

Möbius transformations

and Furstenberg's theorem

Piotr Rutkowski BSc

Wednesday 8th April, 2020

MÖBIUS TRANSFORMATIONS AND FURSTENBERG'S THEOREM

Let $F = \{f_1, \ldots, f_N; p_1, \ldots, p_N\}, p_j > 0, \sum_{1}^{N} p_j = 1$ be an IFS (iterated function system) with probabilities of Möbius transformations f_i mapping the upper half-plane \mathbb{H} onto itself, and having no common invariant (hyperbolic) line in \mathbb{H} . Then, for any initial point $Z_0 \in \mathbb{H}$, the orbit $Z_n = Z_n(Z_0) = f_n \circ f_{n-1} \circ \cdots \circ f_1(Z_0), n \ge 1$, tends to $\overline{\mathbb{R}}$ almost surely, as $n \to \infty$.

Let μ be a probability measure on the set of Möbius transformations mapping the upper half-plane $\mathbb{H} = \{ \operatorname{Im} z > 0 \}$ onto itself. Assume that the transformations in the support of μ have no common fixed point in $\overline{\mathbb{H}}$ and no common invariant (hyperbolic) line in \mathbb{H} . Let $\{F_n\}$ be iid random variables with distribution μ . Then, for any initial point $Z_0 \in \mathbb{H}$, the orbit $\{Z_n\}_0^\infty$ tends to $\overline{\mathbb{R}}$ almost surely. That is, for arbitrarily fixed compact subset $K \subset \mathbb{H}$ and for almost all orbits $\{Z_n\}_{n\geq 1}$, only a finite number of points of the orbit belong to K.

Let μ be a probability measure on $SL(2, \mathbb{R})$, such that the following holds (if G_{μ} is the smallest closed subgroup of $SL(2, \mathbb{R})$ which contains the support of μ)

- (1) G_{μ} is not compact;
- (2) there does not exist a subset L of \mathbb{R}^2 which is a finite union of one-dimensional subspaces, such that M(L) = L for any M in G_{μ} .

Then, with probability 1, the norms $|| Y_n \dots Y_1 x ||$ grow exponentially as $n \to \infty$, for all $x \in \mathbb{R}^2 \setminus \{0\}$, where $\{Y_n\}$ are iid random variables with values in $SL(2, \mathbb{R})$ and distribution μ .

Let μ be a probability measure on $SL(2, \mathbb{R})$. Assume that the matrices in supp μ have no common invariant elipse, and no common invariant set of type $l_1 \cup l_2$, with lines l_1, l_2 (not necessarily different) passing through the origin. Then, with probability 1, the norms $|| Y_n \dots Y_1 x ||$ grow exponentially, as $n \to \infty$, for all $x \in \mathbb{R}^2 \setminus \{0\}$, where $\{Y_n\}$ are iid random variables with values in $SL(2, \mathbb{R})$ and distribution μ .

Lemma

Let $\{A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\}_A$ be a subset of $SL(2, \mathbb{R})$ and let $\{f_A(z) = \frac{az+b}{cz+d}\}_A$ be the associated Möbius transformations. Then, for any fixed $z \in \mathbb{H}$, $\{f_A(z)\}_A$ is an unbounded set in \mathbb{H} (in the hyperbolic sense) if and only if the norms $\{||A||\}_A$ are unbounded (in \mathbb{R} with the ordinary Euclidean metric).

Möbius transformations preserve hyperbolic distances. Hence, instead of considering general point $z \in \mathbb{H}$, we can consider the point z = i. Then

$$f_A(i) = \frac{ai+b}{ci+d} = \frac{(bd+ac)+i(ad-bc)}{c^2+d^2}$$

. Since 1 = detA = ad - bc, we get

$$f_A(i) = \frac{bd + ac}{c^2 + d^2} + i\frac{1}{c^2 + d^2}$$

Now let's assume that $\{f_A(i)\}_A$ is an unbounded set in \mathbb{H} in hyperbolic sense. This gives us three following alternatives:

(1)
$$\{c^2 + d^2\}_A$$
 is unbounded (in \mathbb{R}),

(2)
$$\left\{\frac{bd+ac}{c^2+d^2}\right\}_A$$
 is unbounded,

(3) $\{c^2 + d^2\}_A$ contains element arbitrarily close to 0.

All these alternatives together with det A = ad - bc = 1 assure us that $\{|a| + |b| + |c| + |d|\}_A = \{||A||\}_A$ is unbounded in \mathbb{R} .

Now, conversely, $\{ || A || \}_A$ is unbounded.

If, in addition, $\{|c| + |d|\}_A$ is unbounded, $\{f_A(i)\}_A$ has element arbitrarily close to real line.

If $\{|c| + |d|\}_A$ is bounded, $\{|a| + |b|\}_A$ is unbounded. In this case

$$|f_A(i)| = |\frac{ai+b}{ci+d}| = \frac{\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}$$

and $|f_A(i)|_A$ is unbounded in \mathbb{R} . In either case the set $\{f_A(i)\}_A$ is an unbounded subset of \mathbb{H} .

