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and Sg% H3(Y} —» H%(Y ) is trivial, X and Y are not of the same homotopy type.

Further applications of the Steenrod squares will be given in the next
chapter and in Chap. 8.

It is obvious that cohomology operations of the same type can be added
and that the sum is again a cohomology operation of the same type. Given
cohiomology operations § of type (p,g; G,() and & of type (q.r; G',C"), their
composite ¢'¢ (of natural transformations) is a cohomology operation of type
(pr; G,G”). In this way the Steenrod squares can be added and nultiplied,
and they generate an algebra of cohomology operations called the modudo 9
Steenrod algehra.

In this algebra the following Adem relations! hold:

Ockoligzy T2

where [i/2] denotes as usual the largest integer <i/2 and the hinomial coeffi-
cient Q:{é;*) is reduced modulo 2. Using these relations, it is easily shown that
the algebra of cohomology operations generated by $q%, where i is a power of 2,
contains all the Steenrod squares. This implies that the only spheres that can
be H spaces have dimension 27 - 1 for some n. By using deeper properties
of the algebra of cohomology operations Adams? has shown that the only
spheres that can be H spaces are the spheres S9, $%, $3, and §7. Each of these
is, in fact, an H space, with multiplication defined to be the muttiplication of
the reals, complex numbers, quaternions, or Cayley numbers, respectively,
of norm 1.

EXERCEISES

A DISSECTIONS

Let C be a graded module over R. A filtration (increasing) of C is a sequence {F,C) of
graded submniodules of C such that F,C C F,1C for all s. 1t is said to be bounded below
if for any ¢t there is s{t) such that FunC, = 0, and it is convergent above if U F,C = C.
B I {F,C} is a filtration of a chain coraplex C by subcomplexes, there is an increasing
filtration of H, {C) defined by F,H, (C) = im [H, (F() — H, (C)). I the original filtration
on C is bounded below or convergent above, prove that the same is true of the induced
filtration on Hg {C}.

An increasing filtration {F,C} of a chain complex C by subcomplexes is called a dissec-
How if it is bounded below, convergent above, and if

HF 1 CFC) = 0 gFs+1

1 See J. Adem, The iteration of the Steenrod squares in algebraic topology, Proceedings of the
National Academy of Sciences, USA, vel. 38, pp. 720726, 1952, or H. Cartan, Sur Viteration
des operations de Steenrod, Commentarii Mothematici Helveticl, vel. 29, pp. 40-58, 1953,
z5ee ]. F. Adams, On the non-existence of elements of Hopf invariant one, Annals of Mathe-
rutics, vol. 72, pp. 20104, 1960,
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Given a dissection {F,C} of a chain complex C, the sequence
+ = HyyslFur1CELC) B> HYF,CFy 1C) 4> Hy1(Fy1CFy.2C) — - -

is a chain complex C, called the chain complex associated to the dissection.

2 1f Cis the chain complex associated to a dissection of C, prove that H, (C} = H,(C).
3 Let {F.C} be a dissection of a free chain complex C by free subcomplexes such that
FeaC/EC s free for all 5. ¥f T is the chain complex associated to the dissection, prove
that € and C have isomorphic homology and cohomology for all coefficient modules.
[Hint: The freeness hypotheses ensure that the universal-coeflicient theorems hold for
both homelogy and cohomology. Then {F.C ® C} is a dissection of C & G whose asso-
ciated chain complex is isomorphic to € & .. Dual considerations apply to {Hom (F.C,3)}
and Hom (C,3).]

A block dissection of a chain complex C is a collection of subcomplexes {E¢}, called
Dlocks, where g varies over the set of integers and for each ¢, j varies over a set J,, such
that if F5C is the subcomplex of C generated by {Eg},. aud if £ = Eg 1 F,.1C, then

Ef 0 By C F,_ € ik
Fa =10 ¢ sufficiently small
UFLC=C

_ 0 i
4 H {Ef} is a block dissection of a chain complex C, prove that the corresponding
collection {F.C} is a dissection of C whose associated chain complex € is Free with

gencrators for Cy in one-to-oue correspondence with the set J,,
A Dlock dissection of a simplicial complex K is a collection of subcomplexes {Kg},
where g varies over the set of integers and for each ¢, j varies over some indexing set J,
such that if FK = Uj, K and K¢ = F,_K 1 Kp, then
Kf O K CF K 54k
Kg=0 g sufficiently small
UK =K
0 iq
Z = q
3 I {K;9) is a block dissection of K, prove that {C(K#)} is a Block dissection of the
chain complex ({K) by free subcomplexes. If C is the chain complex associated to the
dissection, prove that C and C(K) have isomorphic homology and cohomology with any
coctficient group.

