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Basic definitions

Let f : C→ C be analytic.

Denote by fn the nth iterate of f .

Definition

The Fatou set is

F (f) = {z : (fn) is equicontinuous in some neighborhood of z}.

Definition

The Julia set is
J(f) = C \ F (f).
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The escaping set of a polynomial

Definition

The escaping set is

I(f) = {z : fn(z)→∞ as n→∞}.

I(f) is a neighborhood of ∞.

∂I(f) = J(f).

I(f) ⊂ F (f).

Points in I(f) all have the same rate of escape.

Denote by K(f) the set of points with bounded orbit.
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Examples of the escaping set of some polynomials (in
white)

z2 + 0.25 z2 + .28 + .008i
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More examples of the escaping set of some polynomials (in
white)

z2 − 0.79 + .15i z2 − 0.122565 + 0.744864i
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The escaping set of a transcendental entire function

Definition

The escaping set is

I(f) = {z : fn(z)→∞ as n→∞}.

I(f) is not a neighborhood of ∞.

I(f) can meet F (f) and J(f).

Points in I(f) have different rates of escape.

Eremenko (1989) showed I(f) has the following properties:

I(f) ∩ J(f) 6= ∅,
∂I(f) = J(f),
I(f) has no bounded components.

Eremenko’s conjecture: All components of I(f) are unbounded.

Denote by K(f) the set of points with bounded orbit.
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Examples of the escaping set of some transcendental entire
functions (in black and gray)

1
4 exp(z) z + 1 + exp(−z)
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Tracts

Definition

Let D be an unbounded domain in C whose boundary consists of
piecewise smooth curves. Further suppose that the complement of D is
unbounded and let f be a complex valued function whose domain of
definition includes the closure D̄ of D.
Then, D is a direct tract if f is analytic in D, continuous on D̄, and if
there exists R > 0 such that |f(z)| = R for z ∈ ∂D while |f(z)| > R for
z ∈ D. If in addition the restriction f : D → {z ∈ C : |z| > R} is a
universal covering, then D is a logarithmic tract.

Every transcendental entire function has a direct tract.
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Examples (tracts in white)

exp(z) exp(exp(z)− z)
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More examples (tracts in white)

exp(sin(z)− z) sin(z) cosh(z)
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Hausdorff dimension

Denote by dim J(f) the Hausdorff dimension of the Julia set of f .

If f is a quadratic map, then 0 < dim J(f) ≤ 2.

’Difficult’ to find functions, f , for which dim J(f) = 2.
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Hausdorff dimension for quadratic maps

z2

I(f) = {z : |z| > 1} is in
white

J(f) = {z : |z| = 1} is the
boundary of the black region

dim J(f) = 1
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Hausdorff dimension for quadratic maps

z2 + 0.25

I(f) is in white

J(f) is the boundary of the
black region

1 < dim J(f) < 3/2
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Hausdorff dimension for quadratic maps

z2 − 3/2 + 2i/3

I(f) is in white

J(f) is in black

J(f) is totally disconnected

dim J(f) < 1
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Hausdorff dimension for transcendental entire functions

In general, for a transcendental entire function f :

Baker (1975) proved dim J(f) ≥ 1.

Misiurewicz (1981) proved dim J(exp(z)) = 2.

McMullen (1987) proved dim J(f(z)) = 2 for some transcendental
entire functions f .

Stallard (1996-2000) showed for each d ∈ (1, 2) there exists a
transcendental entire function f for which dim J(f) = d.

If f ∈ B, then Stallard (1996) proved dim J(f) > 1.

If f is a meromorphic function with a logarithmic tract, then
Barański, Karpińska, and Zdunik (2009) proved dim J(f) > 1.

’Difficult’ to find functions, f , for which dim J(f) = 1.

Bishop (2018) constructed a transcendental entire function f with
dim J(f) = 1.
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Hausdorff dimension for transcendental entire functions

1
4 exp(z)

I(f) is in black and is a
Cantor bouquet of curves
(without some endpoints)

J(f) is in black

J(f) is I(f) along with all
the endpoints

dim J(f) = dim I(f) = 2
(McMullen, 1987)
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Hausdorff dimension for transcendental entire functions

1
4 exp(z)

Karpińska’s paradox

The set of curves without
the endpoints has dimension
1 (Karpińska, 1999).

The set of endpoints has
dimension 2.
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Hausdorff dimension for transcendental entire functions

Theorem (Barański, Karpińska, and Zdunik, 2009)

The Hausdorff dimension of the set of points with bounded orbits in the
Julia set of a meromorphic map with a logarithmic tract is greater than 1.
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Wiman–Valiron theory (Power series)

Let f =
∑∞

n=0 anz
n be a transcendental entire function.

