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Theorem 1 - discrete version

Theorem

Let F = {f1, . . . , fN; p1, . . . , pN}, pj > 0, ∑N
1 pj = 1 be an IFS

(iterated function system) with probabilities of Möbius
transformations fi mapping the upper half-plane H onto itself, and
having no common invariant (hyperbolic) line in H. Then, for any
initial point Z0 ∈H, the orbit
Zn = Zn(Z0) = fn ◦ fn−1 ◦ · · · ◦ f1(Z0), n ≥ 1, tends to R almost
surely, as n→ ∞.
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Theorem 1

Theorem
Let µ be a probability measure on the set of Möbius transformations
mapping the upper half-plane H = {Im z > 0} onto itself. Assume
that the transformations in the support of µ have no common fixed
point in H and no common invariant (hyperbolic) line in H. Let
{Fn} be iid random variables with distribution µ. Then, for any
initial point Z0 ∈H, the orbit {Zn}∞

0 tends to R almost surely.
That is, for arbitrarily fixed compact subset K ⊂H and for almost
all orbits {Zn}n≥1, only a finite number of points of the orbit belong
to K.
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Furstenberg’s theorem

Theorem
Let µ be a probability measure on SL(2, R), such that the following
holds (if Gµ is the smallest closed subgroup of SL(2, R) which
contains the support of µ)

1 Gµ is not compact;

2 there does not exist a subset L of R2 which is a finite union of
one-dimensional subspaces, such that M(L) = L for any M in
Gµ.

Then, with probability 1, the norms ‖ Yn . . . Y1x ‖ grow
exponentially as n→ ∞, for all x ∈ R2\{0}, where {Yn} are iid
random variables with values in SL(2, R) and distribution µ.
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Theorem 2

Theorem
Let µ be a probability measure on SL(2, R). Assume that the
matrices in suppµ have no common invariant elipse, and no
common invariant set of type l1 ∪ l2, with lines l1, l2 (not
necessarily different) passing through the origin. Then, with
probability 1, the norms ‖ Yn . . . Y1x ‖ grow exponentially, as
n→ ∞, for all x ∈ R2\{0}, where {Yn} are iid random variables
with values in SL(2, R) and distribution µ.
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Lemma 1

Lemma

Let {A =

(
a b
c d

)
}A be a subset of SL(2, R) and let

{fA(z) = az+b
cz+d}A be the associated Möbius transformations. Then,

for any fixed z ∈H, {fA(z)}A is an unbounded set in H (in the
hyperbolic sense) if and only if the norms {‖ A ‖}A are unbounded
(in R with the ordinary Euclidean metric).

MÖBIUS TRANSFORMATIONS AND FURSTENBERG’S THEOREM 6/29



Proof of Lemma 1 - part 1/3

Möbius transformations preserve hyperbolic distances. Hence,
instead of considering general point z ∈H, we can consider the
point z = i. Then

fA(i) =
ai + b
ci + d

=
(bd + ac) + i(ad− bc)

c2 + d2

. Since 1 = detA = ad− bc, we get

fA(i) =
bd + ac
c2 + d2 + i

1
c2 + d2

.
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Proof of Lemma 1 - part 2/3

Now let’s assume that {fA(i)}A is an unbounded set in H in
hyperbolic sense. This gives us three following alternatives:

1 {c2 + d2}A is unbounded (in R),
2 { bd+ac

c2+d2 }A is unbounded,

3 {c2 + d2}A contains element arbitrarily close to 0.
All these alternatives together with detA = ad− bc = 1 assure
us that {|a|+ |b|+ |c|+ |d|}A = {‖ A ‖}A is unbounded in R.
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Proof of Lemma 1 - part 3/3

Now, conversely, {‖ A ‖}A is unbounded.
If, in addition, {|c|+ |d|}A is unbounded, {fA(i)}A has element
arbitrarily close to real line.
If {|c|+ |d|}A is bounded, {|a|+ |b|}A is unbounded. In this
case

|fA(i)| = |
ai + b
ci + d

| =
√

a2 + b2
√

c2 + d2

and |fA(i)|A is unbounded in R. In either case the set {fA(i)}A is
an unbounded subset of H.
Lemma 1 is proved.
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Lemma 2

Lemma
In the notation of Lemma 1, the matrices {A}A have a common
invariant ellipse if and only if the associated Möbius
transformations {fA}A have a common fixed point in H.
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Proof of Lemma 2 - part 1/2

Let the set of Möbius transformations {fA}A have a common
fixed point w ∈H. Choose B ∈ SL(2, R), such that for the
associated Möbius transformation fB we have fB(i) = w.
Then i is a common fixed point of the conjugate system
{f−1

B ◦ fA ◦ fB}A.
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Proof of Lemma 2 - part 2/2

We should also note that f−1
B ◦ fA ◦ fB = fB−1AB and i is a fixed

point of f (z) = az+b
cz+d iff a = d and b = −c.

