Continuity of Hausdorff measure

by Rafal Tryniecki

April 2020

- Continuity of the Hausdorff Measure of Continued Fractions and Countable Alphabet Iterated Function Systems by M. Urbański and A. Zdunik

Setup

General setup

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ddots}}}
$$

- We can think of an x as $x=(a 1, a 2, \ldots), a_{i} \in \mathbb{N}$ - its continued fraction representation.
- We will be interested in $x \in[0,1]$ such that $a_{i} \leq n$ for each i, where $n \in \mathbb{N}$ fixed.
- Set of such \times we will denote as J_{n}.

Setup

Gauss map

$$
\begin{gathered}
G(x)=\frac{1}{x}-n \text { if } x \in\left(\frac{1}{n+1}, \frac{1}{n}\right] \\
g_{n}(x)=\frac{1}{n+x}
\end{gathered}
$$

- The collection $\mathcal{G}:=\left\{g_{n}\right\}_{n=1}^{\infty}$ forms conformal IFS and is called Gauss system.
- Let $g_{\omega}=g_{\omega_{1}} \circ g_{\omega_{2}} \circ \cdots \circ g_{\omega_{n}}$ for every $\omega \in \bigcup_{n \geq 1} \mathbb{N}^{n}$.

Setup

Gauss map

$$
\left.G^{|\omega|} \circ g_{\omega}\right|_{[0,1)}=\left.I d\right|_{[0,1)}
$$

- Our J_{n} can be described as $J_{n}=\bigcap_{k=1}^{\infty} \bigcup_{\omega \in\{1, \ldots, n\}^{k}} g_{\omega}([0,1))$
- Let us denote by h_{n} Hausdorff measure of J_{n}

Hausdorff dimension and measure

t-dimensional (outer) Hausdorff measure

$$
H_{t}(A):=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{n=1}^{\infty} \operatorname{diam}^{t}\left(U_{n}\right): \bigcup_{n=1}^{\infty} U_{n} \supset A, \operatorname{diam}\left(U_{n}\right) \leq \delta, \forall n \geq 1\right\}
$$

Hausdorff dimension

$$
h(A)=\inf \left\{t>0: H_{t}(A)=t\right\}
$$

Theorem [D. Hensley]

$$
\lim _{n \rightarrow \infty} n\left(1-h_{n}\right)=\frac{6}{\pi^{2}}
$$

Theorem [M. Urbański, A. Zdunik]

$$
\lim _{n \rightarrow \infty} H_{h_{n}}\left(J_{n}\right)=1=H_{1}(J)
$$

where J is the set of all irrational numbers in the interval $[0,1]$

Hausdorff density theorems

Let X be a metric space, with $h(X)=h$, such that $H_{h}(X) \leq+\infty$. Then for H_{h}-a.e. $x \in X$

$$
\lim _{r \rightarrow \infty} \sup \left\{\frac{H_{h}(F)}{\operatorname{diam}^{h}(F)}: x \in F, \bar{F}=F, \operatorname{diam}(F) \leq r\right\}
$$

Theorem

Let X be a metric space if $0<H_{h}(X)<+\infty$, then for H_{h}^{1}-a.e. $x \in X$

$$
H_{h}(X)=\lim _{r \rightarrow 0} \inf \left\{\frac{\operatorname{diam}^{h}(F)}{H_{h}^{1}(F)}: x \in F, \bar{F}=F, \operatorname{diam}(F) \leq r\right\}
$$

where H_{h}^{1} is normed h-dimensional Hausdorff measure.

Corollary

If X is a subset of an interval $\Delta \subset \mathbb{R}$ and $0<H_{h}(X)<+\infty$, then for H_{h}^{1}-a.e. $x \in X$ we have that

$$
\begin{aligned}
H_{h}(X) & =\lim _{r \rightarrow 0} \inf \left\{\frac{\operatorname{diam}^{h}(F)}{H_{h}^{1}(F)}: x \in F, F \subset \mathbb{R}\right. \\
& \text {-closed interval, } \operatorname{diam}(F) \leq r\}
\end{aligned}
$$

where H_{h}^{1} is normed h-dimensional Hausdorff measure.