H{Ks Ko = {

B aomMoLoGY MANIFOLDS
A homology n-manifold is a locally compact Hausdorff space X such that for all x ¢ X,
HAX, X — %) = O for g 5% n and either Hy(X, X — ) = O or (X, X -~ 1) = Z. Further-
more, if the boundary X of X is defined to he the subset

X={x € X|HiX, X —2) =0}
then we also assume that X — Xisa nonempty connected set. If X = 2, X is said to be
without boundary.
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I H X is a homology nemanifold and Y is a homology m-manifold, prove that X X ¥ js
a homology (n + m)-manifold whose boundary equals X x Y U X x Y.
2 Prove that if a polybedron is 2 homology n-manifold, its boundary is a subpolyhedron,
3 f K is a simplicial complex triangulating a homology re-manifold X, prove that K i
an n-dimensional psendomanifold and K triangulates X. (A palybedral homology r-mani.
fold is said to be orientable or nonorientable, according to whether any trisngulation of
it is orientable or nonorientable as a psendonanifold.)
4 Let (KK} be a simplicial pair triangulating a polyhedral homology n-manifold (X5
and let L be the subcomplex of the barycentric subdivision K consisting of all simplexes
disjoint from K. If s7 is a ¢-simplex of K — K, let En—¢{sa) be the subcomplex of L gery.
erated by the star of the barycenter b(s4). Prove that {E»~4(s%)} k. is a block dissec-
tion of L and that if € is the chain complex associated to this block dissection, then ¢
has homology and cohomology isomorphic to that of X - X. (Hint: let st 80 = s¢ ® B(sm,
where B(s?) is a subcomplex of K. Then Fr~u(s9) = b(s%) # [B{s9)] and Er~4(st) = [B(s9)}.
Also note that |L] is a strong defarmation retract of |K| —~ {K{)
5% Lefschetz duality theorem. Let (KK} be a simplicial puir triangulating a compact
homology n-tanifold (X,X) and assume that z € H(K,K) is an orentation of K. For each
g-simplex s¢ of K — K et 2(s7) € H(K, K — st s9) be the image of z, and assume an
otientation 67 of s¢ chosen once wnd for all. Then 2(s%) = o¢ * Z{a%), where Zov) ¢
Hy..or(B(59)). Define 2'(0%) € Hy. JE#9(s7),E2~4(s7) to correspond to (0% under the
isornorphisms
Hy_ o a(B(s9) = Hq 1 (B 9(59)) 7= Hy,.. o(Er-o{s9), Ena(sa))
Let ¢z Hom (C{K.K), Gy — Ci—y & G be the homomorphism defined by
Q) = § 20 ® ulod)  u € Vom (CLKK), G)
Prove that ¢ is an isomorphism and that it commutes up to sign with the respective co-
boundary and boundary operators. Deduce isomorphisms
H{X L D= H, (X=X ad  HAGCO=HoofX - X Q)
€ PROPERTINS OF THE TORSION PRODUCT AND EXT
In this group of exercises all modules will be over a principal ideal domain K.
B Prove that the torsion product is associative.
2 ¥ A, B, and C are modules, prove that
ARBxCHABEC
is symmetric in A, B, and C.
3 Given a module A and a short exact sequence of modules
0->B —>B— B 0
prove there is an exact sequence
0 = Hom (A.B) — Hom (A.B) —> Hom (A.B"} —
Ext (A,B)) — Ext (A,B) —» Ext(A,B") — 0
4 Given a short exact sequence of modules
0->2A>5A5A">0

and given: a module B, prove there is an exact sequence
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0 — Hom (A"”,B) — Hom (AB) —» Hom (A" B)-—
Ext (A”,B) -» Ext (AB) —» Ext(A’B) — 0

flom {C,C*) = (Hom¢ (C,C*)}, where Hom? (C,C®) = X 442 Hom (Ci,0) [thus an
element of Home (C,C¥) is an indexed family {gux C; — Cvi}]. Similarly, there is
a graded module Ext (C,C*) = {Extv (C,C*)}, where Ext¢ (C,C¥) = Xjyjmq Ext (Ci,C).
5 M Cis a chain complex and C* is a cochain complex, prove that Hom (C,C¥) is a
cochain complex, with
(3¢)iy = @i e & A (= 1)8F1 o g5y
and that Ext {C,C*} is a cochain complex with
(Bhs = Ext (@ul)(uoag) + (=1 Ext (L8 )i5-1) ¥ = {duy) € Exte (CC*)
G X Cis a chain complex and C¥ is a cochain complex such that Ext (C,C*%) is
acyclic, prove that there is a split short exact sequence
0 —s Extr—t (H (C),H*(C*)) — He(Hom (C,C™)) — Hom¢ (Hg (C),H*(C¥*)) — 0
7 I Cand (7 are chain complexes and C* is a cochain complex, prove that the expo-
. nential correspondence is an isomorphism
: Hom (C, Hom (C,C¥)) = Hom (C ® €, C*)
“$ Let (X,A) and (¥,B) be topological pairs such that {X x B, A X Y} is an excisive
couple in X X Y. For any module G prove that there is a split short exact sequence
0 Exte ! (He H¥) — HY(X,A) X (Y,B); () — Hom® {H H¥) - 0
where Hy = H (X.A; R)and H* = H*(Y,B; G).

g = {¢ii} € Home(C,C*)