If, in addition, det(
(

a b
c d

)
) = 1,

(
a b
c d

)
is a rotation around

the origin.
This shows that {B−1AB}A have a common invariant circle
centered at the origin in R2. Then, {A}A has a common
invariant ellipse which is the image of the unit circle under B.
The converse is proved in the same manner.
Hence, Lemma 2 is proved.
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Lemma 3

Lemma
Let µ be a probability measure on the set of Möbius transformations
mapping the upper half-plane H onto itself. Assume that the
transformations in the support of µ have no common fixed point in
H. Then for any initial fixed point z ∈H the set {f (z)}, f ∈ Gµ, is
unbounded (in the hyperbolic sense), where Gµ denotes the smallest
subgroup of Möbius transformations containing the support of µ.

Proof: too long.
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Proposition 1

Proposition

Let µ be a probability measure on SL(2, R) and let Gµ be the
smallest closed subgroup of SL(2, R) which contains the support of
µ. Then Gµ is compact iff all the matrices in Gµ (or equivalently in
suppµ) have a common invariant ellipse.
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Proof of Proposition 1 - part 1/2

In one direction the assertion is evident: if all matrices in Gµ

have a common invariant ellipse, then the group Gµ is compact.
Now assume that the matrices in Gµ have no common invariant
ellipse. Due to Lemma 2, this is equivalent to the fact that the
associated Möbius transformations fA, where A ∈ Gµ, have no
common fixed point in H.
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Proof of Proposition 1 - part 2/2

Next we use Lemma 3, which says that in this case the set
{fA(z)}A is unbounded (in hyperbolic sense) in H, for any fixed
z ∈H. Finally, Lemma 1 shows that {‖ A ‖}A is unbounded
and, hence, that Gµ is non-compact, which finishes the proof.
Proposition 1 is proved.
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Proposition 2

Proposition

Assume that the group Gµ in Proposition 1 is non-compact and that
there exists a subset L = ∪li of R2 of a finite union of n different
one-dimensional subspaces li, i = 1, . . . , n, such that A(L) = L for
all A ∈ Gµ. Then n ≤ 2.
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Proof of Proposition 2 - part 1/2

Let ∆ be a unit disc in R2. The lines li, where i = 1, . . . , n,
intersect at the origin and divide ∆ into 2n parts. Let’s denote
them by Di, where i = 1, . . . , i = 2n.
Let A ∈ Gµ. A(∆) is an ellipse centered at the origin. We also
know that A(L) = L. The set L divides A(∆) into 2n parts,
which we’ll denote as Si, for i = 1, . . . , 2n.
Now, Proposition 2 will be proved by showing that if n > 2, at
least one Si will have an arbitrarily small area, provided that
the norm of A is sufficiently large.
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Proof of Proposition 2 - part 2/2

First we assume that n = 3 (L = l1 ∪ l2 ∪ l3). If ‖ A ‖ is large,
A(∆) is a long and thin origin-centered ellipse with unit area.
Let’s denote by P1, P2 points of the ellipse having maximal
distance from each other, and denote by l a straight line passing
through these points. Then l passes through the origin as well.
Let l1 form the minimal angle with l among all li.
Then the parts Si of A(∆) lying between the lines l2 and l3 and
not containing points Pi will have arbitrarily small area if A(∆)
is sufficiently long and thin.
The proof proceeds in similar fashion for n > 3. Proposition 2 is
proved.
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Theorem 2

Theorem
Let µ be a probability measure on SL(2, R). Assume that the
matrices in suppµ have no common invariant elipse, and no
common invariant set of type l1 ∪ l2, with lines l1, l2 (not
necessarily different) passing through the origin. Then, with
probability 1, the norms ‖ Yn . . . Y1x ‖ grow exponentially, as
n→ ∞, for all x ∈ R2\{0}, where {Yn} are iid random variables
with values in SL(2, R) and distribution µ.
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Proof of Theorem 2