Main lemma of the proof

Lemma 3.9

Let m_{n} be normalised h_{n}-dimensional measure: $m_{n}:=H_{h_{n}}^{1}$.

$$
\lim _{n \rightarrow \infty, r \rightarrow 0} \inf \left\{\frac{r^{h_{n}}}{m_{n}([0,1])}\right\} \geq 1
$$

- Proof: Fix $N \geq 2$ so large that $h_{N} \geq 3 / 4$ and let $n \geq N$. For every $r \in(0,1 / 2)$ let $s_{r} \geq 1$ be unique integer s.t.

$$
\frac{1}{s_{r}+1}<r \leq \frac{1}{s_{r}}
$$

$$
\begin{aligned}
& m_{n}([0, r]) \leq \sum_{j=s_{r}}^{\infty} m_{n}\left(g_{j}([0,1])\right) \leq \sum_{j=s_{r}}^{\infty}\left\|g_{j}^{\prime}\right\|_{\infty}^{h_{n}} m_{n}([0,1]) \\
& \leq \sum_{j=s_{r}}^{\infty} j^{-2 h_{n}} \leq \int_{s_{r}-1}^{\infty} x^{-2 h_{n}} d x=\left(2 h_{n}-1\right)^{-1}\left(s_{r}-1\right)^{1-2 h_{n}}
\end{aligned}
$$

Therefore:

$$
\frac{m_{n}([0,1])}{r_{n}^{h}} \leq\left(2 h_{n}-1\right)^{-1}\left(s_{r}-1\right)^{1-2 h_{n}}\left(s_{r}+1\right)^{h_{n}}
$$

$$
\begin{gathered}
=\left(2 h_{n}-1\right)^{-1}\left(s_{r}-1\right)^{1-h_{n}}\left(\frac{s_{r}+1}{s_{r}-1}\right)^{h_{n}}=\left(2 h_{n}-1\right)^{-1}\left(s_{r}-1\right)^{1-h_{n}}\left(1+\frac{2}{s_{r}-1}\right)^{h_{n}} \\
\leq\left(2 h_{n}-1\right)^{-1}\left(s_{r}-1\right)^{1-h_{n}}(1+4 r)^{h_{n}}
\end{gathered}
$$

If $0<r \leq \frac{1}{n+1}$ then $m_{n}([0, r])=0$, hence we assume that $r>\frac{1}{n+1}$.
Then $s_{r}<n+1$ and for n large enough

$$
\begin{gathered}
\frac{m_{n}([0, r])}{r^{h_{n}}} \leq\left(2 h_{n}-1\right)^{-1} n^{1-h_{n}}(1+4 r) \\
\leq\left(2 h_{n}-1\right)^{-1}(1+4 r) n^{\frac{7}{\pi^{2} n}} \leq\left(2 h_{n}-1\right)^{-1}(1+4 r)\left(n^{\frac{1}{n}}\right)^{\frac{7}{\pi^{2}}}
\end{gathered}
$$

which implies

$$
\lim _{n \rightarrow \infty, r \rightarrow 0} \sup \left\{\frac{r^{h_{n}}}{m_{n}([0,1])}\right\} \leq 1
$$

Similarities

Let us consider case where $F_{k}:\left[b_{k}, b_{k-1}\right] \rightarrow[0,1]$ is a linear function such that $F_{k}\left(b_{k}\right)=1$ and $F_{k}\left(b_{k-1}\right)=1$, where $\left(b_{k}\right)_{k=0}^{\infty} \subset(0,1]^{\mathbb{N}}$ is a sequence such that $b_{0}=1, b_{n} \searrow 0$ as n goes to infinity.

- We define $f_{k}:=F_{k}^{-1}$, so $f_{k}:[0,1] \rightarrow\left[b_{k}, b_{k-1}\right]$ and $f_{k}(0)=b_{k-1}$ and $f_{k}(1)=b_{k}$.
- We analogously define J_{n} as Julia set created by iterating first n functions f_{n}.

Similarities

Because this IFS fulfills OSC, the h_{n} - Hausdorff dimension is the solution to following implicit equation:

$$
\sum_{k=1}^{n}\left(b_{k}-b_{k-1}\right)^{h_{n}}=1
$$

It is easy to see that $h_{n} \rightarrow 1$ as n goes to infinity.
We are interested if

$$
H_{h_{n}}\left(J_{n}\right) \rightarrow 1=1=H_{1}(J)
$$

for a given sequence $\left(b_{k}\right)_{k=0}^{\infty}$

Similarity dimension estimate

Let $b_{k}=\frac{1}{n^{\alpha}}, \alpha>0$. Then there exists $0<h_{n}^{*}<1, h_{n}^{*} \rightarrow \infty$, as n goes to infinity and

$$
1-h_{n} \leq 1-h_{n}^{*}
$$

Moreover

$$
\lim _{n \rightarrow \infty} n^{\alpha}\left(1-h_{n}^{*}\right)=\frac{\alpha}{\alpha+1}
$$

Similarity measure continuity

$$
\lim _{n \rightarrow \infty} H_{h_{n}}\left(J_{n}\right)=1
$$

for $b_{k}=\frac{1}{k^{\alpha}}, \alpha>0$.