P CATEGORY
A topological space X is said to have category < n, denoted as cat X < n, if X is the
union of n closed sets, each deformable to a point in X,

1 If X is a connected polyhedron of dimension n, prove that cat X < n + 1.

¥ 2 If Xis any space, prove that cat {SX) < 2.

v 3 Hcat X < n, prove that all n-fold cup products of positive-dimensional cohomology
classes of X vanish.

i 4 Provethatcat P* = n + Land cat (P X« X P) ==y + <+« 4oy 4 L

|, _E HOMOLOCY OF FIBER BUNDLES

F 1 Let p: E— B be a fiber-bundle pair, with total pair (E,E) and fiber pair (F,F), such
that Hy (F,F) = 0. Prove that H (EE) = 0,

=2 If p: E > Bis a fiber-hundle pair over a path-connected base space B, prove that a

( Liomomorphism §: H*(F,I;, R) — H*(E,E; R) is a cohomology extension of the fiber if

4 and only if for some b € B the composite

) H*(KF; Ry S H*(EE; R) — H*(Eufu R)
L is an isomorphism.

3 Let p: E —» B be a fiber-bundle pair over a path-connected base space. If for some
b ¢ B the pair (Ey,Ep) is a weak retract of (F,E), prove there exists a cohomology esten-
sion of the filser.
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-§ Prove that a g-sphere bundle £ with base space B is orientable over R if and only if
for every map a: §1 — B the bundle ¢*(£) is orientable over R.

7 & Prove that a g-sphere bundle £ is oriestalde over Z if and only if there is an element
U € Ho*W(Eg Ey s} whose image in HOYELE; Z,) is the unigue orientation class of ¢
over Zy. (Hint: Show that there is such an element U if and only if for every closed path
« in the base space, h{w]* is the identity map of He* YE, ), F.qp Z4). and this, in tum, i
equivalent to the condition that hje]® is the identity map of HoV YE 0y, E 1y Z).)

& Tet £ be a g-sphere bundle with base space B and with orientation clag
U, € HYE Eg R) and let Q, € HoY{B,R) he the corresponding eharacteristic class,
Prove that ¥ (8,) = U, v U,

@ Prove that the characteristic class &, of an even-dimensional sphere bundle £ oriented
over Z has order 2.

#  Let £ be a sphere bundle oriented over H, with base space B. If £ has a section in £,
(that is, if the map pg £y — B has a left inverse), prove that its characteristic clas
&; = 0. [Hint: Any two sections B —» E, are homotopic in E,. Since Ey is the mapping
cylinder of pg ¢ —> B, there is an inclusion mep k: B C E, which is a section. Therg is
a section in £y if and only if k is homotopic to a map B — £, in which case the compusite

HOoNE £ Ry 25 HoEGR) 227 HovyBiR)

is trivial, because 3% ~4 = &* |

F  HOPF ALCEBRAS
B Prove that the teusor product of connected Hopf algebras is a connected Hopf algelira.

2 i B is a connected Hopf algebra of finftc type over = #eld R, prove that
B¥* = Hom (B;R) is a connected Hopf algebm over R whose product and coproduct are
dual, respectively, to the coproduct and product of B.

3 Let B be a connected Hopf algebra over a field of characteristic p % 0 and assume
that B has an associative and commutative product and is generated as an algebra by a
single element x of positive degree. Prove that if deg x is odd and p 5 2, then B = E(x),
and if deg x is even or p = 2, then either B = Sucy o{2) o B = Taey 2.0(x), where h = p*
for some k > 1.

4 Let B he a connected Hopf algebra of finite type over a field of finite characteristic
p 0 and assume that B has an associative and cormnutative product. If the pth power
of every element of positive degree of B is §, prove that J is the tensor product of exte-
rior algebras {with generators of odd degree if p =£ 2) and truncated polynomial algebras
of height p (with generators of even degree if p 5£ 2).

G THF BOCKSTEIN IOMOMORPHISM
B Show that the Bockstein homomorphism in homology {or cohomology) anticommates
with the boundary howomerphism (or coboundary homomorphism) of a pair.

For any prime p let f, be the Bockstein homomorphism in either homology or
cohomology for the short exact sequeuce of abelian groups

0—)2‘9"&2”2»@2{,—)0
Let f3, be the Bockstein homomorphism for the short exact sequence

02252, 50

s

= o '

-
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- where A () = pnand py is reduction modulo p.
YZa Prove that f, = (t)e © B
:‘;""‘*”\},’m\’e that [3;’ @ /3[) = Q.

4 i Prove that f(u < v) = Bule) v o + (—Besr g o 2,(0)
5 Prove that Sg2tl = fl, 0 Sg? for i > 0. [Hint: Show that there exist functorial
tomotnorphisms {D;};.0, with Dj of degree § from the integral singular chain complex AX)

to A(X) @ A(X}, such that Dg is a chain map commuting with augmentation and
eDga + I)Zyl? [y — Tl);ﬁ i >0
2Dy — Do = Dy 4 iDgn §0
where T{oy & o) = (—})jier e denaz gy & 0,.]
6 Let £ be 2 g-sphere bundle and lot U ég{qﬂ(fi(,ff(; Zy) he its unigue orientation
over Zs. Prove that ¢ is orientable over Z if and only if S(U) = 0.

