Wiman–Valiron discs and the Hausdorff dimension of Julia sets of meromorphic functions

James Waterman

Department of Mathematical Sciences University of Liverpool

May 15, 2020

Outline

- Basic definitions.
- Direct and logarithmic tracts.
- Hausdorff dimension.
- Wiman–Valiron theory.
- Hausdorff dimension of Julia sets of some functions with direct tracts.

Basic definitions

• Let $f : \mathbb{C} \to \mathbb{C}$ be analytic.

• Denote by f^n the *n*th iterate of f.

Definition

The Fatou set is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighborhood of } z\}.$

Definition

The Julia set is

$$J(f) = \mathbb{C} \setminus F(f).$$

Definition

The escaping set is

$$I(f) = \{ z : f^n(z) \to \infty \text{ as } n \to \infty \}.$$

- I(f) is a neighborhood of ∞ .
- $\partial I(f) = J(f).$
- $I(f) \subset F(f)$.
- Points in I(f) all have the same rate of escape.

Denote by K(f) the set of points with bounded orbit.

Examples of the escaping set of some polynomials (in white)

$$z^2 + 0.25$$

$$z^2 + .28 + .008i$$

More examples of the escaping set of some polynomials (in white)

$$z^2 - 0.79 + .15i$$

$$z^2 - 0.122565 + 0.744864i$$

The escaping set of a transcendental entire function

Definition

The escaping set is

$$I(f) = \{ z : f^n(z) \to \infty \text{ as } n \to \infty \}.$$

- I(f) is not a neighborhood of ∞ .
- I(f) can meet F(f) and J(f).
- Points in I(f) have different rates of escape.
- Eremenko (1989) showed I(f) has the following properties:
 - $I(f) \cap J(f) \neq \emptyset$,
 - $\underline{\partial I(f)} = J(f)$,
 - $\overline{I(f)}$ has no bounded components.

• Eremenko's conjecture: All components of I(f) are unbounded.

Denote by K(f) the set of points with bounded orbit.

Examples of the escaping set of some transcendental entire functions (in black and gray)

$$\frac{1}{4}\exp(z)$$

 $z + 1 + \exp(-z)$

Tracts

Definition

Let D be an unbounded domain in \mathbb{C} whose boundary consists of piecewise smooth curves. Further suppose that the complement of D is unbounded and let f be a complex valued function whose domain of definition includes the closure \overline{D} of D. Then, D is a **direct tract** if f is analytic in D, continuous on \overline{D} , and if there exists R > 0 such that |f(z)| = R for $z \in \partial D$ while |f(z)| > R for

 $z \in D$. If in addition the restriction $f: D \to \{z \in \mathbb{C} : |z| > R\}$ is a universal covering, then D is a **logarithmic tract**.

• Every transcendental entire function has a direct tract.

Examples (tracts in white)

 $\exp(z)$

 $\exp(\exp(z) - z)$

More examples (tracts in white)

Denote by $\dim J(f)$ the Hausdorff dimension of the Julia set of f.

- If f is a quadratic map, then $0 < \dim J(f) \le 2$.
- 'Difficult' to find functions, f, for which $\dim J(f) = 2$.

Hausdorff dimension for quadratic maps

•
$$I(f) = \{z: |z| > 1\}$$
 is in white

•
$$J(f) = \{z : |z| = 1\}$$
 is the boundary of the black region

• dim
$$J(f) = 1$$

 z^2

Hausdorff dimension for quadratic maps

$$z^2 + 0.25$$

- I(f) is in white
- J(f) is the boundary of the black region
- $1 < \dim J(f) < 3/2$

Hausdorff dimension for quadratic maps

$$z^2 - 3/2 + 2i/3$$

- I(f) is in white
- J(f) is in black
- J(f) is totally disconnected
- dim J(f) < 1

In general, for a transcendental entire function f:

• Baker (1975) proved dim $J(f) \ge 1$.

- Baker (1975) proved $\dim J(f) \ge 1$.
- Misiurewicz (1981) proved $\dim J(\exp(z)) = 2$.

- Baker (1975) proved $\dim J(f) \ge 1$.
- Misiurewicz (1981) proved $\dim J(\exp(z)) = 2$.
- McMullen (1987) proved $\dim J(f(z)) = 2$ for some transcendental entire functions f.

- Baker (1975) proved $\dim J(f) \ge 1$.
- Misiurewicz (1981) proved $\dim J(\exp(z)) = 2$.
- McMullen (1987) proved $\dim J(f(z)) = 2$ for some transcendental entire functions f.
- Stallard (1996-2000) showed for each $d \in (1,2)$ there exists a transcendental entire function f for which dim J(f) = d.

