Denjoy examples and their dimension

Rudimentary slides

Łukasz Pawelec

SGH Warsaw School of Economics

Warszawa, April 2020

This talk is partially based on:

- Diophantine classes, dimension and Denjoy maps by B. Kra and J. Schmelling, Acta Arithmetica 105.4 (2002);
- Work in progress with M. Urbański;
- Some results from my PhD, someday perhaps published...

For those who have forgotten:

1) In the 1890's Poincaré proved that any orientation preserving circle homeomorphism $f: S^1 \to S^1$ defines a unique parameter $\alpha \in (0, 1]$ called *the rotation number*, and should this number be irrational, then the map f is semi-conjugate to a rotation by α .

For those who have forgotten:

- 1) In the 1890's Poincaré proved that any orientation preserving circle homeomorphism $f: S^1 \to S^1$ defines a unique parameter $\alpha \in (0, 1]$ called *the rotation number*, and should this number be irrational, then the map f is semi-conjugate to a rotation by α .
- 2) In the 1930's Denjoy proved that f is in fact 'fully' conjugate to the rotation, provided that f' is of bounded variation.

For those who have forgotten:

- 1) In the 1890's Poincaré proved that any orientation preserving circle homeomorphism $f: S^1 \to S^1$ defines a unique parameter $\alpha \in (0, 1]$ called *the rotation number*, and should this number be irrational, then the map f is semi-conjugate to a rotation by α .
- 2) In the 1930's Denjoy proved that f is in fact 'fully' conjugate to the rotation, provided that f' is of bounded variation.
- 3) Moreover, he gave examples of C^1 diffeomorphisms that are not conjugate to the rotation. Herman (in 1979) gave such examples for any $C^{1+\delta}$, where $\delta \in (0, 1)$.

Definition

We will call any orientation preserving circle homeomorphism with an irrational rotation number that is not conjugate to the rotation a *Denjoy map*.

Definition

A set Ω is called *minimal* (for the homeomorphism f) if it is non-empty, compact, invariant and has no proper subset with these properties.

In other words, Ω is non-empty, $f(\Omega) = \Omega$ and each forward orbit of a point $x \in \Omega$ is dense in Ω .

Poincaré's result gives that if S^1 is minimal, then f is conjugate to the rotation.

Our intervals J_n will have lengths satisfying:

i) $\sum_{n\in\mathbb{Z}}\ell_n\leq 1,$ but in fact we will assume equal to 1.

$$\begin{array}{l} \text{ii)} \lim_{n \to \pm \infty} \frac{\ln |\ell_n - \ell_{n+1}|}{\ln \ell_n} = 1 + \delta, \\ \text{for some } \delta \in (0, 1). \end{array}$$

Model sequence

A model example of such a sequence is

$$\ell_n=c_\delta(|n|+1)^{-1/\delta}, \qquad$$
 where $\ c_\delta^{-1}=\sum_{n\in\mathbb{Z}}(|n|+1)^{-1/\delta}$

The metric

Set $\Omega_{\alpha}^{\delta} = S^1 \setminus \sum_{n \in \mathbb{Z}} J_n$. Let $h: \Omega_{\alpha}^{\delta} \to S^1$ be the semi-conjugacy and remember that we assume $h(J_0) = 0$. For x, y not in the orbit (by rotation) of 0 h^{-1} is well-defined and we have:

$$d(h^{-1}(x), h^{-1}(y)) = \sum_{n:n\alpha \in (x,y)} |J_n| = \sum_{n:n\alpha \in (x,y)} \ell_n.$$

And if x (and/or y) are in the orbit of zero, then $h^{-1}(x)$ consists of two points and we have to take the correct preimage (in such a way that the arc between $h^{-1}(x)$ and $h^{-1}(y)$ is the shortest possible.

Definition

An irrational α has a Diophantine class $\nu >$ 0, if

$$\inf_{oldsymbol{p}\in\mathbb{Z}}|oldsymbol{q}lpha-oldsymbol{p}|\leqrac{1}{oldsymbol{q}^{\mu}}$$

has infinitely many solution for $\mu<\nu$ and at most finitely many for $\mu>\nu.$

Remark

The golden ratio ϕ has class 1. (And the class cannot be lower). The Liouville numbers have class $+\infty$. The set of points of class ν has Hausdorff dimension $\frac{1}{\nu}$. Denote by $[a_1, a_2, \ldots]$ the standard continued fraction expansion of α ; and by q_n the denominators of the convergents (finite fractions). Recall that

$$q_{n+1} = a_n q_n + q_{n-1}$$

and

$$\frac{1}{q_n(a_n+2)} \leq \inf_{p \in \mathbb{Z}} |q_n \alpha - p| \leq \frac{1}{a_n q_n}.$$

So we may think of a number with Diophantine class ν as one satisfying a sequence

$$q_{n+1} pprox q_n^{
u}.$$

Theorem (Kra-Schmelling)

Assume $\delta \in (0, 1)$ and α has Diophantine class ν . Then an orientation preserving $C^{1+\delta}$ diffeomorphism of the circle with rotation number α and the minimal set Ω_{α}^{δ} satisfies

$$\dim_B \Omega_{\alpha}^{\delta} \geq \delta \qquad \text{and} \qquad \dim_H \Omega_{\alpha}^{\delta} \geq \frac{\delta}{\nu},$$

and taking the model sequence gives equalities.