M STIEFEL-WHEENEY CHARACTERISTIC CLASSES
Let £ be a g-sphere bundle, with base space B, and let U € Hety{ F'e-Eei 75) be its orien-
tation elass over Zy. The ith Stiefel-Whitney characteristic class wi{f) € H{(B;Zy) for
i > 0 is defined by
@ (0x(8)) = SqU2)

I Let £ B —> B be continuous. Prove that f*(wi{d)) = 1wy f¥£).
2 If £ is a product bundle, prove that w($) = 0 for i > 0,
2 Prove the following:

{a) two(£) is the unit class of HY(B;Zy).

(B} Ro{wsd8)) = w18 + wilf) v wul) for i > 0.

(¢) I ¢ is a g-sphere bundle, then wif) =0 for § > ¢ + 1, and tg,1(8) is the

characteristic class of ¢ over Z,. .

(d} ¢ is orientable over Z if and only if wy(§) = O
If £ is a ¢-sphere bundle over B and £ is a ¢"sphere bundle over B, their cross product
Ex & isal(g + ¢ + -sphere bundle with B = £ X Ep, E[x;. == Fy X E(' U E( X Ey
and Py = P X Py
4 I U € HivYELE 2o} and Up € HY (B By Zy) are yespective orientation classes,
prove that

Uy X Up € HOO2(Eoeg s 22)
is the orientation class of £ x &.
5 Prove that eodf X &) = 2iigen islf) X ).
If ¢ and ¢ are sphere bundles with the same base space B, their Whitney stm
£ @ ¢ is the sphere bundle over B induced from § X & by the diagonat map B— B X B.
6 Whitney duality theorem. Prove that
Wit © &) = 2, wild) < wil)

E  BOMOLOGY WITH LOCAL COEFFICIENTS
I 0: A7 — X is & singular g-simplex of X, with ¢ > 1, let w, be the path in X obtained
by composing the linear path in A¢ from vg to vy with 6. Given a local system I of
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R modules on X, define A,{X:T) to be the R module of finitely nonzero formal sums X L!c:;"
in which o varies over the set of singular g-simplexes of X aud «, € {o{vy)) is perg

except for g finite sct of 0. For ¢ > 0 define a homomorphism @ 8,{X;1) — A,_y(X;1) by

Hoa) = O%’W (— Diae® 4 T{w, Nea)o®

i ) Prove that A(XT) = {Ay(X;F), 2} is a chain complex which is free (or torsion free)
it ' is a local system of free (or torsion free) R modules, and if A C X, show that
A(A; '] A) is 2 subcomplex of A(X;17). ’
The homology of (XA} with local coefficients I', denoted by Hy(X.A; T), is defined
to be the graded homology module of A(X,A; T) = AX;D)/A(A; T {A).

2 Tor a fixed ring R let € be the category whose objects are topological pairs (X,A),
together with local systems 1" of R modules on X, and whose morphisms from (X,A) and
T to (X.B) and [ are continuous maps f: (X,A) — (¥,B), together with indexed familics
of homomorphisms { f: ') — I'(f{%))}2x. Prove that Hy(X.A; I') is a covariant functor
frorn € to the category of graded R modules.

3 Exactness. Given A C B € X and « focal system I' of R modules on X, prove thal
there is an exact sequence
© = H{BA; T| B) = HyX.A; T) — HX,Bi T) = Ho1(BA; T |B) > ..
4  Excision. Let X; and Xz be subsets of a space X such that Xy U Xy = int X; U int X..
For any lgca! systemt I' of R modules on X prove that the excision map f; from
(X1, X3 N Xp) and '] X; to (X3 U Xy, Xp) and ' (X; U Xy) induces an isomorphism
hiet Hg(Xy, Xe N X T Xp) 5= He (X2 U Xg, Xy T{(Xy U Xp))
% Two morphisns f and g in € from (X,A) and T to (Y.,B} and I" are said to be
homotopic in €if there is 2 homotopy F: (X,A) X I > (¥,B) from fto g and an indexed
family of homomorphisms {Ean: I'(x) — T (F@,0) Yemexsy such that Few = f; and
Fe = g Prove that homotopy is an equivalence relation in the set of morphisres from
(X,A4) and I o (¥,B) and 1™ and that the composites of homotopic morphisms are
homotopic (so that the homotopy category of € can be defined).
G Homotopy. If f and g are morphisms from (X,A) and I' to (Y.B) and T” and f is
homatopic to g in &, prove that f, = g, H (X.A; 1) — H (Y,B; T").
d HT and I" are local systems of R modules on X, there is a local system [ @ 1" on
X with (N @ ")) = I'(%) @ M(x) and (T @ ") = Tw) @ Mw). In case 1" is the
constant local system equal to C, then prove that
AXAT®CQ =AMXAT® G
Deduce a universal-coeflicient formula for homology with local coefficients,
@ ‘If I"and T” are local systems of R modules on X and Y, respectively, let T x IV =
Y ® p’*(f’) be the local system on X X ¥, where P} and p’ # (I} are induced
from I' and 1", respectively, by the projections p: X % Y —» X and P XX Y- Y.
Prove that there is a natural chain equivalence of A(X. D @AY withAX x Y, I'x ).
Deduce a Kiinneth formula for homology with local coefficients,