- Baker (1975) proved $\dim J(f) \ge 1$.
- Misiurewicz (1981) proved $\dim J(\exp(z)) = 2$.
- McMullen (1987) proved $\dim J(f(z)) = 2$ for some transcendental entire functions f.
- Stallard (1996-2000) showed for each $d \in (1,2)$ there exists a transcendental entire function f for which dim J(f) = d.
- If $f \in \mathcal{B}$, then Stallard (1996) proved $\dim J(f) > 1$.

- Baker (1975) proved $\dim J(f) \ge 1$.
- Misiurewicz (1981) proved $\dim J(\exp(z)) = 2$.
- McMullen (1987) proved $\dim J(f(z)) = 2$ for some transcendental entire functions f.
- Stallard (1996-2000) showed for each $d \in (1,2)$ there exists a transcendental entire function f for which dim J(f) = d.
- If $f \in \mathcal{B}$, then Stallard (1996) proved $\dim J(f) > 1$.
- If f is a meromorphic function with a logarithmic tract, then Barański, Karpińska, and Zdunik (2009) proved dim J(f) > 1.

- Baker (1975) proved $\dim J(f) \ge 1$.
- Misiurewicz (1981) proved $\dim J(\exp(z)) = 2$.
- McMullen (1987) proved $\dim J(f(z)) = 2$ for some transcendental entire functions f.
- Stallard (1996-2000) showed for each $d \in (1,2)$ there exists a transcendental entire function f for which dim J(f) = d.
- If $f \in \mathcal{B}$, then Stallard (1996) proved $\dim J(f) > 1$.
- If f is a meromorphic function with a logarithmic tract, then Barański, Karpińska, and Zdunik (2009) proved dim J(f) > 1.
- 'Difficult' to find functions, f, for which $\dim J(f) = 1$.

- Baker (1975) proved $\dim J(f) \ge 1$.
- Misiurewicz (1981) proved $\dim J(\exp(z)) = 2$.
- McMullen (1987) proved $\dim J(f(z)) = 2$ for some transcendental entire functions f.
- Stallard (1996-2000) showed for each $d \in (1,2)$ there exists a transcendental entire function f for which dim J(f) = d.
- If $f \in \mathcal{B}$, then Stallard (1996) proved $\dim J(f) > 1$.
- If f is a meromorphic function with a logarithmic tract, then Barański, Karpińska, and Zdunik (2009) proved $\dim J(f) > 1$.
- 'Difficult' to find functions, f, for which $\dim J(f) = 1$.
- Bishop (2018) constructed a transcendental entire function f with $\dim J(f) = 1$.

 $\frac{1}{4}\exp(z)$

- *I*(*f*) is in black and is a Cantor bouquet of curves (without some endpoints)
- J(f) is in black
- J(f) is I(f) along with all the endpoints
- $\dim J(f) = \dim I(f) = 2$ (McMullen, 1987)

 $\frac{1}{4}\exp(z)$

Karpińska's paradox

- The set of curves without the endpoints has dimension 1 (Karpińska, 1999).
- The set of endpoints has dimension 2.

Theorem (Barański, Karpińska, and Zdunik, 2009)

The Hausdorff dimension of the set of points with bounded orbits in the Julia set of a meromorphic map with a logarithmic tract is greater than 1.

- Let $f = \sum_{n=0}^{\infty} a_n z^n$ be a transcendental entire function.
- The main result of Wiman–Valiron theory gives how much of this power series is needed to obtain a good estimate on *f* near maximum modulus points.
- Used by Eremenko to show I(f) is non-empty.

- $M(r) = \max_{|z|=r} |f(z)|$ is the maximum modulus of f
- $\mu(r) = \max_{n \ge 0} |a_n| r^n$ is the maximum term
- $\nu(r) = \max_{n \ge 0} \{n : |a_n| r^n = \mu(r)\}$ is the central index
- A set $E \in [1,\infty)$ has finite logarithmic measure if $\int_E dt/t < \infty$.

Theorem (Wiman, Valiron, Macintyre, and Hayman (1916-1974))

There exists a set E of finite logarithmic measure such that if $|z_r| = r \notin E$, if $|f(z_r)| = M(r)$, and if z is sufficiently close to z_r , then

$$f(z) \sim \left(\frac{z}{z_r}\right)^{\nu(r)} f(z_r)$$

as $r \to \infty$.

