^{-k}(p)} : v_1, w_1 > 0$$
$$Df^k(f^{-k}(p)) \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} v_1^k \\ v_2^k \end{pmatrix}$$

and so for w_j . Then

$$\left|\frac{v_2^1}{v_1^1} - \frac{w_2^1}{w_1^1}\right| = \left|\frac{\pi i e^{2\pi i t} v_1 + \frac{1}{4} v_2}{2v_1} - \frac{\pi i e^{2\pi i t} w_1 + \frac{1}{4} w_2}{2w_1}\right| = \frac{1}{8} \left|\frac{v_2}{v_1} - \frac{w_2}{w_1}\right|$$

So $Df^{k}(f^{-k}(p))$ is a contraction on the slopes. By induction

$$\frac{v_2^k}{v_1^k} - \frac{w_2^k}{w_1^k} = \left(\frac{1}{8}\right)^k \left| \frac{v_2}{v_1} - \frac{w_2}{w_1} \right|$$

Last expression goes to 0 as $k \to \infty$.

STEP 3:
$$Df(p)|_{E^u}$$
 is an expansion.
Let $\left| \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \right|_{\star} = |v_1|$ be a norm on the cone. Then
 $Df(p) \left| \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \right|_{\star} = \left| \begin{pmatrix} 2v_1 \\ \cdots \end{pmatrix} \right|_{\star} = 2|v_1| = 2 \left| \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \right|_{\star}$

æ

•

< □ > < 同 > < 回 > < 回 > < 回 >