J  COHOMOLOGY WITH LOCAL COEFFICIENTS

H T is a local system of R modules on X, define AYX:T) to be the module of functions @ *

assigning to every singular ¢-simplex o of X an element ¢} € T{a(re)). Define a homo-
morphis 8 AYX;1) — A {(X;T) by
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b)) = o i%;u (10D} 4 Tlew, 1H{o®)

1 Drove that A*(X;T") = (A%(X;1), 8) is a cochain complex and that if A C X, the
restriction map A* (X;I'} ~» 4% (A; T'} A) iy an epimorphism.
The cohomology of (XA} with local coefficients T, denoted by H¥(X,A; T), is
defined to be the graded cohomology module of

A*(XA; T} = ker [A%(X;]) - A% (A; '] A))
2 For afixed ring R let & be the category whose objects are topological pairs (X,A),
together with local systems T of R modules on X, and whose morphisms from (X,A) and
T to {Y,B) and I” are continuons maps f: (X,A} — (Y,B), together with indexed families
of homomorphisms { 22 T'(fx)} — I'(x)}eex Prove that H*(X,A; I} is a contravariant
fimctor from & to the category of graded R modules.
3 Prove that the cohomology with local coefficients has exactness, excision, and homot-
opy properties analogous to those of the homology with Jocal coefficients,
4 H T s alocal system of R modules on X and G is an R module, there is a local sys-
temr Homn (T,C) of B modules on X which assigns to z € X the module Hom (['(x),G).
Prove that

8%(X,A; Hom (I',C)) = Hom (A(X,A; 1), 6)
Deduce a universal-coeflicient foqua for cohomology with local coefficients.

Let £ be a g-sphere bundle with lﬁé’é“‘;ﬁ;cé B and let I'; be the local system on B
such that T (D) = Hy,((Fy k). Let pE () be the local system on F; induced from I'; by
pe B — B. A Thom class of & is an element U, € Het EyEy; p# (T')) such that for every
b € B the element
U (EnEy) € HoYEyEi; pE(T ) | Boy = Ho Y (B By; Hyyr(Eo b))
corresponds to the identity map of Hyy1(Er.Ey) under the universal-coefficient isomorphism
Ho Yy Ep; Hyyy(Fuoks)) = Hom (Hyya(FoEr), Hysr(ErnEa))

5 Prove that every g-sphere bundle has a vnique Thom class. {Hint: Prove the result
first for a product bundle, and then use Mayer-Vietoris sequences to extend the result to
arbitrary bundles.)
6 Let £ be a g-sphere bundle with a base space B and let U, be its Thom class. If I' is
any local system of abelian groups on X, prove that the homomorphism

O HofFp g 7* (1)) = Hu_ga(B; I, @ T)
such that 9z) = pe (Up ~ 2), where U m~ z is an element of H,. F; pF (P, @ 1)), is
an isomorphism. If B is compact, prove that the homomorphism

Q¥ H(BL) — H Y E B BT @ TY)

such that D¥(v) = p*(v) w U is an {somorphism.
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By the Thom isomorphism theorem, this implies the result.

In case Y is Euclidean space, (Y ) = 0 for k > 0, and theorem 22 showy

that &; and w;(X) determine each other recursively. In particular, the classes

1t are independent of the imbedding of X in the Euclidean space. If Xis 5
compact n-manifold imbedded in R+, it follows from example 19 and 95
and from the fact that the Euler class of X in R7'¢ is zero that i = 0 for
i > d. This gives the following necessary condition for imbeddability of X g,

Ratd,
23 corourary Let X be a compact n-marnifold imbedded in R**¢ and Jo
ity € H(XZy) be defined by
- . {1 k=0
n;::k W v wilX) = {0 k>0

Thenw; =0 fori > d. =

We present soe examples.

24 For I?, (2} = w and w,(P?) = 0, so P2 cannot be imbedded in Rg,

25 For I3, wi(P%) = 0 for i > 0.
26 For P4, 1(P4) = w, @2(P*) = w?, a(PY) = 13, and ©4(P!) = 0. There-

fore Pt cannot be imbedded in R7,

27 For P2, i02(P5) = 0, 0ol P5) = w?, wa{P5) = 0, 04(F) = 0, and t0s(17) = (.
Hence PP cannot be imbedded in R¥ (which is also a consequence of example 26).