We want to prove $\limsup_{r \to +\infty} \frac{\log N(r)}{-\log(r)} \le \delta$ for a reasonably dense sequence of r's.

We want to prove $\limsup_{r \to +\infty} \frac{\log N(r)}{-\log(r)} \leq \delta \text{ for a reasonably dense}$ sequence of r's. Fix $n \in \mathbb{N}$ and consider $\mathcal{J}_n = S^1 \setminus \left(\bigcup_{-n \leq k \leq n} J_k\right)$. This is a sum of 2n + 1 disjoint intervals of total length $\left(1 - \sum_{-n \leq k \leq n} \ell_k\right) \approx n^{1-1/\delta}$. We want to prove $\limsup_{r \to +\infty} \frac{\log N(r)}{-\log(r)} \le \delta$ for a reasonably dense sequence of r's. Fix $n \in \mathbb{N}$ and consider $\mathcal{J}_n = S^1 \setminus \left(\bigcup_{-n \le k \le n} J_k\right)$. This is a sum of 2n + 1 disjoint intervals of total length $\left(1 - \sum_{-n \le k \le n} \ell_k\right) \approx n^{1-1/\delta}$. This set may be covered *almost trivially* by intervals of average length, i.e. $n^{1-1/\delta}/(2n+1)$. How many such intervals do we need? We need 1 to cover every set of length shorter than the average (at most 2n + 1 sets). And at most twice the total length for the longer sets. This yields

$$N(n^{1-1/\delta}/(2n+1)) \le 6n+3.$$

We need 1 to cover every set of length shorter than the average (at most 2n + 1 sets). And at most twice the total length for the longer sets. This yields

$$N(n^{1-1/\delta}/(2n+1)) \le 6n+3.$$

Plugging this into the dimension formula gives

$$\frac{\log N(r)}{-\log(r)} \leq \frac{\log(6n+3)}{-\log\left(n^{1-1/\delta}/(2n+1)\right)} \approx \delta$$

Box dimension - lower bound for model case

Fix $m,n\in\mathbb{N}$ and observe the set $Z=S^1\setminus\Big(igcup_{-m\leq k\leq n}J_k\Big).$ The set

$$\{l\alpha: -m-n-1 \le l \le m+n+1\}$$

contains at least one point in each of the m + n + 1 intervals of Z. This means that the length of any of those intervals is bounded from below by $c_{\delta}(2n + 2m + 3)^{-1/\delta}$ and the distance of any two intervals is at least $c_{\delta}(\max(n, m))^{-1/\delta}$.

Box dimension - lower bound for model case

Fix $m, n \in \mathbb{N}$ and observe the set $Z = S^1 \setminus \Big(\bigcup_{-m \leq k \leq n} J_k \Big)$. The set

$$\{l\alpha: -m-n-1 \le l \le m+n+1\}$$

contains at least one point in each of the m + n + 1 intervals of Z. This means that the length of any of those intervals is bounded from below by $c_{\delta}(2n + 2m + 3)^{-1/\delta}$ and the distance of any two intervals is at least $c_{\delta}(\max(n, m))^{-1/\delta}$.

So to cover Ω by intervals of length $c_{\delta}(2n+2m+3)^{-1/\delta}$ we must use at least m+n+1 intervals. This proves the lower bound for model case.

For the general case we need to additionally prove that the assumptions on ℓ_n give that $\ell_n > n^{-1/\theta}$ for all $0 < \theta < \delta$.

Here we will assume that (X, d) is a metric space and $T: X \to X$ a Borel measurable map; μ is a *T*-invariant, ergodic, probability, Borel measure on *X*.

Theorem

With the assumptions on the dynamical system as above, for any $\beta > 0$ and for μ – almost every $x \in X$ we have

$$\liminf_{n\to\infty} n^{1/\beta} d(T^n(x),x) \leq g(x)^{1/\beta}, \text{ where } g(x) = \limsup_{r\to 0} \frac{H_\beta(B_x(r))}{\mu(B_x(r))}.$$

Remark

Note that g(x) may be equal to 0 or $+\infty$. The statement still holds.