Denjoy examples and their dimension

Rudimentary slides

Łukasz Pawelec
SGH Warsaw School of Economics

Warszawa, April 2020

Bibliography

This talk is partially based on:

- Diophantine classes, dimension and Denjoy maps by B. Kra and J. Schmelling, Acta Arithmetica 105.4 (2002);
- Work in progress with M. Urbański;
- Some results from my PhD, someday perhaps published...

Circle Homeomorphisms / conjugation - a reminder

For those who have forgotten:

1) In the 1890 's Poincare proved that any orientation preserving circle homeomorphism $f: S^{1} \rightarrow S^{1}$ defines a unique parameter $\alpha \in(0,1]$ called the rotation number, and should this number be irrational, then the $\operatorname{map} f$ is semi-conjugate to a rotation by α.

Circle Homeomorphisms / conjugation - a reminder

For those who have forgotten:

1) In the 1890 's Poincare proved that any orientation preserving circle homeomorphism $f: S^{1} \rightarrow S^{1}$ defines a unique parameter $\alpha \in(0,1]$ called the rotation number, and should this number be irrational, then the map f is semi-conjugate to a rotation by α.
2) In the 1930's Denjoy proved that f is in fact 'fully' conjugate to the rotation, provided that f^{\prime} is of bounded variation.

Circle Homeomorphisms / conjugation - a reminder

For those who have forgotten:

1) In the 1890 's Poincare proved that any orientation preserving circle homeomorphism $f: S^{1} \rightarrow S^{1}$ defines a unique parameter $\alpha \in(0,1]$ called the rotation number, and should this number be irrational, then the map f is semi-conjugate to a rotation by α.
2) In the 1930's Denjoy proved that f is in fact 'fully' conjugate to the rotation, provided that f^{\prime} is of bounded variation.
3) Moreover, he gave examples of \mathcal{C}^{1} diffeomorphisms that are not conjugate to the rotation. Herman (in 1979) gave such examples for any $\mathcal{C}^{1+\delta}$, where $\delta \in(0,1)$.

Denjoy map

Definition

We will call any orientation preserving circle homeomorphism with an irrational rotation number that is not conjugate to the rotation a Denjoy map.

Definition

A set Ω is called minimal (for the homeomorphism f) if it is non-empty, compact, invariant and has no proper subset with these properties.
In other words, Ω is non-empty, $f(\Omega)=\Omega$ and each forward orbit of a point $x \in \Omega$ is dense in Ω.

Poincare's result gives that if S^{1} is minimal, then f is conjugate to the rotation.

Enter the sequence

Our intervals J_{n} will have lengths satisfying:
i) $\sum_{n \in \mathbb{Z}} \ell_{n} \leq 1, \quad$ but in fact we will assume equal to 1 .
ii) $\lim _{n \rightarrow \pm \infty} \frac{\ln \left|\ell_{n}-\ell_{n+1}\right|}{\ln \ell_{n}}=1+\delta$,
for some $\delta \in(0,1)$.

Model sequence

A model example of such a sequence is

$$
\ell_{n}=c_{\delta}(|n|+1)^{-1 / \delta}, \quad \text { where } c_{\delta}^{-1}=\sum_{n \in \mathbb{Z}}(|n|+1)^{-1 / \delta}
$$

Set $\Omega_{\alpha}^{\delta}=S^{1} \backslash \sum_{n \in \mathbb{Z}} J_{n}$.
Let $h: \Omega_{\alpha}^{\delta} \rightarrow S^{1}$ be the semi-conjugacy and remember that we assume $h\left(J_{0}\right)=0$.
For x, y not in the orbit (by rotation) of $0 h^{-1}$ is well-defined and we have:

$$
d\left(h^{-1}(x), h^{-1}(y)\right)=\sum_{n: n \alpha \in(x, y)}\left|J_{n}\right|=\sum_{n: n \alpha \in(x, y)} \ell_{n}
$$

And if x (and/or y) are in the orbit of zero, then $h^{-1}(x)$ consists of two points and we have to take the correct preimage (in such a way that the arc between $h^{-1}(x)$ and $h^{-1}(y)$ is the shortest possible.

Diophantine class

Definition

An irrational α has a Diophantine class $\nu>0$, if

$$
\inf _{p \in \mathbb{Z}}|q \alpha-p| \leq \frac{1}{q^{\mu}}
$$

has infinitely many solution for $\mu<\nu$ and at most finitely many for $\mu>\nu$.

Remark

The golden ratio ϕ has class 1. (And the class cannot be lower). The Liouville numbers have class $+\infty$.
The set of points of class ν has Hausdorff dimension $\frac{1}{\nu}$.