The last examples show the importance of calculating w;{P?), which we
now do.
28 THEOREM Let (8), be the binomial coefficient (5) = nl/iY{n — )l reduced
anodulo 2. Then

uy(Pr) = (1)1t

prooF Since ("§N2 =n + 1 = x(P%), the result is true for i = n. Fa
i < n, where n >> 1, we suppose P71 lincarly imbedded in P#, Then P - Pr1
is an affine space, hence H*(P* — Pr=1) = O and Ho(P", " — Pr-1) = Ho(P»),
Then the normal Thom class 6(1) € HY{P», P* — Pr=1) maps to w in He(P¥),
so T; = w. By theorem 22, @y(P") | P! = w{P"1) + w v wi. (P
Since Ho(P) =~ HyP*") for ¢ < n, it follows by induction on n that

wil Py = [(;")e + (D]t = ("Fh)ewt

EXERCISES

A MANIFOLDS
} If Xis an n-manifold with boundary X, prove that X is a homology n-manifold whose

boundary, as 2 homology manifold, equals X,

r——
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i the rest of the exercises of this group, X will be an n-manifold without boundary and
g will be a fixed principal ides! domain,

’ 2 H T is a local system of R modules on X, prove Lhat{au;gny ACX

HA XX AXX~8A R XY =0 g<n

(Iﬁnt: Prove this first for A contained in a coordinate neighborhood of X. Prove it next
for compact A by using the Mayer-Vietoris technique. Then prove it for arbitrary A by
taking direct limits over the family of compact subsets of A.)

# Prove that there is a local system [y of B modules on X such that
ey = (X, X — xRy forx € X.
For x€ X let z; € Hy(X, X — x; Ty} be the generator corresponding uader the
fsomorphisot

Hy(X, X — x; T'y) == Hom (H"(X, X — x; R), H*(X, X — x; R))
to the identity homomorphism of H*(X, X — x; R). A Thom class of X is an element

Ue H(X X X, X Xx X — &X); R x Hom (I'x,R)

such that (U] lx X (X, X — a}})/2ze = 1 € HYxR) for allx € X,
4 H Vis an open subset of X and U is a Thom class of X, prove that
UV XV, VX Ve §(V)) is a Thom class of V.
& Prove that R” has a unique Thom dass.
6 Prove that X has a unigne Thom class. [Hint: Use exexcise 2 to show that

HX X X, X X X — 8(X} R % Hom (I'y,R)) =
Hm o MV XX, VX X — §(V R x Hom (TnR)}
where V varies over finite unions of coordinate neighborhoods, Then the result follows
from exercises 4 and 5 by Mayer-Vietoris technigues.]
1f (A,B) is 4 pair in X and G is an R module, define
y: HfX — B, X ~ A; Tx ® G) —> H" YA .B; C)
by y(z) = [U}{AB) X (X — B, X ~ A)}/z, where Uis the Thom class of X. As (V, W)
varies over neighborhoods of a closed pair (A,B) in X, there are isomorphisms
o {HX -~ WX - Vily @O = HX ~ B X =-A Ty &G
and tim . {H=«V,W; )} = [(A,B; G)
and a homomorphisin
¥ HdX — B, X -~ A; Ix ® Q) — Ave(AB; G)
s defined by passing to the limit with y.
7 Duality theorem. Prove that for & compact pair (A,B) in X, 7 is an isomorphism,
B THE INDEX OF A MANIFOLD
1 LetX be a compact n-manifold, with boundary X oriented over a field R, and let
X] € H(X.X; R) be the corresponding fundamental class. For u ¢ He(X,X; B} and
e H’f“Q(X;R) prove that ¢x{n,0) = (1w v, [X]) € B is a nonsingular hilinear form from
HYX,X) X Hrs(X) to R [that is, u = 0 if and only if gfu,t) = O for all ¢].

2 With the same hypotheses as sbove, let [X] = 3[X] € H, (X;R) and let ¢4 be the

“wrresponding bilinear form from He 3(X;R) x H*9(X;R) to R, Let i X C X, and

{1 g He1(X:R) and © € [1%9(X:R), prove that
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(i ® (1)) = @x{(8(1).0)
3 Prove that the Euler characteristic of any odd-dimensional compact manifold i .
and the Euler characteristic of an even-dimensional compact manifold which is a ix)undary

is even. (Hint: If X is the boundary of 4 (2n + 1)-manifold X, then, with Z, coeflicients .

dim im [j*: HY(X) ~» HY{X)}) = dim im [& Hy{X) —» H+yX X)]
and their sum equals dim Hn(X).)

Let Y be a compact 4m-munifold, without boundary oriented over R, and define the

index of ¥ 1o be the index of the vonsingular bilinear form gy from J*s(Y;R) x H’zm(y;n)“:

to R (when gy is represented as a sum of k squares minus a sum of § squares, the fudeg
of gy is k — j).

-4 If Y is oppositely oriented, prove that its index changes sign. Show that the index of
the product of oriented manifolds is the product of their indices.

3 If Xis a compact (tm + 1}-manifold, with boundary X oriented over R, prove that
the index of X is 0. [Hint: Prove that {* (H2%({X;R)) {s a subspace of H2(X;R) whose di.
mension equals one-half the dimension of H2(X;R) and on which @y is iden tically zerg,
This implies the result.]

