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RIEMANN'S MEMOIR

In his epoch-making memoir of 1860 (his only paper on the theory
of numbers) Riemann showed that the key to the deeper investigation
of the distribution of the primes lies in the study of {(s) as a function
of the complex variable s. More than 30 years were to elapse, how-
ever, before any of Riemann’s conjectures were proved, or any
specific results about primes were established on the lines which
he had indicated.

Riemann proved two main results:

(a) The function {(s) can be continued analytically over the whole
plane and is then meromorphic, its only pole being a simple pole
at s = 1 with residue 1. In other words, {(s) — (s — 1)”! is an
integral function.

(b) {(s) satisfies the functional equation

n~ET(Es){(s) = n ¥ I [4(1 — )}t — s),

which can be expressed by saying that the function on the left is an
even function of s — 4. The functional equation allows the properties
of {(s) for ¢ < 0 to be inferred from its properties for ¢ > 1. In
particular, the only zeros of {(s) for ¢ < 0 are at the poles of I'(1s),
that is, at the points s = —2, —4, —6..... These are called the trivial
zeros. The remainder of the plane, where 0 < 6 < 1, is called the
critical strip.

Riemann further made a number of remarkable conjectures.

(a’) {(s) has infinitely many zeros in the critical strip. These will
necessarily be placed symmetrically with respect to the real axis,
and also with respect to the central line 6 = } (the latter because of
the functional equation).

(b’) The number N(T) of zeros of {(s) in the critical strip with
0 <t < T satisfies the asymptotic relation

T T T
log— — — + O(log T)).

() N(T) = 2n 2 2n

59
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This was proved by von Mangoldet, first in 1895 with a slightly less
good error term and then fully in 1905. We shall come to the proof
in §15.

(c') The integral function &(s) defined by

&(s) = (s — Dn~ ¥T(3s)(s)

(integral because it has no pole for ¢ > § and is an even function of
s — 1) has the product representation

1 — s)esm.

. ,A+Bs
) &s) = e ™[] ,

p

where A and B are constants and p runs through the zeros of {(s)
in the critical strip. This was proved by Hadamard in 1893, as also
was (a’) above. It played an important part in the proofs of the prime
number theorem by Hadamard and de la Vallée Poussin. We shall
come to the proof in § 11 and 12.

(d’) There is an explicit formula for n(x) — li x, valid for x > 1,
the most important part of which consists of a sum over the complex
zeros p of {(s). As this is somewhat complicated to state, we give
instead the closely related but somewhat simpler formula for
Y(x) — x, where

3) Yx) = Y A().
Itis:

e X O -2
4) Y(x) — x = >,;p 20 Llog(l — x~2).

This was proved by von Mangoldt in 1895 (as was Riemann’s original
formula), and we give the proof in §17. In interpreting (4) two con-
ventions have to be observed: first, in the sum over p the terms p and
p are to be taken together, and second, if x is an integer, the last term
A(x) in the sum (3) defining ¥(x) is to be replaced by FA(x).

(¢') The famous Riemann Hypothesis, still undecided: that the
zeros of {(s) in the critical strip all lie on the central line ¢ = 3. It was
proved by Hardy in 1914 that infinitely many of the zeros lie on the
line, and by A. Selberg in 1942 that a positive proportion at least of
all the zeros lie on the line.

There is very little indication of how Riemann was led to some of
these conjectures. In 1932 Siegel' published an asymptotic expan-

! Quellen und Studien zur Geschichte der Mathematik. 2, 45-80 (1932).
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sion for {(s), valid in the critical strip, which had its origin in notes
of Riemann preserved in the Géttingen University Library. From
Siegel’s description of the notes, it is plain that Riemann had more
knowledge about {(s) than is apparent from his published memoir ;
but there is no reason to think that he had proofs of any of his
conjectures.

In the present section we shall prove what Riemann proved, that
is (in effect) the functional equation, and we shall follow one of his
two methods. Many other proofs have since been given,? but this
one is still the most elegant.