Furstenberg’s theorem and Propositions 1,2 are sufficient to
prove Theorem 2.
Let’s assume that the matrices in suppµ have no common
invariant elipse (1) and no common invariant set of type l1 ∪ l2,
with lines l1, l2 (not necessarily different) passing through the
origin (2).
Due to Proposition 1 and (1), Gµ is non-compact. (3)
Due to Proposition 2, (2) and (3), there does not exist a subset L
of R2 which is a finite union of one-dimensional subspaces,
such that M(L) = L for any M ∈ Gµ.
Now, due to Furstenberg’s theorem, Theorem 2 is proved.
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Theorem 1

Theorem
Let µ be a probability measure on the set of Möbius transformations
mapping the upper half-plane H = {Im z > 0} onto itself. Assume
that the transformations in the support of µ have no common fixed
point in H and no common invariant (hyperbolic) line in H. Let
{Fn} be iid random variables with distribution µ. Then, for any
initial point Z0 ∈H, the orbit {Z}∞

0 tends to R almost surely.
That is, for arbitrarily fixed compact subset K ⊂H and for almost
all orbits {Zn}n≥1, only a finite number of points of the orbit belong
to K.
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Proof of Theorem 1 - part 1/4

By Af we will denote matrices corresponding to Möbius
transformations f ∈ suppµ in Theorem 1. We assume that
Af ∈ SL(2, R). Our first goal is to show that these matrices
satisfy all assumptions of Theorem 2:

1 no common invariant ellipse,
2 no common invariant line l passing through the origin,
3 no common invariant set l1 ∪ l2, where l1, l2(l1 6= l2) are

lines in R2 passing through the origin.

MÖBIUS TRANSFORMATIONS AND FURSTENBERG’S THEOREM 23/29



Proof of Theorem 1 - part 2/4

The existence of common invariant ellipse is excluded by
Lemma 2, since otherwise the functions f ∈ suppµ would have
common invariant point in H.
Now, if the matrices Af have a common invariant line l passing
through the origin, then we can assume that l is the x-axis
(otherwise we could consider a conjugate system). In this case

any matrix A in {Af } has a form A =

(
a b
0 a−1

)
. Then, the

corresponding Möbius transformations are linear functions,
and, consequently, have fixed point z = ∞ on H. But this
contradicts the assumption in Theorem 1.
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Proof of Theorem 1 - part 3/4

Now, let’s assume that the matrices Af have a common
invariant l1 ∪ l2(l1 6= l2). We can make additional assumption
that these lines are x- and y-axes (due to possibility of
conjugation, as before). In such case, any matrix A i {Af } has
one of following forms(

a 0
0 a−1

)
,
(

0 −b
b−1 0

)
.

The first matrix corresponds to the situation when each line li is
separately invariant under A. The second matrix corresponds
to the situation when li change places under transformation A.
In either case the corresponding Möbius transformations
(f (z) = a2z, f (z) = −b2z) have a common invariant hyperbolic
line in H - {Rez = 0, Imz > 0}. This contradicts the
assumptions of Theorem 1.
Hence, Af satisfy all the conditions of Theorem 2.
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Proof of Theorem 1 - part 4/4

Since all conditions of Theorem 2 are satisfied, we can use it.
Now we know that, with probability 1, ‖ Yn . . . Y1 ‖→ ∞, as
n→ ∞. Reminder: Yi are iid random variables in SL(2, R) and
distribution µ.
Then Lemma 1 gives that Zn(Z0) = Fn ◦ · · · ◦ F1(Z0) tends to R,
as n→ ∞, almost surely.
Therefore, Theorem 1 is proved.
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Corollary 1

Corollary

If the Möbius transformations in Theorem 1, mapping H onto H,
have no common fixed point in H, and in addition, no common
2-periodic point on R, then for any initial point Z0 ∈H, the orbit
{Zn}∞

0 tends to R almost surely.
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Corollary 2

Corollary

If the system in Theorem 1, of Möbius transformations of H onto
H, having no common fixed point in H, contains at least one

Möbius transformation az+b
cz+d , whose matrix

(
a b
c d

)
has an

eigenvalue λ = α + iβ, with αβ 6= 0, then the random orbit {Zn}∞
0

converges to R almost surely.
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The end

Thank you!
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