Main lemma of the proof

Main lemma

$$
\liminf _{\substack{n \rightarrow \infty \\ r \rightarrow 0}}\left\{\frac{r^{h_{n}}}{m_{n}([0, r])}\right\} \geq 1
$$

Proof. Fix $N \geq 2$, s.t. $h_{N}>\frac{1}{\alpha+1}$ and $n \geq N$. For every $r \in(0,1 / 2)$ let $k \in \mathbb{N}$ be such that

$$
b_{k+1}<r \leq b_{k}
$$

Then:

$$
\begin{gathered}
m_{n}([0, r]) \leq \sum_{j=k}^{\infty} m_{n}\left(g_{j}([0,1])\right) \\
\leq \sum_{j=k}^{\infty}\left\|g_{j}^{\prime}\right\|_{\infty}^{h_{n}} m_{n}([0,1])
\end{gathered}
$$

$$
\leq \sum_{j=k}^{\infty}\left(b_{j}-b_{j+1}\right)^{h_{n}}=\sum_{j=k}^{\infty}\left(\frac{1}{j^{\alpha}}-\frac{1}{(j+1)^{\alpha}}\right)^{h_{n}} \leq \sum_{j=k}^{\infty}\left(\frac{\alpha^{h_{n}}}{\left.j^{(\alpha+1}\right)^{h_{n}}}\right)
$$

$$
\leq \int_{k-1}^{\infty} \alpha^{h_{n}} \frac{1}{x^{(\alpha+1) h_{N}}} d x \leq \frac{\alpha^{h_{n}}}{(\alpha+1) h_{n}-1}(k-1)^{1-(\alpha+1) h_{n}}
$$

Thus:

$$
\begin{gathered}
\frac{m_{n}([0, r])}{r^{h_{n}}} \leq \frac{\frac{\alpha^{h_{n}}}{(\alpha+1) h_{n}-1}(k-1)^{1-(\alpha+1) h_{n}}}{\left(b_{k+1}\right)^{h_{n}}} \leq \\
\frac{\alpha^{h_{n}}}{(\alpha+1) h_{n}-1}\left(\frac{b_{k-1}}{b_{k+1}}\right)^{h_{n}}(k-1)^{1-h_{n}} \leq
\end{gathered}
$$

$$
\begin{aligned}
& \quad \leq \frac{\alpha^{h_{n}}}{(\alpha+1) h_{n}-1}\left(\frac{k+1}{k-1}\right)^{\alpha h_{n}}(k-1)^{1-h_{n}} \\
& =\frac{\alpha^{h_{n}}}{(\alpha+1) h_{n}-1}\left(1+\frac{2}{k-1}\right)^{\alpha h_{n}}(k-1)^{1-h_{n}} \\
& \leq \frac{\alpha^{h_{n}}}{(\alpha+1) h_{n}-1}\left(1+\frac{2}{k-1}\right)^{\alpha h_{n}}(k-1)^{1-h_{n}} \\
& \frac{m_{n}([0, r])}{r_{n}^{h}} \leq \frac{\alpha^{h_{n}}}{(\alpha+1) h_{n}-1}\left(1+\frac{2}{k-1}\right)^{\alpha h_{n}} k^{1-h_{n}} \\
& \leq \frac{\alpha^{h_{n}}}{(\alpha+1) h_{n}-1}\left(1+\frac{2}{k-1}\right)^{\alpha h_{n}} n^{1-h_{n}} \leq(*)
\end{aligned}
$$

Now, using estimate for $1-h_{n}$, we get:

$$
\begin{aligned}
& (*) \leq \frac{\alpha^{h_{n}}}{(\alpha+1) h_{n}-1}\left(1+\frac{2}{k-1}\right)^{\alpha h_{n}} n^{1-h_{n}^{*}} \\
& \leq \frac{\alpha^{h_{n}}}{(\alpha+1) h_{n}-1}\left(1+\frac{2}{k-1}\right)^{\alpha h_{n}}\left(n^{\alpha}\right)^{\frac{2 \alpha}{(\alpha+1) n^{\alpha}}} \\
& \leq \frac{\alpha^{h_{n}}}{(\alpha+1) h_{n}-1}\left(1+\frac{2}{k-1}\right)^{\alpha h_{n}}\left(\left(n^{\alpha}\right)^{\frac{1}{n^{\alpha}}}\right)^{\frac{2 \alpha}{\alpha+1}}
\end{aligned}
$$

for sufficiently large n we have $n^{\alpha}\left(1-h_{n}^{*}\right)<\frac{2 \alpha}{\alpha+1}$, which ends the proof.

Following problems

- $b_{k}=e^{-k}$
- $b_{k}=\frac{1}{\ln (k+e)}$

The End
Thank you for your attention!