Riemann started from the classical definition of the I'" function:

IGs) = [ e 't 'dr
(2s) J;) e >
valid for ¢ > 0. Putting t = n?nx, we get
n”¥IEsn s = fw x¥sTlemmimx gy
0
Hence, foro > 1,
BT Es)(s) =f xtso1 (Z e mnx ) dx,
Y 1
the inversion of order being justified by the convergence of
o [© to—-1,-n2nx
;fo x e dx.
Writing

—n2nx

wlx)=) e ,

~[18

we have
1~ BTs)(s) = j: x5 oo(x) dx
= f:’ X 1o(x) dx + flw x5 1(1/x) dx.
Plainly

2w(x) = 6(x) — 1,

2 See Titchmarsh, Chap. 2.
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where
(5 0(x) = _Z e,

This function satisfies the simple functional equation
6) O(x~ ') = x*0(x) for x > 0,

as we shall prove below; this equation is a special case of those
satisfied by the 3 functions of Jacobi. It follows that

o) = —4 + bt + xtolx)

Hence

f x5 lo(x 1) dx =J®““‘[ ~3+ x4 xt o) d
1 1

1 1 *

=--+ +j x ™ ¥ H(x) dx.
s s—1 .

We have therefore proved that

a0

'J (41 4 x4 () dx.
1

—4s7(1 —

M 7 TEKO) =

This holds for ¢ > 1. But the integral on the right converges

absolutely for any s, and converges uniformly with respect to s in any
bounded part of the plane, since

w(x) = O(e™™)

as x —» + oo. Hence the integral represents an everywhere regular
function of s, and the above formula gives the analytic continuation
of {(s) over the whole plane. It also gives the functional equation,
since the right side is unchanged when s is replaced by 1 — s.

We note that the function

&(s) = 3s(s — Dn+Tzs)ls)

is regular everywhere. Since 3sI'(3s) has no zeros, the only possible
pole of {(s) is at s = 1, and we have already seen (p. 32) that this is
in fact a simple pole with residue 1.

Since I'(3s) ~ (4s)~ ! as s — 0, we deduce from (7) that {(0) = —3.
It is easily verified that

ox)=e ™ +e 4 L™ 4 < ix7t forx> 1,
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so if 0 < s < 1 the integral in (7) is less than {s(1 — s)} ~'. Hence
{(s) < Ofor 0 < s < 1. [The same conclusion may be drawn, more
simply, from (7) of §4.]

It remains to prove the functional equation (6) of the @ function.
We shall prove this in the more general form

©
(8) Z e—(n+a)21r/x — X% Z e—nzux+2nim,

- o0 = o0

which reduces to (6) when a = 0, since we shall need this in the next
section. It is supposed in (8) that x > 0 and that « is any real number
(though actually the equation holds for complex x and a, provided
Rx > 0, with the value of x~* which has argument between —in
and in).

By Poisson’s summation formula (§2),

N =] N
Z' e—(n+a)2n/x - Z f e—(l+a)2u/x+ 2mivt dt.
n=-N v=—wn" "N

Here we can replace N by oo, since

00 00
- 1 .
e Vmx cos dmye dt = ——— | sin 2nve de” O]
2av ),

N

by integration by parts, and therefore

—(N +a)?
< Ce~Wr+arms,

> r e+ X o0 dmvt dt

vEOJ N

where C is a constant. Since this disappears as N — oo, the limit
operation is justified. Thus

o e ] 0
Y emtammx —  § J' o=t +a)ynlx+ 2nive g

- v=—o"" ®

Y
x Z e-Zru'vaJ.w e—nxuz+2n:ivxudu.
)

V= — o0

The quadratic in the exponent is
—ax(u — iv)? — axv2.

Now

P pmxu+p)? P g -
j e~ ™ du=f e ™ dp = Ax ™%,
— 00 bl o)
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where A is a positive constant ; this holds for any  (real or complex)
and simply expresses a movement in the path of integration from the
real axis to another line parallel to it. Hence

® ®
Z e~ ntaalx — 4.4 Z o~ ™Xv2— 2miva

- o0 V= — o0

If we now take « = 0 and apply this formula twice, we get 42 = 1,
whence A = 1. This proves (8), on replacing v by — v on the right.