The main result of Wiman–Valiron theory gives how much of this
power series is needed to obtain a good estimate on f near maximum
modulus points.

Used by Eremenko to show I(f) is non-empty.
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Wiman–Valiron theory (Power series)

M(r) = max|z|=r |f(z)| is the maximum modulus of f

µ(r) = maxn≥0 |an|rn is the maximum term

ν(r) = maxn≥0{n : |an|rn = µ(r)} is the central index

A set E ∈ [1,∞) has finite logarithmic measure if
∫
E dt/t <∞.
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Main result of Wiman–Valiron theory (Power series)

Theorem (Wiman, Valiron, Macintyre, and Hayman (1916-1974))

There exists a set E of finite logarithmic measure such that if
|zr| = r /∈ E, if |f(zr)| = M(r), and if z is sufficiently close to zr, then

f(z) ∼
(
z

zr

)ν(r)
f(zr)

as r →∞.
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Wiman–Valiron theory (Without power series)

B(r) = logM(r).

B(r) is a convex function of log r, so

a(r) =
dB(r)

d log r

exists except, perhaps, for a countable set of values of r and is
non-decreasing.

Macintyre (1938) proved that

f(z) ∼
(
z

zr

)a(r)
f(zr)

for z ∈ D(zr, r/(B(r)1/2+ε) if ε > 0.
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Wiman–Valiron theory in direct tracts

Let D be a direct tract of f .

The subharmonic function v(z) = log |f(z)|/R if z ∈ D and 0 if
z /∈ D.

B(r, v) = max|z|=r v(z), so a(r, v) = dB(r,v)
d log r = rB′(r, v).

Theorem (Bergweiler, Rippon, Stallard 2008)

Let D be a direct tract of f and let τ > 1
2 . Let v be the associated

subharmonic function and let zr ∈ D be a point satisfying |zr| = r and
v(zr) = B(r, v). Then there exists a set E ⊂ [1,∞) of finite logarithmic
measure such that if r ∈ [1,∞) \ E, then D(zr, r/a(r, v)τ ) ⊂ D.
Moreover,

f(z) ∼
(
z

zr

)a(r,v)
f(zr), for z ∈ D(zr, r/a(r, v)τ ),

as r →∞, r /∈ E.
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Wiman–Valiron discs

How large can the disc around zr be chosen?
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Wiman–Valiron discs

How large can the disc around zr be chosen?

Theorem (Bergweiler, 2011)

Let ψ : [t0,∞)→ (0,∞) satisfy 1 ≤ tψ′(t)
ψ(t) < 2.

If ∫ ∞
t0

dt

ψ(t)
<∞

and r /∈ E is sufficiently large, then D(zr, r/
√
ψ(a(r, v))) ⊂ D.

However, if ∫ ∞
t0

dt

ψ(t)
=∞

then there exists an entire function such that for r sufficiently large
and |z| = r, D(z, r/

√
ψ(a(r, v))) contains a zero of f .
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Wiman–Valiron discs

How large can the disc around zr be chosen?

Theorem

Let f be a meromorphic function with a direct tract D with a simply
connected direct tract, then for 1/2 > τ > 0 and for r ∈ [1,∞) \E, where
E has finite logarithmic measure, there exists D(zr, r/a(r, v)τ ) ∈ D.
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Wiman–Valiron discs

What is the estimate on these discs?

Theorem

There exists a set E ∈ [1,∞) such that if, for τ > 0, there exists a disc
D(zr, r/a(r, v)τ ) ⊂ D for r /∈ E sufficiently large, then there exists an
analytic function g in D(zr, r/a(r, v)τ ) such that

log f(z) = log f(zr) + a(r, v) log
z

zr
+ g(z), for z ∈ D(zr, r/a(r, v)τ ),

where

g(z) =

{
O(a(r, v)ξ(τ)) for z ∈ D(zr, r/a(r, v)τ ) and τ < 1/2,

o(1) for z ∈ D(zr, r/a(r, v)τ ) and τ > 1/2,

and ξ(τ) =
√

1− 2τ as r →∞, r /∈ E.
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Hausdorff dimension of Julia sets of meromorphic maps
with simply connected direct tracts

Theorem

Let f be a transcendental meromorphic function with a simply connected
direct tract D. Suppose that there exists λ > 1 such that for arbitrarily
large r there exists an annulus A(r/λ, λr) containing no singular values of
the restriction of f to D. Then dim J(f) ∩K(f) > 1.
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An example

exp

(
−
∞∑
k=1

( z

2k

)2k)
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Another example

cos(z) exp(z)
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Thank you for your attention!Thank you for your attention!
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