€ CONTINUITY

1 Let {{(XpAg m*)js be an inverse system of compact Hansdorff pairs and let
(X.A) = lim,. {{X5A5), Prove that (X,A) can be imbedded in a space in which it i
a directed intersection of compact Hausdorff pairs {(X}.A7)}j¢ » where {X},A}) has the same
homotopy type as (Xpd;). [Hint: For each j €] imbed Xj in a contractible compact
Hausdorff space Y}, for example, a cube, and let (X%.A7) C Xjos ¥ be defined as the pan
of all points (7} with yx in Xy ot in Ay, respectively, such that if | < K, then iy = w#(y),
and if j 4 K, then y; is arbitrary.]

2  Prove that a cohomology theory has the continuity property if and only if it has the
weak continuity property,

3 The p-adic solenoid is defined 1o be the inverse limit of the sequence

Sl 85 e i e SEL ST L

where f{z} = zr, Compute the Alexander cohomology groups of the p-adic solenoid for
coctficients Z, Z,,, and K.

4 Generslize the solenoid of the preceding example to the cuse where there is a
sequence of integers ny, nz, . . . such that the mth map of $! to §* sends z 1o 2%, Com-
pute the integral Alexander cohomalogy groups of the resulting space.

§ Find a compact Havsdorff space X such that ﬁ"(X;Z} = 0if ¢ Land (X 7) =R

i) CECH COHOMOLOGY THEORY

b Let {U,59) be an open covering of (XA} (% is an open covering of X and U’ ¢ U is
a covering of A) and let K{!1) be the nerve of % and K' (W) the subcomplex of
K() which is the nave of % N A = {{7 N A| U7 € 9'}. Prove that the chain com-
plexes (COR(QW)), CIK' (U and (CIXEN)LCA))) are canonically chain equivalent. (Fint:
Hs={Us ..., U} isasimplex of K(Q) for of K'(A)], let A(s) be the subcomplex of
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s e

(@) {or of AU} penerated by all shmplexes of X)) [or of A in N UL I -

§ = {:\'(), .

. %) is a simplex of X(@) [or of A/(A)], let p(s')} be the subcomplex |
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of K(W) [or of K'(W)] generated by all simplexes { L>;_}, .. WU of K@) for of
K@) such that Uy contains 8 for 0 < i < r. Then C(A\(s)) and C(u(s")) are acycic, and

the method of acyclic models can be applied to prove the existence of chain maps

7: (CK(M),CKE)) - (CXE),CA@))

7+ (CXQLCA)) > (CRENR (W)
aich that «(C{s)) C CAs)) and (%)) < Clp(s7). Simitarly, the method of acydlic
madels shows that « and 7 are chain homotopy inverses of each other.l)
2 Let {77} be a refinement of (9,90), let 7: (K{VLK (V) > (K{9),K'(%) be u pro-
jection map, and let j: (X(V),A(V)) C (X(U)A(V)). For any abelian group (@ prove that
there is a commutative diagram

H* (KK G) = H*(XQLAQ); G)

w‘i ‘lf’

H*(K(V).K(¥); G) = HEX(A(N) G
where the horizontal maps are induced by the canonical chain equivalences of exercise 1
above.

8 The Cech cohomology group of (X,A) with coefficients G is defined by H#(XA; Q) =
fim {H*(K(),K°(W); 9)}. Prove that there is a natwral isomorphisin

I*(X.A; G) = H*(X.A; G).
4 1 diny (X — A) < n, prove that (X, A; G) = 0 for all ¢ > n and all G,

E THE KUNNETH FORMULA FOR CECH COHOMOLOGY
If Ky and K3 are simplicial complexes, their simplicial procuct Ky A Ky is the simplicial
capplex whose vertex set is the cartesian product of the vertex sets of Ky and of Kp and
whose simplexes are sets {(vo,1c0), - - . {voteg)}, where v, . . ., v, are vertices of
some simplex of Ky and wo, . . . , 1, are vertices of some simplex of Ky.
1 Prove thal Ky A Kz is a simplicial complex, and if L; ¢ Ky and Iz C Ky, then
b1 ly CKypaKRs
2 For simplicial pairs (K1,Ly) and Ky, L) define
(K).I»l) A (Kg,l.g) = (K) A Kz, K] .’) ,/z U L] .3 Kg)
Prove that G((Ky,1) 3 (Kg,Le)) is canonically chain equivalent to C(Ky,1;) & C(KyL2).
(Hint: Use the method of acyclic models.)
3 U (NW) is an open covering of (X,A) and (V,F) is an open covering of (Y,B), let
{37 X (V) = (W, be the open covering of (X.A) X (¥,B), where
W={UX VU VcY)
and W' = (U x V{U €W, V€ ¥} Prove that
(K(),K() = (RE),KQ)) & (KODLK ()
4 1f (X,A) and (V,B) are compact Hansdorff pairs, prove that the family of coverings of
(XA) X (V.B) of the form {Q,2) X (¥") is cofinal in the family of all open coverings
of (\,A) x (Y.B).