Lemma 1 is proved.

Lemma

In the notation of Lemma 1, the matrices $\{A\}_A$ have a common invariant ellipse if and only if the associated Möbius transformations $\{f_A\}_A$ have a common fixed point in \mathbb{H} .

Let the set of Möbius transformations $\{f_A\}_A$ have a common fixed point $w \in \mathbb{H}$. Choose $B \in SL(2, \mathbb{R})$, such that for the associated Möbius transformation f_B we have $f_B(i) = w$. Then *i* is a common fixed point of the conjugate system $\{f_B^{-1} \circ f_A \circ f_B\}_A$.

We should also note that $f_B^{-1} \circ f_A \circ f_B = f_{B^{-1}AB}$ and *i* is a fixed point of $f(z) = \frac{az+b}{cz+d}$ iff a = d and b = -c. If, in addition, $det(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = 1, \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a rotation around the origin.

This shows that $\{B^{-1}AB\}_A$ have a common invariant circle centered at the origin in \mathbb{R}^2 . Then, $\{A\}_A$ has a common invariant ellipse which is the image of the unit circle under *B*. The converse is proved in the same manner. Hence, Lemma 2 is proved.

Lemma

Let μ be a probability measure on the set of Möbius transformations mapping the upper half-plane \mathbb{H} onto itself. Assume that the transformations in the support of μ have no common fixed point in \mathbb{H} . Then for any initial fixed point $z \in \mathbb{H}$ the set $\{f(z)\}, f \in G_{\mu}$, is unbounded (in the hyperbolic sense), where G_{μ} denotes the smallest subgroup of Möbius transformations containing the support of μ .

Proof: too long.

Proposition

Let μ be a probability measure on $SL(2, \mathbb{R})$ and let G_{μ} be the smallest closed subgroup of $SL(2, \mathbb{R})$ which contains the support of μ . Then G_{μ} is compact iff all the matrices in G_{μ} (or equivalently in supp μ) have a common invariant ellipse.

In one direction the assertion is evident: if all matrices in G_{μ} have a common invariant ellipse, then the group G_{μ} is compact. Now assume that the matrices in G_{μ} have no common invariant ellipse. Due to Lemma 2, this is equivalent to the fact that the associated Möbius transformations f_A , where $A \in G_{\mu}$, have no common fixed point in \mathbb{H} .

Next we use Lemma 3, which says that in this case the set $\{f_A(z)\}_A$ is unbounded (in hyperbolic sense) in \mathbb{H} , for any fixed $z \in \mathbb{H}$. Finally, Lemma 1 shows that $\{||A||\}_A$ is unbounded and, hence, that G_{μ} is non-compact, which finishes the proof. Proposition 1 is proved.

Proposition

Assume that the group G_{μ} in Proposition 1 is non-compact and that there exists a subset $L = \bigcup l_i$ of \mathbb{R}^2 of a finite union of n different one-dimensional subspaces l_i , i = 1, ..., n, such that A(L) = L for all $A \in G_{\mu}$. Then $n \leq 2$.

Let Δ be a unit disc in \mathbb{R}^2 . The lines l_i , where i = 1, ..., n, intersect at the origin and divide Δ into 2n parts. Let's denote them by D_i , where i = 1, ..., i = 2n. Let $A \in G_{\mu}$. $A(\Delta)$ is an ellipse centered at the origin. We also know that A(L) = L. The set L divides $A(\Delta)$ into 2n parts, which we'll denote as S_i , for i = 1, ..., 2n. Now, Proposition 2 will be proved by showing that if n > 2, at least one S_i will have an arbitrarily small area, provided that

the norm of A is sufficiently large.

First we assume that n = 3 ($L = l_1 \cup l_2 \cup l_3$). If ||A|| is large, $A(\Delta)$ is a long and thin origin-centered ellipse with unit area. Let's denote by P_1 , P_2 points of the ellipse having maximal distance from each other, and denote by l a straight line passing through these points. Then l passes through the origin as well. Let l_1 form the minimal angle with l among all l_i . Then the parts S_i of $A(\Delta)$ lying between the lines l_2 and l_3 and not containing points P_i will have arbitrarily small area if $A(\Delta)$ is sufficiently long and thin.

The proof proceeds in similar fashion for n > 3. Proposition 2 is proved.

Let μ be a probability measure on $SL(2, \mathbb{R})$. Assume that the matrices in supp μ have no common invariant elipse, and no common invariant set of type $l_1 \cup l_2$, with lines l_1, l_2 (not necessarily different) passing through the origin. Then, with probability 1, the norms $|| Y_n \dots Y_1 x ||$ grow exponentially, as $n \to \infty$, for all $x \in \mathbb{R}^2 \setminus \{0\}$, where $\{Y_n\}$ are iid random variables with values in $SL(2, \mathbb{R})$ and distribution μ .