Wiman-Valiron theory (Without power series)

- $B(r) = \log M(r)$.
- B(r) is a convex function of $\log r$, so

$$a(r) = \frac{dB(r)}{d\log r}$$

exists except, perhaps, for a countable set of values of \boldsymbol{r} and is non-decreasing.

• Macintyre (1938) proved that

$$f(z) \sim \left(\frac{z}{z_r}\right)^{a(r)} f(z_r)$$

for
$$z \in D(z_r, r/(B(r)^{1/2+\varepsilon})$$
 if $\varepsilon > 0$.

Wiman-Valiron theory in direct tracts

• Let D be a direct tract of f.

• The subharmonic function $v(z) = \log |f(z)|/R$ if $z \in D$ and 0 if $z \notin D$.

• $B(r,v) = \max_{|z|=r} v(z)$, so $a(r,v) = \frac{dB(r,v)}{d\log r} = rB'(r,v)$.

Theorem (Bergweiler, Rippon, Stallard 2008)

Let D be a direct tract of f and let $\tau > \frac{1}{2}$. Let v be the associated subharmonic function and let $z_r \in D$ be a point satisfying $|z_r| = r$ and $v(z_r) = B(r, v)$. Then there exists a set $E \subset [1, \infty)$ of finite logarithmic measure such that if $r \in [1, \infty) \setminus E$, then $D(z_r, r/a(r, v)^{\tau}) \subset D$. Moreover,

$$f(z) \sim \left(\frac{z}{z_r}\right)^{a(r,v)} f(z_r), \quad \text{for } z \in D(z_r, r/a(r,v)^{\tau}),$$

as $r \to \infty$, $r \notin E$.

James Waterman (University of Liverpool)

May 15, 2020 25 / 36

How large can the disc around z_r be chosen?

Wiman–Valiron discs

How large can the disc around z_r be chosen?

Theorem (Bergweiler, 2011)

• Let
$$\psi : [t_0, \infty) \to (0, \infty)$$
 satisfy $1 \le \frac{t\psi'(t)}{\psi(t)} < 2$.
• If
$$\int_{t_0}^{\infty} \frac{dt}{\psi(t)} < \infty$$

and $r \notin E$ is sufficiently large, then $D(z_r, r/\sqrt{\psi(a(r, v))}) \subset D$. • However, if

$$\int_{t_0}^{\infty} \frac{dt}{\psi(t)} = \infty$$

then there exists an entire function such that for r sufficiently large and |z|=r, $D(z,r/\sqrt{\psi(a(r,v))})$ contains a zero of f.

How large can the disc around z_r be chosen?

Theorem

Let f be a meromorphic function with a direct tract D with a simply connected direct tract, then for $1/2 > \tau > 0$ and for $r \in [1, \infty) \setminus E$, where E has finite logarithmic measure, there exists $D(z_r, r/a(r, v)^{\tau}) \in D$.

Wiman–Valiron discs

What is the estimate on these discs?

Theorem

There exists a set $E \in [1, \infty)$ such that if, for $\tau > 0$, there exists a disc $D(z_r, r/a(r, v)^{\tau}) \subset D$ for $r \notin E$ sufficiently large, then there exists an analytic function g in $D(z_r, r/a(r, v)^{\tau})$ such that

$$\log f(z) = \log f(z_r) + a(r, v) \log \frac{z}{z_r} + g(z), \quad \text{for } z \in D(z_r, r/a(r, v)^{\tau}),$$

where

$$g(z) = \begin{cases} O(a(r,v)^{\xi(\tau)}) & \text{for } z \in D(z_r, r/a(r,v)^{\tau}) \text{ and } \tau < 1/2, \\ o(1) & \text{for } z \in D(z_r, r/a(r,v)^{\tau}) \text{ and } \tau > 1/2, \end{cases}$$

and $\xi(\tau) = \sqrt{1-2\tau}$ as $r \to \infty$, $r \notin E$.

Hausdorff dimension of Julia sets of meromorphic maps with simply connected direct tracts

Theorem

Let f be a transcendental meromorphic function with a simply connected direct tract D. Suppose that there exists $\lambda > 1$ such that for arbitrarily large r there exists an annulus $A(r/\lambda, \lambda r)$ containing no singular values of the restriction of f to D. Then dim $J(f) \cap K(f) > 1$.

An example

Another example

 $\cos(z)\exp(z)$

Thank you for your attention!

James Waterman (University of Liverpool)

Wiman-Valiron discs

May 15, 2020 36 / 36