1 For details see C. 11, Dowker, Homdogy groups of relations, Annals of Mathematics, vol 56,
pp. 84 65, 1656
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8 I (X.A) and (.B) are compact Hausdorff paits and G and G’ are modules such thy
G # G’ = 0, prove that there is & short exact sequence

0> (0T € %) — [Y(X.A) X (YB); G & C)— ([T% » [+ 5 0
where HY = H¥(X.A; Gy and HE = H*(Y,B; ().

6  Let (X,A) and (Y,B) be locally compact Hausdorf pairs with A and B closed in x*

and ¥, respectively. If G and G are modudes such that C # G = 0, prove that there js a
short exact sequence

0> (H¥ 1 &I 200 — HAXA) X (VB C*G) — (FE o » HE 01 50
where % ; = IT'I?(X,A; (3) and ﬁ’f'g = H¥{Y.B; (04X

K LOCAL SYSTEMS AND SHEAVES
Throughout this group of exercises we assume X to be a paracompact Hausdorff space,
t If [ is a local system on X, let T be the presheaf on X such that for an open
set V¢ X, T(V) is the set of all functions [ assigning to each x € X an element
fix) € T'(x) with the property that for any path « in V, fl(1)) = T{w){ fie{0))). Prove that
T is a sheaf on X and the assodation of T to I is a natural transformation from local SyE-
tems to sheaves,

2 A presheaf I" on X is said to be locolly constent if there is an open covering A = {17}
of X such that f U € U and x € U, then I(U) = lim. {[(V}}, where V varies
over open neighborhoods of x. Jf U € 9 and U is a connected open subset of U, prove
that the composite

[(U) - [T -» T

is an isomorphism. Deduce that if I' is a Joeally constant sheaf and U7 is a connected
open subset of U € Q, then I(U )} = [{T"),

3 If X is locally path connected and T” is a locally constant sheaf on X, prove that
there is a local syster T on X such that [ == ™.

4 1f X is locally path connected and semilocally 1-connected, prove that there is a one-
to-one cornrespondence hetween equivalence dlasses of local systems on X and equiva-
lence classes of locally constant sheaves on X.

% I T is alocal system of R modules on X, let 49+ ;1) be the presheaf on X such that
A+ TUV)Y = AV | V) for Voopen in X. Prove that &4( -1} is fine.

6 If I'is a local system of R modules on X, let 4% (- ;1) be the cochain complex of pre-
sheaves A9 < ;1) on X and let 4% (- ;1) be the cochain complex of completions A« - ;).
Prove that there is an isomorphism

HA*(A%(+;D)(X) = H* (8% (-:D)(X)
7 Let T be a loeal system of R modules on X and assume that He(A* (- ;T7)) is locally
zero on X for all ¢ > O. Prove that there is an isomorphisim
H*(XD) = H¥(X;I)
(Hint: Note that " == HO(A* (+;1") and apply theorem 6.8.7.)

€& SOME PROPERTIES OF EUCLIDEAN SPACE
1 Findacompact subset X of R2 that is nconnected for all n and such that H{(X;2) = Z.

bt
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> If X 18 a compact subset of Rn and dim X < n - 1, prove that R* — X is connected.

Let Ai and Az be disjoint closed subsets of R? and let z3 € Hy{AR) and
€ HfAnl), withp + g =n — L 15 € I (AGR), let 24 € I, (R R* — AyR) be
the image of z; under the composite

ﬁ,,(A,) - H,,(R" - AZ) 'iT‘) Hﬂ+!(R"» Rr — Az)

Fhe Hinking ntimber Lk (z:,25) € R is defined by
Lk (z1,22) = (yrdzi)a)
where U is an orientation class of R, over R fixed once and for all.
3 Prove that Lk (21.22) = (U, i, (%2 X 23)), where
it Ap X (B2 R¥ — Ag) C (R® x R, Re 3¢ R® — 8(R™)
4 Assume that Lk (z2,7) is alse defined [that is, 2, € i {A3)]. Prove that Lk (z1,22) =
(,_])W‘ 1Lk (22,7).

5 Let A¢ be a psphere and Ay a g-sphere imbedded as disjoinl subsets of R7, where
p+y=n+ 1L Prove that HH,(A)) - H(R" — Ap) is trivial i and only if
HfAg) —» Hy{R" — Aq) is trivial.

H IMBEDDINGS OF MANIFOLDS IN EUCLIDEAN SPACE
1 Prove that a compact n-marifold which is nonorientable over Z cannot be imbedded
i Rn-ﬂ'
2 Let X be a compact connected n-manifold imbedded in R**1 and let U and V be
the components of R**1 — X, Let i: X € R — Uand j: ¥ © Rv*% — Vand prove
that over any R, i*(H*(Re*1 — U)) and j*(f*(R** — V)) are subalgebras of M, (X)
and there is a direct-sura representation

{i*j*}: HiRw"t — U) @ IR — V)= F(X) 0L g<n

8 Prove that for n > 2 the real projective n-space P* cannot be imbedded in Rv+1,