Furstenberg's theorem and Propositions 1,2 are sufficient to prove Theorem 2.

Let's assume that the matrices in supp μ have no common invariant elipse (1) and no common invariant set of type $l_1 \cup l_2$, with lines l_1, l_2 (not necessarily different) passing through the origin (2).

Due to Proposition 1 and (1), G_{μ} is non-compact. (3)

Due to Proposition 2, (2) and (3), there does not exist a subset *L* of \mathbb{R}^2 which is a finite union of one-dimensional subspaces, such that M(L) = L for any $M \in G_{\mu}$.

Now, due to Furstenberg's theorem, Theorem 2 is proved.

Let μ be a probability measure on the set of Möbius transformations mapping the upper half-plane $\mathbb{H} = \{ \operatorname{Im} z > 0 \}$ onto itself. Assume that the transformations in the support of μ have no common fixed point in $\overline{\mathbb{H}}$ and no common invariant (hyperbolic) line in \mathbb{H} . Let $\{F_n\}$ be iid random variables with distribution μ . Then, for any initial point $Z_0 \in \mathbb{H}$, the orbit $\{Z\}_0^{\infty}$ tends to $\overline{\mathbb{R}}$ almost surely. That is, for arbitrarily fixed compact subset $K \subset \mathbb{H}$ and for almost all orbits $\{Z_n\}_{n\geq 1}$, only a finite number of points of the orbit belong to K.

By A_f we will denote matrices corresponding to Möbius transformations $f \in supp\mu$ in Theorem 1. We assume that $A_f \in SL(2, \mathbb{R})$. Our first goal is to show that these matrices satisfy all assumptions of Theorem 2:

- 1 no common invariant ellipse,
- 2 no common invariant line *l* passing through the origin,
- ③ no common invariant set $l_1 \cup l_2$, where $l_1, l_2(l_1 \neq l_2)$ are lines in \mathbb{R}^2 passing through the origin.

The existence of common invariant ellipse is excluded by Lemma 2, since otherwise the functions $f \in supp\mu$ would have common invariant point in \mathbb{H} .

Now, if the matrices A_f have a common invariant line l passing through the origin, then we can assume that l is the *x*-axis (otherwise we could consider a conjugate system). In this case

any matrix *A* in {*A*_{*f*}} has a form $A = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$. Then, the

corresponding Möbius transformations are linear functions, and, consequently, have fixed point $z = \infty$ on $\overline{\mathbb{H}}$. But this contradicts the assumption in Theorem 1.

Proof of Theorem 1 - part 3/4

Now, let's assume that the matrices A_f have a common invariant $l_1 \cup l_2(l_1 \neq l_2)$. We can make additional assumption that these lines are *x*- and *y*-axes (due to possibility of conjugation, as before). In such case, any matrix A i $\{A_f\}$ has one of following forms

$$\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, \begin{pmatrix} 0 & -b \\ b^{-1} & 0 \end{pmatrix}.$$

The first matrix corresponds to the situation when each line l_i is separately invariant under A. The second matrix corresponds to the situation when l_i change places under transformation A. In either case the corresponding Möbius transformations $(f(z) = a^2 z, f(z) = -b^2 z)$ have a common invariant hyperbolic line in $\mathbb{H} - \{Rez = 0, Imz > 0\}$. This contradicts the assumptions of Theorem 1. Hence, A_f satisfy all the conditions of Theorem 2.

Since all conditions of Theorem 2 are satisfied, we can use it. Now we know that, with probability 1, $|| Y_n \dots Y_1 || \to \infty$, as $n \to \infty$. Reminder: Y_i are iid random variables in $SL(2, \mathbb{R})$ and distribution μ . Then Lemma 1 gives that $Z_n(Z_0) = F_n \circ \cdots \circ F_1(Z_0)$ tends to $\overline{\mathbb{R}}$, as $n \to \infty$, almost surely. Therefore, Theorem 1 is proved.

Corollary 1

Corollary

If the Möbius transformations in Theorem 1, mapping \mathbb{H} onto \mathbb{H} , have no common fixed point in \mathbb{H} , and in addition, no common 2-periodic point on $\overline{\mathbb{R}}$, then for any initial point $Z_0 \in \mathbb{H}$, the orbit $\{Z_n\}_0^\infty$ tends to $\overline{\mathbb{R}}$ almost surely.

Corollary

If the system in Theorem 1, of Möbius transformations of \mathbb{H} onto \mathbb{H} , having no common fixed point in \mathbb{H} , contains at least one Möbius transformation $\frac{az+b}{cz+d}$, whose matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ has an eigenvalue $\lambda = \alpha + i\beta$, with $\alpha\beta \neq 0$, then the random orbit $\{Z_n\}_0^\infty$ converges to \mathbb{R} almost surely.

Thank you!

MÖBIUS TRANSFORMATIONS AND FURSTENBERG'S THEOREM