Continued fractions

Denote by $\left[a_{1}, a_{2}, \ldots\right]$ the standard continued fraction expansion of α; and by q_{n} the denominators of the convergents (finite fractions). Recall that

$$
q_{n+1}=a_{n} q_{n}+q_{n-1}
$$

and

$$
\frac{1}{q_{n}\left(a_{n}+2\right)} \leq \inf _{p \in \mathbb{Z}}\left|q_{n} \alpha-p\right| \leq \frac{1}{a_{n} q_{n}}
$$

So we may think of a number with Diophantine class ν as one satisfying a sequence

$$
q_{n+1} \approx q_{n}^{\nu}
$$

The only theorem

Theorem (Kra-Schmelling)

Assume $\delta \in(0,1)$ and α has Diophantine class ν. Then an orientation preserving $\mathcal{C}^{1+\delta}$ diffeomorphism of the circle with rotation number α and the minimal set Ω_{α}^{δ} satisfies

$$
\operatorname{dim}_{B} \Omega_{\alpha}^{\delta} \geq \delta \quad \text { and } \quad \operatorname{dim}_{H} \Omega_{\alpha}^{\delta} \geq \frac{\delta}{\nu}
$$

and taking the model sequence gives equalities.

Box dimension - upper bound for model case

We want to prove $\limsup _{r \rightarrow+\infty} \frac{\log N(r)}{-\log (r)} \leq \delta$ for a reasonably dense sequence of r 's.

Box dimension - upper bound for model case

We want to prove $\limsup _{r \rightarrow+\infty} \frac{\log N(r)}{-\log (r)} \leq \delta$ for a reasonably dense sequence of r 's.
Fix $n \in \mathbb{N}$ and consider $\mathcal{J}_{n}=S^{1} \backslash\left(\bigcup_{n} J_{k}\right)$. This is a sum of $-n \leq k \leq n$
$2 n+1$ disjoint intervals of total length $\left(1-\sum_{-n \leq k \leq n} \ell_{k}\right) \approx n^{1-1 / \delta}$.

We want to prove $\limsup _{r \rightarrow+\infty} \frac{\log N(r)}{-\log (r)} \leq \delta$ for a reasonably dense sequence of r 's.
Fix $n \in \mathbb{N}$ and consider $\mathcal{J}_{n}=S^{1} \backslash\left(\bigcup_{-n<k \leq n} J_{k}\right)$. This is a sum of $2 n+1$ disjoint intervals of total length $\left(1-\sum_{-n \leq k \leq n} \ell_{k}\right) \approx n^{1-1 / \delta}$.
This set may be covered almost trivially by intervals of average length, i.e. $n^{1-1 / \delta} /(2 n+1)$. How many such intervals do we need?

Box dimension - upper bound, cont.

We need 1 to cover every set of length shorter than the average (at most $2 n+1$ sets). And at most twice the total length for the longer sets. This yields

$$
N\left(n^{1-1 / \delta} /(2 n+1)\right) \leq 6 n+3
$$

Box dimension - upper bound, cont.

We need 1 to cover every set of length shorter than the average (at most $2 n+1$ sets). And at most twice the total length for the longer sets. This yields

$$
N\left(n^{1-1 / \delta} /(2 n+1)\right) \leq 6 n+3
$$

Plugging this into the dimension formula gives

$$
\frac{\log N(r)}{-\log (r)} \leq \frac{\log (6 n+3)}{-\log \left(n^{1-1 / \delta} /(2 n+1)\right)} \approx \delta
$$

Fix $m, n \in \mathbb{N}$ and observe the set $Z=S^{1} \backslash\left(\bigcup J_{k}\right)$. The set

$$
\{I \alpha:-m-n-1 \leq I \leq m+n+1\}
$$

contains at least one point in each of the $m+n+1$ intervals of Z. This means that the length of any of those intervals is bounded from below by $c_{\delta}(2 n+2 m+3)^{-1 / \delta}$ and the distance of any two intervals is at least $c_{\delta}(\max (n, m))^{-1 / \delta}$.

Fix $m, n \in \mathbb{N}$ and observe the set $Z=S^{1} \backslash\left(\bigcup_{k} J_{k}\right)$. The set

$$
\{I \alpha:-m-n-1 \leq I \leq m+n+1\}
$$

contains at least one point in each of the $m+n+1$ intervals of Z. This means that the length of any of those intervals is bounded from below by $c_{\delta}(2 n+2 m+3)^{-1 / \delta}$ and the distance of any two intervals is at least $c_{\delta}(\max (n, m))^{-1 / \delta}$.

So to cover Ω by intervals of length $c_{\delta}(2 n+2 m+3)^{-1 / \delta}$ we must use at least $m+n+1$ intervals. This proves the lower bound for model case.
For the general case we need to additionally prove that the assumptions on ℓ_{n} give that $\ell_{n}>n^{-1 / \theta}$ for all $0<\theta<\delta$.

Dimension by recurrence

Here we will assume that (X, d) is a metric space and $T: X \rightarrow X$ a Borel measurable map; μ is a T-invariant, ergodic, probability, Borel measure on X.

Theorem

With the assumptions on the dynamical system as above, for any $\beta>0$ and for μ - almost every $x \in X$ we have

$$
\liminf _{n \rightarrow \infty} n^{1 / \beta} d\left(T^{n}(x), x\right) \leq g(x)^{1 / \beta} \text {, where } g(x)=\limsup _{r \rightarrow 0} \frac{H_{\beta}\left(B_{x}(r)\right)}{\mu\left(B_{x}(r)\right)} .
$$

Remark

Note that $g(x)$ may be equal to 0 or $+\infty$. The statement still holds.

